linux/kernel/irq/timings.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org>
   3#define pr_fmt(fmt) "irq_timings: " fmt
   4
   5#include <linux/kernel.h>
   6#include <linux/percpu.h>
   7#include <linux/slab.h>
   8#include <linux/static_key.h>
   9#include <linux/init.h>
  10#include <linux/interrupt.h>
  11#include <linux/idr.h>
  12#include <linux/irq.h>
  13#include <linux/math64.h>
  14#include <linux/log2.h>
  15
  16#include <trace/events/irq.h>
  17
  18#include "internals.h"
  19
  20DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);
  21
  22DEFINE_PER_CPU(struct irq_timings, irq_timings);
  23
  24static DEFINE_IDR(irqt_stats);
  25
  26void irq_timings_enable(void)
  27{
  28        static_branch_enable(&irq_timing_enabled);
  29}
  30
  31void irq_timings_disable(void)
  32{
  33        static_branch_disable(&irq_timing_enabled);
  34}
  35
  36/*
  37 * The main goal of this algorithm is to predict the next interrupt
  38 * occurrence on the current CPU.
  39 *
  40 * Currently, the interrupt timings are stored in a circular array
  41 * buffer every time there is an interrupt, as a tuple: the interrupt
  42 * number and the associated timestamp when the event occurred <irq,
  43 * timestamp>.
  44 *
  45 * For every interrupt occurring in a short period of time, we can
  46 * measure the elapsed time between the occurrences for the same
  47 * interrupt and we end up with a suite of intervals. The experience
  48 * showed the interrupts are often coming following a periodic
  49 * pattern.
  50 *
  51 * The objective of the algorithm is to find out this periodic pattern
  52 * in a fastest way and use its period to predict the next irq event.
  53 *
  54 * When the next interrupt event is requested, we are in the situation
  55 * where the interrupts are disabled and the circular buffer
  56 * containing the timings is filled with the events which happened
  57 * after the previous next-interrupt-event request.
  58 *
  59 * At this point, we read the circular buffer and we fill the irq
  60 * related statistics structure. After this step, the circular array
  61 * containing the timings is empty because all the values are
  62 * dispatched in their corresponding buffers.
  63 *
  64 * Now for each interrupt, we can predict the next event by using the
  65 * suffix array, log interval and exponential moving average
  66 *
  67 * 1. Suffix array
  68 *
  69 * Suffix array is an array of all the suffixes of a string. It is
  70 * widely used as a data structure for compression, text search, ...
  71 * For instance for the word 'banana', the suffixes will be: 'banana'
  72 * 'anana' 'nana' 'ana' 'na' 'a'
  73 *
  74 * Usually, the suffix array is sorted but for our purpose it is
  75 * not necessary and won't provide any improvement in the context of
  76 * the solved problem where we clearly define the boundaries of the
  77 * search by a max period and min period.
  78 *
  79 * The suffix array will build a suite of intervals of different
  80 * length and will look for the repetition of each suite. If the suite
  81 * is repeating then we have the period because it is the length of
  82 * the suite whatever its position in the buffer.
  83 *
  84 * 2. Log interval
  85 *
  86 * We saw the irq timings allow to compute the interval of the
  87 * occurrences for a specific interrupt. We can reasonibly assume the
  88 * longer is the interval, the higher is the error for the next event
  89 * and we can consider storing those interval values into an array
  90 * where each slot in the array correspond to an interval at the power
  91 * of 2 of the index. For example, index 12 will contain values
  92 * between 2^11 and 2^12.
  93 *
  94 * At the end we have an array of values where at each index defines a
  95 * [2^index - 1, 2 ^ index] interval values allowing to store a large
  96 * number of values inside a small array.
  97 *
  98 * For example, if we have the value 1123, then we store it at
  99 * ilog2(1123) = 10 index value.
 100 *
 101 * Storing those value at the specific index is done by computing an
 102 * exponential moving average for this specific slot. For instance,
 103 * for values 1800, 1123, 1453, ... fall under the same slot (10) and
 104 * the exponential moving average is computed every time a new value
 105 * is stored at this slot.
 106 *
 107 * 3. Exponential Moving Average
 108 *
 109 * The EMA is largely used to track a signal for stocks or as a low
 110 * pass filter. The magic of the formula, is it is very simple and the
 111 * reactivity of the average can be tuned with the factors called
 112 * alpha.
 113 *
 114 * The higher the alphas are, the faster the average respond to the
 115 * signal change. In our case, if a slot in the array is a big
 116 * interval, we can have numbers with a big difference between
 117 * them. The impact of those differences in the average computation
 118 * can be tuned by changing the alpha value.
 119 *
 120 *
 121 *  -- The algorithm --
 122 *
 123 * We saw the different processing above, now let's see how they are
 124 * used together.
 125 *
 126 * For each interrupt:
 127 *      For each interval:
 128 *              Compute the index = ilog2(interval)
 129 *              Compute a new_ema(buffer[index], interval)
 130 *              Store the index in a circular buffer
 131 *
 132 *      Compute the suffix array of the indexes
 133 *
 134 *      For each suffix:
 135 *              If the suffix is reverse-found 3 times
 136 *                      Return suffix
 137 *
 138 *      Return Not found
 139 *
 140 * However we can not have endless suffix array to be build, it won't
 141 * make sense and it will add an extra overhead, so we can restrict
 142 * this to a maximum suffix length of 5 and a minimum suffix length of
 143 * 2. The experience showed 5 is the majority of the maximum pattern
 144 * period found for different devices.
 145 *
 146 * The result is a pattern finding less than 1us for an interrupt.
 147 *
 148 * Example based on real values:
 149 *
 150 * Example 1 : MMC write/read interrupt interval:
 151 *
 152 *      223947, 1240, 1384, 1386, 1386,
 153 *      217416, 1236, 1384, 1386, 1387,
 154 *      214719, 1241, 1386, 1387, 1384,
 155 *      213696, 1234, 1384, 1386, 1388,
 156 *      219904, 1240, 1385, 1389, 1385,
 157 *      212240, 1240, 1386, 1386, 1386,
 158 *      214415, 1236, 1384, 1386, 1387,
 159 *      214276, 1234, 1384, 1388, ?
 160 *
 161 * For each element, apply ilog2(value)
 162 *
 163 *      15, 8, 8, 8, 8,
 164 *      15, 8, 8, 8, 8,
 165 *      15, 8, 8, 8, 8,
 166 *      15, 8, 8, 8, 8,
 167 *      15, 8, 8, 8, 8,
 168 *      15, 8, 8, 8, 8,
 169 *      15, 8, 8, 8, 8,
 170 *      15, 8, 8, 8, ?
 171 *
 172 * Max period of 5, we take the last (max_period * 3) 15 elements as
 173 * we can be confident if the pattern repeats itself three times it is
 174 * a repeating pattern.
 175 *
 176 *                   8,
 177 *      15, 8, 8, 8, 8,
 178 *      15, 8, 8, 8, 8,
 179 *      15, 8, 8, 8, ?
 180 *
 181 * Suffixes are:
 182 *
 183 *  1) 8, 15, 8, 8, 8  <- max period
 184 *  2) 8, 15, 8, 8
 185 *  3) 8, 15, 8
 186 *  4) 8, 15           <- min period
 187 *
 188 * From there we search the repeating pattern for each suffix.
 189 *
 190 * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8
 191 *         |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
 192 *         8, 15, 8, 8, 8  |   |  |  |  |  |   |  |  |  |
 193 *                         8, 15, 8, 8, 8  |   |  |  |  |
 194 *                                         8, 15, 8, 8, 8
 195 *
 196 * When moving the suffix, we found exactly 3 matches.
 197 *
 198 * The first suffix with period 5 is repeating.
 199 *
 200 * The next event is (3 * max_period) % suffix_period
 201 *
 202 * In this example, the result 0, so the next event is suffix[0] => 8
 203 *
 204 * However, 8 is the index in the array of exponential moving average
 205 * which was calculated on the fly when storing the values, so the
 206 * interval is ema[8] = 1366
 207 *
 208 *
 209 * Example 2:
 210 *
 211 *      4, 3, 5, 100,
 212 *      3, 3, 5, 117,
 213 *      4, 4, 5, 112,
 214 *      4, 3, 4, 110,
 215 *      3, 5, 3, 117,
 216 *      4, 4, 5, 112,
 217 *      4, 3, 4, 110,
 218 *      3, 4, 5, 112,
 219 *      4, 3, 4, 110
 220 *
 221 * ilog2
 222 *
 223 *      0, 0, 0, 4,
 224 *      0, 0, 0, 4,
 225 *      0, 0, 0, 4,
 226 *      0, 0, 0, 4,
 227 *      0, 0, 0, 4,
 228 *      0, 0, 0, 4,
 229 *      0, 0, 0, 4,
 230 *      0, 0, 0, 4,
 231 *      0, 0, 0, 4
 232 *
 233 * Max period 5:
 234 *         0, 0, 4,
 235 *      0, 0, 0, 4,
 236 *      0, 0, 0, 4,
 237 *      0, 0, 0, 4
 238 *
 239 * Suffixes:
 240 *
 241 *  1) 0, 0, 4, 0, 0
 242 *  2) 0, 0, 4, 0
 243 *  3) 0, 0, 4
 244 *  4) 0, 0
 245 *
 246 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
 247 *         |  |  |  |  |  |  X
 248 *         0, 0, 4, 0, 0, |  X
 249 *                        0, 0
 250 *
 251 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
 252 *         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 253 *         0, 0, 4, 0, |  |  |  |  |  |  |  |  |  |  |
 254 *                     0, 0, 4, 0, |  |  |  |  |  |  |
 255 *                                 0, 0, 4, 0, |  |  |
 256 *                                             0  0  4
 257 *
 258 * Pattern is found 3 times, the remaining is 1 which results from
 259 * (max_period * 3) % suffix_period. This value is the index in the
 260 * suffix arrays. The suffix array for a period 4 has the value 4
 261 * at index 1.
 262 */
 263#define EMA_ALPHA_VAL           64
 264#define EMA_ALPHA_SHIFT         7
 265
 266#define PREDICTION_PERIOD_MIN   3
 267#define PREDICTION_PERIOD_MAX   5
 268#define PREDICTION_FACTOR       4
 269#define PREDICTION_MAX          10 /* 2 ^ PREDICTION_MAX useconds */
 270#define PREDICTION_BUFFER_SIZE  16 /* slots for EMAs, hardly more than 16 */
 271
 272/*
 273 * Number of elements in the circular buffer: If it happens it was
 274 * flushed before, then the number of elements could be smaller than
 275 * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is
 276 * used as we wrapped. The index begins from zero when we did not
 277 * wrap. That could be done in a nicer way with the proper circular
 278 * array structure type but with the cost of extra computation in the
 279 * interrupt handler hot path. We choose efficiency.
 280 */
 281#define for_each_irqts(i, irqts)                                        \
 282        for (i = irqts->count < IRQ_TIMINGS_SIZE ?                      \
 283                     0 : irqts->count & IRQ_TIMINGS_MASK,               \
 284                     irqts->count = min(IRQ_TIMINGS_SIZE,               \
 285                                        irqts->count);                  \
 286             irqts->count > 0; irqts->count--,                          \
 287                     i = (i + 1) & IRQ_TIMINGS_MASK)
 288
 289struct irqt_stat {
 290        u64     last_ts;
 291        u64     ema_time[PREDICTION_BUFFER_SIZE];
 292        int     timings[IRQ_TIMINGS_SIZE];
 293        int     circ_timings[IRQ_TIMINGS_SIZE];
 294        int     count;
 295};
 296
 297/*
 298 * Exponential moving average computation
 299 */
 300static u64 irq_timings_ema_new(u64 value, u64 ema_old)
 301{
 302        s64 diff;
 303
 304        if (unlikely(!ema_old))
 305                return value;
 306
 307        diff = (value - ema_old) * EMA_ALPHA_VAL;
 308        /*
 309         * We can use a s64 type variable to be added with the u64
 310         * ema_old variable as this one will never have its topmost
 311         * bit set, it will be always smaller than 2^63 nanosec
 312         * interrupt interval (292 years).
 313         */
 314        return ema_old + (diff >> EMA_ALPHA_SHIFT);
 315}
 316
 317static int irq_timings_next_event_index(int *buffer, size_t len, int period_max)
 318{
 319        int period;
 320
 321        /*
 322         * Move the beginning pointer to the end minus the max period x 3.
 323         * We are at the point we can begin searching the pattern
 324         */
 325        buffer = &buffer[len - (period_max * 3)];
 326
 327        /* Adjust the length to the maximum allowed period x 3 */
 328        len = period_max * 3;
 329
 330        /*
 331         * The buffer contains the suite of intervals, in a ilog2
 332         * basis, we are looking for a repetition. We point the
 333         * beginning of the search three times the length of the
 334         * period beginning at the end of the buffer. We do that for
 335         * each suffix.
 336         */
 337        for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) {
 338
 339                /*
 340                 * The first comparison always succeed because the
 341                 * suffix is deduced from the first n-period bytes of
 342                 * the buffer and we compare the initial suffix with
 343                 * itself, so we can skip the first iteration.
 344                 */
 345                int idx = period;
 346                size_t size = period;
 347
 348                /*
 349                 * We look if the suite with period 'i' repeat
 350                 * itself. If it is truncated at the end, as it
 351                 * repeats we can use the period to find out the next
 352                 * element with the modulo.
 353                 */
 354                while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) {
 355
 356                        /*
 357                         * Move the index in a period basis
 358                         */
 359                        idx += size;
 360
 361                        /*
 362                         * If this condition is reached, all previous
 363                         * memcmp were successful, so the period is
 364                         * found.
 365                         */
 366                        if (idx == len)
 367                                return buffer[len % period];
 368
 369                        /*
 370                         * If the remaining elements to compare are
 371                         * smaller than the period, readjust the size
 372                         * of the comparison for the last iteration.
 373                         */
 374                        if (len - idx < period)
 375                                size = len - idx;
 376                }
 377        }
 378
 379        return -1;
 380}
 381
 382static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now)
 383{
 384        int index, i, period_max, count, start, min = INT_MAX;
 385
 386        if ((now - irqs->last_ts) >= NSEC_PER_SEC) {
 387                irqs->count = irqs->last_ts = 0;
 388                return U64_MAX;
 389        }
 390
 391        /*
 392         * As we want to find three times the repetition, we need a
 393         * number of intervals greater or equal to three times the
 394         * maximum period, otherwise we truncate the max period.
 395         */
 396        period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ?
 397                PREDICTION_PERIOD_MAX : irqs->count / 3;
 398
 399        /*
 400         * If we don't have enough irq timings for this prediction,
 401         * just bail out.
 402         */
 403        if (period_max <= PREDICTION_PERIOD_MIN)
 404                return U64_MAX;
 405
 406        /*
 407         * 'count' will depends if the circular buffer wrapped or not
 408         */
 409        count = irqs->count < IRQ_TIMINGS_SIZE ?
 410                irqs->count : IRQ_TIMINGS_SIZE;
 411
 412        start = irqs->count < IRQ_TIMINGS_SIZE ?
 413                0 : (irqs->count & IRQ_TIMINGS_MASK);
 414
 415        /*
 416         * Copy the content of the circular buffer into another buffer
 417         * in order to linearize the buffer instead of dealing with
 418         * wrapping indexes and shifted array which will be prone to
 419         * error and extremelly difficult to debug.
 420         */
 421        for (i = 0; i < count; i++) {
 422                int index = (start + i) & IRQ_TIMINGS_MASK;
 423
 424                irqs->timings[i] = irqs->circ_timings[index];
 425                min = min_t(int, irqs->timings[i], min);
 426        }
 427
 428        index = irq_timings_next_event_index(irqs->timings, count, period_max);
 429        if (index < 0)
 430                return irqs->last_ts + irqs->ema_time[min];
 431
 432        return irqs->last_ts + irqs->ema_time[index];
 433}
 434
 435static __always_inline int irq_timings_interval_index(u64 interval)
 436{
 437        /*
 438         * The PREDICTION_FACTOR increase the interval size for the
 439         * array of exponential average.
 440         */
 441        u64 interval_us = (interval >> 10) / PREDICTION_FACTOR;
 442
 443        return likely(interval_us) ? ilog2(interval_us) : 0;
 444}
 445
 446static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs,
 447                                                u64 interval)
 448{
 449        int index;
 450
 451        /*
 452         * Get the index in the ema table for this interrupt.
 453         */
 454        index = irq_timings_interval_index(interval);
 455
 456        /*
 457         * Store the index as an element of the pattern in another
 458         * circular array.
 459         */
 460        irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index;
 461
 462        irqs->ema_time[index] = irq_timings_ema_new(interval,
 463                                                    irqs->ema_time[index]);
 464
 465        irqs->count++;
 466}
 467
 468static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts)
 469{
 470        u64 old_ts = irqs->last_ts;
 471        u64 interval;
 472
 473        /*
 474         * The timestamps are absolute time values, we need to compute
 475         * the timing interval between two interrupts.
 476         */
 477        irqs->last_ts = ts;
 478
 479        /*
 480         * The interval type is u64 in order to deal with the same
 481         * type in our computation, that prevent mindfuck issues with
 482         * overflow, sign and division.
 483         */
 484        interval = ts - old_ts;
 485
 486        /*
 487         * The interrupt triggered more than one second apart, that
 488         * ends the sequence as predictible for our purpose. In this
 489         * case, assume we have the beginning of a sequence and the
 490         * timestamp is the first value. As it is impossible to
 491         * predict anything at this point, return.
 492         *
 493         * Note the first timestamp of the sequence will always fall
 494         * in this test because the old_ts is zero. That is what we
 495         * want as we need another timestamp to compute an interval.
 496         */
 497        if (interval >= NSEC_PER_SEC) {
 498                irqs->count = 0;
 499                return;
 500        }
 501
 502        __irq_timings_store(irq, irqs, interval);
 503}
 504
 505/**
 506 * irq_timings_next_event - Return when the next event is supposed to arrive
 507 *
 508 * During the last busy cycle, the number of interrupts is incremented
 509 * and stored in the irq_timings structure. This information is
 510 * necessary to:
 511 *
 512 * - know if the index in the table wrapped up:
 513 *
 514 *      If more than the array size interrupts happened during the
 515 *      last busy/idle cycle, the index wrapped up and we have to
 516 *      begin with the next element in the array which is the last one
 517 *      in the sequence, otherwise it is a the index 0.
 518 *
 519 * - have an indication of the interrupts activity on this CPU
 520 *   (eg. irq/sec)
 521 *
 522 * The values are 'consumed' after inserting in the statistical model,
 523 * thus the count is reinitialized.
 524 *
 525 * The array of values **must** be browsed in the time direction, the
 526 * timestamp must increase between an element and the next one.
 527 *
 528 * Returns a nanosec time based estimation of the earliest interrupt,
 529 * U64_MAX otherwise.
 530 */
 531u64 irq_timings_next_event(u64 now)
 532{
 533        struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
 534        struct irqt_stat *irqs;
 535        struct irqt_stat __percpu *s;
 536        u64 ts, next_evt = U64_MAX;
 537        int i, irq = 0;
 538
 539        /*
 540         * This function must be called with the local irq disabled in
 541         * order to prevent the timings circular buffer to be updated
 542         * while we are reading it.
 543         */
 544        lockdep_assert_irqs_disabled();
 545
 546        if (!irqts->count)
 547                return next_evt;
 548
 549        /*
 550         * Number of elements in the circular buffer: If it happens it
 551         * was flushed before, then the number of elements could be
 552         * smaller than IRQ_TIMINGS_SIZE, so the count is used,
 553         * otherwise the array size is used as we wrapped. The index
 554         * begins from zero when we did not wrap. That could be done
 555         * in a nicer way with the proper circular array structure
 556         * type but with the cost of extra computation in the
 557         * interrupt handler hot path. We choose efficiency.
 558         *
 559         * Inject measured irq/timestamp to the pattern prediction
 560         * model while decrementing the counter because we consume the
 561         * data from our circular buffer.
 562         */
 563        for_each_irqts(i, irqts) {
 564                irq = irq_timing_decode(irqts->values[i], &ts);
 565                s = idr_find(&irqt_stats, irq);
 566                if (s)
 567                        irq_timings_store(irq, this_cpu_ptr(s), ts);
 568        }
 569
 570        /*
 571         * Look in the list of interrupts' statistics, the earliest
 572         * next event.
 573         */
 574        idr_for_each_entry(&irqt_stats, s, i) {
 575
 576                irqs = this_cpu_ptr(s);
 577
 578                ts = __irq_timings_next_event(irqs, i, now);
 579                if (ts <= now)
 580                        return now;
 581
 582                if (ts < next_evt)
 583                        next_evt = ts;
 584        }
 585
 586        return next_evt;
 587}
 588
 589void irq_timings_free(int irq)
 590{
 591        struct irqt_stat __percpu *s;
 592
 593        s = idr_find(&irqt_stats, irq);
 594        if (s) {
 595                free_percpu(s);
 596                idr_remove(&irqt_stats, irq);
 597        }
 598}
 599
 600int irq_timings_alloc(int irq)
 601{
 602        struct irqt_stat __percpu *s;
 603        int id;
 604
 605        /*
 606         * Some platforms can have the same private interrupt per cpu,
 607         * so this function may be be called several times with the
 608         * same interrupt number. Just bail out in case the per cpu
 609         * stat structure is already allocated.
 610         */
 611        s = idr_find(&irqt_stats, irq);
 612        if (s)
 613                return 0;
 614
 615        s = alloc_percpu(*s);
 616        if (!s)
 617                return -ENOMEM;
 618
 619        idr_preload(GFP_KERNEL);
 620        id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
 621        idr_preload_end();
 622
 623        if (id < 0) {
 624                free_percpu(s);
 625                return id;
 626        }
 627
 628        return 0;
 629}
 630
 631#ifdef CONFIG_TEST_IRQ_TIMINGS
 632struct timings_intervals {
 633        u64 *intervals;
 634        size_t count;
 635};
 636
 637/*
 638 * Intervals are given in nanosecond base
 639 */
 640static u64 intervals0[] __initdata = {
 641        10000, 50000, 200000, 500000,
 642        10000, 50000, 200000, 500000,
 643        10000, 50000, 200000, 500000,
 644        10000, 50000, 200000, 500000,
 645        10000, 50000, 200000, 500000,
 646        10000, 50000, 200000, 500000,
 647        10000, 50000, 200000, 500000,
 648        10000, 50000, 200000, 500000,
 649        10000, 50000, 200000,
 650};
 651
 652static u64 intervals1[] __initdata = {
 653        223947000, 1240000, 1384000, 1386000, 1386000,
 654        217416000, 1236000, 1384000, 1386000, 1387000,
 655        214719000, 1241000, 1386000, 1387000, 1384000,
 656        213696000, 1234000, 1384000, 1386000, 1388000,
 657        219904000, 1240000, 1385000, 1389000, 1385000,
 658        212240000, 1240000, 1386000, 1386000, 1386000,
 659        214415000, 1236000, 1384000, 1386000, 1387000,
 660        214276000, 1234000,
 661};
 662
 663static u64 intervals2[] __initdata = {
 664        4000, 3000, 5000, 100000,
 665        3000, 3000, 5000, 117000,
 666        4000, 4000, 5000, 112000,
 667        4000, 3000, 4000, 110000,
 668        3000, 5000, 3000, 117000,
 669        4000, 4000, 5000, 112000,
 670        4000, 3000, 4000, 110000,
 671        3000, 4000, 5000, 112000,
 672        4000,
 673};
 674
 675static u64 intervals3[] __initdata = {
 676        1385000, 212240000, 1240000,
 677        1386000, 214415000, 1236000,
 678        1384000, 214276000, 1234000,
 679        1386000, 214415000, 1236000,
 680        1385000, 212240000, 1240000,
 681        1386000, 214415000, 1236000,
 682        1384000, 214276000, 1234000,
 683        1386000, 214415000, 1236000,
 684        1385000, 212240000, 1240000,
 685};
 686
 687static u64 intervals4[] __initdata = {
 688        10000, 50000, 10000, 50000,
 689        10000, 50000, 10000, 50000,
 690        10000, 50000, 10000, 50000,
 691        10000, 50000, 10000, 50000,
 692        10000, 50000, 10000, 50000,
 693        10000, 50000, 10000, 50000,
 694        10000, 50000, 10000, 50000,
 695        10000, 50000, 10000, 50000,
 696        10000,
 697};
 698
 699static struct timings_intervals tis[] __initdata = {
 700        { intervals0, ARRAY_SIZE(intervals0) },
 701        { intervals1, ARRAY_SIZE(intervals1) },
 702        { intervals2, ARRAY_SIZE(intervals2) },
 703        { intervals3, ARRAY_SIZE(intervals3) },
 704        { intervals4, ARRAY_SIZE(intervals4) },
 705};
 706
 707static int __init irq_timings_test_next_index(struct timings_intervals *ti)
 708{
 709        int _buffer[IRQ_TIMINGS_SIZE];
 710        int buffer[IRQ_TIMINGS_SIZE];
 711        int index, start, i, count, period_max;
 712
 713        count = ti->count - 1;
 714
 715        period_max = count > (3 * PREDICTION_PERIOD_MAX) ?
 716                PREDICTION_PERIOD_MAX : count / 3;
 717
 718        /*
 719         * Inject all values except the last one which will be used
 720         * to compare with the next index result.
 721         */
 722        pr_debug("index suite: ");
 723
 724        for (i = 0; i < count; i++) {
 725                index = irq_timings_interval_index(ti->intervals[i]);
 726                _buffer[i & IRQ_TIMINGS_MASK] = index;
 727                pr_cont("%d ", index);
 728        }
 729
 730        start = count < IRQ_TIMINGS_SIZE ? 0 :
 731                count & IRQ_TIMINGS_MASK;
 732
 733        count = min_t(int, count, IRQ_TIMINGS_SIZE);
 734
 735        for (i = 0; i < count; i++) {
 736                int index = (start + i) & IRQ_TIMINGS_MASK;
 737                buffer[i] = _buffer[index];
 738        }
 739
 740        index = irq_timings_next_event_index(buffer, count, period_max);
 741        i = irq_timings_interval_index(ti->intervals[ti->count - 1]);
 742
 743        if (index != i) {
 744                pr_err("Expected (%d) and computed (%d) next indexes differ\n",
 745                       i, index);
 746                return -EINVAL;
 747        }
 748
 749        return 0;
 750}
 751
 752static int __init irq_timings_next_index_selftest(void)
 753{
 754        int i, ret;
 755
 756        for (i = 0; i < ARRAY_SIZE(tis); i++) {
 757
 758                pr_info("---> Injecting intervals number #%d (count=%zd)\n",
 759                        i, tis[i].count);
 760
 761                ret = irq_timings_test_next_index(&tis[i]);
 762                if (ret)
 763                        break;
 764        }
 765
 766        return ret;
 767}
 768
 769static int __init irq_timings_test_irqs(struct timings_intervals *ti)
 770{
 771        struct irqt_stat __percpu *s;
 772        struct irqt_stat *irqs;
 773        int i, index, ret, irq = 0xACE5;
 774
 775        ret = irq_timings_alloc(irq);
 776        if (ret) {
 777                pr_err("Failed to allocate irq timings\n");
 778                return ret;
 779        }
 780
 781        s = idr_find(&irqt_stats, irq);
 782        if (!s) {
 783                ret = -EIDRM;
 784                goto out;
 785        }
 786
 787        irqs = this_cpu_ptr(s);
 788
 789        for (i = 0; i < ti->count; i++) {
 790
 791                index = irq_timings_interval_index(ti->intervals[i]);
 792                pr_debug("%d: interval=%llu ema_index=%d\n",
 793                         i, ti->intervals[i], index);
 794
 795                __irq_timings_store(irq, irqs, ti->intervals[i]);
 796                if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) {
 797                        pr_err("Failed to store in the circular buffer\n");
 798                        goto out;
 799                }
 800        }
 801
 802        if (irqs->count != ti->count) {
 803                pr_err("Count differs\n");
 804                goto out;
 805        }
 806
 807        ret = 0;
 808out:
 809        irq_timings_free(irq);
 810
 811        return ret;
 812}
 813
 814static int __init irq_timings_irqs_selftest(void)
 815{
 816        int i, ret;
 817
 818        for (i = 0; i < ARRAY_SIZE(tis); i++) {
 819                pr_info("---> Injecting intervals number #%d (count=%zd)\n",
 820                        i, tis[i].count);
 821                ret = irq_timings_test_irqs(&tis[i]);
 822                if (ret)
 823                        break;
 824        }
 825
 826        return ret;
 827}
 828
 829static int __init irq_timings_test_irqts(struct irq_timings *irqts,
 830                                         unsigned count)
 831{
 832        int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0;
 833        int i, irq, oirq = 0xBEEF;
 834        u64 ots = 0xDEAD, ts;
 835
 836        /*
 837         * Fill the circular buffer by using the dedicated function.
 838         */
 839        for (i = 0; i < count; i++) {
 840                pr_debug("%d: index=%d, ts=%llX irq=%X\n",
 841                         i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i);
 842
 843                irq_timings_push(ots + i, oirq + i);
 844        }
 845
 846        /*
 847         * Compute the first elements values after the index wrapped
 848         * up or not.
 849         */
 850        ots += start;
 851        oirq += start;
 852
 853        /*
 854         * Test the circular buffer count is correct.
 855         */
 856        pr_debug("---> Checking timings array count (%d) is right\n", count);
 857        if (WARN_ON(irqts->count != count))
 858                return -EINVAL;
 859
 860        /*
 861         * Test the macro allowing to browse all the irqts.
 862         */
 863        pr_debug("---> Checking the for_each_irqts() macro\n");
 864        for_each_irqts(i, irqts) {
 865
 866                irq = irq_timing_decode(irqts->values[i], &ts);
 867
 868                pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n",
 869                         i, ts, ots, irq, oirq);
 870
 871                if (WARN_ON(ts != ots || irq != oirq))
 872                        return -EINVAL;
 873
 874                ots++; oirq++;
 875        }
 876
 877        /*
 878         * The circular buffer should have be flushed when browsed
 879         * with for_each_irqts
 880         */
 881        pr_debug("---> Checking timings array is empty after browsing it\n");
 882        if (WARN_ON(irqts->count))
 883                return -EINVAL;
 884
 885        return 0;
 886}
 887
 888static int __init irq_timings_irqts_selftest(void)
 889{
 890        struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
 891        int i, ret;
 892
 893        /*
 894         * Test the circular buffer with different number of
 895         * elements. The purpose is to test at the limits (empty, half
 896         * full, full, wrapped with the cursor at the boundaries,
 897         * wrapped several times, etc ...
 898         */
 899        int count[] = { 0,
 900                        IRQ_TIMINGS_SIZE >> 1,
 901                        IRQ_TIMINGS_SIZE,
 902                        IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1),
 903                        2 * IRQ_TIMINGS_SIZE,
 904                        (2 * IRQ_TIMINGS_SIZE) + 3,
 905        };
 906
 907        for (i = 0; i < ARRAY_SIZE(count); i++) {
 908
 909                pr_info("---> Checking the timings with %d/%d values\n",
 910                        count[i], IRQ_TIMINGS_SIZE);
 911
 912                ret = irq_timings_test_irqts(irqts, count[i]);
 913                if (ret)
 914                        break;
 915        }
 916
 917        return ret;
 918}
 919
 920static int __init irq_timings_selftest(void)
 921{
 922        int ret;
 923
 924        pr_info("------------------- selftest start -----------------\n");
 925
 926        /*
 927         * At this point, we don't except any subsystem to use the irq
 928         * timings but us, so it should not be enabled.
 929         */
 930        if (static_branch_unlikely(&irq_timing_enabled)) {
 931                pr_warn("irq timings already initialized, skipping selftest\n");
 932                return 0;
 933        }
 934
 935        ret = irq_timings_irqts_selftest();
 936        if (ret)
 937                goto out;
 938
 939        ret = irq_timings_irqs_selftest();
 940        if (ret)
 941                goto out;
 942
 943        ret = irq_timings_next_index_selftest();
 944out:
 945        pr_info("---------- selftest end with %s -----------\n",
 946                ret ? "failure" : "success");
 947
 948        return ret;
 949}
 950early_initcall(irq_timings_selftest);
 951#endif
 952