linux/kernel/locking/mutex.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/locking/mutex.c
   4 *
   5 * Mutexes: blocking mutual exclusion locks
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *
  11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  12 * David Howells for suggestions and improvements.
  13 *
  14 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  15 *    from the -rt tree, where it was originally implemented for rtmutexes
  16 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  17 *    and Sven Dietrich.
  18 *
  19 * Also see Documentation/locking/mutex-design.rst.
  20 */
  21#include <linux/mutex.h>
  22#include <linux/ww_mutex.h>
  23#include <linux/sched/signal.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/wake_q.h>
  26#include <linux/sched/debug.h>
  27#include <linux/export.h>
  28#include <linux/spinlock.h>
  29#include <linux/interrupt.h>
  30#include <linux/debug_locks.h>
  31#include <linux/osq_lock.h>
  32
  33#ifdef CONFIG_DEBUG_MUTEXES
  34# include "mutex-debug.h"
  35#else
  36# include "mutex.h"
  37#endif
  38
  39void
  40__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  41{
  42        atomic_long_set(&lock->owner, 0);
  43        spin_lock_init(&lock->wait_lock);
  44        INIT_LIST_HEAD(&lock->wait_list);
  45#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  46        osq_lock_init(&lock->osq);
  47#endif
  48
  49        debug_mutex_init(lock, name, key);
  50}
  51EXPORT_SYMBOL(__mutex_init);
  52
  53/*
  54 * @owner: contains: 'struct task_struct *' to the current lock owner,
  55 * NULL means not owned. Since task_struct pointers are aligned at
  56 * at least L1_CACHE_BYTES, we have low bits to store extra state.
  57 *
  58 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
  59 * Bit1 indicates unlock needs to hand the lock to the top-waiter
  60 * Bit2 indicates handoff has been done and we're waiting for pickup.
  61 */
  62#define MUTEX_FLAG_WAITERS      0x01
  63#define MUTEX_FLAG_HANDOFF      0x02
  64#define MUTEX_FLAG_PICKUP       0x04
  65
  66#define MUTEX_FLAGS             0x07
  67
  68/*
  69 * Internal helper function; C doesn't allow us to hide it :/
  70 *
  71 * DO NOT USE (outside of mutex code).
  72 */
  73static inline struct task_struct *__mutex_owner(struct mutex *lock)
  74{
  75        return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
  76}
  77
  78static inline struct task_struct *__owner_task(unsigned long owner)
  79{
  80        return (struct task_struct *)(owner & ~MUTEX_FLAGS);
  81}
  82
  83bool mutex_is_locked(struct mutex *lock)
  84{
  85        return __mutex_owner(lock) != NULL;
  86}
  87EXPORT_SYMBOL(mutex_is_locked);
  88
  89__must_check enum mutex_trylock_recursive_enum
  90mutex_trylock_recursive(struct mutex *lock)
  91{
  92        if (unlikely(__mutex_owner(lock) == current))
  93                return MUTEX_TRYLOCK_RECURSIVE;
  94
  95        return mutex_trylock(lock);
  96}
  97EXPORT_SYMBOL(mutex_trylock_recursive);
  98
  99static inline unsigned long __owner_flags(unsigned long owner)
 100{
 101        return owner & MUTEX_FLAGS;
 102}
 103
 104/*
 105 * Trylock variant that retuns the owning task on failure.
 106 */
 107static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
 108{
 109        unsigned long owner, curr = (unsigned long)current;
 110
 111        owner = atomic_long_read(&lock->owner);
 112        for (;;) { /* must loop, can race against a flag */
 113                unsigned long old, flags = __owner_flags(owner);
 114                unsigned long task = owner & ~MUTEX_FLAGS;
 115
 116                if (task) {
 117                        if (likely(task != curr))
 118                                break;
 119
 120                        if (likely(!(flags & MUTEX_FLAG_PICKUP)))
 121                                break;
 122
 123                        flags &= ~MUTEX_FLAG_PICKUP;
 124                } else {
 125#ifdef CONFIG_DEBUG_MUTEXES
 126                        DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
 127#endif
 128                }
 129
 130                /*
 131                 * We set the HANDOFF bit, we must make sure it doesn't live
 132                 * past the point where we acquire it. This would be possible
 133                 * if we (accidentally) set the bit on an unlocked mutex.
 134                 */
 135                flags &= ~MUTEX_FLAG_HANDOFF;
 136
 137                old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
 138                if (old == owner)
 139                        return NULL;
 140
 141                owner = old;
 142        }
 143
 144        return __owner_task(owner);
 145}
 146
 147/*
 148 * Actual trylock that will work on any unlocked state.
 149 */
 150static inline bool __mutex_trylock(struct mutex *lock)
 151{
 152        return !__mutex_trylock_or_owner(lock);
 153}
 154
 155#ifndef CONFIG_DEBUG_LOCK_ALLOC
 156/*
 157 * Lockdep annotations are contained to the slow paths for simplicity.
 158 * There is nothing that would stop spreading the lockdep annotations outwards
 159 * except more code.
 160 */
 161
 162/*
 163 * Optimistic trylock that only works in the uncontended case. Make sure to
 164 * follow with a __mutex_trylock() before failing.
 165 */
 166static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
 167{
 168        unsigned long curr = (unsigned long)current;
 169        unsigned long zero = 0UL;
 170
 171        if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
 172                return true;
 173
 174        return false;
 175}
 176
 177static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
 178{
 179        unsigned long curr = (unsigned long)current;
 180
 181        if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
 182                return true;
 183
 184        return false;
 185}
 186#endif
 187
 188static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
 189{
 190        atomic_long_or(flag, &lock->owner);
 191}
 192
 193static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
 194{
 195        atomic_long_andnot(flag, &lock->owner);
 196}
 197
 198static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
 199{
 200        return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
 201}
 202
 203/*
 204 * Add @waiter to a given location in the lock wait_list and set the
 205 * FLAG_WAITERS flag if it's the first waiter.
 206 */
 207static void __sched
 208__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
 209                   struct list_head *list)
 210{
 211        debug_mutex_add_waiter(lock, waiter, current);
 212
 213        list_add_tail(&waiter->list, list);
 214        if (__mutex_waiter_is_first(lock, waiter))
 215                __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
 216}
 217
 218/*
 219 * Give up ownership to a specific task, when @task = NULL, this is equivalent
 220 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
 221 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 222 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
 223 */
 224static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
 225{
 226        unsigned long owner = atomic_long_read(&lock->owner);
 227
 228        for (;;) {
 229                unsigned long old, new;
 230
 231#ifdef CONFIG_DEBUG_MUTEXES
 232                DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
 233                DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
 234#endif
 235
 236                new = (owner & MUTEX_FLAG_WAITERS);
 237                new |= (unsigned long)task;
 238                if (task)
 239                        new |= MUTEX_FLAG_PICKUP;
 240
 241                old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
 242                if (old == owner)
 243                        break;
 244
 245                owner = old;
 246        }
 247}
 248
 249#ifndef CONFIG_DEBUG_LOCK_ALLOC
 250/*
 251 * We split the mutex lock/unlock logic into separate fastpath and
 252 * slowpath functions, to reduce the register pressure on the fastpath.
 253 * We also put the fastpath first in the kernel image, to make sure the
 254 * branch is predicted by the CPU as default-untaken.
 255 */
 256static void __sched __mutex_lock_slowpath(struct mutex *lock);
 257
 258/**
 259 * mutex_lock - acquire the mutex
 260 * @lock: the mutex to be acquired
 261 *
 262 * Lock the mutex exclusively for this task. If the mutex is not
 263 * available right now, it will sleep until it can get it.
 264 *
 265 * The mutex must later on be released by the same task that
 266 * acquired it. Recursive locking is not allowed. The task
 267 * may not exit without first unlocking the mutex. Also, kernel
 268 * memory where the mutex resides must not be freed with
 269 * the mutex still locked. The mutex must first be initialized
 270 * (or statically defined) before it can be locked. memset()-ing
 271 * the mutex to 0 is not allowed.
 272 *
 273 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 274 * checks that will enforce the restrictions and will also do
 275 * deadlock debugging)
 276 *
 277 * This function is similar to (but not equivalent to) down().
 278 */
 279void __sched mutex_lock(struct mutex *lock)
 280{
 281        might_sleep();
 282
 283        if (!__mutex_trylock_fast(lock))
 284                __mutex_lock_slowpath(lock);
 285}
 286EXPORT_SYMBOL(mutex_lock);
 287#endif
 288
 289/*
 290 * Wait-Die:
 291 *   The newer transactions are killed when:
 292 *     It (the new transaction) makes a request for a lock being held
 293 *     by an older transaction.
 294 *
 295 * Wound-Wait:
 296 *   The newer transactions are wounded when:
 297 *     An older transaction makes a request for a lock being held by
 298 *     the newer transaction.
 299 */
 300
 301/*
 302 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
 303 * it.
 304 */
 305static __always_inline void
 306ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
 307{
 308#ifdef CONFIG_DEBUG_MUTEXES
 309        /*
 310         * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
 311         * but released with a normal mutex_unlock in this call.
 312         *
 313         * This should never happen, always use ww_mutex_unlock.
 314         */
 315        DEBUG_LOCKS_WARN_ON(ww->ctx);
 316
 317        /*
 318         * Not quite done after calling ww_acquire_done() ?
 319         */
 320        DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
 321
 322        if (ww_ctx->contending_lock) {
 323                /*
 324                 * After -EDEADLK you tried to
 325                 * acquire a different ww_mutex? Bad!
 326                 */
 327                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
 328
 329                /*
 330                 * You called ww_mutex_lock after receiving -EDEADLK,
 331                 * but 'forgot' to unlock everything else first?
 332                 */
 333                DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
 334                ww_ctx->contending_lock = NULL;
 335        }
 336
 337        /*
 338         * Naughty, using a different class will lead to undefined behavior!
 339         */
 340        DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
 341#endif
 342        ww_ctx->acquired++;
 343        ww->ctx = ww_ctx;
 344}
 345
 346/*
 347 * Determine if context @a is 'after' context @b. IOW, @a is a younger
 348 * transaction than @b and depending on algorithm either needs to wait for
 349 * @b or die.
 350 */
 351static inline bool __sched
 352__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
 353{
 354
 355        return (signed long)(a->stamp - b->stamp) > 0;
 356}
 357
 358/*
 359 * Wait-Die; wake a younger waiter context (when locks held) such that it can
 360 * die.
 361 *
 362 * Among waiters with context, only the first one can have other locks acquired
 363 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
 364 * __ww_mutex_check_kill() wake any but the earliest context.
 365 */
 366static bool __sched
 367__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
 368               struct ww_acquire_ctx *ww_ctx)
 369{
 370        if (!ww_ctx->is_wait_die)
 371                return false;
 372
 373        if (waiter->ww_ctx->acquired > 0 &&
 374                        __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
 375                debug_mutex_wake_waiter(lock, waiter);
 376                wake_up_process(waiter->task);
 377        }
 378
 379        return true;
 380}
 381
 382/*
 383 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
 384 *
 385 * Wound the lock holder if there are waiters with older transactions than
 386 * the lock holders. Even if multiple waiters may wound the lock holder,
 387 * it's sufficient that only one does.
 388 */
 389static bool __ww_mutex_wound(struct mutex *lock,
 390                             struct ww_acquire_ctx *ww_ctx,
 391                             struct ww_acquire_ctx *hold_ctx)
 392{
 393        struct task_struct *owner = __mutex_owner(lock);
 394
 395        lockdep_assert_held(&lock->wait_lock);
 396
 397        /*
 398         * Possible through __ww_mutex_add_waiter() when we race with
 399         * ww_mutex_set_context_fastpath(). In that case we'll get here again
 400         * through __ww_mutex_check_waiters().
 401         */
 402        if (!hold_ctx)
 403                return false;
 404
 405        /*
 406         * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
 407         * it cannot go away because we'll have FLAG_WAITERS set and hold
 408         * wait_lock.
 409         */
 410        if (!owner)
 411                return false;
 412
 413        if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
 414                hold_ctx->wounded = 1;
 415
 416                /*
 417                 * wake_up_process() paired with set_current_state()
 418                 * inserts sufficient barriers to make sure @owner either sees
 419                 * it's wounded in __ww_mutex_check_kill() or has a
 420                 * wakeup pending to re-read the wounded state.
 421                 */
 422                if (owner != current)
 423                        wake_up_process(owner);
 424
 425                return true;
 426        }
 427
 428        return false;
 429}
 430
 431/*
 432 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
 433 * behind us on the wait-list, check if they need to die, or wound us.
 434 *
 435 * See __ww_mutex_add_waiter() for the list-order construction; basically the
 436 * list is ordered by stamp, smallest (oldest) first.
 437 *
 438 * This relies on never mixing wait-die/wound-wait on the same wait-list;
 439 * which is currently ensured by that being a ww_class property.
 440 *
 441 * The current task must not be on the wait list.
 442 */
 443static void __sched
 444__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 445{
 446        struct mutex_waiter *cur;
 447
 448        lockdep_assert_held(&lock->wait_lock);
 449
 450        list_for_each_entry(cur, &lock->wait_list, list) {
 451                if (!cur->ww_ctx)
 452                        continue;
 453
 454                if (__ww_mutex_die(lock, cur, ww_ctx) ||
 455                    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
 456                        break;
 457        }
 458}
 459
 460/*
 461 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
 462 * and wake up any waiters so they can recheck.
 463 */
 464static __always_inline void
 465ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 466{
 467        ww_mutex_lock_acquired(lock, ctx);
 468
 469        /*
 470         * The lock->ctx update should be visible on all cores before
 471         * the WAITERS check is done, otherwise contended waiters might be
 472         * missed. The contended waiters will either see ww_ctx == NULL
 473         * and keep spinning, or it will acquire wait_lock, add itself
 474         * to waiter list and sleep.
 475         */
 476        smp_mb(); /* See comments above and below. */
 477
 478        /*
 479         * [W] ww->ctx = ctx        [W] MUTEX_FLAG_WAITERS
 480         *     MB                       MB
 481         * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
 482         *
 483         * The memory barrier above pairs with the memory barrier in
 484         * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
 485         * and/or !empty list.
 486         */
 487        if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
 488                return;
 489
 490        /*
 491         * Uh oh, we raced in fastpath, check if any of the waiters need to
 492         * die or wound us.
 493         */
 494        spin_lock(&lock->base.wait_lock);
 495        __ww_mutex_check_waiters(&lock->base, ctx);
 496        spin_unlock(&lock->base.wait_lock);
 497}
 498
 499#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 500
 501static inline
 502bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 503                            struct mutex_waiter *waiter)
 504{
 505        struct ww_mutex *ww;
 506
 507        ww = container_of(lock, struct ww_mutex, base);
 508
 509        /*
 510         * If ww->ctx is set the contents are undefined, only
 511         * by acquiring wait_lock there is a guarantee that
 512         * they are not invalid when reading.
 513         *
 514         * As such, when deadlock detection needs to be
 515         * performed the optimistic spinning cannot be done.
 516         *
 517         * Check this in every inner iteration because we may
 518         * be racing against another thread's ww_mutex_lock.
 519         */
 520        if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
 521                return false;
 522
 523        /*
 524         * If we aren't on the wait list yet, cancel the spin
 525         * if there are waiters. We want  to avoid stealing the
 526         * lock from a waiter with an earlier stamp, since the
 527         * other thread may already own a lock that we also
 528         * need.
 529         */
 530        if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
 531                return false;
 532
 533        /*
 534         * Similarly, stop spinning if we are no longer the
 535         * first waiter.
 536         */
 537        if (waiter && !__mutex_waiter_is_first(lock, waiter))
 538                return false;
 539
 540        return true;
 541}
 542
 543/*
 544 * Look out! "owner" is an entirely speculative pointer access and not
 545 * reliable.
 546 *
 547 * "noinline" so that this function shows up on perf profiles.
 548 */
 549static noinline
 550bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
 551                         struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
 552{
 553        bool ret = true;
 554
 555        rcu_read_lock();
 556        while (__mutex_owner(lock) == owner) {
 557                /*
 558                 * Ensure we emit the owner->on_cpu, dereference _after_
 559                 * checking lock->owner still matches owner. If that fails,
 560                 * owner might point to freed memory. If it still matches,
 561                 * the rcu_read_lock() ensures the memory stays valid.
 562                 */
 563                barrier();
 564
 565                /*
 566                 * Use vcpu_is_preempted to detect lock holder preemption issue.
 567                 */
 568                if (!owner->on_cpu || need_resched() ||
 569                                vcpu_is_preempted(task_cpu(owner))) {
 570                        ret = false;
 571                        break;
 572                }
 573
 574                if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
 575                        ret = false;
 576                        break;
 577                }
 578
 579                cpu_relax();
 580        }
 581        rcu_read_unlock();
 582
 583        return ret;
 584}
 585
 586/*
 587 * Initial check for entering the mutex spinning loop
 588 */
 589static inline int mutex_can_spin_on_owner(struct mutex *lock)
 590{
 591        struct task_struct *owner;
 592        int retval = 1;
 593
 594        if (need_resched())
 595                return 0;
 596
 597        rcu_read_lock();
 598        owner = __mutex_owner(lock);
 599
 600        /*
 601         * As lock holder preemption issue, we both skip spinning if task is not
 602         * on cpu or its cpu is preempted
 603         */
 604        if (owner)
 605                retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 606        rcu_read_unlock();
 607
 608        /*
 609         * If lock->owner is not set, the mutex has been released. Return true
 610         * such that we'll trylock in the spin path, which is a faster option
 611         * than the blocking slow path.
 612         */
 613        return retval;
 614}
 615
 616/*
 617 * Optimistic spinning.
 618 *
 619 * We try to spin for acquisition when we find that the lock owner
 620 * is currently running on a (different) CPU and while we don't
 621 * need to reschedule. The rationale is that if the lock owner is
 622 * running, it is likely to release the lock soon.
 623 *
 624 * The mutex spinners are queued up using MCS lock so that only one
 625 * spinner can compete for the mutex. However, if mutex spinning isn't
 626 * going to happen, there is no point in going through the lock/unlock
 627 * overhead.
 628 *
 629 * Returns true when the lock was taken, otherwise false, indicating
 630 * that we need to jump to the slowpath and sleep.
 631 *
 632 * The waiter flag is set to true if the spinner is a waiter in the wait
 633 * queue. The waiter-spinner will spin on the lock directly and concurrently
 634 * with the spinner at the head of the OSQ, if present, until the owner is
 635 * changed to itself.
 636 */
 637static __always_inline bool
 638mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 639                      const bool use_ww_ctx, struct mutex_waiter *waiter)
 640{
 641        if (!waiter) {
 642                /*
 643                 * The purpose of the mutex_can_spin_on_owner() function is
 644                 * to eliminate the overhead of osq_lock() and osq_unlock()
 645                 * in case spinning isn't possible. As a waiter-spinner
 646                 * is not going to take OSQ lock anyway, there is no need
 647                 * to call mutex_can_spin_on_owner().
 648                 */
 649                if (!mutex_can_spin_on_owner(lock))
 650                        goto fail;
 651
 652                /*
 653                 * In order to avoid a stampede of mutex spinners trying to
 654                 * acquire the mutex all at once, the spinners need to take a
 655                 * MCS (queued) lock first before spinning on the owner field.
 656                 */
 657                if (!osq_lock(&lock->osq))
 658                        goto fail;
 659        }
 660
 661        for (;;) {
 662                struct task_struct *owner;
 663
 664                /* Try to acquire the mutex... */
 665                owner = __mutex_trylock_or_owner(lock);
 666                if (!owner)
 667                        break;
 668
 669                /*
 670                 * There's an owner, wait for it to either
 671                 * release the lock or go to sleep.
 672                 */
 673                if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
 674                        goto fail_unlock;
 675
 676                /*
 677                 * The cpu_relax() call is a compiler barrier which forces
 678                 * everything in this loop to be re-loaded. We don't need
 679                 * memory barriers as we'll eventually observe the right
 680                 * values at the cost of a few extra spins.
 681                 */
 682                cpu_relax();
 683        }
 684
 685        if (!waiter)
 686                osq_unlock(&lock->osq);
 687
 688        return true;
 689
 690
 691fail_unlock:
 692        if (!waiter)
 693                osq_unlock(&lock->osq);
 694
 695fail:
 696        /*
 697         * If we fell out of the spin path because of need_resched(),
 698         * reschedule now, before we try-lock the mutex. This avoids getting
 699         * scheduled out right after we obtained the mutex.
 700         */
 701        if (need_resched()) {
 702                /*
 703                 * We _should_ have TASK_RUNNING here, but just in case
 704                 * we do not, make it so, otherwise we might get stuck.
 705                 */
 706                __set_current_state(TASK_RUNNING);
 707                schedule_preempt_disabled();
 708        }
 709
 710        return false;
 711}
 712#else
 713static __always_inline bool
 714mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 715                      const bool use_ww_ctx, struct mutex_waiter *waiter)
 716{
 717        return false;
 718}
 719#endif
 720
 721static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
 722
 723/**
 724 * mutex_unlock - release the mutex
 725 * @lock: the mutex to be released
 726 *
 727 * Unlock a mutex that has been locked by this task previously.
 728 *
 729 * This function must not be used in interrupt context. Unlocking
 730 * of a not locked mutex is not allowed.
 731 *
 732 * This function is similar to (but not equivalent to) up().
 733 */
 734void __sched mutex_unlock(struct mutex *lock)
 735{
 736#ifndef CONFIG_DEBUG_LOCK_ALLOC
 737        if (__mutex_unlock_fast(lock))
 738                return;
 739#endif
 740        __mutex_unlock_slowpath(lock, _RET_IP_);
 741}
 742EXPORT_SYMBOL(mutex_unlock);
 743
 744/**
 745 * ww_mutex_unlock - release the w/w mutex
 746 * @lock: the mutex to be released
 747 *
 748 * Unlock a mutex that has been locked by this task previously with any of the
 749 * ww_mutex_lock* functions (with or without an acquire context). It is
 750 * forbidden to release the locks after releasing the acquire context.
 751 *
 752 * This function must not be used in interrupt context. Unlocking
 753 * of a unlocked mutex is not allowed.
 754 */
 755void __sched ww_mutex_unlock(struct ww_mutex *lock)
 756{
 757        /*
 758         * The unlocking fastpath is the 0->1 transition from 'locked'
 759         * into 'unlocked' state:
 760         */
 761        if (lock->ctx) {
 762#ifdef CONFIG_DEBUG_MUTEXES
 763                DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
 764#endif
 765                if (lock->ctx->acquired > 0)
 766                        lock->ctx->acquired--;
 767                lock->ctx = NULL;
 768        }
 769
 770        mutex_unlock(&lock->base);
 771}
 772EXPORT_SYMBOL(ww_mutex_unlock);
 773
 774
 775static __always_inline int __sched
 776__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 777{
 778        if (ww_ctx->acquired > 0) {
 779#ifdef CONFIG_DEBUG_MUTEXES
 780                struct ww_mutex *ww;
 781
 782                ww = container_of(lock, struct ww_mutex, base);
 783                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
 784                ww_ctx->contending_lock = ww;
 785#endif
 786                return -EDEADLK;
 787        }
 788
 789        return 0;
 790}
 791
 792
 793/*
 794 * Check the wound condition for the current lock acquire.
 795 *
 796 * Wound-Wait: If we're wounded, kill ourself.
 797 *
 798 * Wait-Die: If we're trying to acquire a lock already held by an older
 799 *           context, kill ourselves.
 800 *
 801 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
 802 * look at waiters before us in the wait-list.
 803 */
 804static inline int __sched
 805__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
 806                      struct ww_acquire_ctx *ctx)
 807{
 808        struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 809        struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
 810        struct mutex_waiter *cur;
 811
 812        if (ctx->acquired == 0)
 813                return 0;
 814
 815        if (!ctx->is_wait_die) {
 816                if (ctx->wounded)
 817                        return __ww_mutex_kill(lock, ctx);
 818
 819                return 0;
 820        }
 821
 822        if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
 823                return __ww_mutex_kill(lock, ctx);
 824
 825        /*
 826         * If there is a waiter in front of us that has a context, then its
 827         * stamp is earlier than ours and we must kill ourself.
 828         */
 829        cur = waiter;
 830        list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
 831                if (!cur->ww_ctx)
 832                        continue;
 833
 834                return __ww_mutex_kill(lock, ctx);
 835        }
 836
 837        return 0;
 838}
 839
 840/*
 841 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
 842 * first. Such that older contexts are preferred to acquire the lock over
 843 * younger contexts.
 844 *
 845 * Waiters without context are interspersed in FIFO order.
 846 *
 847 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
 848 * older contexts already waiting) to avoid unnecessary waiting and for
 849 * Wound-Wait ensure we wound the owning context when it is younger.
 850 */
 851static inline int __sched
 852__ww_mutex_add_waiter(struct mutex_waiter *waiter,
 853                      struct mutex *lock,
 854                      struct ww_acquire_ctx *ww_ctx)
 855{
 856        struct mutex_waiter *cur;
 857        struct list_head *pos;
 858        bool is_wait_die;
 859
 860        if (!ww_ctx) {
 861                __mutex_add_waiter(lock, waiter, &lock->wait_list);
 862                return 0;
 863        }
 864
 865        is_wait_die = ww_ctx->is_wait_die;
 866
 867        /*
 868         * Add the waiter before the first waiter with a higher stamp.
 869         * Waiters without a context are skipped to avoid starving
 870         * them. Wait-Die waiters may die here. Wound-Wait waiters
 871         * never die here, but they are sorted in stamp order and
 872         * may wound the lock holder.
 873         */
 874        pos = &lock->wait_list;
 875        list_for_each_entry_reverse(cur, &lock->wait_list, list) {
 876                if (!cur->ww_ctx)
 877                        continue;
 878
 879                if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
 880                        /*
 881                         * Wait-Die: if we find an older context waiting, there
 882                         * is no point in queueing behind it, as we'd have to
 883                         * die the moment it would acquire the lock.
 884                         */
 885                        if (is_wait_die) {
 886                                int ret = __ww_mutex_kill(lock, ww_ctx);
 887
 888                                if (ret)
 889                                        return ret;
 890                        }
 891
 892                        break;
 893                }
 894
 895                pos = &cur->list;
 896
 897                /* Wait-Die: ensure younger waiters die. */
 898                __ww_mutex_die(lock, cur, ww_ctx);
 899        }
 900
 901        __mutex_add_waiter(lock, waiter, pos);
 902
 903        /*
 904         * Wound-Wait: if we're blocking on a mutex owned by a younger context,
 905         * wound that such that we might proceed.
 906         */
 907        if (!is_wait_die) {
 908                struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 909
 910                /*
 911                 * See ww_mutex_set_context_fastpath(). Orders setting
 912                 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
 913                 * such that either we or the fastpath will wound @ww->ctx.
 914                 */
 915                smp_mb();
 916                __ww_mutex_wound(lock, ww_ctx, ww->ctx);
 917        }
 918
 919        return 0;
 920}
 921
 922/*
 923 * Lock a mutex (possibly interruptible), slowpath:
 924 */
 925static __always_inline int __sched
 926__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 927                    struct lockdep_map *nest_lock, unsigned long ip,
 928                    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 929{
 930        struct mutex_waiter waiter;
 931        bool first = false;
 932        struct ww_mutex *ww;
 933        int ret;
 934
 935        might_sleep();
 936
 937#ifdef CONFIG_DEBUG_MUTEXES
 938        DEBUG_LOCKS_WARN_ON(lock->magic != lock);
 939#endif
 940
 941        ww = container_of(lock, struct ww_mutex, base);
 942        if (use_ww_ctx && ww_ctx) {
 943                if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
 944                        return -EALREADY;
 945
 946                /*
 947                 * Reset the wounded flag after a kill. No other process can
 948                 * race and wound us here since they can't have a valid owner
 949                 * pointer if we don't have any locks held.
 950                 */
 951                if (ww_ctx->acquired == 0)
 952                        ww_ctx->wounded = 0;
 953        }
 954
 955        preempt_disable();
 956        mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 957
 958        if (__mutex_trylock(lock) ||
 959            mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
 960                /* got the lock, yay! */
 961                lock_acquired(&lock->dep_map, ip);
 962                if (use_ww_ctx && ww_ctx)
 963                        ww_mutex_set_context_fastpath(ww, ww_ctx);
 964                preempt_enable();
 965                return 0;
 966        }
 967
 968        spin_lock(&lock->wait_lock);
 969        /*
 970         * After waiting to acquire the wait_lock, try again.
 971         */
 972        if (__mutex_trylock(lock)) {
 973                if (use_ww_ctx && ww_ctx)
 974                        __ww_mutex_check_waiters(lock, ww_ctx);
 975
 976                goto skip_wait;
 977        }
 978
 979        debug_mutex_lock_common(lock, &waiter);
 980
 981        lock_contended(&lock->dep_map, ip);
 982
 983        if (!use_ww_ctx) {
 984                /* add waiting tasks to the end of the waitqueue (FIFO): */
 985                __mutex_add_waiter(lock, &waiter, &lock->wait_list);
 986
 987
 988#ifdef CONFIG_DEBUG_MUTEXES
 989                waiter.ww_ctx = MUTEX_POISON_WW_CTX;
 990#endif
 991        } else {
 992                /*
 993                 * Add in stamp order, waking up waiters that must kill
 994                 * themselves.
 995                 */
 996                ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
 997                if (ret)
 998                        goto err_early_kill;
 999
1000                waiter.ww_ctx = ww_ctx;
1001        }
1002
1003        waiter.task = current;
1004
1005        set_current_state(state);
1006        for (;;) {
1007                /*
1008                 * Once we hold wait_lock, we're serialized against
1009                 * mutex_unlock() handing the lock off to us, do a trylock
1010                 * before testing the error conditions to make sure we pick up
1011                 * the handoff.
1012                 */
1013                if (__mutex_trylock(lock))
1014                        goto acquired;
1015
1016                /*
1017                 * Check for signals and kill conditions while holding
1018                 * wait_lock. This ensures the lock cancellation is ordered
1019                 * against mutex_unlock() and wake-ups do not go missing.
1020                 */
1021                if (signal_pending_state(state, current)) {
1022                        ret = -EINTR;
1023                        goto err;
1024                }
1025
1026                if (use_ww_ctx && ww_ctx) {
1027                        ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1028                        if (ret)
1029                                goto err;
1030                }
1031
1032                spin_unlock(&lock->wait_lock);
1033                schedule_preempt_disabled();
1034
1035                /*
1036                 * ww_mutex needs to always recheck its position since its waiter
1037                 * list is not FIFO ordered.
1038                 */
1039                if ((use_ww_ctx && ww_ctx) || !first) {
1040                        first = __mutex_waiter_is_first(lock, &waiter);
1041                        if (first)
1042                                __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1043                }
1044
1045                set_current_state(state);
1046                /*
1047                 * Here we order against unlock; we must either see it change
1048                 * state back to RUNNING and fall through the next schedule(),
1049                 * or we must see its unlock and acquire.
1050                 */
1051                if (__mutex_trylock(lock) ||
1052                    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1053                        break;
1054
1055                spin_lock(&lock->wait_lock);
1056        }
1057        spin_lock(&lock->wait_lock);
1058acquired:
1059        __set_current_state(TASK_RUNNING);
1060
1061        if (use_ww_ctx && ww_ctx) {
1062                /*
1063                 * Wound-Wait; we stole the lock (!first_waiter), check the
1064                 * waiters as anyone might want to wound us.
1065                 */
1066                if (!ww_ctx->is_wait_die &&
1067                    !__mutex_waiter_is_first(lock, &waiter))
1068                        __ww_mutex_check_waiters(lock, ww_ctx);
1069        }
1070
1071        mutex_remove_waiter(lock, &waiter, current);
1072        if (likely(list_empty(&lock->wait_list)))
1073                __mutex_clear_flag(lock, MUTEX_FLAGS);
1074
1075        debug_mutex_free_waiter(&waiter);
1076
1077skip_wait:
1078        /* got the lock - cleanup and rejoice! */
1079        lock_acquired(&lock->dep_map, ip);
1080
1081        if (use_ww_ctx && ww_ctx)
1082                ww_mutex_lock_acquired(ww, ww_ctx);
1083
1084        spin_unlock(&lock->wait_lock);
1085        preempt_enable();
1086        return 0;
1087
1088err:
1089        __set_current_state(TASK_RUNNING);
1090        mutex_remove_waiter(lock, &waiter, current);
1091err_early_kill:
1092        spin_unlock(&lock->wait_lock);
1093        debug_mutex_free_waiter(&waiter);
1094        mutex_release(&lock->dep_map, ip);
1095        preempt_enable();
1096        return ret;
1097}
1098
1099static int __sched
1100__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1101             struct lockdep_map *nest_lock, unsigned long ip)
1102{
1103        return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1104}
1105
1106static int __sched
1107__ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1108                struct lockdep_map *nest_lock, unsigned long ip,
1109                struct ww_acquire_ctx *ww_ctx)
1110{
1111        return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1112}
1113
1114#ifdef CONFIG_DEBUG_LOCK_ALLOC
1115void __sched
1116mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1117{
1118        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1119}
1120
1121EXPORT_SYMBOL_GPL(mutex_lock_nested);
1122
1123void __sched
1124_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1125{
1126        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1127}
1128EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1129
1130int __sched
1131mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1132{
1133        return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1134}
1135EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1136
1137int __sched
1138mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1139{
1140        return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1141}
1142EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1143
1144void __sched
1145mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1146{
1147        int token;
1148
1149        might_sleep();
1150
1151        token = io_schedule_prepare();
1152        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1153                            subclass, NULL, _RET_IP_, NULL, 0);
1154        io_schedule_finish(token);
1155}
1156EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1157
1158static inline int
1159ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1160{
1161#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1162        unsigned tmp;
1163
1164        if (ctx->deadlock_inject_countdown-- == 0) {
1165                tmp = ctx->deadlock_inject_interval;
1166                if (tmp > UINT_MAX/4)
1167                        tmp = UINT_MAX;
1168                else
1169                        tmp = tmp*2 + tmp + tmp/2;
1170
1171                ctx->deadlock_inject_interval = tmp;
1172                ctx->deadlock_inject_countdown = tmp;
1173                ctx->contending_lock = lock;
1174
1175                ww_mutex_unlock(lock);
1176
1177                return -EDEADLK;
1178        }
1179#endif
1180
1181        return 0;
1182}
1183
1184int __sched
1185ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1186{
1187        int ret;
1188
1189        might_sleep();
1190        ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1191                               0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1192                               ctx);
1193        if (!ret && ctx && ctx->acquired > 1)
1194                return ww_mutex_deadlock_injection(lock, ctx);
1195
1196        return ret;
1197}
1198EXPORT_SYMBOL_GPL(ww_mutex_lock);
1199
1200int __sched
1201ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1202{
1203        int ret;
1204
1205        might_sleep();
1206        ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1207                              0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1208                              ctx);
1209
1210        if (!ret && ctx && ctx->acquired > 1)
1211                return ww_mutex_deadlock_injection(lock, ctx);
1212
1213        return ret;
1214}
1215EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1216
1217#endif
1218
1219/*
1220 * Release the lock, slowpath:
1221 */
1222static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1223{
1224        struct task_struct *next = NULL;
1225        DEFINE_WAKE_Q(wake_q);
1226        unsigned long owner;
1227
1228        mutex_release(&lock->dep_map, ip);
1229
1230        /*
1231         * Release the lock before (potentially) taking the spinlock such that
1232         * other contenders can get on with things ASAP.
1233         *
1234         * Except when HANDOFF, in that case we must not clear the owner field,
1235         * but instead set it to the top waiter.
1236         */
1237        owner = atomic_long_read(&lock->owner);
1238        for (;;) {
1239                unsigned long old;
1240
1241#ifdef CONFIG_DEBUG_MUTEXES
1242                DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1243                DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1244#endif
1245
1246                if (owner & MUTEX_FLAG_HANDOFF)
1247                        break;
1248
1249                old = atomic_long_cmpxchg_release(&lock->owner, owner,
1250                                                  __owner_flags(owner));
1251                if (old == owner) {
1252                        if (owner & MUTEX_FLAG_WAITERS)
1253                                break;
1254
1255                        return;
1256                }
1257
1258                owner = old;
1259        }
1260
1261        spin_lock(&lock->wait_lock);
1262        debug_mutex_unlock(lock);
1263        if (!list_empty(&lock->wait_list)) {
1264                /* get the first entry from the wait-list: */
1265                struct mutex_waiter *waiter =
1266                        list_first_entry(&lock->wait_list,
1267                                         struct mutex_waiter, list);
1268
1269                next = waiter->task;
1270
1271                debug_mutex_wake_waiter(lock, waiter);
1272                wake_q_add(&wake_q, next);
1273        }
1274
1275        if (owner & MUTEX_FLAG_HANDOFF)
1276                __mutex_handoff(lock, next);
1277
1278        spin_unlock(&lock->wait_lock);
1279
1280        wake_up_q(&wake_q);
1281}
1282
1283#ifndef CONFIG_DEBUG_LOCK_ALLOC
1284/*
1285 * Here come the less common (and hence less performance-critical) APIs:
1286 * mutex_lock_interruptible() and mutex_trylock().
1287 */
1288static noinline int __sched
1289__mutex_lock_killable_slowpath(struct mutex *lock);
1290
1291static noinline int __sched
1292__mutex_lock_interruptible_slowpath(struct mutex *lock);
1293
1294/**
1295 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1296 * @lock: The mutex to be acquired.
1297 *
1298 * Lock the mutex like mutex_lock().  If a signal is delivered while the
1299 * process is sleeping, this function will return without acquiring the
1300 * mutex.
1301 *
1302 * Context: Process context.
1303 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1304 * signal arrived.
1305 */
1306int __sched mutex_lock_interruptible(struct mutex *lock)
1307{
1308        might_sleep();
1309
1310        if (__mutex_trylock_fast(lock))
1311                return 0;
1312
1313        return __mutex_lock_interruptible_slowpath(lock);
1314}
1315
1316EXPORT_SYMBOL(mutex_lock_interruptible);
1317
1318/**
1319 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1320 * @lock: The mutex to be acquired.
1321 *
1322 * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1323 * the current process is delivered while the process is sleeping, this
1324 * function will return without acquiring the mutex.
1325 *
1326 * Context: Process context.
1327 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1328 * fatal signal arrived.
1329 */
1330int __sched mutex_lock_killable(struct mutex *lock)
1331{
1332        might_sleep();
1333
1334        if (__mutex_trylock_fast(lock))
1335                return 0;
1336
1337        return __mutex_lock_killable_slowpath(lock);
1338}
1339EXPORT_SYMBOL(mutex_lock_killable);
1340
1341/**
1342 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1343 * @lock: The mutex to be acquired.
1344 *
1345 * Lock the mutex like mutex_lock().  While the task is waiting for this
1346 * mutex, it will be accounted as being in the IO wait state by the
1347 * scheduler.
1348 *
1349 * Context: Process context.
1350 */
1351void __sched mutex_lock_io(struct mutex *lock)
1352{
1353        int token;
1354
1355        token = io_schedule_prepare();
1356        mutex_lock(lock);
1357        io_schedule_finish(token);
1358}
1359EXPORT_SYMBOL_GPL(mutex_lock_io);
1360
1361static noinline void __sched
1362__mutex_lock_slowpath(struct mutex *lock)
1363{
1364        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1365}
1366
1367static noinline int __sched
1368__mutex_lock_killable_slowpath(struct mutex *lock)
1369{
1370        return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1371}
1372
1373static noinline int __sched
1374__mutex_lock_interruptible_slowpath(struct mutex *lock)
1375{
1376        return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1377}
1378
1379static noinline int __sched
1380__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1381{
1382        return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1383                               _RET_IP_, ctx);
1384}
1385
1386static noinline int __sched
1387__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1388                                            struct ww_acquire_ctx *ctx)
1389{
1390        return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1391                               _RET_IP_, ctx);
1392}
1393
1394#endif
1395
1396/**
1397 * mutex_trylock - try to acquire the mutex, without waiting
1398 * @lock: the mutex to be acquired
1399 *
1400 * Try to acquire the mutex atomically. Returns 1 if the mutex
1401 * has been acquired successfully, and 0 on contention.
1402 *
1403 * NOTE: this function follows the spin_trylock() convention, so
1404 * it is negated from the down_trylock() return values! Be careful
1405 * about this when converting semaphore users to mutexes.
1406 *
1407 * This function must not be used in interrupt context. The
1408 * mutex must be released by the same task that acquired it.
1409 */
1410int __sched mutex_trylock(struct mutex *lock)
1411{
1412        bool locked;
1413
1414#ifdef CONFIG_DEBUG_MUTEXES
1415        DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1416#endif
1417
1418        locked = __mutex_trylock(lock);
1419        if (locked)
1420                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1421
1422        return locked;
1423}
1424EXPORT_SYMBOL(mutex_trylock);
1425
1426#ifndef CONFIG_DEBUG_LOCK_ALLOC
1427int __sched
1428ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1429{
1430        might_sleep();
1431
1432        if (__mutex_trylock_fast(&lock->base)) {
1433                if (ctx)
1434                        ww_mutex_set_context_fastpath(lock, ctx);
1435                return 0;
1436        }
1437
1438        return __ww_mutex_lock_slowpath(lock, ctx);
1439}
1440EXPORT_SYMBOL(ww_mutex_lock);
1441
1442int __sched
1443ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1444{
1445        might_sleep();
1446
1447        if (__mutex_trylock_fast(&lock->base)) {
1448                if (ctx)
1449                        ww_mutex_set_context_fastpath(lock, ctx);
1450                return 0;
1451        }
1452
1453        return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1454}
1455EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1456
1457#endif
1458
1459/**
1460 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1461 * @cnt: the atomic which we are to dec
1462 * @lock: the mutex to return holding if we dec to 0
1463 *
1464 * return true and hold lock if we dec to 0, return false otherwise
1465 */
1466int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1467{
1468        /* dec if we can't possibly hit 0 */
1469        if (atomic_add_unless(cnt, -1, 1))
1470                return 0;
1471        /* we might hit 0, so take the lock */
1472        mutex_lock(lock);
1473        if (!atomic_dec_and_test(cnt)) {
1474                /* when we actually did the dec, we didn't hit 0 */
1475                mutex_unlock(lock);
1476                return 0;
1477        }
1478        /* we hit 0, and we hold the lock */
1479        return 1;
1480}
1481EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1482