linux/kernel/time/timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46#include <linux/random.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/unistd.h>
  50#include <asm/div64.h>
  51#include <asm/timex.h>
  52#include <asm/io.h>
  53
  54#include "tick-internal.h"
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/timer.h>
  58
  59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  60
  61EXPORT_SYMBOL(jiffies_64);
  62
  63/*
  64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  66 * level has a different granularity.
  67 *
  68 * The level granularity is:            LVL_CLK_DIV ^ lvl
  69 * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
  70 *
  71 * The array level of a newly armed timer depends on the relative expiry
  72 * time. The farther the expiry time is away the higher the array level and
  73 * therefor the granularity becomes.
  74 *
  75 * Contrary to the original timer wheel implementation, which aims for 'exact'
  76 * expiry of the timers, this implementation removes the need for recascading
  77 * the timers into the lower array levels. The previous 'classic' timer wheel
  78 * implementation of the kernel already violated the 'exact' expiry by adding
  79 * slack to the expiry time to provide batched expiration. The granularity
  80 * levels provide implicit batching.
  81 *
  82 * This is an optimization of the original timer wheel implementation for the
  83 * majority of the timer wheel use cases: timeouts. The vast majority of
  84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  85 * the timeout expires it indicates that normal operation is disturbed, so it
  86 * does not matter much whether the timeout comes with a slight delay.
  87 *
  88 * The only exception to this are networking timers with a small expiry
  89 * time. They rely on the granularity. Those fit into the first wheel level,
  90 * which has HZ granularity.
  91 *
  92 * We don't have cascading anymore. timers with a expiry time above the
  93 * capacity of the last wheel level are force expired at the maximum timeout
  94 * value of the last wheel level. From data sampling we know that the maximum
  95 * value observed is 5 days (network connection tracking), so this should not
  96 * be an issue.
  97 *
  98 * The currently chosen array constants values are a good compromise between
  99 * array size and granularity.
 100 *
 101 * This results in the following granularity and range levels:
 102 *
 103 * HZ 1000 steps
 104 * Level Offset  Granularity            Range
 105 *  0      0         1 ms                0 ms -         63 ms
 106 *  1     64         8 ms               64 ms -        511 ms
 107 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 108 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 109 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 110 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 111 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 112 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 113 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 114 *
 115 * HZ  300
 116 * Level Offset  Granularity            Range
 117 *  0      0         3 ms                0 ms -        210 ms
 118 *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 119 *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 120 *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 121 *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 122 *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 123 *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 124 *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 125 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 126 *
 127 * HZ  250
 128 * Level Offset  Granularity            Range
 129 *  0      0         4 ms                0 ms -        255 ms
 130 *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 131 *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 132 *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 133 *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 134 *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 135 *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 136 *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 137 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 138 *
 139 * HZ  100
 140 * Level Offset  Granularity            Range
 141 *  0      0         10 ms               0 ms -        630 ms
 142 *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 143 *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 144 *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 145 *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 146 *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 147 *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 148 *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 149 */
 150
 151/* Clock divisor for the next level */
 152#define LVL_CLK_SHIFT   3
 153#define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
 154#define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
 155#define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
 156#define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
 157
 158/*
 159 * The time start value for each level to select the bucket at enqueue
 160 * time.
 161 */
 162#define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 163
 164/* Size of each clock level */
 165#define LVL_BITS        6
 166#define LVL_SIZE        (1UL << LVL_BITS)
 167#define LVL_MASK        (LVL_SIZE - 1)
 168#define LVL_OFFS(n)     ((n) * LVL_SIZE)
 169
 170/* Level depth */
 171#if HZ > 100
 172# define LVL_DEPTH      9
 173# else
 174# define LVL_DEPTH      8
 175#endif
 176
 177/* The cutoff (max. capacity of the wheel) */
 178#define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
 179#define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 180
 181/*
 182 * The resulting wheel size. If NOHZ is configured we allocate two
 183 * wheels so we have a separate storage for the deferrable timers.
 184 */
 185#define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
 186
 187#ifdef CONFIG_NO_HZ_COMMON
 188# define NR_BASES       2
 189# define BASE_STD       0
 190# define BASE_DEF       1
 191#else
 192# define NR_BASES       1
 193# define BASE_STD       0
 194# define BASE_DEF       0
 195#endif
 196
 197struct timer_base {
 198        raw_spinlock_t          lock;
 199        struct timer_list       *running_timer;
 200#ifdef CONFIG_PREEMPT_RT
 201        spinlock_t              expiry_lock;
 202        atomic_t                timer_waiters;
 203#endif
 204        unsigned long           clk;
 205        unsigned long           next_expiry;
 206        unsigned int            cpu;
 207        bool                    is_idle;
 208        bool                    must_forward_clk;
 209        DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 210        struct hlist_head       vectors[WHEEL_SIZE];
 211} ____cacheline_aligned;
 212
 213static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 214
 215#ifdef CONFIG_NO_HZ_COMMON
 216
 217static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 218static DEFINE_MUTEX(timer_keys_mutex);
 219
 220static void timer_update_keys(struct work_struct *work);
 221static DECLARE_WORK(timer_update_work, timer_update_keys);
 222
 223#ifdef CONFIG_SMP
 224unsigned int sysctl_timer_migration = 1;
 225
 226DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 227
 228static void timers_update_migration(void)
 229{
 230        if (sysctl_timer_migration && tick_nohz_active)
 231                static_branch_enable(&timers_migration_enabled);
 232        else
 233                static_branch_disable(&timers_migration_enabled);
 234}
 235#else
 236static inline void timers_update_migration(void) { }
 237#endif /* !CONFIG_SMP */
 238
 239static void timer_update_keys(struct work_struct *work)
 240{
 241        mutex_lock(&timer_keys_mutex);
 242        timers_update_migration();
 243        static_branch_enable(&timers_nohz_active);
 244        mutex_unlock(&timer_keys_mutex);
 245}
 246
 247void timers_update_nohz(void)
 248{
 249        schedule_work(&timer_update_work);
 250}
 251
 252int timer_migration_handler(struct ctl_table *table, int write,
 253                            void *buffer, size_t *lenp, loff_t *ppos)
 254{
 255        int ret;
 256
 257        mutex_lock(&timer_keys_mutex);
 258        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 259        if (!ret && write)
 260                timers_update_migration();
 261        mutex_unlock(&timer_keys_mutex);
 262        return ret;
 263}
 264
 265static inline bool is_timers_nohz_active(void)
 266{
 267        return static_branch_unlikely(&timers_nohz_active);
 268}
 269#else
 270static inline bool is_timers_nohz_active(void) { return false; }
 271#endif /* NO_HZ_COMMON */
 272
 273static unsigned long round_jiffies_common(unsigned long j, int cpu,
 274                bool force_up)
 275{
 276        int rem;
 277        unsigned long original = j;
 278
 279        /*
 280         * We don't want all cpus firing their timers at once hitting the
 281         * same lock or cachelines, so we skew each extra cpu with an extra
 282         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 283         * already did this.
 284         * The skew is done by adding 3*cpunr, then round, then subtract this
 285         * extra offset again.
 286         */
 287        j += cpu * 3;
 288
 289        rem = j % HZ;
 290
 291        /*
 292         * If the target jiffie is just after a whole second (which can happen
 293         * due to delays of the timer irq, long irq off times etc etc) then
 294         * we should round down to the whole second, not up. Use 1/4th second
 295         * as cutoff for this rounding as an extreme upper bound for this.
 296         * But never round down if @force_up is set.
 297         */
 298        if (rem < HZ/4 && !force_up) /* round down */
 299                j = j - rem;
 300        else /* round up */
 301                j = j - rem + HZ;
 302
 303        /* now that we have rounded, subtract the extra skew again */
 304        j -= cpu * 3;
 305
 306        /*
 307         * Make sure j is still in the future. Otherwise return the
 308         * unmodified value.
 309         */
 310        return time_is_after_jiffies(j) ? j : original;
 311}
 312
 313/**
 314 * __round_jiffies - function to round jiffies to a full second
 315 * @j: the time in (absolute) jiffies that should be rounded
 316 * @cpu: the processor number on which the timeout will happen
 317 *
 318 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 319 * up or down to (approximately) full seconds. This is useful for timers
 320 * for which the exact time they fire does not matter too much, as long as
 321 * they fire approximately every X seconds.
 322 *
 323 * By rounding these timers to whole seconds, all such timers will fire
 324 * at the same time, rather than at various times spread out. The goal
 325 * of this is to have the CPU wake up less, which saves power.
 326 *
 327 * The exact rounding is skewed for each processor to avoid all
 328 * processors firing at the exact same time, which could lead
 329 * to lock contention or spurious cache line bouncing.
 330 *
 331 * The return value is the rounded version of the @j parameter.
 332 */
 333unsigned long __round_jiffies(unsigned long j, int cpu)
 334{
 335        return round_jiffies_common(j, cpu, false);
 336}
 337EXPORT_SYMBOL_GPL(__round_jiffies);
 338
 339/**
 340 * __round_jiffies_relative - function to round jiffies to a full second
 341 * @j: the time in (relative) jiffies that should be rounded
 342 * @cpu: the processor number on which the timeout will happen
 343 *
 344 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 345 * up or down to (approximately) full seconds. This is useful for timers
 346 * for which the exact time they fire does not matter too much, as long as
 347 * they fire approximately every X seconds.
 348 *
 349 * By rounding these timers to whole seconds, all such timers will fire
 350 * at the same time, rather than at various times spread out. The goal
 351 * of this is to have the CPU wake up less, which saves power.
 352 *
 353 * The exact rounding is skewed for each processor to avoid all
 354 * processors firing at the exact same time, which could lead
 355 * to lock contention or spurious cache line bouncing.
 356 *
 357 * The return value is the rounded version of the @j parameter.
 358 */
 359unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 360{
 361        unsigned long j0 = jiffies;
 362
 363        /* Use j0 because jiffies might change while we run */
 364        return round_jiffies_common(j + j0, cpu, false) - j0;
 365}
 366EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 367
 368/**
 369 * round_jiffies - function to round jiffies to a full second
 370 * @j: the time in (absolute) jiffies that should be rounded
 371 *
 372 * round_jiffies() rounds an absolute time in the future (in jiffies)
 373 * up or down to (approximately) full seconds. This is useful for timers
 374 * for which the exact time they fire does not matter too much, as long as
 375 * they fire approximately every X seconds.
 376 *
 377 * By rounding these timers to whole seconds, all such timers will fire
 378 * at the same time, rather than at various times spread out. The goal
 379 * of this is to have the CPU wake up less, which saves power.
 380 *
 381 * The return value is the rounded version of the @j parameter.
 382 */
 383unsigned long round_jiffies(unsigned long j)
 384{
 385        return round_jiffies_common(j, raw_smp_processor_id(), false);
 386}
 387EXPORT_SYMBOL_GPL(round_jiffies);
 388
 389/**
 390 * round_jiffies_relative - function to round jiffies to a full second
 391 * @j: the time in (relative) jiffies that should be rounded
 392 *
 393 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 394 * up or down to (approximately) full seconds. This is useful for timers
 395 * for which the exact time they fire does not matter too much, as long as
 396 * they fire approximately every X seconds.
 397 *
 398 * By rounding these timers to whole seconds, all such timers will fire
 399 * at the same time, rather than at various times spread out. The goal
 400 * of this is to have the CPU wake up less, which saves power.
 401 *
 402 * The return value is the rounded version of the @j parameter.
 403 */
 404unsigned long round_jiffies_relative(unsigned long j)
 405{
 406        return __round_jiffies_relative(j, raw_smp_processor_id());
 407}
 408EXPORT_SYMBOL_GPL(round_jiffies_relative);
 409
 410/**
 411 * __round_jiffies_up - function to round jiffies up to a full second
 412 * @j: the time in (absolute) jiffies that should be rounded
 413 * @cpu: the processor number on which the timeout will happen
 414 *
 415 * This is the same as __round_jiffies() except that it will never
 416 * round down.  This is useful for timeouts for which the exact time
 417 * of firing does not matter too much, as long as they don't fire too
 418 * early.
 419 */
 420unsigned long __round_jiffies_up(unsigned long j, int cpu)
 421{
 422        return round_jiffies_common(j, cpu, true);
 423}
 424EXPORT_SYMBOL_GPL(__round_jiffies_up);
 425
 426/**
 427 * __round_jiffies_up_relative - function to round jiffies up to a full second
 428 * @j: the time in (relative) jiffies that should be rounded
 429 * @cpu: the processor number on which the timeout will happen
 430 *
 431 * This is the same as __round_jiffies_relative() except that it will never
 432 * round down.  This is useful for timeouts for which the exact time
 433 * of firing does not matter too much, as long as they don't fire too
 434 * early.
 435 */
 436unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 437{
 438        unsigned long j0 = jiffies;
 439
 440        /* Use j0 because jiffies might change while we run */
 441        return round_jiffies_common(j + j0, cpu, true) - j0;
 442}
 443EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 444
 445/**
 446 * round_jiffies_up - function to round jiffies up to a full second
 447 * @j: the time in (absolute) jiffies that should be rounded
 448 *
 449 * This is the same as round_jiffies() except that it will never
 450 * round down.  This is useful for timeouts for which the exact time
 451 * of firing does not matter too much, as long as they don't fire too
 452 * early.
 453 */
 454unsigned long round_jiffies_up(unsigned long j)
 455{
 456        return round_jiffies_common(j, raw_smp_processor_id(), true);
 457}
 458EXPORT_SYMBOL_GPL(round_jiffies_up);
 459
 460/**
 461 * round_jiffies_up_relative - function to round jiffies up to a full second
 462 * @j: the time in (relative) jiffies that should be rounded
 463 *
 464 * This is the same as round_jiffies_relative() except that it will never
 465 * round down.  This is useful for timeouts for which the exact time
 466 * of firing does not matter too much, as long as they don't fire too
 467 * early.
 468 */
 469unsigned long round_jiffies_up_relative(unsigned long j)
 470{
 471        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 472}
 473EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 474
 475
 476static inline unsigned int timer_get_idx(struct timer_list *timer)
 477{
 478        return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 479}
 480
 481static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 482{
 483        timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 484                        idx << TIMER_ARRAYSHIFT;
 485}
 486
 487/*
 488 * Helper function to calculate the array index for a given expiry
 489 * time.
 490 */
 491static inline unsigned calc_index(unsigned expires, unsigned lvl)
 492{
 493        expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 494        return LVL_OFFS(lvl) + (expires & LVL_MASK);
 495}
 496
 497static int calc_wheel_index(unsigned long expires, unsigned long clk)
 498{
 499        unsigned long delta = expires - clk;
 500        unsigned int idx;
 501
 502        if (delta < LVL_START(1)) {
 503                idx = calc_index(expires, 0);
 504        } else if (delta < LVL_START(2)) {
 505                idx = calc_index(expires, 1);
 506        } else if (delta < LVL_START(3)) {
 507                idx = calc_index(expires, 2);
 508        } else if (delta < LVL_START(4)) {
 509                idx = calc_index(expires, 3);
 510        } else if (delta < LVL_START(5)) {
 511                idx = calc_index(expires, 4);
 512        } else if (delta < LVL_START(6)) {
 513                idx = calc_index(expires, 5);
 514        } else if (delta < LVL_START(7)) {
 515                idx = calc_index(expires, 6);
 516        } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 517                idx = calc_index(expires, 7);
 518        } else if ((long) delta < 0) {
 519                idx = clk & LVL_MASK;
 520        } else {
 521                /*
 522                 * Force expire obscene large timeouts to expire at the
 523                 * capacity limit of the wheel.
 524                 */
 525                if (delta >= WHEEL_TIMEOUT_CUTOFF)
 526                        expires = clk + WHEEL_TIMEOUT_MAX;
 527
 528                idx = calc_index(expires, LVL_DEPTH - 1);
 529        }
 530        return idx;
 531}
 532
 533/*
 534 * Enqueue the timer into the hash bucket, mark it pending in
 535 * the bitmap and store the index in the timer flags.
 536 */
 537static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 538                          unsigned int idx)
 539{
 540        hlist_add_head(&timer->entry, base->vectors + idx);
 541        __set_bit(idx, base->pending_map);
 542        timer_set_idx(timer, idx);
 543
 544        trace_timer_start(timer, timer->expires, timer->flags);
 545}
 546
 547static void
 548__internal_add_timer(struct timer_base *base, struct timer_list *timer)
 549{
 550        unsigned int idx;
 551
 552        idx = calc_wheel_index(timer->expires, base->clk);
 553        enqueue_timer(base, timer, idx);
 554}
 555
 556static void
 557trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 558{
 559        if (!is_timers_nohz_active())
 560                return;
 561
 562        /*
 563         * TODO: This wants some optimizing similar to the code below, but we
 564         * will do that when we switch from push to pull for deferrable timers.
 565         */
 566        if (timer->flags & TIMER_DEFERRABLE) {
 567                if (tick_nohz_full_cpu(base->cpu))
 568                        wake_up_nohz_cpu(base->cpu);
 569                return;
 570        }
 571
 572        /*
 573         * We might have to IPI the remote CPU if the base is idle and the
 574         * timer is not deferrable. If the other CPU is on the way to idle
 575         * then it can't set base->is_idle as we hold the base lock:
 576         */
 577        if (!base->is_idle)
 578                return;
 579
 580        /* Check whether this is the new first expiring timer: */
 581        if (time_after_eq(timer->expires, base->next_expiry))
 582                return;
 583
 584        /*
 585         * Set the next expiry time and kick the CPU so it can reevaluate the
 586         * wheel:
 587         */
 588        if (time_before(timer->expires, base->clk)) {
 589                /*
 590                 * Prevent from forward_timer_base() moving the base->clk
 591                 * backward
 592                 */
 593                base->next_expiry = base->clk;
 594        } else {
 595                base->next_expiry = timer->expires;
 596        }
 597        wake_up_nohz_cpu(base->cpu);
 598}
 599
 600static void
 601internal_add_timer(struct timer_base *base, struct timer_list *timer)
 602{
 603        __internal_add_timer(base, timer);
 604        trigger_dyntick_cpu(base, timer);
 605}
 606
 607#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 608
 609static struct debug_obj_descr timer_debug_descr;
 610
 611static void *timer_debug_hint(void *addr)
 612{
 613        return ((struct timer_list *) addr)->function;
 614}
 615
 616static bool timer_is_static_object(void *addr)
 617{
 618        struct timer_list *timer = addr;
 619
 620        return (timer->entry.pprev == NULL &&
 621                timer->entry.next == TIMER_ENTRY_STATIC);
 622}
 623
 624/*
 625 * fixup_init is called when:
 626 * - an active object is initialized
 627 */
 628static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 629{
 630        struct timer_list *timer = addr;
 631
 632        switch (state) {
 633        case ODEBUG_STATE_ACTIVE:
 634                del_timer_sync(timer);
 635                debug_object_init(timer, &timer_debug_descr);
 636                return true;
 637        default:
 638                return false;
 639        }
 640}
 641
 642/* Stub timer callback for improperly used timers. */
 643static void stub_timer(struct timer_list *unused)
 644{
 645        WARN_ON(1);
 646}
 647
 648/*
 649 * fixup_activate is called when:
 650 * - an active object is activated
 651 * - an unknown non-static object is activated
 652 */
 653static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 654{
 655        struct timer_list *timer = addr;
 656
 657        switch (state) {
 658        case ODEBUG_STATE_NOTAVAILABLE:
 659                timer_setup(timer, stub_timer, 0);
 660                return true;
 661
 662        case ODEBUG_STATE_ACTIVE:
 663                WARN_ON(1);
 664                /* fall through */
 665        default:
 666                return false;
 667        }
 668}
 669
 670/*
 671 * fixup_free is called when:
 672 * - an active object is freed
 673 */
 674static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 675{
 676        struct timer_list *timer = addr;
 677
 678        switch (state) {
 679        case ODEBUG_STATE_ACTIVE:
 680                del_timer_sync(timer);
 681                debug_object_free(timer, &timer_debug_descr);
 682                return true;
 683        default:
 684                return false;
 685        }
 686}
 687
 688/*
 689 * fixup_assert_init is called when:
 690 * - an untracked/uninit-ed object is found
 691 */
 692static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 693{
 694        struct timer_list *timer = addr;
 695
 696        switch (state) {
 697        case ODEBUG_STATE_NOTAVAILABLE:
 698                timer_setup(timer, stub_timer, 0);
 699                return true;
 700        default:
 701                return false;
 702        }
 703}
 704
 705static struct debug_obj_descr timer_debug_descr = {
 706        .name                   = "timer_list",
 707        .debug_hint             = timer_debug_hint,
 708        .is_static_object       = timer_is_static_object,
 709        .fixup_init             = timer_fixup_init,
 710        .fixup_activate         = timer_fixup_activate,
 711        .fixup_free             = timer_fixup_free,
 712        .fixup_assert_init      = timer_fixup_assert_init,
 713};
 714
 715static inline void debug_timer_init(struct timer_list *timer)
 716{
 717        debug_object_init(timer, &timer_debug_descr);
 718}
 719
 720static inline void debug_timer_activate(struct timer_list *timer)
 721{
 722        debug_object_activate(timer, &timer_debug_descr);
 723}
 724
 725static inline void debug_timer_deactivate(struct timer_list *timer)
 726{
 727        debug_object_deactivate(timer, &timer_debug_descr);
 728}
 729
 730static inline void debug_timer_free(struct timer_list *timer)
 731{
 732        debug_object_free(timer, &timer_debug_descr);
 733}
 734
 735static inline void debug_timer_assert_init(struct timer_list *timer)
 736{
 737        debug_object_assert_init(timer, &timer_debug_descr);
 738}
 739
 740static void do_init_timer(struct timer_list *timer,
 741                          void (*func)(struct timer_list *),
 742                          unsigned int flags,
 743                          const char *name, struct lock_class_key *key);
 744
 745void init_timer_on_stack_key(struct timer_list *timer,
 746                             void (*func)(struct timer_list *),
 747                             unsigned int flags,
 748                             const char *name, struct lock_class_key *key)
 749{
 750        debug_object_init_on_stack(timer, &timer_debug_descr);
 751        do_init_timer(timer, func, flags, name, key);
 752}
 753EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 754
 755void destroy_timer_on_stack(struct timer_list *timer)
 756{
 757        debug_object_free(timer, &timer_debug_descr);
 758}
 759EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 760
 761#else
 762static inline void debug_timer_init(struct timer_list *timer) { }
 763static inline void debug_timer_activate(struct timer_list *timer) { }
 764static inline void debug_timer_deactivate(struct timer_list *timer) { }
 765static inline void debug_timer_assert_init(struct timer_list *timer) { }
 766#endif
 767
 768static inline void debug_init(struct timer_list *timer)
 769{
 770        debug_timer_init(timer);
 771        trace_timer_init(timer);
 772}
 773
 774static inline void debug_deactivate(struct timer_list *timer)
 775{
 776        debug_timer_deactivate(timer);
 777        trace_timer_cancel(timer);
 778}
 779
 780static inline void debug_assert_init(struct timer_list *timer)
 781{
 782        debug_timer_assert_init(timer);
 783}
 784
 785static void do_init_timer(struct timer_list *timer,
 786                          void (*func)(struct timer_list *),
 787                          unsigned int flags,
 788                          const char *name, struct lock_class_key *key)
 789{
 790        timer->entry.pprev = NULL;
 791        timer->function = func;
 792        timer->flags = flags | raw_smp_processor_id();
 793        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 794}
 795
 796/**
 797 * init_timer_key - initialize a timer
 798 * @timer: the timer to be initialized
 799 * @func: timer callback function
 800 * @flags: timer flags
 801 * @name: name of the timer
 802 * @key: lockdep class key of the fake lock used for tracking timer
 803 *       sync lock dependencies
 804 *
 805 * init_timer_key() must be done to a timer prior calling *any* of the
 806 * other timer functions.
 807 */
 808void init_timer_key(struct timer_list *timer,
 809                    void (*func)(struct timer_list *), unsigned int flags,
 810                    const char *name, struct lock_class_key *key)
 811{
 812        debug_init(timer);
 813        do_init_timer(timer, func, flags, name, key);
 814}
 815EXPORT_SYMBOL(init_timer_key);
 816
 817static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 818{
 819        struct hlist_node *entry = &timer->entry;
 820
 821        debug_deactivate(timer);
 822
 823        __hlist_del(entry);
 824        if (clear_pending)
 825                entry->pprev = NULL;
 826        entry->next = LIST_POISON2;
 827}
 828
 829static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 830                             bool clear_pending)
 831{
 832        unsigned idx = timer_get_idx(timer);
 833
 834        if (!timer_pending(timer))
 835                return 0;
 836
 837        if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
 838                __clear_bit(idx, base->pending_map);
 839
 840        detach_timer(timer, clear_pending);
 841        return 1;
 842}
 843
 844static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 845{
 846        struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 847
 848        /*
 849         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 850         * to use the deferrable base.
 851         */
 852        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 853                base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 854        return base;
 855}
 856
 857static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 858{
 859        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 860
 861        /*
 862         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 863         * to use the deferrable base.
 864         */
 865        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 866                base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 867        return base;
 868}
 869
 870static inline struct timer_base *get_timer_base(u32 tflags)
 871{
 872        return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 873}
 874
 875static inline struct timer_base *
 876get_target_base(struct timer_base *base, unsigned tflags)
 877{
 878#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 879        if (static_branch_likely(&timers_migration_enabled) &&
 880            !(tflags & TIMER_PINNED))
 881                return get_timer_cpu_base(tflags, get_nohz_timer_target());
 882#endif
 883        return get_timer_this_cpu_base(tflags);
 884}
 885
 886static inline void forward_timer_base(struct timer_base *base)
 887{
 888#ifdef CONFIG_NO_HZ_COMMON
 889        unsigned long jnow;
 890
 891        /*
 892         * We only forward the base when we are idle or have just come out of
 893         * idle (must_forward_clk logic), and have a delta between base clock
 894         * and jiffies. In the common case, run_timers will take care of it.
 895         */
 896        if (likely(!base->must_forward_clk))
 897                return;
 898
 899        jnow = READ_ONCE(jiffies);
 900        base->must_forward_clk = base->is_idle;
 901        if ((long)(jnow - base->clk) < 2)
 902                return;
 903
 904        /*
 905         * If the next expiry value is > jiffies, then we fast forward to
 906         * jiffies otherwise we forward to the next expiry value.
 907         */
 908        if (time_after(base->next_expiry, jnow)) {
 909                base->clk = jnow;
 910        } else {
 911                if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
 912                        return;
 913                base->clk = base->next_expiry;
 914        }
 915#endif
 916}
 917
 918
 919/*
 920 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 921 * that all timers which are tied to this base are locked, and the base itself
 922 * is locked too.
 923 *
 924 * So __run_timers/migrate_timers can safely modify all timers which could
 925 * be found in the base->vectors array.
 926 *
 927 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 928 * to wait until the migration is done.
 929 */
 930static struct timer_base *lock_timer_base(struct timer_list *timer,
 931                                          unsigned long *flags)
 932        __acquires(timer->base->lock)
 933{
 934        for (;;) {
 935                struct timer_base *base;
 936                u32 tf;
 937
 938                /*
 939                 * We need to use READ_ONCE() here, otherwise the compiler
 940                 * might re-read @tf between the check for TIMER_MIGRATING
 941                 * and spin_lock().
 942                 */
 943                tf = READ_ONCE(timer->flags);
 944
 945                if (!(tf & TIMER_MIGRATING)) {
 946                        base = get_timer_base(tf);
 947                        raw_spin_lock_irqsave(&base->lock, *flags);
 948                        if (timer->flags == tf)
 949                                return base;
 950                        raw_spin_unlock_irqrestore(&base->lock, *flags);
 951                }
 952                cpu_relax();
 953        }
 954}
 955
 956#define MOD_TIMER_PENDING_ONLY          0x01
 957#define MOD_TIMER_REDUCE                0x02
 958#define MOD_TIMER_NOTPENDING            0x04
 959
 960static inline int
 961__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
 962{
 963        struct timer_base *base, *new_base;
 964        unsigned int idx = UINT_MAX;
 965        unsigned long clk = 0, flags;
 966        int ret = 0;
 967
 968        BUG_ON(!timer->function);
 969
 970        /*
 971         * This is a common optimization triggered by the networking code - if
 972         * the timer is re-modified to have the same timeout or ends up in the
 973         * same array bucket then just return:
 974         */
 975        if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
 976                /*
 977                 * The downside of this optimization is that it can result in
 978                 * larger granularity than you would get from adding a new
 979                 * timer with this expiry.
 980                 */
 981                long diff = timer->expires - expires;
 982
 983                if (!diff)
 984                        return 1;
 985                if (options & MOD_TIMER_REDUCE && diff <= 0)
 986                        return 1;
 987
 988                /*
 989                 * We lock timer base and calculate the bucket index right
 990                 * here. If the timer ends up in the same bucket, then we
 991                 * just update the expiry time and avoid the whole
 992                 * dequeue/enqueue dance.
 993                 */
 994                base = lock_timer_base(timer, &flags);
 995                forward_timer_base(base);
 996
 997                if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
 998                    time_before_eq(timer->expires, expires)) {
 999                        ret = 1;
1000                        goto out_unlock;
1001                }
1002
1003                clk = base->clk;
1004                idx = calc_wheel_index(expires, clk);
1005
1006                /*
1007                 * Retrieve and compare the array index of the pending
1008                 * timer. If it matches set the expiry to the new value so a
1009                 * subsequent call will exit in the expires check above.
1010                 */
1011                if (idx == timer_get_idx(timer)) {
1012                        if (!(options & MOD_TIMER_REDUCE))
1013                                timer->expires = expires;
1014                        else if (time_after(timer->expires, expires))
1015                                timer->expires = expires;
1016                        ret = 1;
1017                        goto out_unlock;
1018                }
1019        } else {
1020                base = lock_timer_base(timer, &flags);
1021                forward_timer_base(base);
1022        }
1023
1024        ret = detach_if_pending(timer, base, false);
1025        if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1026                goto out_unlock;
1027
1028        new_base = get_target_base(base, timer->flags);
1029
1030        if (base != new_base) {
1031                /*
1032                 * We are trying to schedule the timer on the new base.
1033                 * However we can't change timer's base while it is running,
1034                 * otherwise del_timer_sync() can't detect that the timer's
1035                 * handler yet has not finished. This also guarantees that the
1036                 * timer is serialized wrt itself.
1037                 */
1038                if (likely(base->running_timer != timer)) {
1039                        /* See the comment in lock_timer_base() */
1040                        timer->flags |= TIMER_MIGRATING;
1041
1042                        raw_spin_unlock(&base->lock);
1043                        base = new_base;
1044                        raw_spin_lock(&base->lock);
1045                        WRITE_ONCE(timer->flags,
1046                                   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1047                        forward_timer_base(base);
1048                }
1049        }
1050
1051        debug_timer_activate(timer);
1052
1053        timer->expires = expires;
1054        /*
1055         * If 'idx' was calculated above and the base time did not advance
1056         * between calculating 'idx' and possibly switching the base, only
1057         * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1058         * we need to (re)calculate the wheel index via
1059         * internal_add_timer().
1060         */
1061        if (idx != UINT_MAX && clk == base->clk) {
1062                enqueue_timer(base, timer, idx);
1063                trigger_dyntick_cpu(base, timer);
1064        } else {
1065                internal_add_timer(base, timer);
1066        }
1067
1068out_unlock:
1069        raw_spin_unlock_irqrestore(&base->lock, flags);
1070
1071        return ret;
1072}
1073
1074/**
1075 * mod_timer_pending - modify a pending timer's timeout
1076 * @timer: the pending timer to be modified
1077 * @expires: new timeout in jiffies
1078 *
1079 * mod_timer_pending() is the same for pending timers as mod_timer(),
1080 * but will not re-activate and modify already deleted timers.
1081 *
1082 * It is useful for unserialized use of timers.
1083 */
1084int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1085{
1086        return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1087}
1088EXPORT_SYMBOL(mod_timer_pending);
1089
1090/**
1091 * mod_timer - modify a timer's timeout
1092 * @timer: the timer to be modified
1093 * @expires: new timeout in jiffies
1094 *
1095 * mod_timer() is a more efficient way to update the expire field of an
1096 * active timer (if the timer is inactive it will be activated)
1097 *
1098 * mod_timer(timer, expires) is equivalent to:
1099 *
1100 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1101 *
1102 * Note that if there are multiple unserialized concurrent users of the
1103 * same timer, then mod_timer() is the only safe way to modify the timeout,
1104 * since add_timer() cannot modify an already running timer.
1105 *
1106 * The function returns whether it has modified a pending timer or not.
1107 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1108 * active timer returns 1.)
1109 */
1110int mod_timer(struct timer_list *timer, unsigned long expires)
1111{
1112        return __mod_timer(timer, expires, 0);
1113}
1114EXPORT_SYMBOL(mod_timer);
1115
1116/**
1117 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1118 * @timer:      The timer to be modified
1119 * @expires:    New timeout in jiffies
1120 *
1121 * timer_reduce() is very similar to mod_timer(), except that it will only
1122 * modify a running timer if that would reduce the expiration time (it will
1123 * start a timer that isn't running).
1124 */
1125int timer_reduce(struct timer_list *timer, unsigned long expires)
1126{
1127        return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1128}
1129EXPORT_SYMBOL(timer_reduce);
1130
1131/**
1132 * add_timer - start a timer
1133 * @timer: the timer to be added
1134 *
1135 * The kernel will do a ->function(@timer) callback from the
1136 * timer interrupt at the ->expires point in the future. The
1137 * current time is 'jiffies'.
1138 *
1139 * The timer's ->expires, ->function fields must be set prior calling this
1140 * function.
1141 *
1142 * Timers with an ->expires field in the past will be executed in the next
1143 * timer tick.
1144 */
1145void add_timer(struct timer_list *timer)
1146{
1147        BUG_ON(timer_pending(timer));
1148        __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1149}
1150EXPORT_SYMBOL(add_timer);
1151
1152/**
1153 * add_timer_on - start a timer on a particular CPU
1154 * @timer: the timer to be added
1155 * @cpu: the CPU to start it on
1156 *
1157 * This is not very scalable on SMP. Double adds are not possible.
1158 */
1159void add_timer_on(struct timer_list *timer, int cpu)
1160{
1161        struct timer_base *new_base, *base;
1162        unsigned long flags;
1163
1164        BUG_ON(timer_pending(timer) || !timer->function);
1165
1166        new_base = get_timer_cpu_base(timer->flags, cpu);
1167
1168        /*
1169         * If @timer was on a different CPU, it should be migrated with the
1170         * old base locked to prevent other operations proceeding with the
1171         * wrong base locked.  See lock_timer_base().
1172         */
1173        base = lock_timer_base(timer, &flags);
1174        if (base != new_base) {
1175                timer->flags |= TIMER_MIGRATING;
1176
1177                raw_spin_unlock(&base->lock);
1178                base = new_base;
1179                raw_spin_lock(&base->lock);
1180                WRITE_ONCE(timer->flags,
1181                           (timer->flags & ~TIMER_BASEMASK) | cpu);
1182        }
1183        forward_timer_base(base);
1184
1185        debug_timer_activate(timer);
1186        internal_add_timer(base, timer);
1187        raw_spin_unlock_irqrestore(&base->lock, flags);
1188}
1189EXPORT_SYMBOL_GPL(add_timer_on);
1190
1191/**
1192 * del_timer - deactivate a timer.
1193 * @timer: the timer to be deactivated
1194 *
1195 * del_timer() deactivates a timer - this works on both active and inactive
1196 * timers.
1197 *
1198 * The function returns whether it has deactivated a pending timer or not.
1199 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1200 * active timer returns 1.)
1201 */
1202int del_timer(struct timer_list *timer)
1203{
1204        struct timer_base *base;
1205        unsigned long flags;
1206        int ret = 0;
1207
1208        debug_assert_init(timer);
1209
1210        if (timer_pending(timer)) {
1211                base = lock_timer_base(timer, &flags);
1212                ret = detach_if_pending(timer, base, true);
1213                raw_spin_unlock_irqrestore(&base->lock, flags);
1214        }
1215
1216        return ret;
1217}
1218EXPORT_SYMBOL(del_timer);
1219
1220/**
1221 * try_to_del_timer_sync - Try to deactivate a timer
1222 * @timer: timer to delete
1223 *
1224 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1225 * exit the timer is not queued and the handler is not running on any CPU.
1226 */
1227int try_to_del_timer_sync(struct timer_list *timer)
1228{
1229        struct timer_base *base;
1230        unsigned long flags;
1231        int ret = -1;
1232
1233        debug_assert_init(timer);
1234
1235        base = lock_timer_base(timer, &flags);
1236
1237        if (base->running_timer != timer)
1238                ret = detach_if_pending(timer, base, true);
1239
1240        raw_spin_unlock_irqrestore(&base->lock, flags);
1241
1242        return ret;
1243}
1244EXPORT_SYMBOL(try_to_del_timer_sync);
1245
1246#ifdef CONFIG_PREEMPT_RT
1247static __init void timer_base_init_expiry_lock(struct timer_base *base)
1248{
1249        spin_lock_init(&base->expiry_lock);
1250}
1251
1252static inline void timer_base_lock_expiry(struct timer_base *base)
1253{
1254        spin_lock(&base->expiry_lock);
1255}
1256
1257static inline void timer_base_unlock_expiry(struct timer_base *base)
1258{
1259        spin_unlock(&base->expiry_lock);
1260}
1261
1262/*
1263 * The counterpart to del_timer_wait_running().
1264 *
1265 * If there is a waiter for base->expiry_lock, then it was waiting for the
1266 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1267 * the waiter to acquire the lock and make progress.
1268 */
1269static void timer_sync_wait_running(struct timer_base *base)
1270{
1271        if (atomic_read(&base->timer_waiters)) {
1272                spin_unlock(&base->expiry_lock);
1273                spin_lock(&base->expiry_lock);
1274        }
1275}
1276
1277/*
1278 * This function is called on PREEMPT_RT kernels when the fast path
1279 * deletion of a timer failed because the timer callback function was
1280 * running.
1281 *
1282 * This prevents priority inversion, if the softirq thread on a remote CPU
1283 * got preempted, and it prevents a life lock when the task which tries to
1284 * delete a timer preempted the softirq thread running the timer callback
1285 * function.
1286 */
1287static void del_timer_wait_running(struct timer_list *timer)
1288{
1289        u32 tf;
1290
1291        tf = READ_ONCE(timer->flags);
1292        if (!(tf & TIMER_MIGRATING)) {
1293                struct timer_base *base = get_timer_base(tf);
1294
1295                /*
1296                 * Mark the base as contended and grab the expiry lock,
1297                 * which is held by the softirq across the timer
1298                 * callback. Drop the lock immediately so the softirq can
1299                 * expire the next timer. In theory the timer could already
1300                 * be running again, but that's more than unlikely and just
1301                 * causes another wait loop.
1302                 */
1303                atomic_inc(&base->timer_waiters);
1304                spin_lock_bh(&base->expiry_lock);
1305                atomic_dec(&base->timer_waiters);
1306                spin_unlock_bh(&base->expiry_lock);
1307        }
1308}
1309#else
1310static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1311static inline void timer_base_lock_expiry(struct timer_base *base) { }
1312static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1313static inline void timer_sync_wait_running(struct timer_base *base) { }
1314static inline void del_timer_wait_running(struct timer_list *timer) { }
1315#endif
1316
1317#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1318/**
1319 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1320 * @timer: the timer to be deactivated
1321 *
1322 * This function only differs from del_timer() on SMP: besides deactivating
1323 * the timer it also makes sure the handler has finished executing on other
1324 * CPUs.
1325 *
1326 * Synchronization rules: Callers must prevent restarting of the timer,
1327 * otherwise this function is meaningless. It must not be called from
1328 * interrupt contexts unless the timer is an irqsafe one. The caller must
1329 * not hold locks which would prevent completion of the timer's
1330 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1331 * timer is not queued and the handler is not running on any CPU.
1332 *
1333 * Note: For !irqsafe timers, you must not hold locks that are held in
1334 *   interrupt context while calling this function. Even if the lock has
1335 *   nothing to do with the timer in question.  Here's why::
1336 *
1337 *    CPU0                             CPU1
1338 *    ----                             ----
1339 *                                     <SOFTIRQ>
1340 *                                       call_timer_fn();
1341 *                                       base->running_timer = mytimer;
1342 *    spin_lock_irq(somelock);
1343 *                                     <IRQ>
1344 *                                        spin_lock(somelock);
1345 *    del_timer_sync(mytimer);
1346 *    while (base->running_timer == mytimer);
1347 *
1348 * Now del_timer_sync() will never return and never release somelock.
1349 * The interrupt on the other CPU is waiting to grab somelock but
1350 * it has interrupted the softirq that CPU0 is waiting to finish.
1351 *
1352 * The function returns whether it has deactivated a pending timer or not.
1353 */
1354int del_timer_sync(struct timer_list *timer)
1355{
1356        int ret;
1357
1358#ifdef CONFIG_LOCKDEP
1359        unsigned long flags;
1360
1361        /*
1362         * If lockdep gives a backtrace here, please reference
1363         * the synchronization rules above.
1364         */
1365        local_irq_save(flags);
1366        lock_map_acquire(&timer->lockdep_map);
1367        lock_map_release(&timer->lockdep_map);
1368        local_irq_restore(flags);
1369#endif
1370        /*
1371         * don't use it in hardirq context, because it
1372         * could lead to deadlock.
1373         */
1374        WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1375
1376        do {
1377                ret = try_to_del_timer_sync(timer);
1378
1379                if (unlikely(ret < 0)) {
1380                        del_timer_wait_running(timer);
1381                        cpu_relax();
1382                }
1383        } while (ret < 0);
1384
1385        return ret;
1386}
1387EXPORT_SYMBOL(del_timer_sync);
1388#endif
1389
1390static void call_timer_fn(struct timer_list *timer,
1391                          void (*fn)(struct timer_list *),
1392                          unsigned long baseclk)
1393{
1394        int count = preempt_count();
1395
1396#ifdef CONFIG_LOCKDEP
1397        /*
1398         * It is permissible to free the timer from inside the
1399         * function that is called from it, this we need to take into
1400         * account for lockdep too. To avoid bogus "held lock freed"
1401         * warnings as well as problems when looking into
1402         * timer->lockdep_map, make a copy and use that here.
1403         */
1404        struct lockdep_map lockdep_map;
1405
1406        lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1407#endif
1408        /*
1409         * Couple the lock chain with the lock chain at
1410         * del_timer_sync() by acquiring the lock_map around the fn()
1411         * call here and in del_timer_sync().
1412         */
1413        lock_map_acquire(&lockdep_map);
1414
1415        trace_timer_expire_entry(timer, baseclk);
1416        fn(timer);
1417        trace_timer_expire_exit(timer);
1418
1419        lock_map_release(&lockdep_map);
1420
1421        if (count != preempt_count()) {
1422                WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1423                          fn, count, preempt_count());
1424                /*
1425                 * Restore the preempt count. That gives us a decent
1426                 * chance to survive and extract information. If the
1427                 * callback kept a lock held, bad luck, but not worse
1428                 * than the BUG() we had.
1429                 */
1430                preempt_count_set(count);
1431        }
1432}
1433
1434static void expire_timers(struct timer_base *base, struct hlist_head *head)
1435{
1436        /*
1437         * This value is required only for tracing. base->clk was
1438         * incremented directly before expire_timers was called. But expiry
1439         * is related to the old base->clk value.
1440         */
1441        unsigned long baseclk = base->clk - 1;
1442
1443        while (!hlist_empty(head)) {
1444                struct timer_list *timer;
1445                void (*fn)(struct timer_list *);
1446
1447                timer = hlist_entry(head->first, struct timer_list, entry);
1448
1449                base->running_timer = timer;
1450                detach_timer(timer, true);
1451
1452                fn = timer->function;
1453
1454                if (timer->flags & TIMER_IRQSAFE) {
1455                        raw_spin_unlock(&base->lock);
1456                        call_timer_fn(timer, fn, baseclk);
1457                        base->running_timer = NULL;
1458                        raw_spin_lock(&base->lock);
1459                } else {
1460                        raw_spin_unlock_irq(&base->lock);
1461                        call_timer_fn(timer, fn, baseclk);
1462                        base->running_timer = NULL;
1463                        timer_sync_wait_running(base);
1464                        raw_spin_lock_irq(&base->lock);
1465                }
1466        }
1467}
1468
1469static int __collect_expired_timers(struct timer_base *base,
1470                                    struct hlist_head *heads)
1471{
1472        unsigned long clk = base->clk;
1473        struct hlist_head *vec;
1474        int i, levels = 0;
1475        unsigned int idx;
1476
1477        for (i = 0; i < LVL_DEPTH; i++) {
1478                idx = (clk & LVL_MASK) + i * LVL_SIZE;
1479
1480                if (__test_and_clear_bit(idx, base->pending_map)) {
1481                        vec = base->vectors + idx;
1482                        hlist_move_list(vec, heads++);
1483                        levels++;
1484                }
1485                /* Is it time to look at the next level? */
1486                if (clk & LVL_CLK_MASK)
1487                        break;
1488                /* Shift clock for the next level granularity */
1489                clk >>= LVL_CLK_SHIFT;
1490        }
1491        return levels;
1492}
1493
1494#ifdef CONFIG_NO_HZ_COMMON
1495/*
1496 * Find the next pending bucket of a level. Search from level start (@offset)
1497 * + @clk upwards and if nothing there, search from start of the level
1498 * (@offset) up to @offset + clk.
1499 */
1500static int next_pending_bucket(struct timer_base *base, unsigned offset,
1501                               unsigned clk)
1502{
1503        unsigned pos, start = offset + clk;
1504        unsigned end = offset + LVL_SIZE;
1505
1506        pos = find_next_bit(base->pending_map, end, start);
1507        if (pos < end)
1508                return pos - start;
1509
1510        pos = find_next_bit(base->pending_map, start, offset);
1511        return pos < start ? pos + LVL_SIZE - start : -1;
1512}
1513
1514/*
1515 * Search the first expiring timer in the various clock levels. Caller must
1516 * hold base->lock.
1517 */
1518static unsigned long __next_timer_interrupt(struct timer_base *base)
1519{
1520        unsigned long clk, next, adj;
1521        unsigned lvl, offset = 0;
1522
1523        next = base->clk + NEXT_TIMER_MAX_DELTA;
1524        clk = base->clk;
1525        for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1526                int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1527
1528                if (pos >= 0) {
1529                        unsigned long tmp = clk + (unsigned long) pos;
1530
1531                        tmp <<= LVL_SHIFT(lvl);
1532                        if (time_before(tmp, next))
1533                                next = tmp;
1534                }
1535                /*
1536                 * Clock for the next level. If the current level clock lower
1537                 * bits are zero, we look at the next level as is. If not we
1538                 * need to advance it by one because that's going to be the
1539                 * next expiring bucket in that level. base->clk is the next
1540                 * expiring jiffie. So in case of:
1541                 *
1542                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1543                 *  0    0    0    0    0    0
1544                 *
1545                 * we have to look at all levels @index 0. With
1546                 *
1547                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1548                 *  0    0    0    0    0    2
1549                 *
1550                 * LVL0 has the next expiring bucket @index 2. The upper
1551                 * levels have the next expiring bucket @index 1.
1552                 *
1553                 * In case that the propagation wraps the next level the same
1554                 * rules apply:
1555                 *
1556                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1557                 *  0    0    0    0    F    2
1558                 *
1559                 * So after looking at LVL0 we get:
1560                 *
1561                 * LVL5 LVL4 LVL3 LVL2 LVL1
1562                 *  0    0    0    1    0
1563                 *
1564                 * So no propagation from LVL1 to LVL2 because that happened
1565                 * with the add already, but then we need to propagate further
1566                 * from LVL2 to LVL3.
1567                 *
1568                 * So the simple check whether the lower bits of the current
1569                 * level are 0 or not is sufficient for all cases.
1570                 */
1571                adj = clk & LVL_CLK_MASK ? 1 : 0;
1572                clk >>= LVL_CLK_SHIFT;
1573                clk += adj;
1574        }
1575        return next;
1576}
1577
1578/*
1579 * Check, if the next hrtimer event is before the next timer wheel
1580 * event:
1581 */
1582static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1583{
1584        u64 nextevt = hrtimer_get_next_event();
1585
1586        /*
1587         * If high resolution timers are enabled
1588         * hrtimer_get_next_event() returns KTIME_MAX.
1589         */
1590        if (expires <= nextevt)
1591                return expires;
1592
1593        /*
1594         * If the next timer is already expired, return the tick base
1595         * time so the tick is fired immediately.
1596         */
1597        if (nextevt <= basem)
1598                return basem;
1599
1600        /*
1601         * Round up to the next jiffie. High resolution timers are
1602         * off, so the hrtimers are expired in the tick and we need to
1603         * make sure that this tick really expires the timer to avoid
1604         * a ping pong of the nohz stop code.
1605         *
1606         * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1607         */
1608        return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1609}
1610
1611/**
1612 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1613 * @basej:      base time jiffies
1614 * @basem:      base time clock monotonic
1615 *
1616 * Returns the tick aligned clock monotonic time of the next pending
1617 * timer or KTIME_MAX if no timer is pending.
1618 */
1619u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1620{
1621        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1622        u64 expires = KTIME_MAX;
1623        unsigned long nextevt;
1624        bool is_max_delta;
1625
1626        /*
1627         * Pretend that there is no timer pending if the cpu is offline.
1628         * Possible pending timers will be migrated later to an active cpu.
1629         */
1630        if (cpu_is_offline(smp_processor_id()))
1631                return expires;
1632
1633        raw_spin_lock(&base->lock);
1634        nextevt = __next_timer_interrupt(base);
1635        is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1636        base->next_expiry = nextevt;
1637        /*
1638         * We have a fresh next event. Check whether we can forward the
1639         * base. We can only do that when @basej is past base->clk
1640         * otherwise we might rewind base->clk.
1641         */
1642        if (time_after(basej, base->clk)) {
1643                if (time_after(nextevt, basej))
1644                        base->clk = basej;
1645                else if (time_after(nextevt, base->clk))
1646                        base->clk = nextevt;
1647        }
1648
1649        if (time_before_eq(nextevt, basej)) {
1650                expires = basem;
1651                base->is_idle = false;
1652        } else {
1653                if (!is_max_delta)
1654                        expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1655                /*
1656                 * If we expect to sleep more than a tick, mark the base idle.
1657                 * Also the tick is stopped so any added timer must forward
1658                 * the base clk itself to keep granularity small. This idle
1659                 * logic is only maintained for the BASE_STD base, deferrable
1660                 * timers may still see large granularity skew (by design).
1661                 */
1662                if ((expires - basem) > TICK_NSEC) {
1663                        base->must_forward_clk = true;
1664                        base->is_idle = true;
1665                }
1666        }
1667        raw_spin_unlock(&base->lock);
1668
1669        return cmp_next_hrtimer_event(basem, expires);
1670}
1671
1672/**
1673 * timer_clear_idle - Clear the idle state of the timer base
1674 *
1675 * Called with interrupts disabled
1676 */
1677void timer_clear_idle(void)
1678{
1679        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1680
1681        /*
1682         * We do this unlocked. The worst outcome is a remote enqueue sending
1683         * a pointless IPI, but taking the lock would just make the window for
1684         * sending the IPI a few instructions smaller for the cost of taking
1685         * the lock in the exit from idle path.
1686         */
1687        base->is_idle = false;
1688}
1689
1690static int collect_expired_timers(struct timer_base *base,
1691                                  struct hlist_head *heads)
1692{
1693        unsigned long now = READ_ONCE(jiffies);
1694
1695        /*
1696         * NOHZ optimization. After a long idle sleep we need to forward the
1697         * base to current jiffies. Avoid a loop by searching the bitfield for
1698         * the next expiring timer.
1699         */
1700        if ((long)(now - base->clk) > 2) {
1701                unsigned long next = __next_timer_interrupt(base);
1702
1703                /*
1704                 * If the next timer is ahead of time forward to current
1705                 * jiffies, otherwise forward to the next expiry time:
1706                 */
1707                if (time_after(next, now)) {
1708                        /*
1709                         * The call site will increment base->clk and then
1710                         * terminate the expiry loop immediately.
1711                         */
1712                        base->clk = now;
1713                        return 0;
1714                }
1715                base->clk = next;
1716        }
1717        return __collect_expired_timers(base, heads);
1718}
1719#else
1720static inline int collect_expired_timers(struct timer_base *base,
1721                                         struct hlist_head *heads)
1722{
1723        return __collect_expired_timers(base, heads);
1724}
1725#endif
1726
1727/*
1728 * Called from the timer interrupt handler to charge one tick to the current
1729 * process.  user_tick is 1 if the tick is user time, 0 for system.
1730 */
1731void update_process_times(int user_tick)
1732{
1733        struct task_struct *p = current;
1734
1735        /* Note: this timer irq context must be accounted for as well. */
1736        account_process_tick(p, user_tick);
1737        run_local_timers();
1738        rcu_sched_clock_irq(user_tick);
1739#ifdef CONFIG_IRQ_WORK
1740        if (in_irq())
1741                irq_work_tick();
1742#endif
1743        scheduler_tick();
1744        if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1745                run_posix_cpu_timers();
1746
1747        /* The current CPU might make use of net randoms without receiving IRQs
1748         * to renew them often enough. Let's update the net_rand_state from a
1749         * non-constant value that's not affine to the number of calls to make
1750         * sure it's updated when there's some activity (we don't care in idle).
1751         */
1752        this_cpu_add(net_rand_state.s1, rol32(jiffies, 24) + user_tick);
1753}
1754
1755/**
1756 * __run_timers - run all expired timers (if any) on this CPU.
1757 * @base: the timer vector to be processed.
1758 */
1759static inline void __run_timers(struct timer_base *base)
1760{
1761        struct hlist_head heads[LVL_DEPTH];
1762        int levels;
1763
1764        if (!time_after_eq(jiffies, base->clk))
1765                return;
1766
1767        timer_base_lock_expiry(base);
1768        raw_spin_lock_irq(&base->lock);
1769
1770        /*
1771         * timer_base::must_forward_clk must be cleared before running
1772         * timers so that any timer functions that call mod_timer() will
1773         * not try to forward the base. Idle tracking / clock forwarding
1774         * logic is only used with BASE_STD timers.
1775         *
1776         * The must_forward_clk flag is cleared unconditionally also for
1777         * the deferrable base. The deferrable base is not affected by idle
1778         * tracking and never forwarded, so clearing the flag is a NOOP.
1779         *
1780         * The fact that the deferrable base is never forwarded can cause
1781         * large variations in granularity for deferrable timers, but they
1782         * can be deferred for long periods due to idle anyway.
1783         */
1784        base->must_forward_clk = false;
1785
1786        while (time_after_eq(jiffies, base->clk)) {
1787
1788                levels = collect_expired_timers(base, heads);
1789                base->clk++;
1790
1791                while (levels--)
1792                        expire_timers(base, heads + levels);
1793        }
1794        raw_spin_unlock_irq(&base->lock);
1795        timer_base_unlock_expiry(base);
1796}
1797
1798/*
1799 * This function runs timers and the timer-tq in bottom half context.
1800 */
1801static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1802{
1803        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1804
1805        __run_timers(base);
1806        if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1807                __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1808}
1809
1810/*
1811 * Called by the local, per-CPU timer interrupt on SMP.
1812 */
1813void run_local_timers(void)
1814{
1815        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1816
1817        hrtimer_run_queues();
1818        /* Raise the softirq only if required. */
1819        if (time_before(jiffies, base->clk)) {
1820                if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1821                        return;
1822                /* CPU is awake, so check the deferrable base. */
1823                base++;
1824                if (time_before(jiffies, base->clk))
1825                        return;
1826        }
1827        raise_softirq(TIMER_SOFTIRQ);
1828}
1829
1830/*
1831 * Since schedule_timeout()'s timer is defined on the stack, it must store
1832 * the target task on the stack as well.
1833 */
1834struct process_timer {
1835        struct timer_list timer;
1836        struct task_struct *task;
1837};
1838
1839static void process_timeout(struct timer_list *t)
1840{
1841        struct process_timer *timeout = from_timer(timeout, t, timer);
1842
1843        wake_up_process(timeout->task);
1844}
1845
1846/**
1847 * schedule_timeout - sleep until timeout
1848 * @timeout: timeout value in jiffies
1849 *
1850 * Make the current task sleep until @timeout jiffies have elapsed.
1851 * The function behavior depends on the current task state
1852 * (see also set_current_state() description):
1853 *
1854 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1855 * at all. That happens because sched_submit_work() does nothing for
1856 * tasks in %TASK_RUNNING state.
1857 *
1858 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1859 * pass before the routine returns unless the current task is explicitly
1860 * woken up, (e.g. by wake_up_process()).
1861 *
1862 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1863 * delivered to the current task or the current task is explicitly woken
1864 * up.
1865 *
1866 * The current task state is guaranteed to be %TASK_RUNNING when this
1867 * routine returns.
1868 *
1869 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1870 * the CPU away without a bound on the timeout. In this case the return
1871 * value will be %MAX_SCHEDULE_TIMEOUT.
1872 *
1873 * Returns 0 when the timer has expired otherwise the remaining time in
1874 * jiffies will be returned. In all cases the return value is guaranteed
1875 * to be non-negative.
1876 */
1877signed long __sched schedule_timeout(signed long timeout)
1878{
1879        struct process_timer timer;
1880        unsigned long expire;
1881
1882        switch (timeout)
1883        {
1884        case MAX_SCHEDULE_TIMEOUT:
1885                /*
1886                 * These two special cases are useful to be comfortable
1887                 * in the caller. Nothing more. We could take
1888                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1889                 * but I' d like to return a valid offset (>=0) to allow
1890                 * the caller to do everything it want with the retval.
1891                 */
1892                schedule();
1893                goto out;
1894        default:
1895                /*
1896                 * Another bit of PARANOID. Note that the retval will be
1897                 * 0 since no piece of kernel is supposed to do a check
1898                 * for a negative retval of schedule_timeout() (since it
1899                 * should never happens anyway). You just have the printk()
1900                 * that will tell you if something is gone wrong and where.
1901                 */
1902                if (timeout < 0) {
1903                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1904                                "value %lx\n", timeout);
1905                        dump_stack();
1906                        current->state = TASK_RUNNING;
1907                        goto out;
1908                }
1909        }
1910
1911        expire = timeout + jiffies;
1912
1913        timer.task = current;
1914        timer_setup_on_stack(&timer.timer, process_timeout, 0);
1915        __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1916        schedule();
1917        del_singleshot_timer_sync(&timer.timer);
1918
1919        /* Remove the timer from the object tracker */
1920        destroy_timer_on_stack(&timer.timer);
1921
1922        timeout = expire - jiffies;
1923
1924 out:
1925        return timeout < 0 ? 0 : timeout;
1926}
1927EXPORT_SYMBOL(schedule_timeout);
1928
1929/*
1930 * We can use __set_current_state() here because schedule_timeout() calls
1931 * schedule() unconditionally.
1932 */
1933signed long __sched schedule_timeout_interruptible(signed long timeout)
1934{
1935        __set_current_state(TASK_INTERRUPTIBLE);
1936        return schedule_timeout(timeout);
1937}
1938EXPORT_SYMBOL(schedule_timeout_interruptible);
1939
1940signed long __sched schedule_timeout_killable(signed long timeout)
1941{
1942        __set_current_state(TASK_KILLABLE);
1943        return schedule_timeout(timeout);
1944}
1945EXPORT_SYMBOL(schedule_timeout_killable);
1946
1947signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1948{
1949        __set_current_state(TASK_UNINTERRUPTIBLE);
1950        return schedule_timeout(timeout);
1951}
1952EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1953
1954/*
1955 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1956 * to load average.
1957 */
1958signed long __sched schedule_timeout_idle(signed long timeout)
1959{
1960        __set_current_state(TASK_IDLE);
1961        return schedule_timeout(timeout);
1962}
1963EXPORT_SYMBOL(schedule_timeout_idle);
1964
1965#ifdef CONFIG_HOTPLUG_CPU
1966static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1967{
1968        struct timer_list *timer;
1969        int cpu = new_base->cpu;
1970
1971        while (!hlist_empty(head)) {
1972                timer = hlist_entry(head->first, struct timer_list, entry);
1973                detach_timer(timer, false);
1974                timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1975                internal_add_timer(new_base, timer);
1976        }
1977}
1978
1979int timers_prepare_cpu(unsigned int cpu)
1980{
1981        struct timer_base *base;
1982        int b;
1983
1984        for (b = 0; b < NR_BASES; b++) {
1985                base = per_cpu_ptr(&timer_bases[b], cpu);
1986                base->clk = jiffies;
1987                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1988                base->is_idle = false;
1989                base->must_forward_clk = true;
1990        }
1991        return 0;
1992}
1993
1994int timers_dead_cpu(unsigned int cpu)
1995{
1996        struct timer_base *old_base;
1997        struct timer_base *new_base;
1998        int b, i;
1999
2000        BUG_ON(cpu_online(cpu));
2001
2002        for (b = 0; b < NR_BASES; b++) {
2003                old_base = per_cpu_ptr(&timer_bases[b], cpu);
2004                new_base = get_cpu_ptr(&timer_bases[b]);
2005                /*
2006                 * The caller is globally serialized and nobody else
2007                 * takes two locks at once, deadlock is not possible.
2008                 */
2009                raw_spin_lock_irq(&new_base->lock);
2010                raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2011
2012                /*
2013                 * The current CPUs base clock might be stale. Update it
2014                 * before moving the timers over.
2015                 */
2016                forward_timer_base(new_base);
2017
2018                BUG_ON(old_base->running_timer);
2019
2020                for (i = 0; i < WHEEL_SIZE; i++)
2021                        migrate_timer_list(new_base, old_base->vectors + i);
2022
2023                raw_spin_unlock(&old_base->lock);
2024                raw_spin_unlock_irq(&new_base->lock);
2025                put_cpu_ptr(&timer_bases);
2026        }
2027        return 0;
2028}
2029
2030#endif /* CONFIG_HOTPLUG_CPU */
2031
2032static void __init init_timer_cpu(int cpu)
2033{
2034        struct timer_base *base;
2035        int i;
2036
2037        for (i = 0; i < NR_BASES; i++) {
2038                base = per_cpu_ptr(&timer_bases[i], cpu);
2039                base->cpu = cpu;
2040                raw_spin_lock_init(&base->lock);
2041                base->clk = jiffies;
2042                timer_base_init_expiry_lock(base);
2043        }
2044}
2045
2046static void __init init_timer_cpus(void)
2047{
2048        int cpu;
2049
2050        for_each_possible_cpu(cpu)
2051                init_timer_cpu(cpu);
2052}
2053
2054void __init init_timers(void)
2055{
2056        init_timer_cpus();
2057        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2058}
2059
2060/**
2061 * msleep - sleep safely even with waitqueue interruptions
2062 * @msecs: Time in milliseconds to sleep for
2063 */
2064void msleep(unsigned int msecs)
2065{
2066        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2067
2068        while (timeout)
2069                timeout = schedule_timeout_uninterruptible(timeout);
2070}
2071
2072EXPORT_SYMBOL(msleep);
2073
2074/**
2075 * msleep_interruptible - sleep waiting for signals
2076 * @msecs: Time in milliseconds to sleep for
2077 */
2078unsigned long msleep_interruptible(unsigned int msecs)
2079{
2080        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2081
2082        while (timeout && !signal_pending(current))
2083                timeout = schedule_timeout_interruptible(timeout);
2084        return jiffies_to_msecs(timeout);
2085}
2086
2087EXPORT_SYMBOL(msleep_interruptible);
2088
2089/**
2090 * usleep_range - Sleep for an approximate time
2091 * @min: Minimum time in usecs to sleep
2092 * @max: Maximum time in usecs to sleep
2093 *
2094 * In non-atomic context where the exact wakeup time is flexible, use
2095 * usleep_range() instead of udelay().  The sleep improves responsiveness
2096 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2097 * power usage by allowing hrtimers to take advantage of an already-
2098 * scheduled interrupt instead of scheduling a new one just for this sleep.
2099 */
2100void __sched usleep_range(unsigned long min, unsigned long max)
2101{
2102        ktime_t exp = ktime_add_us(ktime_get(), min);
2103        u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2104
2105        for (;;) {
2106                __set_current_state(TASK_UNINTERRUPTIBLE);
2107                /* Do not return before the requested sleep time has elapsed */
2108                if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2109                        break;
2110        }
2111}
2112EXPORT_SYMBOL(usleep_range);
2113