linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  High-resolution kernel timers
   8 *
   9 *  In contrast to the low-resolution timeout API, aka timer wheel,
  10 *  hrtimers provide finer resolution and accuracy depending on system
  11 *  configuration and capabilities.
  12 *
  13 *  Started by: Thomas Gleixner and Ingo Molnar
  14 *
  15 *  Credits:
  16 *      Based on the original timer wheel code
  17 *
  18 *      Help, testing, suggestions, bugfixes, improvements were
  19 *      provided by:
  20 *
  21 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  22 *      et. al.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/export.h>
  27#include <linux/percpu.h>
  28#include <linux/hrtimer.h>
  29#include <linux/notifier.h>
  30#include <linux/syscalls.h>
  31#include <linux/interrupt.h>
  32#include <linux/tick.h>
  33#include <linux/err.h>
  34#include <linux/debugobjects.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/deadline.h>
  39#include <linux/sched/nohz.h>
  40#include <linux/sched/debug.h>
  41#include <linux/timer.h>
  42#include <linux/freezer.h>
  43#include <linux/compat.h>
  44
  45#include <linux/uaccess.h>
  46
  47#include <trace/events/timer.h>
  48
  49#include "tick-internal.h"
  50
  51/*
  52 * Masks for selecting the soft and hard context timers from
  53 * cpu_base->active
  54 */
  55#define MASK_SHIFT              (HRTIMER_BASE_MONOTONIC_SOFT)
  56#define HRTIMER_ACTIVE_HARD     ((1U << MASK_SHIFT) - 1)
  57#define HRTIMER_ACTIVE_SOFT     (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  58#define HRTIMER_ACTIVE_ALL      (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  59
  60/*
  61 * The timer bases:
  62 *
  63 * There are more clockids than hrtimer bases. Thus, we index
  64 * into the timer bases by the hrtimer_base_type enum. When trying
  65 * to reach a base using a clockid, hrtimer_clockid_to_base()
  66 * is used to convert from clockid to the proper hrtimer_base_type.
  67 */
  68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  69{
  70        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                },
  78                {
  79                        .index = HRTIMER_BASE_REALTIME,
  80                        .clockid = CLOCK_REALTIME,
  81                        .get_time = &ktime_get_real,
  82                },
  83                {
  84                        .index = HRTIMER_BASE_BOOTTIME,
  85                        .clockid = CLOCK_BOOTTIME,
  86                        .get_time = &ktime_get_boottime,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_TAI,
  90                        .clockid = CLOCK_TAI,
  91                        .get_time = &ktime_get_clocktai,
  92                },
  93                {
  94                        .index = HRTIMER_BASE_MONOTONIC_SOFT,
  95                        .clockid = CLOCK_MONOTONIC,
  96                        .get_time = &ktime_get,
  97                },
  98                {
  99                        .index = HRTIMER_BASE_REALTIME_SOFT,
 100                        .clockid = CLOCK_REALTIME,
 101                        .get_time = &ktime_get_real,
 102                },
 103                {
 104                        .index = HRTIMER_BASE_BOOTTIME_SOFT,
 105                        .clockid = CLOCK_BOOTTIME,
 106                        .get_time = &ktime_get_boottime,
 107                },
 108                {
 109                        .index = HRTIMER_BASE_TAI_SOFT,
 110                        .clockid = CLOCK_TAI,
 111                        .get_time = &ktime_get_clocktai,
 112                },
 113        }
 114};
 115
 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 117        /* Make sure we catch unsupported clockids */
 118        [0 ... MAX_CLOCKS - 1]  = HRTIMER_MAX_CLOCK_BASES,
 119
 120        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 121        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 122        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 123        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 124};
 125
 126/*
 127 * Functions and macros which are different for UP/SMP systems are kept in a
 128 * single place
 129 */
 130#ifdef CONFIG_SMP
 131
 132/*
 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 134 * such that hrtimer_callback_running() can unconditionally dereference
 135 * timer->base->cpu_base
 136 */
 137static struct hrtimer_cpu_base migration_cpu_base = {
 138        .clock_base = { { .cpu_base = &migration_cpu_base, }, },
 139};
 140
 141#define migration_base  migration_cpu_base.clock_base[0]
 142
 143static inline bool is_migration_base(struct hrtimer_clock_base *base)
 144{
 145        return base == &migration_base;
 146}
 147
 148/*
 149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 150 * means that all timers which are tied to this base via timer->base are
 151 * locked, and the base itself is locked too.
 152 *
 153 * So __run_timers/migrate_timers can safely modify all timers which could
 154 * be found on the lists/queues.
 155 *
 156 * When the timer's base is locked, and the timer removed from list, it is
 157 * possible to set timer->base = &migration_base and drop the lock: the timer
 158 * remains locked.
 159 */
 160static
 161struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 162                                             unsigned long *flags)
 163{
 164        struct hrtimer_clock_base *base;
 165
 166        for (;;) {
 167                base = READ_ONCE(timer->base);
 168                if (likely(base != &migration_base)) {
 169                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 170                        if (likely(base == timer->base))
 171                                return base;
 172                        /* The timer has migrated to another CPU: */
 173                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 174                }
 175                cpu_relax();
 176        }
 177}
 178
 179/*
 180 * We do not migrate the timer when it is expiring before the next
 181 * event on the target cpu. When high resolution is enabled, we cannot
 182 * reprogram the target cpu hardware and we would cause it to fire
 183 * late. To keep it simple, we handle the high resolution enabled and
 184 * disabled case similar.
 185 *
 186 * Called with cpu_base->lock of target cpu held.
 187 */
 188static int
 189hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 190{
 191        ktime_t expires;
 192
 193        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 194        return expires < new_base->cpu_base->expires_next;
 195}
 196
 197static inline
 198struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 199                                         int pinned)
 200{
 201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 202        if (static_branch_likely(&timers_migration_enabled) && !pinned)
 203                return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 204#endif
 205        return base;
 206}
 207
 208/*
 209 * We switch the timer base to a power-optimized selected CPU target,
 210 * if:
 211 *      - NO_HZ_COMMON is enabled
 212 *      - timer migration is enabled
 213 *      - the timer callback is not running
 214 *      - the timer is not the first expiring timer on the new target
 215 *
 216 * If one of the above requirements is not fulfilled we move the timer
 217 * to the current CPU or leave it on the previously assigned CPU if
 218 * the timer callback is currently running.
 219 */
 220static inline struct hrtimer_clock_base *
 221switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 222                    int pinned)
 223{
 224        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 225        struct hrtimer_clock_base *new_base;
 226        int basenum = base->index;
 227
 228        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 229        new_cpu_base = get_target_base(this_cpu_base, pinned);
 230again:
 231        new_base = &new_cpu_base->clock_base[basenum];
 232
 233        if (base != new_base) {
 234                /*
 235                 * We are trying to move timer to new_base.
 236                 * However we can't change timer's base while it is running,
 237                 * so we keep it on the same CPU. No hassle vs. reprogramming
 238                 * the event source in the high resolution case. The softirq
 239                 * code will take care of this when the timer function has
 240                 * completed. There is no conflict as we hold the lock until
 241                 * the timer is enqueued.
 242                 */
 243                if (unlikely(hrtimer_callback_running(timer)))
 244                        return base;
 245
 246                /* See the comment in lock_hrtimer_base() */
 247                WRITE_ONCE(timer->base, &migration_base);
 248                raw_spin_unlock(&base->cpu_base->lock);
 249                raw_spin_lock(&new_base->cpu_base->lock);
 250
 251                if (new_cpu_base != this_cpu_base &&
 252                    hrtimer_check_target(timer, new_base)) {
 253                        raw_spin_unlock(&new_base->cpu_base->lock);
 254                        raw_spin_lock(&base->cpu_base->lock);
 255                        new_cpu_base = this_cpu_base;
 256                        WRITE_ONCE(timer->base, base);
 257                        goto again;
 258                }
 259                WRITE_ONCE(timer->base, new_base);
 260        } else {
 261                if (new_cpu_base != this_cpu_base &&
 262                    hrtimer_check_target(timer, new_base)) {
 263                        new_cpu_base = this_cpu_base;
 264                        goto again;
 265                }
 266        }
 267        return new_base;
 268}
 269
 270#else /* CONFIG_SMP */
 271
 272static inline bool is_migration_base(struct hrtimer_clock_base *base)
 273{
 274        return false;
 275}
 276
 277static inline struct hrtimer_clock_base *
 278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 279{
 280        struct hrtimer_clock_base *base = timer->base;
 281
 282        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 283
 284        return base;
 285}
 286
 287# define switch_hrtimer_base(t, b, p)   (b)
 288
 289#endif  /* !CONFIG_SMP */
 290
 291/*
 292 * Functions for the union type storage format of ktime_t which are
 293 * too large for inlining:
 294 */
 295#if BITS_PER_LONG < 64
 296/*
 297 * Divide a ktime value by a nanosecond value
 298 */
 299s64 __ktime_divns(const ktime_t kt, s64 div)
 300{
 301        int sft = 0;
 302        s64 dclc;
 303        u64 tmp;
 304
 305        dclc = ktime_to_ns(kt);
 306        tmp = dclc < 0 ? -dclc : dclc;
 307
 308        /* Make sure the divisor is less than 2^32: */
 309        while (div >> 32) {
 310                sft++;
 311                div >>= 1;
 312        }
 313        tmp >>= sft;
 314        do_div(tmp, (u32) div);
 315        return dclc < 0 ? -tmp : tmp;
 316}
 317EXPORT_SYMBOL_GPL(__ktime_divns);
 318#endif /* BITS_PER_LONG >= 64 */
 319
 320/*
 321 * Add two ktime values and do a safety check for overflow:
 322 */
 323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 324{
 325        ktime_t res = ktime_add_unsafe(lhs, rhs);
 326
 327        /*
 328         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 329         * return to user space in a timespec:
 330         */
 331        if (res < 0 || res < lhs || res < rhs)
 332                res = ktime_set(KTIME_SEC_MAX, 0);
 333
 334        return res;
 335}
 336
 337EXPORT_SYMBOL_GPL(ktime_add_safe);
 338
 339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 340
 341static struct debug_obj_descr hrtimer_debug_descr;
 342
 343static void *hrtimer_debug_hint(void *addr)
 344{
 345        return ((struct hrtimer *) addr)->function;
 346}
 347
 348/*
 349 * fixup_init is called when:
 350 * - an active object is initialized
 351 */
 352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 353{
 354        struct hrtimer *timer = addr;
 355
 356        switch (state) {
 357        case ODEBUG_STATE_ACTIVE:
 358                hrtimer_cancel(timer);
 359                debug_object_init(timer, &hrtimer_debug_descr);
 360                return true;
 361        default:
 362                return false;
 363        }
 364}
 365
 366/*
 367 * fixup_activate is called when:
 368 * - an active object is activated
 369 * - an unknown non-static object is activated
 370 */
 371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 372{
 373        switch (state) {
 374        case ODEBUG_STATE_ACTIVE:
 375                WARN_ON(1);
 376                /* fall through */
 377        default:
 378                return false;
 379        }
 380}
 381
 382/*
 383 * fixup_free is called when:
 384 * - an active object is freed
 385 */
 386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 387{
 388        struct hrtimer *timer = addr;
 389
 390        switch (state) {
 391        case ODEBUG_STATE_ACTIVE:
 392                hrtimer_cancel(timer);
 393                debug_object_free(timer, &hrtimer_debug_descr);
 394                return true;
 395        default:
 396                return false;
 397        }
 398}
 399
 400static struct debug_obj_descr hrtimer_debug_descr = {
 401        .name           = "hrtimer",
 402        .debug_hint     = hrtimer_debug_hint,
 403        .fixup_init     = hrtimer_fixup_init,
 404        .fixup_activate = hrtimer_fixup_activate,
 405        .fixup_free     = hrtimer_fixup_free,
 406};
 407
 408static inline void debug_hrtimer_init(struct hrtimer *timer)
 409{
 410        debug_object_init(timer, &hrtimer_debug_descr);
 411}
 412
 413static inline void debug_hrtimer_activate(struct hrtimer *timer,
 414                                          enum hrtimer_mode mode)
 415{
 416        debug_object_activate(timer, &hrtimer_debug_descr);
 417}
 418
 419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 420{
 421        debug_object_deactivate(timer, &hrtimer_debug_descr);
 422}
 423
 424static inline void debug_hrtimer_free(struct hrtimer *timer)
 425{
 426        debug_object_free(timer, &hrtimer_debug_descr);
 427}
 428
 429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 430                           enum hrtimer_mode mode);
 431
 432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 433                           enum hrtimer_mode mode)
 434{
 435        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 436        __hrtimer_init(timer, clock_id, mode);
 437}
 438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 439
 440static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
 441                                   clockid_t clock_id, enum hrtimer_mode mode);
 442
 443void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
 444                                   clockid_t clock_id, enum hrtimer_mode mode)
 445{
 446        debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
 447        __hrtimer_init_sleeper(sl, clock_id, mode);
 448}
 449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
 450
 451void destroy_hrtimer_on_stack(struct hrtimer *timer)
 452{
 453        debug_object_free(timer, &hrtimer_debug_descr);
 454}
 455EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 456
 457#else
 458
 459static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 460static inline void debug_hrtimer_activate(struct hrtimer *timer,
 461                                          enum hrtimer_mode mode) { }
 462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 463#endif
 464
 465static inline void
 466debug_init(struct hrtimer *timer, clockid_t clockid,
 467           enum hrtimer_mode mode)
 468{
 469        debug_hrtimer_init(timer);
 470        trace_hrtimer_init(timer, clockid, mode);
 471}
 472
 473static inline void debug_activate(struct hrtimer *timer,
 474                                  enum hrtimer_mode mode)
 475{
 476        debug_hrtimer_activate(timer, mode);
 477        trace_hrtimer_start(timer, mode);
 478}
 479
 480static inline void debug_deactivate(struct hrtimer *timer)
 481{
 482        debug_hrtimer_deactivate(timer);
 483        trace_hrtimer_cancel(timer);
 484}
 485
 486static struct hrtimer_clock_base *
 487__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 488{
 489        unsigned int idx;
 490
 491        if (!*active)
 492                return NULL;
 493
 494        idx = __ffs(*active);
 495        *active &= ~(1U << idx);
 496
 497        return &cpu_base->clock_base[idx];
 498}
 499
 500#define for_each_active_base(base, cpu_base, active)    \
 501        while ((base = __next_base((cpu_base), &(active))))
 502
 503static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 504                                         const struct hrtimer *exclude,
 505                                         unsigned int active,
 506                                         ktime_t expires_next)
 507{
 508        struct hrtimer_clock_base *base;
 509        ktime_t expires;
 510
 511        for_each_active_base(base, cpu_base, active) {
 512                struct timerqueue_node *next;
 513                struct hrtimer *timer;
 514
 515                next = timerqueue_getnext(&base->active);
 516                timer = container_of(next, struct hrtimer, node);
 517                if (timer == exclude) {
 518                        /* Get to the next timer in the queue. */
 519                        next = timerqueue_iterate_next(next);
 520                        if (!next)
 521                                continue;
 522
 523                        timer = container_of(next, struct hrtimer, node);
 524                }
 525                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 526                if (expires < expires_next) {
 527                        expires_next = expires;
 528
 529                        /* Skip cpu_base update if a timer is being excluded. */
 530                        if (exclude)
 531                                continue;
 532
 533                        if (timer->is_soft)
 534                                cpu_base->softirq_next_timer = timer;
 535                        else
 536                                cpu_base->next_timer = timer;
 537                }
 538        }
 539        /*
 540         * clock_was_set() might have changed base->offset of any of
 541         * the clock bases so the result might be negative. Fix it up
 542         * to prevent a false positive in clockevents_program_event().
 543         */
 544        if (expires_next < 0)
 545                expires_next = 0;
 546        return expires_next;
 547}
 548
 549/*
 550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 551 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 552 *
 553 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 554 * those timers will get run whenever the softirq gets handled, at the end of
 555 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 556 *
 557 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 558 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 559 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 560 *
 561 * @active_mask must be one of:
 562 *  - HRTIMER_ACTIVE_ALL,
 563 *  - HRTIMER_ACTIVE_SOFT, or
 564 *  - HRTIMER_ACTIVE_HARD.
 565 */
 566static ktime_t
 567__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 568{
 569        unsigned int active;
 570        struct hrtimer *next_timer = NULL;
 571        ktime_t expires_next = KTIME_MAX;
 572
 573        if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 574                active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 575                cpu_base->softirq_next_timer = NULL;
 576                expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 577                                                         active, KTIME_MAX);
 578
 579                next_timer = cpu_base->softirq_next_timer;
 580        }
 581
 582        if (active_mask & HRTIMER_ACTIVE_HARD) {
 583                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 584                cpu_base->next_timer = next_timer;
 585                expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 586                                                         expires_next);
 587        }
 588
 589        return expires_next;
 590}
 591
 592static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 593{
 594        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 595        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 596        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 597
 598        ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 599                                            offs_real, offs_boot, offs_tai);
 600
 601        base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 602        base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 603        base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 604
 605        return now;
 606}
 607
 608/*
 609 * Is the high resolution mode active ?
 610 */
 611static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 612{
 613        return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 614                cpu_base->hres_active : 0;
 615}
 616
 617static inline int hrtimer_hres_active(void)
 618{
 619        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 620}
 621
 622/*
 623 * Reprogram the event source with checking both queues for the
 624 * next event
 625 * Called with interrupts disabled and base->lock held
 626 */
 627static void
 628hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 629{
 630        ktime_t expires_next;
 631
 632        /*
 633         * Find the current next expiration time.
 634         */
 635        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
 636
 637        if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
 638                /*
 639                 * When the softirq is activated, hrtimer has to be
 640                 * programmed with the first hard hrtimer because soft
 641                 * timer interrupt could occur too late.
 642                 */
 643                if (cpu_base->softirq_activated)
 644                        expires_next = __hrtimer_get_next_event(cpu_base,
 645                                                                HRTIMER_ACTIVE_HARD);
 646                else
 647                        cpu_base->softirq_expires_next = expires_next;
 648        }
 649
 650        if (skip_equal && expires_next == cpu_base->expires_next)
 651                return;
 652
 653        cpu_base->expires_next = expires_next;
 654
 655        /*
 656         * If hres is not active, hardware does not have to be
 657         * reprogrammed yet.
 658         *
 659         * If a hang was detected in the last timer interrupt then we
 660         * leave the hang delay active in the hardware. We want the
 661         * system to make progress. That also prevents the following
 662         * scenario:
 663         * T1 expires 50ms from now
 664         * T2 expires 5s from now
 665         *
 666         * T1 is removed, so this code is called and would reprogram
 667         * the hardware to 5s from now. Any hrtimer_start after that
 668         * will not reprogram the hardware due to hang_detected being
 669         * set. So we'd effectivly block all timers until the T2 event
 670         * fires.
 671         */
 672        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 673                return;
 674
 675        tick_program_event(cpu_base->expires_next, 1);
 676}
 677
 678/* High resolution timer related functions */
 679#ifdef CONFIG_HIGH_RES_TIMERS
 680
 681/*
 682 * High resolution timer enabled ?
 683 */
 684static bool hrtimer_hres_enabled __read_mostly  = true;
 685unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 686EXPORT_SYMBOL_GPL(hrtimer_resolution);
 687
 688/*
 689 * Enable / Disable high resolution mode
 690 */
 691static int __init setup_hrtimer_hres(char *str)
 692{
 693        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 694}
 695
 696__setup("highres=", setup_hrtimer_hres);
 697
 698/*
 699 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 700 */
 701static inline int hrtimer_is_hres_enabled(void)
 702{
 703        return hrtimer_hres_enabled;
 704}
 705
 706/*
 707 * Retrigger next event is called after clock was set
 708 *
 709 * Called with interrupts disabled via on_each_cpu()
 710 */
 711static void retrigger_next_event(void *arg)
 712{
 713        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 714
 715        if (!__hrtimer_hres_active(base))
 716                return;
 717
 718        raw_spin_lock(&base->lock);
 719        hrtimer_update_base(base);
 720        hrtimer_force_reprogram(base, 0);
 721        raw_spin_unlock(&base->lock);
 722}
 723
 724/*
 725 * Switch to high resolution mode
 726 */
 727static void hrtimer_switch_to_hres(void)
 728{
 729        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 730
 731        if (tick_init_highres()) {
 732                pr_warn("Could not switch to high resolution mode on CPU %u\n",
 733                        base->cpu);
 734                return;
 735        }
 736        base->hres_active = 1;
 737        hrtimer_resolution = HIGH_RES_NSEC;
 738
 739        tick_setup_sched_timer();
 740        /* "Retrigger" the interrupt to get things going */
 741        retrigger_next_event(NULL);
 742}
 743
 744static void clock_was_set_work(struct work_struct *work)
 745{
 746        clock_was_set();
 747}
 748
 749static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 750
 751/*
 752 * Called from timekeeping and resume code to reprogram the hrtimer
 753 * interrupt device on all cpus.
 754 */
 755void clock_was_set_delayed(void)
 756{
 757        schedule_work(&hrtimer_work);
 758}
 759
 760#else
 761
 762static inline int hrtimer_is_hres_enabled(void) { return 0; }
 763static inline void hrtimer_switch_to_hres(void) { }
 764static inline void retrigger_next_event(void *arg) { }
 765
 766#endif /* CONFIG_HIGH_RES_TIMERS */
 767
 768/*
 769 * When a timer is enqueued and expires earlier than the already enqueued
 770 * timers, we have to check, whether it expires earlier than the timer for
 771 * which the clock event device was armed.
 772 *
 773 * Called with interrupts disabled and base->cpu_base.lock held
 774 */
 775static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 776{
 777        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 778        struct hrtimer_clock_base *base = timer->base;
 779        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 780
 781        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 782
 783        /*
 784         * CLOCK_REALTIME timer might be requested with an absolute
 785         * expiry time which is less than base->offset. Set it to 0.
 786         */
 787        if (expires < 0)
 788                expires = 0;
 789
 790        if (timer->is_soft) {
 791                /*
 792                 * soft hrtimer could be started on a remote CPU. In this
 793                 * case softirq_expires_next needs to be updated on the
 794                 * remote CPU. The soft hrtimer will not expire before the
 795                 * first hard hrtimer on the remote CPU -
 796                 * hrtimer_check_target() prevents this case.
 797                 */
 798                struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 799
 800                if (timer_cpu_base->softirq_activated)
 801                        return;
 802
 803                if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 804                        return;
 805
 806                timer_cpu_base->softirq_next_timer = timer;
 807                timer_cpu_base->softirq_expires_next = expires;
 808
 809                if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 810                    !reprogram)
 811                        return;
 812        }
 813
 814        /*
 815         * If the timer is not on the current cpu, we cannot reprogram
 816         * the other cpus clock event device.
 817         */
 818        if (base->cpu_base != cpu_base)
 819                return;
 820
 821        /*
 822         * If the hrtimer interrupt is running, then it will
 823         * reevaluate the clock bases and reprogram the clock event
 824         * device. The callbacks are always executed in hard interrupt
 825         * context so we don't need an extra check for a running
 826         * callback.
 827         */
 828        if (cpu_base->in_hrtirq)
 829                return;
 830
 831        if (expires >= cpu_base->expires_next)
 832                return;
 833
 834        /* Update the pointer to the next expiring timer */
 835        cpu_base->next_timer = timer;
 836        cpu_base->expires_next = expires;
 837
 838        /*
 839         * If hres is not active, hardware does not have to be
 840         * programmed yet.
 841         *
 842         * If a hang was detected in the last timer interrupt then we
 843         * do not schedule a timer which is earlier than the expiry
 844         * which we enforced in the hang detection. We want the system
 845         * to make progress.
 846         */
 847        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 848                return;
 849
 850        /*
 851         * Program the timer hardware. We enforce the expiry for
 852         * events which are already in the past.
 853         */
 854        tick_program_event(expires, 1);
 855}
 856
 857/*
 858 * Clock realtime was set
 859 *
 860 * Change the offset of the realtime clock vs. the monotonic
 861 * clock.
 862 *
 863 * We might have to reprogram the high resolution timer interrupt. On
 864 * SMP we call the architecture specific code to retrigger _all_ high
 865 * resolution timer interrupts. On UP we just disable interrupts and
 866 * call the high resolution interrupt code.
 867 */
 868void clock_was_set(void)
 869{
 870#ifdef CONFIG_HIGH_RES_TIMERS
 871        /* Retrigger the CPU local events everywhere */
 872        on_each_cpu(retrigger_next_event, NULL, 1);
 873#endif
 874        timerfd_clock_was_set();
 875}
 876
 877/*
 878 * During resume we might have to reprogram the high resolution timer
 879 * interrupt on all online CPUs.  However, all other CPUs will be
 880 * stopped with IRQs interrupts disabled so the clock_was_set() call
 881 * must be deferred.
 882 */
 883void hrtimers_resume(void)
 884{
 885        lockdep_assert_irqs_disabled();
 886        /* Retrigger on the local CPU */
 887        retrigger_next_event(NULL);
 888        /* And schedule a retrigger for all others */
 889        clock_was_set_delayed();
 890}
 891
 892/*
 893 * Counterpart to lock_hrtimer_base above:
 894 */
 895static inline
 896void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 897{
 898        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 899}
 900
 901/**
 902 * hrtimer_forward - forward the timer expiry
 903 * @timer:      hrtimer to forward
 904 * @now:        forward past this time
 905 * @interval:   the interval to forward
 906 *
 907 * Forward the timer expiry so it will expire in the future.
 908 * Returns the number of overruns.
 909 *
 910 * Can be safely called from the callback function of @timer. If
 911 * called from other contexts @timer must neither be enqueued nor
 912 * running the callback and the caller needs to take care of
 913 * serialization.
 914 *
 915 * Note: This only updates the timer expiry value and does not requeue
 916 * the timer.
 917 */
 918u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 919{
 920        u64 orun = 1;
 921        ktime_t delta;
 922
 923        delta = ktime_sub(now, hrtimer_get_expires(timer));
 924
 925        if (delta < 0)
 926                return 0;
 927
 928        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 929                return 0;
 930
 931        if (interval < hrtimer_resolution)
 932                interval = hrtimer_resolution;
 933
 934        if (unlikely(delta >= interval)) {
 935                s64 incr = ktime_to_ns(interval);
 936
 937                orun = ktime_divns(delta, incr);
 938                hrtimer_add_expires_ns(timer, incr * orun);
 939                if (hrtimer_get_expires_tv64(timer) > now)
 940                        return orun;
 941                /*
 942                 * This (and the ktime_add() below) is the
 943                 * correction for exact:
 944                 */
 945                orun++;
 946        }
 947        hrtimer_add_expires(timer, interval);
 948
 949        return orun;
 950}
 951EXPORT_SYMBOL_GPL(hrtimer_forward);
 952
 953/*
 954 * enqueue_hrtimer - internal function to (re)start a timer
 955 *
 956 * The timer is inserted in expiry order. Insertion into the
 957 * red black tree is O(log(n)). Must hold the base lock.
 958 *
 959 * Returns 1 when the new timer is the leftmost timer in the tree.
 960 */
 961static int enqueue_hrtimer(struct hrtimer *timer,
 962                           struct hrtimer_clock_base *base,
 963                           enum hrtimer_mode mode)
 964{
 965        debug_activate(timer, mode);
 966
 967        base->cpu_base->active_bases |= 1 << base->index;
 968
 969        /* Pairs with the lockless read in hrtimer_is_queued() */
 970        WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
 971
 972        return timerqueue_add(&base->active, &timer->node);
 973}
 974
 975/*
 976 * __remove_hrtimer - internal function to remove a timer
 977 *
 978 * Caller must hold the base lock.
 979 *
 980 * High resolution timer mode reprograms the clock event device when the
 981 * timer is the one which expires next. The caller can disable this by setting
 982 * reprogram to zero. This is useful, when the context does a reprogramming
 983 * anyway (e.g. timer interrupt)
 984 */
 985static void __remove_hrtimer(struct hrtimer *timer,
 986                             struct hrtimer_clock_base *base,
 987                             u8 newstate, int reprogram)
 988{
 989        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 990        u8 state = timer->state;
 991
 992        /* Pairs with the lockless read in hrtimer_is_queued() */
 993        WRITE_ONCE(timer->state, newstate);
 994        if (!(state & HRTIMER_STATE_ENQUEUED))
 995                return;
 996
 997        if (!timerqueue_del(&base->active, &timer->node))
 998                cpu_base->active_bases &= ~(1 << base->index);
 999
1000        /*
1001         * Note: If reprogram is false we do not update
1002         * cpu_base->next_timer. This happens when we remove the first
1003         * timer on a remote cpu. No harm as we never dereference
1004         * cpu_base->next_timer. So the worst thing what can happen is
1005         * an superflous call to hrtimer_force_reprogram() on the
1006         * remote cpu later on if the same timer gets enqueued again.
1007         */
1008        if (reprogram && timer == cpu_base->next_timer)
1009                hrtimer_force_reprogram(cpu_base, 1);
1010}
1011
1012/*
1013 * remove hrtimer, called with base lock held
1014 */
1015static inline int
1016remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1017{
1018        u8 state = timer->state;
1019
1020        if (state & HRTIMER_STATE_ENQUEUED) {
1021                int reprogram;
1022
1023                /*
1024                 * Remove the timer and force reprogramming when high
1025                 * resolution mode is active and the timer is on the current
1026                 * CPU. If we remove a timer on another CPU, reprogramming is
1027                 * skipped. The interrupt event on this CPU is fired and
1028                 * reprogramming happens in the interrupt handler. This is a
1029                 * rare case and less expensive than a smp call.
1030                 */
1031                debug_deactivate(timer);
1032                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1033
1034                if (!restart)
1035                        state = HRTIMER_STATE_INACTIVE;
1036
1037                __remove_hrtimer(timer, base, state, reprogram);
1038                return 1;
1039        }
1040        return 0;
1041}
1042
1043static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1044                                            const enum hrtimer_mode mode)
1045{
1046#ifdef CONFIG_TIME_LOW_RES
1047        /*
1048         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1049         * granular time values. For relative timers we add hrtimer_resolution
1050         * (i.e. one jiffie) to prevent short timeouts.
1051         */
1052        timer->is_rel = mode & HRTIMER_MODE_REL;
1053        if (timer->is_rel)
1054                tim = ktime_add_safe(tim, hrtimer_resolution);
1055#endif
1056        return tim;
1057}
1058
1059static void
1060hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1061{
1062        ktime_t expires;
1063
1064        /*
1065         * Find the next SOFT expiration.
1066         */
1067        expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1068
1069        /*
1070         * reprogramming needs to be triggered, even if the next soft
1071         * hrtimer expires at the same time than the next hard
1072         * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1073         */
1074        if (expires == KTIME_MAX)
1075                return;
1076
1077        /*
1078         * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1079         * cpu_base->*expires_next is only set by hrtimer_reprogram()
1080         */
1081        hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1082}
1083
1084static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1085                                    u64 delta_ns, const enum hrtimer_mode mode,
1086                                    struct hrtimer_clock_base *base)
1087{
1088        struct hrtimer_clock_base *new_base;
1089
1090        /* Remove an active timer from the queue: */
1091        remove_hrtimer(timer, base, true);
1092
1093        if (mode & HRTIMER_MODE_REL)
1094                tim = ktime_add_safe(tim, base->get_time());
1095
1096        tim = hrtimer_update_lowres(timer, tim, mode);
1097
1098        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1099
1100        /* Switch the timer base, if necessary: */
1101        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1102
1103        return enqueue_hrtimer(timer, new_base, mode);
1104}
1105
1106/**
1107 * hrtimer_start_range_ns - (re)start an hrtimer
1108 * @timer:      the timer to be added
1109 * @tim:        expiry time
1110 * @delta_ns:   "slack" range for the timer
1111 * @mode:       timer mode: absolute (HRTIMER_MODE_ABS) or
1112 *              relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1113 *              softirq based mode is considered for debug purpose only!
1114 */
1115void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1116                            u64 delta_ns, const enum hrtimer_mode mode)
1117{
1118        struct hrtimer_clock_base *base;
1119        unsigned long flags;
1120
1121        /*
1122         * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1123         * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1124         * expiry mode because unmarked timers are moved to softirq expiry.
1125         */
1126        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1127                WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1128        else
1129                WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1130
1131        base = lock_hrtimer_base(timer, &flags);
1132
1133        if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1134                hrtimer_reprogram(timer, true);
1135
1136        unlock_hrtimer_base(timer, &flags);
1137}
1138EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1139
1140/**
1141 * hrtimer_try_to_cancel - try to deactivate a timer
1142 * @timer:      hrtimer to stop
1143 *
1144 * Returns:
1145 *
1146 *  *  0 when the timer was not active
1147 *  *  1 when the timer was active
1148 *  * -1 when the timer is currently executing the callback function and
1149 *    cannot be stopped
1150 */
1151int hrtimer_try_to_cancel(struct hrtimer *timer)
1152{
1153        struct hrtimer_clock_base *base;
1154        unsigned long flags;
1155        int ret = -1;
1156
1157        /*
1158         * Check lockless first. If the timer is not active (neither
1159         * enqueued nor running the callback, nothing to do here.  The
1160         * base lock does not serialize against a concurrent enqueue,
1161         * so we can avoid taking it.
1162         */
1163        if (!hrtimer_active(timer))
1164                return 0;
1165
1166        base = lock_hrtimer_base(timer, &flags);
1167
1168        if (!hrtimer_callback_running(timer))
1169                ret = remove_hrtimer(timer, base, false);
1170
1171        unlock_hrtimer_base(timer, &flags);
1172
1173        return ret;
1174
1175}
1176EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1177
1178#ifdef CONFIG_PREEMPT_RT
1179static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1180{
1181        spin_lock_init(&base->softirq_expiry_lock);
1182}
1183
1184static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1185{
1186        spin_lock(&base->softirq_expiry_lock);
1187}
1188
1189static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1190{
1191        spin_unlock(&base->softirq_expiry_lock);
1192}
1193
1194/*
1195 * The counterpart to hrtimer_cancel_wait_running().
1196 *
1197 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1198 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1199 * allows the waiter to acquire the lock and make progress.
1200 */
1201static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1202                                      unsigned long flags)
1203{
1204        if (atomic_read(&cpu_base->timer_waiters)) {
1205                raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1206                spin_unlock(&cpu_base->softirq_expiry_lock);
1207                spin_lock(&cpu_base->softirq_expiry_lock);
1208                raw_spin_lock_irq(&cpu_base->lock);
1209        }
1210}
1211
1212/*
1213 * This function is called on PREEMPT_RT kernels when the fast path
1214 * deletion of a timer failed because the timer callback function was
1215 * running.
1216 *
1217 * This prevents priority inversion: if the soft irq thread is preempted
1218 * in the middle of a timer callback, then calling del_timer_sync() can
1219 * lead to two issues:
1220 *
1221 *  - If the caller is on a remote CPU then it has to spin wait for the timer
1222 *    handler to complete. This can result in unbound priority inversion.
1223 *
1224 *  - If the caller originates from the task which preempted the timer
1225 *    handler on the same CPU, then spin waiting for the timer handler to
1226 *    complete is never going to end.
1227 */
1228void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1229{
1230        /* Lockless read. Prevent the compiler from reloading it below */
1231        struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1232
1233        /*
1234         * Just relax if the timer expires in hard interrupt context or if
1235         * it is currently on the migration base.
1236         */
1237        if (!timer->is_soft || is_migration_base(base)) {
1238                cpu_relax();
1239                return;
1240        }
1241
1242        /*
1243         * Mark the base as contended and grab the expiry lock, which is
1244         * held by the softirq across the timer callback. Drop the lock
1245         * immediately so the softirq can expire the next timer. In theory
1246         * the timer could already be running again, but that's more than
1247         * unlikely and just causes another wait loop.
1248         */
1249        atomic_inc(&base->cpu_base->timer_waiters);
1250        spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1251        atomic_dec(&base->cpu_base->timer_waiters);
1252        spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1253}
1254#else
1255static inline void
1256hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1257static inline void
1258hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1259static inline void
1260hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1261static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1262                                             unsigned long flags) { }
1263#endif
1264
1265/**
1266 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1267 * @timer:      the timer to be cancelled
1268 *
1269 * Returns:
1270 *  0 when the timer was not active
1271 *  1 when the timer was active
1272 */
1273int hrtimer_cancel(struct hrtimer *timer)
1274{
1275        int ret;
1276
1277        do {
1278                ret = hrtimer_try_to_cancel(timer);
1279
1280                if (ret < 0)
1281                        hrtimer_cancel_wait_running(timer);
1282        } while (ret < 0);
1283        return ret;
1284}
1285EXPORT_SYMBOL_GPL(hrtimer_cancel);
1286
1287/**
1288 * hrtimer_get_remaining - get remaining time for the timer
1289 * @timer:      the timer to read
1290 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1291 */
1292ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1293{
1294        unsigned long flags;
1295        ktime_t rem;
1296
1297        lock_hrtimer_base(timer, &flags);
1298        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1299                rem = hrtimer_expires_remaining_adjusted(timer);
1300        else
1301                rem = hrtimer_expires_remaining(timer);
1302        unlock_hrtimer_base(timer, &flags);
1303
1304        return rem;
1305}
1306EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1307
1308#ifdef CONFIG_NO_HZ_COMMON
1309/**
1310 * hrtimer_get_next_event - get the time until next expiry event
1311 *
1312 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1313 */
1314u64 hrtimer_get_next_event(void)
1315{
1316        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1317        u64 expires = KTIME_MAX;
1318        unsigned long flags;
1319
1320        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1321
1322        if (!__hrtimer_hres_active(cpu_base))
1323                expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1324
1325        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1326
1327        return expires;
1328}
1329
1330/**
1331 * hrtimer_next_event_without - time until next expiry event w/o one timer
1332 * @exclude:    timer to exclude
1333 *
1334 * Returns the next expiry time over all timers except for the @exclude one or
1335 * KTIME_MAX if none of them is pending.
1336 */
1337u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1338{
1339        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1340        u64 expires = KTIME_MAX;
1341        unsigned long flags;
1342
1343        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1344
1345        if (__hrtimer_hres_active(cpu_base)) {
1346                unsigned int active;
1347
1348                if (!cpu_base->softirq_activated) {
1349                        active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1350                        expires = __hrtimer_next_event_base(cpu_base, exclude,
1351                                                            active, KTIME_MAX);
1352                }
1353                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1354                expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1355                                                    expires);
1356        }
1357
1358        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1359
1360        return expires;
1361}
1362#endif
1363
1364static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1365{
1366        if (likely(clock_id < MAX_CLOCKS)) {
1367                int base = hrtimer_clock_to_base_table[clock_id];
1368
1369                if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1370                        return base;
1371        }
1372        WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1373        return HRTIMER_BASE_MONOTONIC;
1374}
1375
1376static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1377                           enum hrtimer_mode mode)
1378{
1379        bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1380        struct hrtimer_cpu_base *cpu_base;
1381        int base;
1382
1383        /*
1384         * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1385         * marked for hard interrupt expiry mode are moved into soft
1386         * interrupt context for latency reasons and because the callbacks
1387         * can invoke functions which might sleep on RT, e.g. spin_lock().
1388         */
1389        if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1390                softtimer = true;
1391
1392        memset(timer, 0, sizeof(struct hrtimer));
1393
1394        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1395
1396        /*
1397         * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1398         * clock modifications, so they needs to become CLOCK_MONOTONIC to
1399         * ensure POSIX compliance.
1400         */
1401        if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1402                clock_id = CLOCK_MONOTONIC;
1403
1404        base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1405        base += hrtimer_clockid_to_base(clock_id);
1406        timer->is_soft = softtimer;
1407        timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1408        timer->base = &cpu_base->clock_base[base];
1409        timerqueue_init(&timer->node);
1410}
1411
1412/**
1413 * hrtimer_init - initialize a timer to the given clock
1414 * @timer:      the timer to be initialized
1415 * @clock_id:   the clock to be used
1416 * @mode:       The modes which are relevant for intitialization:
1417 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1418 *              HRTIMER_MODE_REL_SOFT
1419 *
1420 *              The PINNED variants of the above can be handed in,
1421 *              but the PINNED bit is ignored as pinning happens
1422 *              when the hrtimer is started
1423 */
1424void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1425                  enum hrtimer_mode mode)
1426{
1427        debug_init(timer, clock_id, mode);
1428        __hrtimer_init(timer, clock_id, mode);
1429}
1430EXPORT_SYMBOL_GPL(hrtimer_init);
1431
1432/*
1433 * A timer is active, when it is enqueued into the rbtree or the
1434 * callback function is running or it's in the state of being migrated
1435 * to another cpu.
1436 *
1437 * It is important for this function to not return a false negative.
1438 */
1439bool hrtimer_active(const struct hrtimer *timer)
1440{
1441        struct hrtimer_clock_base *base;
1442        unsigned int seq;
1443
1444        do {
1445                base = READ_ONCE(timer->base);
1446                seq = raw_read_seqcount_begin(&base->seq);
1447
1448                if (timer->state != HRTIMER_STATE_INACTIVE ||
1449                    base->running == timer)
1450                        return true;
1451
1452        } while (read_seqcount_retry(&base->seq, seq) ||
1453                 base != READ_ONCE(timer->base));
1454
1455        return false;
1456}
1457EXPORT_SYMBOL_GPL(hrtimer_active);
1458
1459/*
1460 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1461 * distinct sections:
1462 *
1463 *  - queued:   the timer is queued
1464 *  - callback: the timer is being ran
1465 *  - post:     the timer is inactive or (re)queued
1466 *
1467 * On the read side we ensure we observe timer->state and cpu_base->running
1468 * from the same section, if anything changed while we looked at it, we retry.
1469 * This includes timer->base changing because sequence numbers alone are
1470 * insufficient for that.
1471 *
1472 * The sequence numbers are required because otherwise we could still observe
1473 * a false negative if the read side got smeared over multiple consequtive
1474 * __run_hrtimer() invocations.
1475 */
1476
1477static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1478                          struct hrtimer_clock_base *base,
1479                          struct hrtimer *timer, ktime_t *now,
1480                          unsigned long flags) __must_hold(&cpu_base->lock)
1481{
1482        enum hrtimer_restart (*fn)(struct hrtimer *);
1483        bool expires_in_hardirq;
1484        int restart;
1485
1486        lockdep_assert_held(&cpu_base->lock);
1487
1488        debug_deactivate(timer);
1489        base->running = timer;
1490
1491        /*
1492         * Separate the ->running assignment from the ->state assignment.
1493         *
1494         * As with a regular write barrier, this ensures the read side in
1495         * hrtimer_active() cannot observe base->running == NULL &&
1496         * timer->state == INACTIVE.
1497         */
1498        raw_write_seqcount_barrier(&base->seq);
1499
1500        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1501        fn = timer->function;
1502
1503        /*
1504         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1505         * timer is restarted with a period then it becomes an absolute
1506         * timer. If its not restarted it does not matter.
1507         */
1508        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1509                timer->is_rel = false;
1510
1511        /*
1512         * The timer is marked as running in the CPU base, so it is
1513         * protected against migration to a different CPU even if the lock
1514         * is dropped.
1515         */
1516        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1517        trace_hrtimer_expire_entry(timer, now);
1518        expires_in_hardirq = lockdep_hrtimer_enter(timer);
1519
1520        restart = fn(timer);
1521
1522        lockdep_hrtimer_exit(expires_in_hardirq);
1523        trace_hrtimer_expire_exit(timer);
1524        raw_spin_lock_irq(&cpu_base->lock);
1525
1526        /*
1527         * Note: We clear the running state after enqueue_hrtimer and
1528         * we do not reprogram the event hardware. Happens either in
1529         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1530         *
1531         * Note: Because we dropped the cpu_base->lock above,
1532         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1533         * for us already.
1534         */
1535        if (restart != HRTIMER_NORESTART &&
1536            !(timer->state & HRTIMER_STATE_ENQUEUED))
1537                enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1538
1539        /*
1540         * Separate the ->running assignment from the ->state assignment.
1541         *
1542         * As with a regular write barrier, this ensures the read side in
1543         * hrtimer_active() cannot observe base->running.timer == NULL &&
1544         * timer->state == INACTIVE.
1545         */
1546        raw_write_seqcount_barrier(&base->seq);
1547
1548        WARN_ON_ONCE(base->running != timer);
1549        base->running = NULL;
1550}
1551
1552static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1553                                 unsigned long flags, unsigned int active_mask)
1554{
1555        struct hrtimer_clock_base *base;
1556        unsigned int active = cpu_base->active_bases & active_mask;
1557
1558        for_each_active_base(base, cpu_base, active) {
1559                struct timerqueue_node *node;
1560                ktime_t basenow;
1561
1562                basenow = ktime_add(now, base->offset);
1563
1564                while ((node = timerqueue_getnext(&base->active))) {
1565                        struct hrtimer *timer;
1566
1567                        timer = container_of(node, struct hrtimer, node);
1568
1569                        /*
1570                         * The immediate goal for using the softexpires is
1571                         * minimizing wakeups, not running timers at the
1572                         * earliest interrupt after their soft expiration.
1573                         * This allows us to avoid using a Priority Search
1574                         * Tree, which can answer a stabbing querry for
1575                         * overlapping intervals and instead use the simple
1576                         * BST we already have.
1577                         * We don't add extra wakeups by delaying timers that
1578                         * are right-of a not yet expired timer, because that
1579                         * timer will have to trigger a wakeup anyway.
1580                         */
1581                        if (basenow < hrtimer_get_softexpires_tv64(timer))
1582                                break;
1583
1584                        __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1585                        if (active_mask == HRTIMER_ACTIVE_SOFT)
1586                                hrtimer_sync_wait_running(cpu_base, flags);
1587                }
1588        }
1589}
1590
1591static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1592{
1593        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1594        unsigned long flags;
1595        ktime_t now;
1596
1597        hrtimer_cpu_base_lock_expiry(cpu_base);
1598        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1599
1600        now = hrtimer_update_base(cpu_base);
1601        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1602
1603        cpu_base->softirq_activated = 0;
1604        hrtimer_update_softirq_timer(cpu_base, true);
1605
1606        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1607        hrtimer_cpu_base_unlock_expiry(cpu_base);
1608}
1609
1610#ifdef CONFIG_HIGH_RES_TIMERS
1611
1612/*
1613 * High resolution timer interrupt
1614 * Called with interrupts disabled
1615 */
1616void hrtimer_interrupt(struct clock_event_device *dev)
1617{
1618        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1619        ktime_t expires_next, now, entry_time, delta;
1620        unsigned long flags;
1621        int retries = 0;
1622
1623        BUG_ON(!cpu_base->hres_active);
1624        cpu_base->nr_events++;
1625        dev->next_event = KTIME_MAX;
1626
1627        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1628        entry_time = now = hrtimer_update_base(cpu_base);
1629retry:
1630        cpu_base->in_hrtirq = 1;
1631        /*
1632         * We set expires_next to KTIME_MAX here with cpu_base->lock
1633         * held to prevent that a timer is enqueued in our queue via
1634         * the migration code. This does not affect enqueueing of
1635         * timers which run their callback and need to be requeued on
1636         * this CPU.
1637         */
1638        cpu_base->expires_next = KTIME_MAX;
1639
1640        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1641                cpu_base->softirq_expires_next = KTIME_MAX;
1642                cpu_base->softirq_activated = 1;
1643                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1644        }
1645
1646        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1647
1648        /* Reevaluate the clock bases for the next expiry */
1649        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1650        /*
1651         * Store the new expiry value so the migration code can verify
1652         * against it.
1653         */
1654        cpu_base->expires_next = expires_next;
1655        cpu_base->in_hrtirq = 0;
1656        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1657
1658        /* Reprogramming necessary ? */
1659        if (!tick_program_event(expires_next, 0)) {
1660                cpu_base->hang_detected = 0;
1661                return;
1662        }
1663
1664        /*
1665         * The next timer was already expired due to:
1666         * - tracing
1667         * - long lasting callbacks
1668         * - being scheduled away when running in a VM
1669         *
1670         * We need to prevent that we loop forever in the hrtimer
1671         * interrupt routine. We give it 3 attempts to avoid
1672         * overreacting on some spurious event.
1673         *
1674         * Acquire base lock for updating the offsets and retrieving
1675         * the current time.
1676         */
1677        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1678        now = hrtimer_update_base(cpu_base);
1679        cpu_base->nr_retries++;
1680        if (++retries < 3)
1681                goto retry;
1682        /*
1683         * Give the system a chance to do something else than looping
1684         * here. We stored the entry time, so we know exactly how long
1685         * we spent here. We schedule the next event this amount of
1686         * time away.
1687         */
1688        cpu_base->nr_hangs++;
1689        cpu_base->hang_detected = 1;
1690        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1691
1692        delta = ktime_sub(now, entry_time);
1693        if ((unsigned int)delta > cpu_base->max_hang_time)
1694                cpu_base->max_hang_time = (unsigned int) delta;
1695        /*
1696         * Limit it to a sensible value as we enforce a longer
1697         * delay. Give the CPU at least 100ms to catch up.
1698         */
1699        if (delta > 100 * NSEC_PER_MSEC)
1700                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1701        else
1702                expires_next = ktime_add(now, delta);
1703        tick_program_event(expires_next, 1);
1704        pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1705}
1706
1707/* called with interrupts disabled */
1708static inline void __hrtimer_peek_ahead_timers(void)
1709{
1710        struct tick_device *td;
1711
1712        if (!hrtimer_hres_active())
1713                return;
1714
1715        td = this_cpu_ptr(&tick_cpu_device);
1716        if (td && td->evtdev)
1717                hrtimer_interrupt(td->evtdev);
1718}
1719
1720#else /* CONFIG_HIGH_RES_TIMERS */
1721
1722static inline void __hrtimer_peek_ahead_timers(void) { }
1723
1724#endif  /* !CONFIG_HIGH_RES_TIMERS */
1725
1726/*
1727 * Called from run_local_timers in hardirq context every jiffy
1728 */
1729void hrtimer_run_queues(void)
1730{
1731        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1732        unsigned long flags;
1733        ktime_t now;
1734
1735        if (__hrtimer_hres_active(cpu_base))
1736                return;
1737
1738        /*
1739         * This _is_ ugly: We have to check periodically, whether we
1740         * can switch to highres and / or nohz mode. The clocksource
1741         * switch happens with xtime_lock held. Notification from
1742         * there only sets the check bit in the tick_oneshot code,
1743         * otherwise we might deadlock vs. xtime_lock.
1744         */
1745        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1746                hrtimer_switch_to_hres();
1747                return;
1748        }
1749
1750        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1751        now = hrtimer_update_base(cpu_base);
1752
1753        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1754                cpu_base->softirq_expires_next = KTIME_MAX;
1755                cpu_base->softirq_activated = 1;
1756                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1757        }
1758
1759        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1760        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1761}
1762
1763/*
1764 * Sleep related functions:
1765 */
1766static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1767{
1768        struct hrtimer_sleeper *t =
1769                container_of(timer, struct hrtimer_sleeper, timer);
1770        struct task_struct *task = t->task;
1771
1772        t->task = NULL;
1773        if (task)
1774                wake_up_process(task);
1775
1776        return HRTIMER_NORESTART;
1777}
1778
1779/**
1780 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1781 * @sl:         sleeper to be started
1782 * @mode:       timer mode abs/rel
1783 *
1784 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1785 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1786 */
1787void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1788                                   enum hrtimer_mode mode)
1789{
1790        /*
1791         * Make the enqueue delivery mode check work on RT. If the sleeper
1792         * was initialized for hard interrupt delivery, force the mode bit.
1793         * This is a special case for hrtimer_sleepers because
1794         * hrtimer_init_sleeper() determines the delivery mode on RT so the
1795         * fiddling with this decision is avoided at the call sites.
1796         */
1797        if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1798                mode |= HRTIMER_MODE_HARD;
1799
1800        hrtimer_start_expires(&sl->timer, mode);
1801}
1802EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1803
1804static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1805                                   clockid_t clock_id, enum hrtimer_mode mode)
1806{
1807        /*
1808         * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1809         * marked for hard interrupt expiry mode are moved into soft
1810         * interrupt context either for latency reasons or because the
1811         * hrtimer callback takes regular spinlocks or invokes other
1812         * functions which are not suitable for hard interrupt context on
1813         * PREEMPT_RT.
1814         *
1815         * The hrtimer_sleeper callback is RT compatible in hard interrupt
1816         * context, but there is a latency concern: Untrusted userspace can
1817         * spawn many threads which arm timers for the same expiry time on
1818         * the same CPU. That causes a latency spike due to the wakeup of
1819         * a gazillion threads.
1820         *
1821         * OTOH, priviledged real-time user space applications rely on the
1822         * low latency of hard interrupt wakeups. If the current task is in
1823         * a real-time scheduling class, mark the mode for hard interrupt
1824         * expiry.
1825         */
1826        if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1827                if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1828                        mode |= HRTIMER_MODE_HARD;
1829        }
1830
1831        __hrtimer_init(&sl->timer, clock_id, mode);
1832        sl->timer.function = hrtimer_wakeup;
1833        sl->task = current;
1834}
1835
1836/**
1837 * hrtimer_init_sleeper - initialize sleeper to the given clock
1838 * @sl:         sleeper to be initialized
1839 * @clock_id:   the clock to be used
1840 * @mode:       timer mode abs/rel
1841 */
1842void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1843                          enum hrtimer_mode mode)
1844{
1845        debug_init(&sl->timer, clock_id, mode);
1846        __hrtimer_init_sleeper(sl, clock_id, mode);
1847
1848}
1849EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1850
1851int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1852{
1853        switch(restart->nanosleep.type) {
1854#ifdef CONFIG_COMPAT_32BIT_TIME
1855        case TT_COMPAT:
1856                if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1857                        return -EFAULT;
1858                break;
1859#endif
1860        case TT_NATIVE:
1861                if (put_timespec64(ts, restart->nanosleep.rmtp))
1862                        return -EFAULT;
1863                break;
1864        default:
1865                BUG();
1866        }
1867        return -ERESTART_RESTARTBLOCK;
1868}
1869
1870static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1871{
1872        struct restart_block *restart;
1873
1874        do {
1875                set_current_state(TASK_INTERRUPTIBLE);
1876                hrtimer_sleeper_start_expires(t, mode);
1877
1878                if (likely(t->task))
1879                        freezable_schedule();
1880
1881                hrtimer_cancel(&t->timer);
1882                mode = HRTIMER_MODE_ABS;
1883
1884        } while (t->task && !signal_pending(current));
1885
1886        __set_current_state(TASK_RUNNING);
1887
1888        if (!t->task)
1889                return 0;
1890
1891        restart = &current->restart_block;
1892        if (restart->nanosleep.type != TT_NONE) {
1893                ktime_t rem = hrtimer_expires_remaining(&t->timer);
1894                struct timespec64 rmt;
1895
1896                if (rem <= 0)
1897                        return 0;
1898                rmt = ktime_to_timespec64(rem);
1899
1900                return nanosleep_copyout(restart, &rmt);
1901        }
1902        return -ERESTART_RESTARTBLOCK;
1903}
1904
1905static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1906{
1907        struct hrtimer_sleeper t;
1908        int ret;
1909
1910        hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1911                                      HRTIMER_MODE_ABS);
1912        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1913        ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1914        destroy_hrtimer_on_stack(&t.timer);
1915        return ret;
1916}
1917
1918long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1919                       const clockid_t clockid)
1920{
1921        struct restart_block *restart;
1922        struct hrtimer_sleeper t;
1923        int ret = 0;
1924        u64 slack;
1925
1926        slack = current->timer_slack_ns;
1927        if (dl_task(current) || rt_task(current))
1928                slack = 0;
1929
1930        hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1931        hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1932        ret = do_nanosleep(&t, mode);
1933        if (ret != -ERESTART_RESTARTBLOCK)
1934                goto out;
1935
1936        /* Absolute timers do not update the rmtp value and restart: */
1937        if (mode == HRTIMER_MODE_ABS) {
1938                ret = -ERESTARTNOHAND;
1939                goto out;
1940        }
1941
1942        restart = &current->restart_block;
1943        restart->fn = hrtimer_nanosleep_restart;
1944        restart->nanosleep.clockid = t.timer.base->clockid;
1945        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1946out:
1947        destroy_hrtimer_on_stack(&t.timer);
1948        return ret;
1949}
1950
1951#ifdef CONFIG_64BIT
1952
1953SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1954                struct __kernel_timespec __user *, rmtp)
1955{
1956        struct timespec64 tu;
1957
1958        if (get_timespec64(&tu, rqtp))
1959                return -EFAULT;
1960
1961        if (!timespec64_valid(&tu))
1962                return -EINVAL;
1963
1964        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1965        current->restart_block.nanosleep.rmtp = rmtp;
1966        return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1967                                 CLOCK_MONOTONIC);
1968}
1969
1970#endif
1971
1972#ifdef CONFIG_COMPAT_32BIT_TIME
1973
1974SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1975                       struct old_timespec32 __user *, rmtp)
1976{
1977        struct timespec64 tu;
1978
1979        if (get_old_timespec32(&tu, rqtp))
1980                return -EFAULT;
1981
1982        if (!timespec64_valid(&tu))
1983                return -EINVAL;
1984
1985        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1986        current->restart_block.nanosleep.compat_rmtp = rmtp;
1987        return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1988                                 CLOCK_MONOTONIC);
1989}
1990#endif
1991
1992/*
1993 * Functions related to boot-time initialization:
1994 */
1995int hrtimers_prepare_cpu(unsigned int cpu)
1996{
1997        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1998        int i;
1999
2000        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2001                cpu_base->clock_base[i].cpu_base = cpu_base;
2002                timerqueue_init_head(&cpu_base->clock_base[i].active);
2003        }
2004
2005        cpu_base->cpu = cpu;
2006        cpu_base->active_bases = 0;
2007        cpu_base->hres_active = 0;
2008        cpu_base->hang_detected = 0;
2009        cpu_base->next_timer = NULL;
2010        cpu_base->softirq_next_timer = NULL;
2011        cpu_base->expires_next = KTIME_MAX;
2012        cpu_base->softirq_expires_next = KTIME_MAX;
2013        hrtimer_cpu_base_init_expiry_lock(cpu_base);
2014        return 0;
2015}
2016
2017#ifdef CONFIG_HOTPLUG_CPU
2018
2019static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2020                                struct hrtimer_clock_base *new_base)
2021{
2022        struct hrtimer *timer;
2023        struct timerqueue_node *node;
2024
2025        while ((node = timerqueue_getnext(&old_base->active))) {
2026                timer = container_of(node, struct hrtimer, node);
2027                BUG_ON(hrtimer_callback_running(timer));
2028                debug_deactivate(timer);
2029
2030                /*
2031                 * Mark it as ENQUEUED not INACTIVE otherwise the
2032                 * timer could be seen as !active and just vanish away
2033                 * under us on another CPU
2034                 */
2035                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2036                timer->base = new_base;
2037                /*
2038                 * Enqueue the timers on the new cpu. This does not
2039                 * reprogram the event device in case the timer
2040                 * expires before the earliest on this CPU, but we run
2041                 * hrtimer_interrupt after we migrated everything to
2042                 * sort out already expired timers and reprogram the
2043                 * event device.
2044                 */
2045                enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2046        }
2047}
2048
2049int hrtimers_dead_cpu(unsigned int scpu)
2050{
2051        struct hrtimer_cpu_base *old_base, *new_base;
2052        int i;
2053
2054        BUG_ON(cpu_online(scpu));
2055        tick_cancel_sched_timer(scpu);
2056
2057        /*
2058         * this BH disable ensures that raise_softirq_irqoff() does
2059         * not wakeup ksoftirqd (and acquire the pi-lock) while
2060         * holding the cpu_base lock
2061         */
2062        local_bh_disable();
2063        local_irq_disable();
2064        old_base = &per_cpu(hrtimer_bases, scpu);
2065        new_base = this_cpu_ptr(&hrtimer_bases);
2066        /*
2067         * The caller is globally serialized and nobody else
2068         * takes two locks at once, deadlock is not possible.
2069         */
2070        raw_spin_lock(&new_base->lock);
2071        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2072
2073        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2074                migrate_hrtimer_list(&old_base->clock_base[i],
2075                                     &new_base->clock_base[i]);
2076        }
2077
2078        /*
2079         * The migration might have changed the first expiring softirq
2080         * timer on this CPU. Update it.
2081         */
2082        hrtimer_update_softirq_timer(new_base, false);
2083
2084        raw_spin_unlock(&old_base->lock);
2085        raw_spin_unlock(&new_base->lock);
2086
2087        /* Check, if we got expired work to do */
2088        __hrtimer_peek_ahead_timers();
2089        local_irq_enable();
2090        local_bh_enable();
2091        return 0;
2092}
2093
2094#endif /* CONFIG_HOTPLUG_CPU */
2095
2096void __init hrtimers_init(void)
2097{
2098        hrtimers_prepare_cpu(smp_processor_id());
2099        open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2100}
2101
2102/**
2103 * schedule_hrtimeout_range_clock - sleep until timeout
2104 * @expires:    timeout value (ktime_t)
2105 * @delta:      slack in expires timeout (ktime_t)
2106 * @mode:       timer mode
2107 * @clock_id:   timer clock to be used
2108 */
2109int __sched
2110schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2111                               const enum hrtimer_mode mode, clockid_t clock_id)
2112{
2113        struct hrtimer_sleeper t;
2114
2115        /*
2116         * Optimize when a zero timeout value is given. It does not
2117         * matter whether this is an absolute or a relative time.
2118         */
2119        if (expires && *expires == 0) {
2120                __set_current_state(TASK_RUNNING);
2121                return 0;
2122        }
2123
2124        /*
2125         * A NULL parameter means "infinite"
2126         */
2127        if (!expires) {
2128                schedule();
2129                return -EINTR;
2130        }
2131
2132        hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2133        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2134        hrtimer_sleeper_start_expires(&t, mode);
2135
2136        if (likely(t.task))
2137                schedule();
2138
2139        hrtimer_cancel(&t.timer);
2140        destroy_hrtimer_on_stack(&t.timer);
2141
2142        __set_current_state(TASK_RUNNING);
2143
2144        return !t.task ? 0 : -EINTR;
2145}
2146
2147/**
2148 * schedule_hrtimeout_range - sleep until timeout
2149 * @expires:    timeout value (ktime_t)
2150 * @delta:      slack in expires timeout (ktime_t)
2151 * @mode:       timer mode
2152 *
2153 * Make the current task sleep until the given expiry time has
2154 * elapsed. The routine will return immediately unless
2155 * the current task state has been set (see set_current_state()).
2156 *
2157 * The @delta argument gives the kernel the freedom to schedule the
2158 * actual wakeup to a time that is both power and performance friendly.
2159 * The kernel give the normal best effort behavior for "@expires+@delta",
2160 * but may decide to fire the timer earlier, but no earlier than @expires.
2161 *
2162 * You can set the task state as follows -
2163 *
2164 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2165 * pass before the routine returns unless the current task is explicitly
2166 * woken up, (e.g. by wake_up_process()).
2167 *
2168 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2169 * delivered to the current task or the current task is explicitly woken
2170 * up.
2171 *
2172 * The current task state is guaranteed to be TASK_RUNNING when this
2173 * routine returns.
2174 *
2175 * Returns 0 when the timer has expired. If the task was woken before the
2176 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2177 * by an explicit wakeup, it returns -EINTR.
2178 */
2179int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2180                                     const enum hrtimer_mode mode)
2181{
2182        return schedule_hrtimeout_range_clock(expires, delta, mode,
2183                                              CLOCK_MONOTONIC);
2184}
2185EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2186
2187/**
2188 * schedule_hrtimeout - sleep until timeout
2189 * @expires:    timeout value (ktime_t)
2190 * @mode:       timer mode
2191 *
2192 * Make the current task sleep until the given expiry time has
2193 * elapsed. The routine will return immediately unless
2194 * the current task state has been set (see set_current_state()).
2195 *
2196 * You can set the task state as follows -
2197 *
2198 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2199 * pass before the routine returns unless the current task is explicitly
2200 * woken up, (e.g. by wake_up_process()).
2201 *
2202 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2203 * delivered to the current task or the current task is explicitly woken
2204 * up.
2205 *
2206 * The current task state is guaranteed to be TASK_RUNNING when this
2207 * routine returns.
2208 *
2209 * Returns 0 when the timer has expired. If the task was woken before the
2210 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2211 * by an explicit wakeup, it returns -EINTR.
2212 */
2213int __sched schedule_hrtimeout(ktime_t *expires,
2214                               const enum hrtimer_mode mode)
2215{
2216        return schedule_hrtimeout_range(expires, 0, mode);
2217}
2218EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2219