linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/security.h>
  15#include <linux/uaccess.h>
  16#include <linux/hardirq.h>
  17#include <linux/kthread.h>      /* for self test */
  18#include <linux/module.h>
  19#include <linux/percpu.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/list.h>
  26#include <linux/cpu.h>
  27#include <linux/oom.h>
  28
  29#include <asm/local.h>
  30
  31static void update_pages_handler(struct work_struct *work);
  32
  33/*
  34 * The ring buffer header is special. We must manually up keep it.
  35 */
  36int ring_buffer_print_entry_header(struct trace_seq *s)
  37{
  38        trace_seq_puts(s, "# compressed entry header\n");
  39        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  40        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  41        trace_seq_puts(s, "\tarray       :   32 bits\n");
  42        trace_seq_putc(s, '\n');
  43        trace_seq_printf(s, "\tpadding     : type == %d\n",
  44                         RINGBUF_TYPE_PADDING);
  45        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  46                         RINGBUF_TYPE_TIME_EXTEND);
  47        trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  48                         RINGBUF_TYPE_TIME_STAMP);
  49        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  50                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  51
  52        return !trace_seq_has_overflowed(s);
  53}
  54
  55/*
  56 * The ring buffer is made up of a list of pages. A separate list of pages is
  57 * allocated for each CPU. A writer may only write to a buffer that is
  58 * associated with the CPU it is currently executing on.  A reader may read
  59 * from any per cpu buffer.
  60 *
  61 * The reader is special. For each per cpu buffer, the reader has its own
  62 * reader page. When a reader has read the entire reader page, this reader
  63 * page is swapped with another page in the ring buffer.
  64 *
  65 * Now, as long as the writer is off the reader page, the reader can do what
  66 * ever it wants with that page. The writer will never write to that page
  67 * again (as long as it is out of the ring buffer).
  68 *
  69 * Here's some silly ASCII art.
  70 *
  71 *   +------+
  72 *   |reader|          RING BUFFER
  73 *   |page  |
  74 *   +------+        +---+   +---+   +---+
  75 *                   |   |-->|   |-->|   |
  76 *                   +---+   +---+   +---+
  77 *                     ^               |
  78 *                     |               |
  79 *                     +---------------+
  80 *
  81 *
  82 *   +------+
  83 *   |reader|          RING BUFFER
  84 *   |page  |------------------v
  85 *   +------+        +---+   +---+   +---+
  86 *                   |   |-->|   |-->|   |
  87 *                   +---+   +---+   +---+
  88 *                     ^               |
  89 *                     |               |
  90 *                     +---------------+
  91 *
  92 *
  93 *   +------+
  94 *   |reader|          RING BUFFER
  95 *   |page  |------------------v
  96 *   +------+        +---+   +---+   +---+
  97 *      ^            |   |-->|   |-->|   |
  98 *      |            +---+   +---+   +---+
  99 *      |                              |
 100 *      |                              |
 101 *      +------------------------------+
 102 *
 103 *
 104 *   +------+
 105 *   |buffer|          RING BUFFER
 106 *   |page  |------------------v
 107 *   +------+        +---+   +---+   +---+
 108 *      ^            |   |   |   |-->|   |
 109 *      |   New      +---+   +---+   +---+
 110 *      |  Reader------^               |
 111 *      |   page                       |
 112 *      +------------------------------+
 113 *
 114 *
 115 * After we make this swap, the reader can hand this page off to the splice
 116 * code and be done with it. It can even allocate a new page if it needs to
 117 * and swap that into the ring buffer.
 118 *
 119 * We will be using cmpxchg soon to make all this lockless.
 120 *
 121 */
 122
 123/* Used for individual buffers (after the counter) */
 124#define RB_BUFFER_OFF           (1 << 20)
 125
 126#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 127
 128#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 129#define RB_ALIGNMENT            4U
 130#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 131#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 132#define RB_ALIGN_DATA           __aligned(RB_ALIGNMENT)
 133
 134/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 135#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 136
 137enum {
 138        RB_LEN_TIME_EXTEND = 8,
 139        RB_LEN_TIME_STAMP =  8,
 140};
 141
 142#define skip_time_extend(event) \
 143        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 144
 145#define extended_time(event) \
 146        (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 147
 148static inline int rb_null_event(struct ring_buffer_event *event)
 149{
 150        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 151}
 152
 153static void rb_event_set_padding(struct ring_buffer_event *event)
 154{
 155        /* padding has a NULL time_delta */
 156        event->type_len = RINGBUF_TYPE_PADDING;
 157        event->time_delta = 0;
 158}
 159
 160static unsigned
 161rb_event_data_length(struct ring_buffer_event *event)
 162{
 163        unsigned length;
 164
 165        if (event->type_len)
 166                length = event->type_len * RB_ALIGNMENT;
 167        else
 168                length = event->array[0];
 169        return length + RB_EVNT_HDR_SIZE;
 170}
 171
 172/*
 173 * Return the length of the given event. Will return
 174 * the length of the time extend if the event is a
 175 * time extend.
 176 */
 177static inline unsigned
 178rb_event_length(struct ring_buffer_event *event)
 179{
 180        switch (event->type_len) {
 181        case RINGBUF_TYPE_PADDING:
 182                if (rb_null_event(event))
 183                        /* undefined */
 184                        return -1;
 185                return  event->array[0] + RB_EVNT_HDR_SIZE;
 186
 187        case RINGBUF_TYPE_TIME_EXTEND:
 188                return RB_LEN_TIME_EXTEND;
 189
 190        case RINGBUF_TYPE_TIME_STAMP:
 191                return RB_LEN_TIME_STAMP;
 192
 193        case RINGBUF_TYPE_DATA:
 194                return rb_event_data_length(event);
 195        default:
 196                WARN_ON_ONCE(1);
 197        }
 198        /* not hit */
 199        return 0;
 200}
 201
 202/*
 203 * Return total length of time extend and data,
 204 *   or just the event length for all other events.
 205 */
 206static inline unsigned
 207rb_event_ts_length(struct ring_buffer_event *event)
 208{
 209        unsigned len = 0;
 210
 211        if (extended_time(event)) {
 212                /* time extends include the data event after it */
 213                len = RB_LEN_TIME_EXTEND;
 214                event = skip_time_extend(event);
 215        }
 216        return len + rb_event_length(event);
 217}
 218
 219/**
 220 * ring_buffer_event_length - return the length of the event
 221 * @event: the event to get the length of
 222 *
 223 * Returns the size of the data load of a data event.
 224 * If the event is something other than a data event, it
 225 * returns the size of the event itself. With the exception
 226 * of a TIME EXTEND, where it still returns the size of the
 227 * data load of the data event after it.
 228 */
 229unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 230{
 231        unsigned length;
 232
 233        if (extended_time(event))
 234                event = skip_time_extend(event);
 235
 236        length = rb_event_length(event);
 237        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 238                return length;
 239        length -= RB_EVNT_HDR_SIZE;
 240        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 241                length -= sizeof(event->array[0]);
 242        return length;
 243}
 244EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 245
 246/* inline for ring buffer fast paths */
 247static __always_inline void *
 248rb_event_data(struct ring_buffer_event *event)
 249{
 250        if (extended_time(event))
 251                event = skip_time_extend(event);
 252        WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 253        /* If length is in len field, then array[0] has the data */
 254        if (event->type_len)
 255                return (void *)&event->array[0];
 256        /* Otherwise length is in array[0] and array[1] has the data */
 257        return (void *)&event->array[1];
 258}
 259
 260/**
 261 * ring_buffer_event_data - return the data of the event
 262 * @event: the event to get the data from
 263 */
 264void *ring_buffer_event_data(struct ring_buffer_event *event)
 265{
 266        return rb_event_data(event);
 267}
 268EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 269
 270#define for_each_buffer_cpu(buffer, cpu)                \
 271        for_each_cpu(cpu, buffer->cpumask)
 272
 273#define TS_SHIFT        27
 274#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 275#define TS_DELTA_TEST   (~TS_MASK)
 276
 277/**
 278 * ring_buffer_event_time_stamp - return the event's extended timestamp
 279 * @event: the event to get the timestamp of
 280 *
 281 * Returns the extended timestamp associated with a data event.
 282 * An extended time_stamp is a 64-bit timestamp represented
 283 * internally in a special way that makes the best use of space
 284 * contained within a ring buffer event.  This function decodes
 285 * it and maps it to a straight u64 value.
 286 */
 287u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 288{
 289        u64 ts;
 290
 291        ts = event->array[0];
 292        ts <<= TS_SHIFT;
 293        ts += event->time_delta;
 294
 295        return ts;
 296}
 297
 298/* Flag when events were overwritten */
 299#define RB_MISSED_EVENTS        (1 << 31)
 300/* Missed count stored at end */
 301#define RB_MISSED_STORED        (1 << 30)
 302
 303struct buffer_data_page {
 304        u64              time_stamp;    /* page time stamp */
 305        local_t          commit;        /* write committed index */
 306        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 307};
 308
 309/*
 310 * Note, the buffer_page list must be first. The buffer pages
 311 * are allocated in cache lines, which means that each buffer
 312 * page will be at the beginning of a cache line, and thus
 313 * the least significant bits will be zero. We use this to
 314 * add flags in the list struct pointers, to make the ring buffer
 315 * lockless.
 316 */
 317struct buffer_page {
 318        struct list_head list;          /* list of buffer pages */
 319        local_t          write;         /* index for next write */
 320        unsigned         read;          /* index for next read */
 321        local_t          entries;       /* entries on this page */
 322        unsigned long    real_end;      /* real end of data */
 323        struct buffer_data_page *page;  /* Actual data page */
 324};
 325
 326/*
 327 * The buffer page counters, write and entries, must be reset
 328 * atomically when crossing page boundaries. To synchronize this
 329 * update, two counters are inserted into the number. One is
 330 * the actual counter for the write position or count on the page.
 331 *
 332 * The other is a counter of updaters. Before an update happens
 333 * the update partition of the counter is incremented. This will
 334 * allow the updater to update the counter atomically.
 335 *
 336 * The counter is 20 bits, and the state data is 12.
 337 */
 338#define RB_WRITE_MASK           0xfffff
 339#define RB_WRITE_INTCNT         (1 << 20)
 340
 341static void rb_init_page(struct buffer_data_page *bpage)
 342{
 343        local_set(&bpage->commit, 0);
 344}
 345
 346/*
 347 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 348 * this issue out.
 349 */
 350static void free_buffer_page(struct buffer_page *bpage)
 351{
 352        free_page((unsigned long)bpage->page);
 353        kfree(bpage);
 354}
 355
 356/*
 357 * We need to fit the time_stamp delta into 27 bits.
 358 */
 359static inline int test_time_stamp(u64 delta)
 360{
 361        if (delta & TS_DELTA_TEST)
 362                return 1;
 363        return 0;
 364}
 365
 366#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 367
 368/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 369#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 370
 371int ring_buffer_print_page_header(struct trace_seq *s)
 372{
 373        struct buffer_data_page field;
 374
 375        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 376                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 377                         (unsigned int)sizeof(field.time_stamp),
 378                         (unsigned int)is_signed_type(u64));
 379
 380        trace_seq_printf(s, "\tfield: local_t commit;\t"
 381                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 382                         (unsigned int)offsetof(typeof(field), commit),
 383                         (unsigned int)sizeof(field.commit),
 384                         (unsigned int)is_signed_type(long));
 385
 386        trace_seq_printf(s, "\tfield: int overwrite;\t"
 387                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 388                         (unsigned int)offsetof(typeof(field), commit),
 389                         1,
 390                         (unsigned int)is_signed_type(long));
 391
 392        trace_seq_printf(s, "\tfield: char data;\t"
 393                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 394                         (unsigned int)offsetof(typeof(field), data),
 395                         (unsigned int)BUF_PAGE_SIZE,
 396                         (unsigned int)is_signed_type(char));
 397
 398        return !trace_seq_has_overflowed(s);
 399}
 400
 401struct rb_irq_work {
 402        struct irq_work                 work;
 403        wait_queue_head_t               waiters;
 404        wait_queue_head_t               full_waiters;
 405        bool                            waiters_pending;
 406        bool                            full_waiters_pending;
 407        bool                            wakeup_full;
 408};
 409
 410/*
 411 * Structure to hold event state and handle nested events.
 412 */
 413struct rb_event_info {
 414        u64                     ts;
 415        u64                     delta;
 416        unsigned long           length;
 417        struct buffer_page      *tail_page;
 418        int                     add_timestamp;
 419};
 420
 421/*
 422 * Used for which event context the event is in.
 423 *  NMI     = 0
 424 *  IRQ     = 1
 425 *  SOFTIRQ = 2
 426 *  NORMAL  = 3
 427 *
 428 * See trace_recursive_lock() comment below for more details.
 429 */
 430enum {
 431        RB_CTX_NMI,
 432        RB_CTX_IRQ,
 433        RB_CTX_SOFTIRQ,
 434        RB_CTX_NORMAL,
 435        RB_CTX_MAX
 436};
 437
 438/*
 439 * head_page == tail_page && head == tail then buffer is empty.
 440 */
 441struct ring_buffer_per_cpu {
 442        int                             cpu;
 443        atomic_t                        record_disabled;
 444        atomic_t                        resize_disabled;
 445        struct trace_buffer     *buffer;
 446        raw_spinlock_t                  reader_lock;    /* serialize readers */
 447        arch_spinlock_t                 lock;
 448        struct lock_class_key           lock_key;
 449        struct buffer_data_page         *free_page;
 450        unsigned long                   nr_pages;
 451        unsigned int                    current_context;
 452        struct list_head                *pages;
 453        struct buffer_page              *head_page;     /* read from head */
 454        struct buffer_page              *tail_page;     /* write to tail */
 455        struct buffer_page              *commit_page;   /* committed pages */
 456        struct buffer_page              *reader_page;
 457        unsigned long                   lost_events;
 458        unsigned long                   last_overrun;
 459        unsigned long                   nest;
 460        local_t                         entries_bytes;
 461        local_t                         entries;
 462        local_t                         overrun;
 463        local_t                         commit_overrun;
 464        local_t                         dropped_events;
 465        local_t                         committing;
 466        local_t                         commits;
 467        local_t                         pages_touched;
 468        local_t                         pages_read;
 469        long                            last_pages_touch;
 470        size_t                          shortest_full;
 471        unsigned long                   read;
 472        unsigned long                   read_bytes;
 473        u64                             write_stamp;
 474        u64                             read_stamp;
 475        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 476        long                            nr_pages_to_update;
 477        struct list_head                new_pages; /* new pages to add */
 478        struct work_struct              update_pages_work;
 479        struct completion               update_done;
 480
 481        struct rb_irq_work              irq_work;
 482};
 483
 484struct trace_buffer {
 485        unsigned                        flags;
 486        int                             cpus;
 487        atomic_t                        record_disabled;
 488        cpumask_var_t                   cpumask;
 489
 490        struct lock_class_key           *reader_lock_key;
 491
 492        struct mutex                    mutex;
 493
 494        struct ring_buffer_per_cpu      **buffers;
 495
 496        struct hlist_node               node;
 497        u64                             (*clock)(void);
 498
 499        struct rb_irq_work              irq_work;
 500        bool                            time_stamp_abs;
 501};
 502
 503struct ring_buffer_iter {
 504        struct ring_buffer_per_cpu      *cpu_buffer;
 505        unsigned long                   head;
 506        unsigned long                   next_event;
 507        struct buffer_page              *head_page;
 508        struct buffer_page              *cache_reader_page;
 509        unsigned long                   cache_read;
 510        u64                             read_stamp;
 511        u64                             page_stamp;
 512        struct ring_buffer_event        *event;
 513        int                             missed_events;
 514};
 515
 516/**
 517 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 518 * @buffer: The ring_buffer to get the number of pages from
 519 * @cpu: The cpu of the ring_buffer to get the number of pages from
 520 *
 521 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 522 */
 523size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
 524{
 525        return buffer->buffers[cpu]->nr_pages;
 526}
 527
 528/**
 529 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 530 * @buffer: The ring_buffer to get the number of pages from
 531 * @cpu: The cpu of the ring_buffer to get the number of pages from
 532 *
 533 * Returns the number of pages that have content in the ring buffer.
 534 */
 535size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 536{
 537        size_t read;
 538        size_t cnt;
 539
 540        read = local_read(&buffer->buffers[cpu]->pages_read);
 541        cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 542        /* The reader can read an empty page, but not more than that */
 543        if (cnt < read) {
 544                WARN_ON_ONCE(read > cnt + 1);
 545                return 0;
 546        }
 547
 548        return cnt - read;
 549}
 550
 551/*
 552 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 553 *
 554 * Schedules a delayed work to wake up any task that is blocked on the
 555 * ring buffer waiters queue.
 556 */
 557static void rb_wake_up_waiters(struct irq_work *work)
 558{
 559        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 560
 561        wake_up_all(&rbwork->waiters);
 562        if (rbwork->wakeup_full) {
 563                rbwork->wakeup_full = false;
 564                wake_up_all(&rbwork->full_waiters);
 565        }
 566}
 567
 568/**
 569 * ring_buffer_wait - wait for input to the ring buffer
 570 * @buffer: buffer to wait on
 571 * @cpu: the cpu buffer to wait on
 572 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 573 *
 574 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 575 * as data is added to any of the @buffer's cpu buffers. Otherwise
 576 * it will wait for data to be added to a specific cpu buffer.
 577 */
 578int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
 579{
 580        struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 581        DEFINE_WAIT(wait);
 582        struct rb_irq_work *work;
 583        int ret = 0;
 584
 585        /*
 586         * Depending on what the caller is waiting for, either any
 587         * data in any cpu buffer, or a specific buffer, put the
 588         * caller on the appropriate wait queue.
 589         */
 590        if (cpu == RING_BUFFER_ALL_CPUS) {
 591                work = &buffer->irq_work;
 592                /* Full only makes sense on per cpu reads */
 593                full = 0;
 594        } else {
 595                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 596                        return -ENODEV;
 597                cpu_buffer = buffer->buffers[cpu];
 598                work = &cpu_buffer->irq_work;
 599        }
 600
 601
 602        while (true) {
 603                if (full)
 604                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 605                else
 606                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 607
 608                /*
 609                 * The events can happen in critical sections where
 610                 * checking a work queue can cause deadlocks.
 611                 * After adding a task to the queue, this flag is set
 612                 * only to notify events to try to wake up the queue
 613                 * using irq_work.
 614                 *
 615                 * We don't clear it even if the buffer is no longer
 616                 * empty. The flag only causes the next event to run
 617                 * irq_work to do the work queue wake up. The worse
 618                 * that can happen if we race with !trace_empty() is that
 619                 * an event will cause an irq_work to try to wake up
 620                 * an empty queue.
 621                 *
 622                 * There's no reason to protect this flag either, as
 623                 * the work queue and irq_work logic will do the necessary
 624                 * synchronization for the wake ups. The only thing
 625                 * that is necessary is that the wake up happens after
 626                 * a task has been queued. It's OK for spurious wake ups.
 627                 */
 628                if (full)
 629                        work->full_waiters_pending = true;
 630                else
 631                        work->waiters_pending = true;
 632
 633                if (signal_pending(current)) {
 634                        ret = -EINTR;
 635                        break;
 636                }
 637
 638                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 639                        break;
 640
 641                if (cpu != RING_BUFFER_ALL_CPUS &&
 642                    !ring_buffer_empty_cpu(buffer, cpu)) {
 643                        unsigned long flags;
 644                        bool pagebusy;
 645                        size_t nr_pages;
 646                        size_t dirty;
 647
 648                        if (!full)
 649                                break;
 650
 651                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 652                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 653                        nr_pages = cpu_buffer->nr_pages;
 654                        dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 655                        if (!cpu_buffer->shortest_full ||
 656                            cpu_buffer->shortest_full < full)
 657                                cpu_buffer->shortest_full = full;
 658                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 659                        if (!pagebusy &&
 660                            (!nr_pages || (dirty * 100) > full * nr_pages))
 661                                break;
 662                }
 663
 664                schedule();
 665        }
 666
 667        if (full)
 668                finish_wait(&work->full_waiters, &wait);
 669        else
 670                finish_wait(&work->waiters, &wait);
 671
 672        return ret;
 673}
 674
 675/**
 676 * ring_buffer_poll_wait - poll on buffer input
 677 * @buffer: buffer to wait on
 678 * @cpu: the cpu buffer to wait on
 679 * @filp: the file descriptor
 680 * @poll_table: The poll descriptor
 681 *
 682 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 683 * as data is added to any of the @buffer's cpu buffers. Otherwise
 684 * it will wait for data to be added to a specific cpu buffer.
 685 *
 686 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 687 * zero otherwise.
 688 */
 689__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
 690                          struct file *filp, poll_table *poll_table)
 691{
 692        struct ring_buffer_per_cpu *cpu_buffer;
 693        struct rb_irq_work *work;
 694
 695        if (cpu == RING_BUFFER_ALL_CPUS)
 696                work = &buffer->irq_work;
 697        else {
 698                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 699                        return -EINVAL;
 700
 701                cpu_buffer = buffer->buffers[cpu];
 702                work = &cpu_buffer->irq_work;
 703        }
 704
 705        poll_wait(filp, &work->waiters, poll_table);
 706        work->waiters_pending = true;
 707        /*
 708         * There's a tight race between setting the waiters_pending and
 709         * checking if the ring buffer is empty.  Once the waiters_pending bit
 710         * is set, the next event will wake the task up, but we can get stuck
 711         * if there's only a single event in.
 712         *
 713         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 714         * but adding a memory barrier to all events will cause too much of a
 715         * performance hit in the fast path.  We only need a memory barrier when
 716         * the buffer goes from empty to having content.  But as this race is
 717         * extremely small, and it's not a problem if another event comes in, we
 718         * will fix it later.
 719         */
 720        smp_mb();
 721
 722        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 723            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 724                return EPOLLIN | EPOLLRDNORM;
 725        return 0;
 726}
 727
 728/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 729#define RB_WARN_ON(b, cond)                                             \
 730        ({                                                              \
 731                int _____ret = unlikely(cond);                          \
 732                if (_____ret) {                                         \
 733                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 734                                struct ring_buffer_per_cpu *__b =       \
 735                                        (void *)b;                      \
 736                                atomic_inc(&__b->buffer->record_disabled); \
 737                        } else                                          \
 738                                atomic_inc(&b->record_disabled);        \
 739                        WARN_ON(1);                                     \
 740                }                                                       \
 741                _____ret;                                               \
 742        })
 743
 744/* Up this if you want to test the TIME_EXTENTS and normalization */
 745#define DEBUG_SHIFT 0
 746
 747static inline u64 rb_time_stamp(struct trace_buffer *buffer)
 748{
 749        /* shift to debug/test normalization and TIME_EXTENTS */
 750        return buffer->clock() << DEBUG_SHIFT;
 751}
 752
 753u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
 754{
 755        u64 time;
 756
 757        preempt_disable_notrace();
 758        time = rb_time_stamp(buffer);
 759        preempt_enable_notrace();
 760
 761        return time;
 762}
 763EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 764
 765void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
 766                                      int cpu, u64 *ts)
 767{
 768        /* Just stupid testing the normalize function and deltas */
 769        *ts >>= DEBUG_SHIFT;
 770}
 771EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 772
 773/*
 774 * Making the ring buffer lockless makes things tricky.
 775 * Although writes only happen on the CPU that they are on,
 776 * and they only need to worry about interrupts. Reads can
 777 * happen on any CPU.
 778 *
 779 * The reader page is always off the ring buffer, but when the
 780 * reader finishes with a page, it needs to swap its page with
 781 * a new one from the buffer. The reader needs to take from
 782 * the head (writes go to the tail). But if a writer is in overwrite
 783 * mode and wraps, it must push the head page forward.
 784 *
 785 * Here lies the problem.
 786 *
 787 * The reader must be careful to replace only the head page, and
 788 * not another one. As described at the top of the file in the
 789 * ASCII art, the reader sets its old page to point to the next
 790 * page after head. It then sets the page after head to point to
 791 * the old reader page. But if the writer moves the head page
 792 * during this operation, the reader could end up with the tail.
 793 *
 794 * We use cmpxchg to help prevent this race. We also do something
 795 * special with the page before head. We set the LSB to 1.
 796 *
 797 * When the writer must push the page forward, it will clear the
 798 * bit that points to the head page, move the head, and then set
 799 * the bit that points to the new head page.
 800 *
 801 * We also don't want an interrupt coming in and moving the head
 802 * page on another writer. Thus we use the second LSB to catch
 803 * that too. Thus:
 804 *
 805 * head->list->prev->next        bit 1          bit 0
 806 *                              -------        -------
 807 * Normal page                     0              0
 808 * Points to head page             0              1
 809 * New head page                   1              0
 810 *
 811 * Note we can not trust the prev pointer of the head page, because:
 812 *
 813 * +----+       +-----+        +-----+
 814 * |    |------>|  T  |---X--->|  N  |
 815 * |    |<------|     |        |     |
 816 * +----+       +-----+        +-----+
 817 *   ^                           ^ |
 818 *   |          +-----+          | |
 819 *   +----------|  R  |----------+ |
 820 *              |     |<-----------+
 821 *              +-----+
 822 *
 823 * Key:  ---X-->  HEAD flag set in pointer
 824 *         T      Tail page
 825 *         R      Reader page
 826 *         N      Next page
 827 *
 828 * (see __rb_reserve_next() to see where this happens)
 829 *
 830 *  What the above shows is that the reader just swapped out
 831 *  the reader page with a page in the buffer, but before it
 832 *  could make the new header point back to the new page added
 833 *  it was preempted by a writer. The writer moved forward onto
 834 *  the new page added by the reader and is about to move forward
 835 *  again.
 836 *
 837 *  You can see, it is legitimate for the previous pointer of
 838 *  the head (or any page) not to point back to itself. But only
 839 *  temporarily.
 840 */
 841
 842#define RB_PAGE_NORMAL          0UL
 843#define RB_PAGE_HEAD            1UL
 844#define RB_PAGE_UPDATE          2UL
 845
 846
 847#define RB_FLAG_MASK            3UL
 848
 849/* PAGE_MOVED is not part of the mask */
 850#define RB_PAGE_MOVED           4UL
 851
 852/*
 853 * rb_list_head - remove any bit
 854 */
 855static struct list_head *rb_list_head(struct list_head *list)
 856{
 857        unsigned long val = (unsigned long)list;
 858
 859        return (struct list_head *)(val & ~RB_FLAG_MASK);
 860}
 861
 862/*
 863 * rb_is_head_page - test if the given page is the head page
 864 *
 865 * Because the reader may move the head_page pointer, we can
 866 * not trust what the head page is (it may be pointing to
 867 * the reader page). But if the next page is a header page,
 868 * its flags will be non zero.
 869 */
 870static inline int
 871rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 872                struct buffer_page *page, struct list_head *list)
 873{
 874        unsigned long val;
 875
 876        val = (unsigned long)list->next;
 877
 878        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 879                return RB_PAGE_MOVED;
 880
 881        return val & RB_FLAG_MASK;
 882}
 883
 884/*
 885 * rb_is_reader_page
 886 *
 887 * The unique thing about the reader page, is that, if the
 888 * writer is ever on it, the previous pointer never points
 889 * back to the reader page.
 890 */
 891static bool rb_is_reader_page(struct buffer_page *page)
 892{
 893        struct list_head *list = page->list.prev;
 894
 895        return rb_list_head(list->next) != &page->list;
 896}
 897
 898/*
 899 * rb_set_list_to_head - set a list_head to be pointing to head.
 900 */
 901static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 902                                struct list_head *list)
 903{
 904        unsigned long *ptr;
 905
 906        ptr = (unsigned long *)&list->next;
 907        *ptr |= RB_PAGE_HEAD;
 908        *ptr &= ~RB_PAGE_UPDATE;
 909}
 910
 911/*
 912 * rb_head_page_activate - sets up head page
 913 */
 914static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 915{
 916        struct buffer_page *head;
 917
 918        head = cpu_buffer->head_page;
 919        if (!head)
 920                return;
 921
 922        /*
 923         * Set the previous list pointer to have the HEAD flag.
 924         */
 925        rb_set_list_to_head(cpu_buffer, head->list.prev);
 926}
 927
 928static void rb_list_head_clear(struct list_head *list)
 929{
 930        unsigned long *ptr = (unsigned long *)&list->next;
 931
 932        *ptr &= ~RB_FLAG_MASK;
 933}
 934
 935/*
 936 * rb_head_page_deactivate - clears head page ptr (for free list)
 937 */
 938static void
 939rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 940{
 941        struct list_head *hd;
 942
 943        /* Go through the whole list and clear any pointers found. */
 944        rb_list_head_clear(cpu_buffer->pages);
 945
 946        list_for_each(hd, cpu_buffer->pages)
 947                rb_list_head_clear(hd);
 948}
 949
 950static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 951                            struct buffer_page *head,
 952                            struct buffer_page *prev,
 953                            int old_flag, int new_flag)
 954{
 955        struct list_head *list;
 956        unsigned long val = (unsigned long)&head->list;
 957        unsigned long ret;
 958
 959        list = &prev->list;
 960
 961        val &= ~RB_FLAG_MASK;
 962
 963        ret = cmpxchg((unsigned long *)&list->next,
 964                      val | old_flag, val | new_flag);
 965
 966        /* check if the reader took the page */
 967        if ((ret & ~RB_FLAG_MASK) != val)
 968                return RB_PAGE_MOVED;
 969
 970        return ret & RB_FLAG_MASK;
 971}
 972
 973static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 974                                   struct buffer_page *head,
 975                                   struct buffer_page *prev,
 976                                   int old_flag)
 977{
 978        return rb_head_page_set(cpu_buffer, head, prev,
 979                                old_flag, RB_PAGE_UPDATE);
 980}
 981
 982static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 983                                 struct buffer_page *head,
 984                                 struct buffer_page *prev,
 985                                 int old_flag)
 986{
 987        return rb_head_page_set(cpu_buffer, head, prev,
 988                                old_flag, RB_PAGE_HEAD);
 989}
 990
 991static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 992                                   struct buffer_page *head,
 993                                   struct buffer_page *prev,
 994                                   int old_flag)
 995{
 996        return rb_head_page_set(cpu_buffer, head, prev,
 997                                old_flag, RB_PAGE_NORMAL);
 998}
 999
1000static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1001                               struct buffer_page **bpage)
1002{
1003        struct list_head *p = rb_list_head((*bpage)->list.next);
1004
1005        *bpage = list_entry(p, struct buffer_page, list);
1006}
1007
1008static struct buffer_page *
1009rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1010{
1011        struct buffer_page *head;
1012        struct buffer_page *page;
1013        struct list_head *list;
1014        int i;
1015
1016        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1017                return NULL;
1018
1019        /* sanity check */
1020        list = cpu_buffer->pages;
1021        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1022                return NULL;
1023
1024        page = head = cpu_buffer->head_page;
1025        /*
1026         * It is possible that the writer moves the header behind
1027         * where we started, and we miss in one loop.
1028         * A second loop should grab the header, but we'll do
1029         * three loops just because I'm paranoid.
1030         */
1031        for (i = 0; i < 3; i++) {
1032                do {
1033                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1034                                cpu_buffer->head_page = page;
1035                                return page;
1036                        }
1037                        rb_inc_page(cpu_buffer, &page);
1038                } while (page != head);
1039        }
1040
1041        RB_WARN_ON(cpu_buffer, 1);
1042
1043        return NULL;
1044}
1045
1046static int rb_head_page_replace(struct buffer_page *old,
1047                                struct buffer_page *new)
1048{
1049        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1050        unsigned long val;
1051        unsigned long ret;
1052
1053        val = *ptr & ~RB_FLAG_MASK;
1054        val |= RB_PAGE_HEAD;
1055
1056        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1057
1058        return ret == val;
1059}
1060
1061/*
1062 * rb_tail_page_update - move the tail page forward
1063 */
1064static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1065                               struct buffer_page *tail_page,
1066                               struct buffer_page *next_page)
1067{
1068        unsigned long old_entries;
1069        unsigned long old_write;
1070
1071        /*
1072         * The tail page now needs to be moved forward.
1073         *
1074         * We need to reset the tail page, but without messing
1075         * with possible erasing of data brought in by interrupts
1076         * that have moved the tail page and are currently on it.
1077         *
1078         * We add a counter to the write field to denote this.
1079         */
1080        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1081        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1082
1083        local_inc(&cpu_buffer->pages_touched);
1084        /*
1085         * Just make sure we have seen our old_write and synchronize
1086         * with any interrupts that come in.
1087         */
1088        barrier();
1089
1090        /*
1091         * If the tail page is still the same as what we think
1092         * it is, then it is up to us to update the tail
1093         * pointer.
1094         */
1095        if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1096                /* Zero the write counter */
1097                unsigned long val = old_write & ~RB_WRITE_MASK;
1098                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1099
1100                /*
1101                 * This will only succeed if an interrupt did
1102                 * not come in and change it. In which case, we
1103                 * do not want to modify it.
1104                 *
1105                 * We add (void) to let the compiler know that we do not care
1106                 * about the return value of these functions. We use the
1107                 * cmpxchg to only update if an interrupt did not already
1108                 * do it for us. If the cmpxchg fails, we don't care.
1109                 */
1110                (void)local_cmpxchg(&next_page->write, old_write, val);
1111                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1112
1113                /*
1114                 * No need to worry about races with clearing out the commit.
1115                 * it only can increment when a commit takes place. But that
1116                 * only happens in the outer most nested commit.
1117                 */
1118                local_set(&next_page->page->commit, 0);
1119
1120                /* Again, either we update tail_page or an interrupt does */
1121                (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1122        }
1123}
1124
1125static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1126                          struct buffer_page *bpage)
1127{
1128        unsigned long val = (unsigned long)bpage;
1129
1130        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1131                return 1;
1132
1133        return 0;
1134}
1135
1136/**
1137 * rb_check_list - make sure a pointer to a list has the last bits zero
1138 */
1139static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1140                         struct list_head *list)
1141{
1142        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1143                return 1;
1144        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1145                return 1;
1146        return 0;
1147}
1148
1149/**
1150 * rb_check_pages - integrity check of buffer pages
1151 * @cpu_buffer: CPU buffer with pages to test
1152 *
1153 * As a safety measure we check to make sure the data pages have not
1154 * been corrupted.
1155 */
1156static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1157{
1158        struct list_head *head = cpu_buffer->pages;
1159        struct buffer_page *bpage, *tmp;
1160
1161        /* Reset the head page if it exists */
1162        if (cpu_buffer->head_page)
1163                rb_set_head_page(cpu_buffer);
1164
1165        rb_head_page_deactivate(cpu_buffer);
1166
1167        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1168                return -1;
1169        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1170                return -1;
1171
1172        if (rb_check_list(cpu_buffer, head))
1173                return -1;
1174
1175        list_for_each_entry_safe(bpage, tmp, head, list) {
1176                if (RB_WARN_ON(cpu_buffer,
1177                               bpage->list.next->prev != &bpage->list))
1178                        return -1;
1179                if (RB_WARN_ON(cpu_buffer,
1180                               bpage->list.prev->next != &bpage->list))
1181                        return -1;
1182                if (rb_check_list(cpu_buffer, &bpage->list))
1183                        return -1;
1184        }
1185
1186        rb_head_page_activate(cpu_buffer);
1187
1188        return 0;
1189}
1190
1191static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1192{
1193        struct buffer_page *bpage, *tmp;
1194        bool user_thread = current->mm != NULL;
1195        gfp_t mflags;
1196        long i;
1197
1198        /*
1199         * Check if the available memory is there first.
1200         * Note, si_mem_available() only gives us a rough estimate of available
1201         * memory. It may not be accurate. But we don't care, we just want
1202         * to prevent doing any allocation when it is obvious that it is
1203         * not going to succeed.
1204         */
1205        i = si_mem_available();
1206        if (i < nr_pages)
1207                return -ENOMEM;
1208
1209        /*
1210         * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1211         * gracefully without invoking oom-killer and the system is not
1212         * destabilized.
1213         */
1214        mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1215
1216        /*
1217         * If a user thread allocates too much, and si_mem_available()
1218         * reports there's enough memory, even though there is not.
1219         * Make sure the OOM killer kills this thread. This can happen
1220         * even with RETRY_MAYFAIL because another task may be doing
1221         * an allocation after this task has taken all memory.
1222         * This is the task the OOM killer needs to take out during this
1223         * loop, even if it was triggered by an allocation somewhere else.
1224         */
1225        if (user_thread)
1226                set_current_oom_origin();
1227        for (i = 0; i < nr_pages; i++) {
1228                struct page *page;
1229
1230                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1231                                    mflags, cpu_to_node(cpu));
1232                if (!bpage)
1233                        goto free_pages;
1234
1235                list_add(&bpage->list, pages);
1236
1237                page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1238                if (!page)
1239                        goto free_pages;
1240                bpage->page = page_address(page);
1241                rb_init_page(bpage->page);
1242
1243                if (user_thread && fatal_signal_pending(current))
1244                        goto free_pages;
1245        }
1246        if (user_thread)
1247                clear_current_oom_origin();
1248
1249        return 0;
1250
1251free_pages:
1252        list_for_each_entry_safe(bpage, tmp, pages, list) {
1253                list_del_init(&bpage->list);
1254                free_buffer_page(bpage);
1255        }
1256        if (user_thread)
1257                clear_current_oom_origin();
1258
1259        return -ENOMEM;
1260}
1261
1262static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1263                             unsigned long nr_pages)
1264{
1265        LIST_HEAD(pages);
1266
1267        WARN_ON(!nr_pages);
1268
1269        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1270                return -ENOMEM;
1271
1272        /*
1273         * The ring buffer page list is a circular list that does not
1274         * start and end with a list head. All page list items point to
1275         * other pages.
1276         */
1277        cpu_buffer->pages = pages.next;
1278        list_del(&pages);
1279
1280        cpu_buffer->nr_pages = nr_pages;
1281
1282        rb_check_pages(cpu_buffer);
1283
1284        return 0;
1285}
1286
1287static struct ring_buffer_per_cpu *
1288rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1289{
1290        struct ring_buffer_per_cpu *cpu_buffer;
1291        struct buffer_page *bpage;
1292        struct page *page;
1293        int ret;
1294
1295        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1296                                  GFP_KERNEL, cpu_to_node(cpu));
1297        if (!cpu_buffer)
1298                return NULL;
1299
1300        cpu_buffer->cpu = cpu;
1301        cpu_buffer->buffer = buffer;
1302        raw_spin_lock_init(&cpu_buffer->reader_lock);
1303        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1304        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1305        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1306        init_completion(&cpu_buffer->update_done);
1307        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1308        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1309        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1310
1311        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1312                            GFP_KERNEL, cpu_to_node(cpu));
1313        if (!bpage)
1314                goto fail_free_buffer;
1315
1316        rb_check_bpage(cpu_buffer, bpage);
1317
1318        cpu_buffer->reader_page = bpage;
1319        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1320        if (!page)
1321                goto fail_free_reader;
1322        bpage->page = page_address(page);
1323        rb_init_page(bpage->page);
1324
1325        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1326        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1327
1328        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1329        if (ret < 0)
1330                goto fail_free_reader;
1331
1332        cpu_buffer->head_page
1333                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1334        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1335
1336        rb_head_page_activate(cpu_buffer);
1337
1338        return cpu_buffer;
1339
1340 fail_free_reader:
1341        free_buffer_page(cpu_buffer->reader_page);
1342
1343 fail_free_buffer:
1344        kfree(cpu_buffer);
1345        return NULL;
1346}
1347
1348static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1349{
1350        struct list_head *head = cpu_buffer->pages;
1351        struct buffer_page *bpage, *tmp;
1352
1353        free_buffer_page(cpu_buffer->reader_page);
1354
1355        rb_head_page_deactivate(cpu_buffer);
1356
1357        if (head) {
1358                list_for_each_entry_safe(bpage, tmp, head, list) {
1359                        list_del_init(&bpage->list);
1360                        free_buffer_page(bpage);
1361                }
1362                bpage = list_entry(head, struct buffer_page, list);
1363                free_buffer_page(bpage);
1364        }
1365
1366        kfree(cpu_buffer);
1367}
1368
1369/**
1370 * __ring_buffer_alloc - allocate a new ring_buffer
1371 * @size: the size in bytes per cpu that is needed.
1372 * @flags: attributes to set for the ring buffer.
1373 * @key: ring buffer reader_lock_key.
1374 *
1375 * Currently the only flag that is available is the RB_FL_OVERWRITE
1376 * flag. This flag means that the buffer will overwrite old data
1377 * when the buffer wraps. If this flag is not set, the buffer will
1378 * drop data when the tail hits the head.
1379 */
1380struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1381                                        struct lock_class_key *key)
1382{
1383        struct trace_buffer *buffer;
1384        long nr_pages;
1385        int bsize;
1386        int cpu;
1387        int ret;
1388
1389        /* keep it in its own cache line */
1390        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1391                         GFP_KERNEL);
1392        if (!buffer)
1393                return NULL;
1394
1395        if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1396                goto fail_free_buffer;
1397
1398        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1399        buffer->flags = flags;
1400        buffer->clock = trace_clock_local;
1401        buffer->reader_lock_key = key;
1402
1403        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1404        init_waitqueue_head(&buffer->irq_work.waiters);
1405
1406        /* need at least two pages */
1407        if (nr_pages < 2)
1408                nr_pages = 2;
1409
1410        buffer->cpus = nr_cpu_ids;
1411
1412        bsize = sizeof(void *) * nr_cpu_ids;
1413        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1414                                  GFP_KERNEL);
1415        if (!buffer->buffers)
1416                goto fail_free_cpumask;
1417
1418        cpu = raw_smp_processor_id();
1419        cpumask_set_cpu(cpu, buffer->cpumask);
1420        buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1421        if (!buffer->buffers[cpu])
1422                goto fail_free_buffers;
1423
1424        ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1425        if (ret < 0)
1426                goto fail_free_buffers;
1427
1428        mutex_init(&buffer->mutex);
1429
1430        return buffer;
1431
1432 fail_free_buffers:
1433        for_each_buffer_cpu(buffer, cpu) {
1434                if (buffer->buffers[cpu])
1435                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1436        }
1437        kfree(buffer->buffers);
1438
1439 fail_free_cpumask:
1440        free_cpumask_var(buffer->cpumask);
1441
1442 fail_free_buffer:
1443        kfree(buffer);
1444        return NULL;
1445}
1446EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1447
1448/**
1449 * ring_buffer_free - free a ring buffer.
1450 * @buffer: the buffer to free.
1451 */
1452void
1453ring_buffer_free(struct trace_buffer *buffer)
1454{
1455        int cpu;
1456
1457        cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1458
1459        for_each_buffer_cpu(buffer, cpu)
1460                rb_free_cpu_buffer(buffer->buffers[cpu]);
1461
1462        kfree(buffer->buffers);
1463        free_cpumask_var(buffer->cpumask);
1464
1465        kfree(buffer);
1466}
1467EXPORT_SYMBOL_GPL(ring_buffer_free);
1468
1469void ring_buffer_set_clock(struct trace_buffer *buffer,
1470                           u64 (*clock)(void))
1471{
1472        buffer->clock = clock;
1473}
1474
1475void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1476{
1477        buffer->time_stamp_abs = abs;
1478}
1479
1480bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1481{
1482        return buffer->time_stamp_abs;
1483}
1484
1485static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1486
1487static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1488{
1489        return local_read(&bpage->entries) & RB_WRITE_MASK;
1490}
1491
1492static inline unsigned long rb_page_write(struct buffer_page *bpage)
1493{
1494        return local_read(&bpage->write) & RB_WRITE_MASK;
1495}
1496
1497static int
1498rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1499{
1500        struct list_head *tail_page, *to_remove, *next_page;
1501        struct buffer_page *to_remove_page, *tmp_iter_page;
1502        struct buffer_page *last_page, *first_page;
1503        unsigned long nr_removed;
1504        unsigned long head_bit;
1505        int page_entries;
1506
1507        head_bit = 0;
1508
1509        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510        atomic_inc(&cpu_buffer->record_disabled);
1511        /*
1512         * We don't race with the readers since we have acquired the reader
1513         * lock. We also don't race with writers after disabling recording.
1514         * This makes it easy to figure out the first and the last page to be
1515         * removed from the list. We unlink all the pages in between including
1516         * the first and last pages. This is done in a busy loop so that we
1517         * lose the least number of traces.
1518         * The pages are freed after we restart recording and unlock readers.
1519         */
1520        tail_page = &cpu_buffer->tail_page->list;
1521
1522        /*
1523         * tail page might be on reader page, we remove the next page
1524         * from the ring buffer
1525         */
1526        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1527                tail_page = rb_list_head(tail_page->next);
1528        to_remove = tail_page;
1529
1530        /* start of pages to remove */
1531        first_page = list_entry(rb_list_head(to_remove->next),
1532                                struct buffer_page, list);
1533
1534        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1535                to_remove = rb_list_head(to_remove)->next;
1536                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1537        }
1538
1539        next_page = rb_list_head(to_remove)->next;
1540
1541        /*
1542         * Now we remove all pages between tail_page and next_page.
1543         * Make sure that we have head_bit value preserved for the
1544         * next page
1545         */
1546        tail_page->next = (struct list_head *)((unsigned long)next_page |
1547                                                head_bit);
1548        next_page = rb_list_head(next_page);
1549        next_page->prev = tail_page;
1550
1551        /* make sure pages points to a valid page in the ring buffer */
1552        cpu_buffer->pages = next_page;
1553
1554        /* update head page */
1555        if (head_bit)
1556                cpu_buffer->head_page = list_entry(next_page,
1557                                                struct buffer_page, list);
1558
1559        /*
1560         * change read pointer to make sure any read iterators reset
1561         * themselves
1562         */
1563        cpu_buffer->read = 0;
1564
1565        /* pages are removed, resume tracing and then free the pages */
1566        atomic_dec(&cpu_buffer->record_disabled);
1567        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1568
1569        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1570
1571        /* last buffer page to remove */
1572        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1573                                list);
1574        tmp_iter_page = first_page;
1575
1576        do {
1577                cond_resched();
1578
1579                to_remove_page = tmp_iter_page;
1580                rb_inc_page(cpu_buffer, &tmp_iter_page);
1581
1582                /* update the counters */
1583                page_entries = rb_page_entries(to_remove_page);
1584                if (page_entries) {
1585                        /*
1586                         * If something was added to this page, it was full
1587                         * since it is not the tail page. So we deduct the
1588                         * bytes consumed in ring buffer from here.
1589                         * Increment overrun to account for the lost events.
1590                         */
1591                        local_add(page_entries, &cpu_buffer->overrun);
1592                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1593                }
1594
1595                /*
1596                 * We have already removed references to this list item, just
1597                 * free up the buffer_page and its page
1598                 */
1599                free_buffer_page(to_remove_page);
1600                nr_removed--;
1601
1602        } while (to_remove_page != last_page);
1603
1604        RB_WARN_ON(cpu_buffer, nr_removed);
1605
1606        return nr_removed == 0;
1607}
1608
1609static int
1610rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1611{
1612        struct list_head *pages = &cpu_buffer->new_pages;
1613        int retries, success;
1614
1615        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1616        /*
1617         * We are holding the reader lock, so the reader page won't be swapped
1618         * in the ring buffer. Now we are racing with the writer trying to
1619         * move head page and the tail page.
1620         * We are going to adapt the reader page update process where:
1621         * 1. We first splice the start and end of list of new pages between
1622         *    the head page and its previous page.
1623         * 2. We cmpxchg the prev_page->next to point from head page to the
1624         *    start of new pages list.
1625         * 3. Finally, we update the head->prev to the end of new list.
1626         *
1627         * We will try this process 10 times, to make sure that we don't keep
1628         * spinning.
1629         */
1630        retries = 10;
1631        success = 0;
1632        while (retries--) {
1633                struct list_head *head_page, *prev_page, *r;
1634                struct list_head *last_page, *first_page;
1635                struct list_head *head_page_with_bit;
1636
1637                head_page = &rb_set_head_page(cpu_buffer)->list;
1638                if (!head_page)
1639                        break;
1640                prev_page = head_page->prev;
1641
1642                first_page = pages->next;
1643                last_page  = pages->prev;
1644
1645                head_page_with_bit = (struct list_head *)
1646                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1647
1648                last_page->next = head_page_with_bit;
1649                first_page->prev = prev_page;
1650
1651                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1652
1653                if (r == head_page_with_bit) {
1654                        /*
1655                         * yay, we replaced the page pointer to our new list,
1656                         * now, we just have to update to head page's prev
1657                         * pointer to point to end of list
1658                         */
1659                        head_page->prev = last_page;
1660                        success = 1;
1661                        break;
1662                }
1663        }
1664
1665        if (success)
1666                INIT_LIST_HEAD(pages);
1667        /*
1668         * If we weren't successful in adding in new pages, warn and stop
1669         * tracing
1670         */
1671        RB_WARN_ON(cpu_buffer, !success);
1672        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1673
1674        /* free pages if they weren't inserted */
1675        if (!success) {
1676                struct buffer_page *bpage, *tmp;
1677                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1678                                         list) {
1679                        list_del_init(&bpage->list);
1680                        free_buffer_page(bpage);
1681                }
1682        }
1683        return success;
1684}
1685
1686static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1687{
1688        int success;
1689
1690        if (cpu_buffer->nr_pages_to_update > 0)
1691                success = rb_insert_pages(cpu_buffer);
1692        else
1693                success = rb_remove_pages(cpu_buffer,
1694                                        -cpu_buffer->nr_pages_to_update);
1695
1696        if (success)
1697                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1698}
1699
1700static void update_pages_handler(struct work_struct *work)
1701{
1702        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1703                        struct ring_buffer_per_cpu, update_pages_work);
1704        rb_update_pages(cpu_buffer);
1705        complete(&cpu_buffer->update_done);
1706}
1707
1708/**
1709 * ring_buffer_resize - resize the ring buffer
1710 * @buffer: the buffer to resize.
1711 * @size: the new size.
1712 * @cpu_id: the cpu buffer to resize
1713 *
1714 * Minimum size is 2 * BUF_PAGE_SIZE.
1715 *
1716 * Returns 0 on success and < 0 on failure.
1717 */
1718int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1719                        int cpu_id)
1720{
1721        struct ring_buffer_per_cpu *cpu_buffer;
1722        unsigned long nr_pages;
1723        int cpu, err = 0;
1724
1725        /*
1726         * Always succeed at resizing a non-existent buffer:
1727         */
1728        if (!buffer)
1729                return size;
1730
1731        /* Make sure the requested buffer exists */
1732        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1733            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1734                return size;
1735
1736        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1737
1738        /* we need a minimum of two pages */
1739        if (nr_pages < 2)
1740                nr_pages = 2;
1741
1742        size = nr_pages * BUF_PAGE_SIZE;
1743
1744        /* prevent another thread from changing buffer sizes */
1745        mutex_lock(&buffer->mutex);
1746
1747
1748        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1749                /*
1750                 * Don't succeed if resizing is disabled, as a reader might be
1751                 * manipulating the ring buffer and is expecting a sane state while
1752                 * this is true.
1753                 */
1754                for_each_buffer_cpu(buffer, cpu) {
1755                        cpu_buffer = buffer->buffers[cpu];
1756                        if (atomic_read(&cpu_buffer->resize_disabled)) {
1757                                err = -EBUSY;
1758                                goto out_err_unlock;
1759                        }
1760                }
1761
1762                /* calculate the pages to update */
1763                for_each_buffer_cpu(buffer, cpu) {
1764                        cpu_buffer = buffer->buffers[cpu];
1765
1766                        cpu_buffer->nr_pages_to_update = nr_pages -
1767                                                        cpu_buffer->nr_pages;
1768                        /*
1769                         * nothing more to do for removing pages or no update
1770                         */
1771                        if (cpu_buffer->nr_pages_to_update <= 0)
1772                                continue;
1773                        /*
1774                         * to add pages, make sure all new pages can be
1775                         * allocated without receiving ENOMEM
1776                         */
1777                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1778                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1779                                                &cpu_buffer->new_pages, cpu)) {
1780                                /* not enough memory for new pages */
1781                                err = -ENOMEM;
1782                                goto out_err;
1783                        }
1784                }
1785
1786                get_online_cpus();
1787                /*
1788                 * Fire off all the required work handlers
1789                 * We can't schedule on offline CPUs, but it's not necessary
1790                 * since we can change their buffer sizes without any race.
1791                 */
1792                for_each_buffer_cpu(buffer, cpu) {
1793                        cpu_buffer = buffer->buffers[cpu];
1794                        if (!cpu_buffer->nr_pages_to_update)
1795                                continue;
1796
1797                        /* Can't run something on an offline CPU. */
1798                        if (!cpu_online(cpu)) {
1799                                rb_update_pages(cpu_buffer);
1800                                cpu_buffer->nr_pages_to_update = 0;
1801                        } else {
1802                                schedule_work_on(cpu,
1803                                                &cpu_buffer->update_pages_work);
1804                        }
1805                }
1806
1807                /* wait for all the updates to complete */
1808                for_each_buffer_cpu(buffer, cpu) {
1809                        cpu_buffer = buffer->buffers[cpu];
1810                        if (!cpu_buffer->nr_pages_to_update)
1811                                continue;
1812
1813                        if (cpu_online(cpu))
1814                                wait_for_completion(&cpu_buffer->update_done);
1815                        cpu_buffer->nr_pages_to_update = 0;
1816                }
1817
1818                put_online_cpus();
1819        } else {
1820                /* Make sure this CPU has been initialized */
1821                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1822                        goto out;
1823
1824                cpu_buffer = buffer->buffers[cpu_id];
1825
1826                if (nr_pages == cpu_buffer->nr_pages)
1827                        goto out;
1828
1829                /*
1830                 * Don't succeed if resizing is disabled, as a reader might be
1831                 * manipulating the ring buffer and is expecting a sane state while
1832                 * this is true.
1833                 */
1834                if (atomic_read(&cpu_buffer->resize_disabled)) {
1835                        err = -EBUSY;
1836                        goto out_err_unlock;
1837                }
1838
1839                cpu_buffer->nr_pages_to_update = nr_pages -
1840                                                cpu_buffer->nr_pages;
1841
1842                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1843                if (cpu_buffer->nr_pages_to_update > 0 &&
1844                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1845                                            &cpu_buffer->new_pages, cpu_id)) {
1846                        err = -ENOMEM;
1847                        goto out_err;
1848                }
1849
1850                get_online_cpus();
1851
1852                /* Can't run something on an offline CPU. */
1853                if (!cpu_online(cpu_id))
1854                        rb_update_pages(cpu_buffer);
1855                else {
1856                        schedule_work_on(cpu_id,
1857                                         &cpu_buffer->update_pages_work);
1858                        wait_for_completion(&cpu_buffer->update_done);
1859                }
1860
1861                cpu_buffer->nr_pages_to_update = 0;
1862                put_online_cpus();
1863        }
1864
1865 out:
1866        /*
1867         * The ring buffer resize can happen with the ring buffer
1868         * enabled, so that the update disturbs the tracing as little
1869         * as possible. But if the buffer is disabled, we do not need
1870         * to worry about that, and we can take the time to verify
1871         * that the buffer is not corrupt.
1872         */
1873        if (atomic_read(&buffer->record_disabled)) {
1874                atomic_inc(&buffer->record_disabled);
1875                /*
1876                 * Even though the buffer was disabled, we must make sure
1877                 * that it is truly disabled before calling rb_check_pages.
1878                 * There could have been a race between checking
1879                 * record_disable and incrementing it.
1880                 */
1881                synchronize_rcu();
1882                for_each_buffer_cpu(buffer, cpu) {
1883                        cpu_buffer = buffer->buffers[cpu];
1884                        rb_check_pages(cpu_buffer);
1885                }
1886                atomic_dec(&buffer->record_disabled);
1887        }
1888
1889        mutex_unlock(&buffer->mutex);
1890        return size;
1891
1892 out_err:
1893        for_each_buffer_cpu(buffer, cpu) {
1894                struct buffer_page *bpage, *tmp;
1895
1896                cpu_buffer = buffer->buffers[cpu];
1897                cpu_buffer->nr_pages_to_update = 0;
1898
1899                if (list_empty(&cpu_buffer->new_pages))
1900                        continue;
1901
1902                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1903                                        list) {
1904                        list_del_init(&bpage->list);
1905                        free_buffer_page(bpage);
1906                }
1907        }
1908 out_err_unlock:
1909        mutex_unlock(&buffer->mutex);
1910        return err;
1911}
1912EXPORT_SYMBOL_GPL(ring_buffer_resize);
1913
1914void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
1915{
1916        mutex_lock(&buffer->mutex);
1917        if (val)
1918                buffer->flags |= RB_FL_OVERWRITE;
1919        else
1920                buffer->flags &= ~RB_FL_OVERWRITE;
1921        mutex_unlock(&buffer->mutex);
1922}
1923EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1924
1925static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1926{
1927        return bpage->page->data + index;
1928}
1929
1930static __always_inline struct ring_buffer_event *
1931rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1932{
1933        return __rb_page_index(cpu_buffer->reader_page,
1934                               cpu_buffer->reader_page->read);
1935}
1936
1937static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1938{
1939        return local_read(&bpage->page->commit);
1940}
1941
1942static struct ring_buffer_event *
1943rb_iter_head_event(struct ring_buffer_iter *iter)
1944{
1945        struct ring_buffer_event *event;
1946        struct buffer_page *iter_head_page = iter->head_page;
1947        unsigned long commit;
1948        unsigned length;
1949
1950        if (iter->head != iter->next_event)
1951                return iter->event;
1952
1953        /*
1954         * When the writer goes across pages, it issues a cmpxchg which
1955         * is a mb(), which will synchronize with the rmb here.
1956         * (see rb_tail_page_update() and __rb_reserve_next())
1957         */
1958        commit = rb_page_commit(iter_head_page);
1959        smp_rmb();
1960        event = __rb_page_index(iter_head_page, iter->head);
1961        length = rb_event_length(event);
1962
1963        /*
1964         * READ_ONCE() doesn't work on functions and we don't want the
1965         * compiler doing any crazy optimizations with length.
1966         */
1967        barrier();
1968
1969        if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
1970                /* Writer corrupted the read? */
1971                goto reset;
1972
1973        memcpy(iter->event, event, length);
1974        /*
1975         * If the page stamp is still the same after this rmb() then the
1976         * event was safely copied without the writer entering the page.
1977         */
1978        smp_rmb();
1979
1980        /* Make sure the page didn't change since we read this */
1981        if (iter->page_stamp != iter_head_page->page->time_stamp ||
1982            commit > rb_page_commit(iter_head_page))
1983                goto reset;
1984
1985        iter->next_event = iter->head + length;
1986        return iter->event;
1987 reset:
1988        /* Reset to the beginning */
1989        iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
1990        iter->head = 0;
1991        iter->next_event = 0;
1992        iter->missed_events = 1;
1993        return NULL;
1994}
1995
1996/* Size is determined by what has been committed */
1997static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1998{
1999        return rb_page_commit(bpage);
2000}
2001
2002static __always_inline unsigned
2003rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2004{
2005        return rb_page_commit(cpu_buffer->commit_page);
2006}
2007
2008static __always_inline unsigned
2009rb_event_index(struct ring_buffer_event *event)
2010{
2011        unsigned long addr = (unsigned long)event;
2012
2013        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2014}
2015
2016static void rb_inc_iter(struct ring_buffer_iter *iter)
2017{
2018        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2019
2020        /*
2021         * The iterator could be on the reader page (it starts there).
2022         * But the head could have moved, since the reader was
2023         * found. Check for this case and assign the iterator
2024         * to the head page instead of next.
2025         */
2026        if (iter->head_page == cpu_buffer->reader_page)
2027                iter->head_page = rb_set_head_page(cpu_buffer);
2028        else
2029                rb_inc_page(cpu_buffer, &iter->head_page);
2030
2031        iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2032        iter->head = 0;
2033        iter->next_event = 0;
2034}
2035
2036/*
2037 * rb_handle_head_page - writer hit the head page
2038 *
2039 * Returns: +1 to retry page
2040 *           0 to continue
2041 *          -1 on error
2042 */
2043static int
2044rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2045                    struct buffer_page *tail_page,
2046                    struct buffer_page *next_page)
2047{
2048        struct buffer_page *new_head;
2049        int entries;
2050        int type;
2051        int ret;
2052
2053        entries = rb_page_entries(next_page);
2054
2055        /*
2056         * The hard part is here. We need to move the head
2057         * forward, and protect against both readers on
2058         * other CPUs and writers coming in via interrupts.
2059         */
2060        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2061                                       RB_PAGE_HEAD);
2062
2063        /*
2064         * type can be one of four:
2065         *  NORMAL - an interrupt already moved it for us
2066         *  HEAD   - we are the first to get here.
2067         *  UPDATE - we are the interrupt interrupting
2068         *           a current move.
2069         *  MOVED  - a reader on another CPU moved the next
2070         *           pointer to its reader page. Give up
2071         *           and try again.
2072         */
2073
2074        switch (type) {
2075        case RB_PAGE_HEAD:
2076                /*
2077                 * We changed the head to UPDATE, thus
2078                 * it is our responsibility to update
2079                 * the counters.
2080                 */
2081                local_add(entries, &cpu_buffer->overrun);
2082                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2083
2084                /*
2085                 * The entries will be zeroed out when we move the
2086                 * tail page.
2087                 */
2088
2089                /* still more to do */
2090                break;
2091
2092        case RB_PAGE_UPDATE:
2093                /*
2094                 * This is an interrupt that interrupt the
2095                 * previous update. Still more to do.
2096                 */
2097                break;
2098        case RB_PAGE_NORMAL:
2099                /*
2100                 * An interrupt came in before the update
2101                 * and processed this for us.
2102                 * Nothing left to do.
2103                 */
2104                return 1;
2105        case RB_PAGE_MOVED:
2106                /*
2107                 * The reader is on another CPU and just did
2108                 * a swap with our next_page.
2109                 * Try again.
2110                 */
2111                return 1;
2112        default:
2113                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2114                return -1;
2115        }
2116
2117        /*
2118         * Now that we are here, the old head pointer is
2119         * set to UPDATE. This will keep the reader from
2120         * swapping the head page with the reader page.
2121         * The reader (on another CPU) will spin till
2122         * we are finished.
2123         *
2124         * We just need to protect against interrupts
2125         * doing the job. We will set the next pointer
2126         * to HEAD. After that, we set the old pointer
2127         * to NORMAL, but only if it was HEAD before.
2128         * otherwise we are an interrupt, and only
2129         * want the outer most commit to reset it.
2130         */
2131        new_head = next_page;
2132        rb_inc_page(cpu_buffer, &new_head);
2133
2134        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2135                                    RB_PAGE_NORMAL);
2136
2137        /*
2138         * Valid returns are:
2139         *  HEAD   - an interrupt came in and already set it.
2140         *  NORMAL - One of two things:
2141         *            1) We really set it.
2142         *            2) A bunch of interrupts came in and moved
2143         *               the page forward again.
2144         */
2145        switch (ret) {
2146        case RB_PAGE_HEAD:
2147        case RB_PAGE_NORMAL:
2148                /* OK */
2149                break;
2150        default:
2151                RB_WARN_ON(cpu_buffer, 1);
2152                return -1;
2153        }
2154
2155        /*
2156         * It is possible that an interrupt came in,
2157         * set the head up, then more interrupts came in
2158         * and moved it again. When we get back here,
2159         * the page would have been set to NORMAL but we
2160         * just set it back to HEAD.
2161         *
2162         * How do you detect this? Well, if that happened
2163         * the tail page would have moved.
2164         */
2165        if (ret == RB_PAGE_NORMAL) {
2166                struct buffer_page *buffer_tail_page;
2167
2168                buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2169                /*
2170                 * If the tail had moved passed next, then we need
2171                 * to reset the pointer.
2172                 */
2173                if (buffer_tail_page != tail_page &&
2174                    buffer_tail_page != next_page)
2175                        rb_head_page_set_normal(cpu_buffer, new_head,
2176                                                next_page,
2177                                                RB_PAGE_HEAD);
2178        }
2179
2180        /*
2181         * If this was the outer most commit (the one that
2182         * changed the original pointer from HEAD to UPDATE),
2183         * then it is up to us to reset it to NORMAL.
2184         */
2185        if (type == RB_PAGE_HEAD) {
2186                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2187                                              tail_page,
2188                                              RB_PAGE_UPDATE);
2189                if (RB_WARN_ON(cpu_buffer,
2190                               ret != RB_PAGE_UPDATE))
2191                        return -1;
2192        }
2193
2194        return 0;
2195}
2196
2197static inline void
2198rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199              unsigned long tail, struct rb_event_info *info)
2200{
2201        struct buffer_page *tail_page = info->tail_page;
2202        struct ring_buffer_event *event;
2203        unsigned long length = info->length;
2204
2205        /*
2206         * Only the event that crossed the page boundary
2207         * must fill the old tail_page with padding.
2208         */
2209        if (tail >= BUF_PAGE_SIZE) {
2210                /*
2211                 * If the page was filled, then we still need
2212                 * to update the real_end. Reset it to zero
2213                 * and the reader will ignore it.
2214                 */
2215                if (tail == BUF_PAGE_SIZE)
2216                        tail_page->real_end = 0;
2217
2218                local_sub(length, &tail_page->write);
2219                return;
2220        }
2221
2222        event = __rb_page_index(tail_page, tail);
2223
2224        /* account for padding bytes */
2225        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226
2227        /*
2228         * Save the original length to the meta data.
2229         * This will be used by the reader to add lost event
2230         * counter.
2231         */
2232        tail_page->real_end = tail;
2233
2234        /*
2235         * If this event is bigger than the minimum size, then
2236         * we need to be careful that we don't subtract the
2237         * write counter enough to allow another writer to slip
2238         * in on this page.
2239         * We put in a discarded commit instead, to make sure
2240         * that this space is not used again.
2241         *
2242         * If we are less than the minimum size, we don't need to
2243         * worry about it.
2244         */
2245        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246                /* No room for any events */
2247
2248                /* Mark the rest of the page with padding */
2249                rb_event_set_padding(event);
2250
2251                /* Set the write back to the previous setting */
2252                local_sub(length, &tail_page->write);
2253                return;
2254        }
2255
2256        /* Put in a discarded event */
2257        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258        event->type_len = RINGBUF_TYPE_PADDING;
2259        /* time delta must be non zero */
2260        event->time_delta = 1;
2261
2262        /* Set write to end of buffer */
2263        length = (tail + length) - BUF_PAGE_SIZE;
2264        local_sub(length, &tail_page->write);
2265}
2266
2267static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2268
2269/*
2270 * This is the slow path, force gcc not to inline it.
2271 */
2272static noinline struct ring_buffer_event *
2273rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274             unsigned long tail, struct rb_event_info *info)
2275{
2276        struct buffer_page *tail_page = info->tail_page;
2277        struct buffer_page *commit_page = cpu_buffer->commit_page;
2278        struct trace_buffer *buffer = cpu_buffer->buffer;
2279        struct buffer_page *next_page;
2280        int ret;
2281
2282        next_page = tail_page;
2283
2284        rb_inc_page(cpu_buffer, &next_page);
2285
2286        /*
2287         * If for some reason, we had an interrupt storm that made
2288         * it all the way around the buffer, bail, and warn
2289         * about it.
2290         */
2291        if (unlikely(next_page == commit_page)) {
2292                local_inc(&cpu_buffer->commit_overrun);
2293                goto out_reset;
2294        }
2295
2296        /*
2297         * This is where the fun begins!
2298         *
2299         * We are fighting against races between a reader that
2300         * could be on another CPU trying to swap its reader
2301         * page with the buffer head.
2302         *
2303         * We are also fighting against interrupts coming in and
2304         * moving the head or tail on us as well.
2305         *
2306         * If the next page is the head page then we have filled
2307         * the buffer, unless the commit page is still on the
2308         * reader page.
2309         */
2310        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311
2312                /*
2313                 * If the commit is not on the reader page, then
2314                 * move the header page.
2315                 */
2316                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317                        /*
2318                         * If we are not in overwrite mode,
2319                         * this is easy, just stop here.
2320                         */
2321                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322                                local_inc(&cpu_buffer->dropped_events);
2323                                goto out_reset;
2324                        }
2325
2326                        ret = rb_handle_head_page(cpu_buffer,
2327                                                  tail_page,
2328                                                  next_page);
2329                        if (ret < 0)
2330                                goto out_reset;
2331                        if (ret)
2332                                goto out_again;
2333                } else {
2334                        /*
2335                         * We need to be careful here too. The
2336                         * commit page could still be on the reader
2337                         * page. We could have a small buffer, and
2338                         * have filled up the buffer with events
2339                         * from interrupts and such, and wrapped.
2340                         *
2341                         * Note, if the tail page is also the on the
2342                         * reader_page, we let it move out.
2343                         */
2344                        if (unlikely((cpu_buffer->commit_page !=
2345                                      cpu_buffer->tail_page) &&
2346                                     (cpu_buffer->commit_page ==
2347                                      cpu_buffer->reader_page))) {
2348                                local_inc(&cpu_buffer->commit_overrun);
2349                                goto out_reset;
2350                        }
2351                }
2352        }
2353
2354        rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355
2356 out_again:
2357
2358        rb_reset_tail(cpu_buffer, tail, info);
2359
2360        /* Commit what we have for now. */
2361        rb_end_commit(cpu_buffer);
2362        /* rb_end_commit() decs committing */
2363        local_inc(&cpu_buffer->committing);
2364
2365        /* fail and let the caller try again */
2366        return ERR_PTR(-EAGAIN);
2367
2368 out_reset:
2369        /* reset write */
2370        rb_reset_tail(cpu_buffer, tail, info);
2371
2372        return NULL;
2373}
2374
2375/* Slow path, do not inline */
2376static noinline struct ring_buffer_event *
2377rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2378{
2379        if (abs)
2380                event->type_len = RINGBUF_TYPE_TIME_STAMP;
2381        else
2382                event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2383
2384        /* Not the first event on the page, or not delta? */
2385        if (abs || rb_event_index(event)) {
2386                event->time_delta = delta & TS_MASK;
2387                event->array[0] = delta >> TS_SHIFT;
2388        } else {
2389                /* nope, just zero it */
2390                event->time_delta = 0;
2391                event->array[0] = 0;
2392        }
2393
2394        return skip_time_extend(event);
2395}
2396
2397static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2398                                     struct ring_buffer_event *event);
2399
2400/**
2401 * rb_update_event - update event type and data
2402 * @cpu_buffer: The per cpu buffer of the @event
2403 * @event: the event to update
2404 * @info: The info to update the @event with (contains length and delta)
2405 *
2406 * Update the type and data fields of the @event. The length
2407 * is the actual size that is written to the ring buffer,
2408 * and with this, we can determine what to place into the
2409 * data field.
2410 */
2411static void
2412rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2413                struct ring_buffer_event *event,
2414                struct rb_event_info *info)
2415{
2416        unsigned length = info->length;
2417        u64 delta = info->delta;
2418
2419        /* Only a commit updates the timestamp */
2420        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2421                delta = 0;
2422
2423        /*
2424         * If we need to add a timestamp, then we
2425         * add it to the start of the reserved space.
2426         */
2427        if (unlikely(info->add_timestamp)) {
2428                bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2429
2430                event = rb_add_time_stamp(event, abs ? info->delta : delta, abs);
2431                length -= RB_LEN_TIME_EXTEND;
2432                delta = 0;
2433        }
2434
2435        event->time_delta = delta;
2436        length -= RB_EVNT_HDR_SIZE;
2437        if (length > RB_MAX_SMALL_DATA) {
2438                event->type_len = 0;
2439                event->array[0] = length;
2440        } else
2441                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2442}
2443
2444static unsigned rb_calculate_event_length(unsigned length)
2445{
2446        struct ring_buffer_event event; /* Used only for sizeof array */
2447
2448        /* zero length can cause confusions */
2449        if (!length)
2450                length++;
2451
2452        if (length > RB_MAX_SMALL_DATA)
2453                length += sizeof(event.array[0]);
2454
2455        length += RB_EVNT_HDR_SIZE;
2456        length = ALIGN(length, RB_ALIGNMENT);
2457
2458        /*
2459         * In case the time delta is larger than the 27 bits for it
2460         * in the header, we need to add a timestamp. If another
2461         * event comes in when trying to discard this one to increase
2462         * the length, then the timestamp will be added in the allocated
2463         * space of this event. If length is bigger than the size needed
2464         * for the TIME_EXTEND, then padding has to be used. The events
2465         * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2466         * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2467         * As length is a multiple of 4, we only need to worry if it
2468         * is 12 (RB_LEN_TIME_EXTEND + 4).
2469         */
2470        if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2471                length += RB_ALIGNMENT;
2472
2473        return length;
2474}
2475
2476#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2477static inline bool sched_clock_stable(void)
2478{
2479        return true;
2480}
2481#endif
2482
2483static inline int
2484rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2485                  struct ring_buffer_event *event)
2486{
2487        unsigned long new_index, old_index;
2488        struct buffer_page *bpage;
2489        unsigned long index;
2490        unsigned long addr;
2491
2492        new_index = rb_event_index(event);
2493        old_index = new_index + rb_event_ts_length(event);
2494        addr = (unsigned long)event;
2495        addr &= PAGE_MASK;
2496
2497        bpage = READ_ONCE(cpu_buffer->tail_page);
2498
2499        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2500                unsigned long write_mask =
2501                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2502                unsigned long event_length = rb_event_length(event);
2503                /*
2504                 * This is on the tail page. It is possible that
2505                 * a write could come in and move the tail page
2506                 * and write to the next page. That is fine
2507                 * because we just shorten what is on this page.
2508                 */
2509                old_index += write_mask;
2510                new_index += write_mask;
2511                index = local_cmpxchg(&bpage->write, old_index, new_index);
2512                if (index == old_index) {
2513                        /* update counters */
2514                        local_sub(event_length, &cpu_buffer->entries_bytes);
2515                        return 1;
2516                }
2517        }
2518
2519        /* could not discard */
2520        return 0;
2521}
2522
2523static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2524{
2525        local_inc(&cpu_buffer->committing);
2526        local_inc(&cpu_buffer->commits);
2527}
2528
2529static __always_inline void
2530rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2531{
2532        unsigned long max_count;
2533
2534        /*
2535         * We only race with interrupts and NMIs on this CPU.
2536         * If we own the commit event, then we can commit
2537         * all others that interrupted us, since the interruptions
2538         * are in stack format (they finish before they come
2539         * back to us). This allows us to do a simple loop to
2540         * assign the commit to the tail.
2541         */
2542 again:
2543        max_count = cpu_buffer->nr_pages * 100;
2544
2545        while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2546                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2547                        return;
2548                if (RB_WARN_ON(cpu_buffer,
2549                               rb_is_reader_page(cpu_buffer->tail_page)))
2550                        return;
2551                local_set(&cpu_buffer->commit_page->page->commit,
2552                          rb_page_write(cpu_buffer->commit_page));
2553                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2554                /* Only update the write stamp if the page has an event */
2555                if (rb_page_write(cpu_buffer->commit_page))
2556                        cpu_buffer->write_stamp =
2557                                cpu_buffer->commit_page->page->time_stamp;
2558                /* add barrier to keep gcc from optimizing too much */
2559                barrier();
2560        }
2561        while (rb_commit_index(cpu_buffer) !=
2562               rb_page_write(cpu_buffer->commit_page)) {
2563
2564                local_set(&cpu_buffer->commit_page->page->commit,
2565                          rb_page_write(cpu_buffer->commit_page));
2566                RB_WARN_ON(cpu_buffer,
2567                           local_read(&cpu_buffer->commit_page->page->commit) &
2568                           ~RB_WRITE_MASK);
2569                barrier();
2570        }
2571
2572        /* again, keep gcc from optimizing */
2573        barrier();
2574
2575        /*
2576         * If an interrupt came in just after the first while loop
2577         * and pushed the tail page forward, we will be left with
2578         * a dangling commit that will never go forward.
2579         */
2580        if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2581                goto again;
2582}
2583
2584static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2585{
2586        unsigned long commits;
2587
2588        if (RB_WARN_ON(cpu_buffer,
2589                       !local_read(&cpu_buffer->committing)))
2590                return;
2591
2592 again:
2593        commits = local_read(&cpu_buffer->commits);
2594        /* synchronize with interrupts */
2595        barrier();
2596        if (local_read(&cpu_buffer->committing) == 1)
2597                rb_set_commit_to_write(cpu_buffer);
2598
2599        local_dec(&cpu_buffer->committing);
2600
2601        /* synchronize with interrupts */
2602        barrier();
2603
2604        /*
2605         * Need to account for interrupts coming in between the
2606         * updating of the commit page and the clearing of the
2607         * committing counter.
2608         */
2609        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2610            !local_read(&cpu_buffer->committing)) {
2611                local_inc(&cpu_buffer->committing);
2612                goto again;
2613        }
2614}
2615
2616static inline void rb_event_discard(struct ring_buffer_event *event)
2617{
2618        if (extended_time(event))
2619                event = skip_time_extend(event);
2620
2621        /* array[0] holds the actual length for the discarded event */
2622        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2623        event->type_len = RINGBUF_TYPE_PADDING;
2624        /* time delta must be non zero */
2625        if (!event->time_delta)
2626                event->time_delta = 1;
2627}
2628
2629static __always_inline bool
2630rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2631                   struct ring_buffer_event *event)
2632{
2633        unsigned long addr = (unsigned long)event;
2634        unsigned long index;
2635
2636        index = rb_event_index(event);
2637        addr &= PAGE_MASK;
2638
2639        return cpu_buffer->commit_page->page == (void *)addr &&
2640                rb_commit_index(cpu_buffer) == index;
2641}
2642
2643static __always_inline void
2644rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2645                      struct ring_buffer_event *event)
2646{
2647        u64 delta;
2648
2649        /*
2650         * The event first in the commit queue updates the
2651         * time stamp.
2652         */
2653        if (rb_event_is_commit(cpu_buffer, event)) {
2654                /*
2655                 * A commit event that is first on a page
2656                 * updates the write timestamp with the page stamp
2657                 */
2658                if (!rb_event_index(event))
2659                        cpu_buffer->write_stamp =
2660                                cpu_buffer->commit_page->page->time_stamp;
2661                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2662                        delta = ring_buffer_event_time_stamp(event);
2663                        cpu_buffer->write_stamp += delta;
2664                } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2665                        delta = ring_buffer_event_time_stamp(event);
2666                        cpu_buffer->write_stamp = delta;
2667                } else
2668                        cpu_buffer->write_stamp += event->time_delta;
2669        }
2670}
2671
2672static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2673                      struct ring_buffer_event *event)
2674{
2675        local_inc(&cpu_buffer->entries);
2676        rb_update_write_stamp(cpu_buffer, event);
2677        rb_end_commit(cpu_buffer);
2678}
2679
2680static __always_inline void
2681rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2682{
2683        size_t nr_pages;
2684        size_t dirty;
2685        size_t full;
2686
2687        if (buffer->irq_work.waiters_pending) {
2688                buffer->irq_work.waiters_pending = false;
2689                /* irq_work_queue() supplies it's own memory barriers */
2690                irq_work_queue(&buffer->irq_work.work);
2691        }
2692
2693        if (cpu_buffer->irq_work.waiters_pending) {
2694                cpu_buffer->irq_work.waiters_pending = false;
2695                /* irq_work_queue() supplies it's own memory barriers */
2696                irq_work_queue(&cpu_buffer->irq_work.work);
2697        }
2698
2699        if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2700                return;
2701
2702        if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2703                return;
2704
2705        if (!cpu_buffer->irq_work.full_waiters_pending)
2706                return;
2707
2708        cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2709
2710        full = cpu_buffer->shortest_full;
2711        nr_pages = cpu_buffer->nr_pages;
2712        dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2713        if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2714                return;
2715
2716        cpu_buffer->irq_work.wakeup_full = true;
2717        cpu_buffer->irq_work.full_waiters_pending = false;
2718        /* irq_work_queue() supplies it's own memory barriers */
2719        irq_work_queue(&cpu_buffer->irq_work.work);
2720}
2721
2722/*
2723 * The lock and unlock are done within a preempt disable section.
2724 * The current_context per_cpu variable can only be modified
2725 * by the current task between lock and unlock. But it can
2726 * be modified more than once via an interrupt. To pass this
2727 * information from the lock to the unlock without having to
2728 * access the 'in_interrupt()' functions again (which do show
2729 * a bit of overhead in something as critical as function tracing,
2730 * we use a bitmask trick.
2731 *
2732 *  bit 0 =  NMI context
2733 *  bit 1 =  IRQ context
2734 *  bit 2 =  SoftIRQ context
2735 *  bit 3 =  normal context.
2736 *
2737 * This works because this is the order of contexts that can
2738 * preempt other contexts. A SoftIRQ never preempts an IRQ
2739 * context.
2740 *
2741 * When the context is determined, the corresponding bit is
2742 * checked and set (if it was set, then a recursion of that context
2743 * happened).
2744 *
2745 * On unlock, we need to clear this bit. To do so, just subtract
2746 * 1 from the current_context and AND it to itself.
2747 *
2748 * (binary)
2749 *  101 - 1 = 100
2750 *  101 & 100 = 100 (clearing bit zero)
2751 *
2752 *  1010 - 1 = 1001
2753 *  1010 & 1001 = 1000 (clearing bit 1)
2754 *
2755 * The least significant bit can be cleared this way, and it
2756 * just so happens that it is the same bit corresponding to
2757 * the current context.
2758 */
2759
2760static __always_inline int
2761trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2762{
2763        unsigned int val = cpu_buffer->current_context;
2764        unsigned long pc = preempt_count();
2765        int bit;
2766
2767        if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2768                bit = RB_CTX_NORMAL;
2769        else
2770                bit = pc & NMI_MASK ? RB_CTX_NMI :
2771                        pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2772
2773        if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2774                return 1;
2775
2776        val |= (1 << (bit + cpu_buffer->nest));
2777        cpu_buffer->current_context = val;
2778
2779        return 0;
2780}
2781
2782static __always_inline void
2783trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2784{
2785        cpu_buffer->current_context &=
2786                cpu_buffer->current_context - (1 << cpu_buffer->nest);
2787}
2788
2789/* The recursive locking above uses 4 bits */
2790#define NESTED_BITS 4
2791
2792/**
2793 * ring_buffer_nest_start - Allow to trace while nested
2794 * @buffer: The ring buffer to modify
2795 *
2796 * The ring buffer has a safety mechanism to prevent recursion.
2797 * But there may be a case where a trace needs to be done while
2798 * tracing something else. In this case, calling this function
2799 * will allow this function to nest within a currently active
2800 * ring_buffer_lock_reserve().
2801 *
2802 * Call this function before calling another ring_buffer_lock_reserve() and
2803 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2804 */
2805void ring_buffer_nest_start(struct trace_buffer *buffer)
2806{
2807        struct ring_buffer_per_cpu *cpu_buffer;
2808        int cpu;
2809
2810        /* Enabled by ring_buffer_nest_end() */
2811        preempt_disable_notrace();
2812        cpu = raw_smp_processor_id();
2813        cpu_buffer = buffer->buffers[cpu];
2814        /* This is the shift value for the above recursive locking */
2815        cpu_buffer->nest += NESTED_BITS;
2816}
2817
2818/**
2819 * ring_buffer_nest_end - Allow to trace while nested
2820 * @buffer: The ring buffer to modify
2821 *
2822 * Must be called after ring_buffer_nest_start() and after the
2823 * ring_buffer_unlock_commit().
2824 */
2825void ring_buffer_nest_end(struct trace_buffer *buffer)
2826{
2827        struct ring_buffer_per_cpu *cpu_buffer;
2828        int cpu;
2829
2830        /* disabled by ring_buffer_nest_start() */
2831        cpu = raw_smp_processor_id();
2832        cpu_buffer = buffer->buffers[cpu];
2833        /* This is the shift value for the above recursive locking */
2834        cpu_buffer->nest -= NESTED_BITS;
2835        preempt_enable_notrace();
2836}
2837
2838/**
2839 * ring_buffer_unlock_commit - commit a reserved
2840 * @buffer: The buffer to commit to
2841 * @event: The event pointer to commit.
2842 *
2843 * This commits the data to the ring buffer, and releases any locks held.
2844 *
2845 * Must be paired with ring_buffer_lock_reserve.
2846 */
2847int ring_buffer_unlock_commit(struct trace_buffer *buffer,
2848                              struct ring_buffer_event *event)
2849{
2850        struct ring_buffer_per_cpu *cpu_buffer;
2851        int cpu = raw_smp_processor_id();
2852
2853        cpu_buffer = buffer->buffers[cpu];
2854
2855        rb_commit(cpu_buffer, event);
2856
2857        rb_wakeups(buffer, cpu_buffer);
2858
2859        trace_recursive_unlock(cpu_buffer);
2860
2861        preempt_enable_notrace();
2862
2863        return 0;
2864}
2865EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2866
2867static noinline void
2868rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2869                    struct rb_event_info *info)
2870{
2871        WARN_ONCE(info->delta > (1ULL << 59),
2872                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2873                  (unsigned long long)info->delta,
2874                  (unsigned long long)info->ts,
2875                  (unsigned long long)cpu_buffer->write_stamp,
2876                  sched_clock_stable() ? "" :
2877                  "If you just came from a suspend/resume,\n"
2878                  "please switch to the trace global clock:\n"
2879                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2880                  "or add trace_clock=global to the kernel command line\n");
2881        info->add_timestamp = 1;
2882}
2883
2884static struct ring_buffer_event *
2885__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2886                  struct rb_event_info *info)
2887{
2888        struct ring_buffer_event *event;
2889        struct buffer_page *tail_page;
2890        unsigned long tail, write;
2891
2892        /*
2893         * If the time delta since the last event is too big to
2894         * hold in the time field of the event, then we append a
2895         * TIME EXTEND event ahead of the data event.
2896         */
2897        if (unlikely(info->add_timestamp))
2898                info->length += RB_LEN_TIME_EXTEND;
2899
2900        /* Don't let the compiler play games with cpu_buffer->tail_page */
2901        tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2902        write = local_add_return(info->length, &tail_page->write);
2903
2904        /* set write to only the index of the write */
2905        write &= RB_WRITE_MASK;
2906        tail = write - info->length;
2907
2908        /*
2909         * If this is the first commit on the page, then it has the same
2910         * timestamp as the page itself.
2911         */
2912        if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2913                info->delta = 0;
2914
2915        /* See if we shot pass the end of this buffer page */
2916        if (unlikely(write > BUF_PAGE_SIZE))
2917                return rb_move_tail(cpu_buffer, tail, info);
2918
2919        /* We reserved something on the buffer */
2920
2921        event = __rb_page_index(tail_page, tail);
2922        rb_update_event(cpu_buffer, event, info);
2923
2924        local_inc(&tail_page->entries);
2925
2926        /*
2927         * If this is the first commit on the page, then update
2928         * its timestamp.
2929         */
2930        if (!tail)
2931                tail_page->page->time_stamp = info->ts;
2932
2933        /* account for these added bytes */
2934        local_add(info->length, &cpu_buffer->entries_bytes);
2935
2936        return event;
2937}
2938
2939static __always_inline struct ring_buffer_event *
2940rb_reserve_next_event(struct trace_buffer *buffer,
2941                      struct ring_buffer_per_cpu *cpu_buffer,
2942                      unsigned long length)
2943{
2944        struct ring_buffer_event *event;
2945        struct rb_event_info info;
2946        int nr_loops = 0;
2947        u64 diff;
2948
2949        rb_start_commit(cpu_buffer);
2950
2951#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2952        /*
2953         * Due to the ability to swap a cpu buffer from a buffer
2954         * it is possible it was swapped before we committed.
2955         * (committing stops a swap). We check for it here and
2956         * if it happened, we have to fail the write.
2957         */
2958        barrier();
2959        if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2960                local_dec(&cpu_buffer->committing);
2961                local_dec(&cpu_buffer->commits);
2962                return NULL;
2963        }
2964#endif
2965
2966        info.length = rb_calculate_event_length(length);
2967 again:
2968        info.add_timestamp = 0;
2969        info.delta = 0;
2970
2971        /*
2972         * We allow for interrupts to reenter here and do a trace.
2973         * If one does, it will cause this original code to loop
2974         * back here. Even with heavy interrupts happening, this
2975         * should only happen a few times in a row. If this happens
2976         * 1000 times in a row, there must be either an interrupt
2977         * storm or we have something buggy.
2978         * Bail!
2979         */
2980        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2981                goto out_fail;
2982
2983        info.ts = rb_time_stamp(cpu_buffer->buffer);
2984        diff = info.ts - cpu_buffer->write_stamp;
2985
2986        /* make sure this diff is calculated here */
2987        barrier();
2988
2989        if (ring_buffer_time_stamp_abs(buffer)) {
2990                info.delta = info.ts;
2991                rb_handle_timestamp(cpu_buffer, &info);
2992        } else /* Did the write stamp get updated already? */
2993                if (likely(info.ts >= cpu_buffer->write_stamp)) {
2994                info.delta = diff;
2995                if (unlikely(test_time_stamp(info.delta)))
2996                        rb_handle_timestamp(cpu_buffer, &info);
2997        }
2998
2999        event = __rb_reserve_next(cpu_buffer, &info);
3000
3001        if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3002                if (info.add_timestamp)
3003                        info.length -= RB_LEN_TIME_EXTEND;
3004                goto again;
3005        }
3006
3007        if (!event)
3008                goto out_fail;
3009
3010        return event;
3011
3012 out_fail:
3013        rb_end_commit(cpu_buffer);
3014        return NULL;
3015}
3016
3017/**
3018 * ring_buffer_lock_reserve - reserve a part of the buffer
3019 * @buffer: the ring buffer to reserve from
3020 * @length: the length of the data to reserve (excluding event header)
3021 *
3022 * Returns a reserved event on the ring buffer to copy directly to.
3023 * The user of this interface will need to get the body to write into
3024 * and can use the ring_buffer_event_data() interface.
3025 *
3026 * The length is the length of the data needed, not the event length
3027 * which also includes the event header.
3028 *
3029 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3030 * If NULL is returned, then nothing has been allocated or locked.
3031 */
3032struct ring_buffer_event *
3033ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3034{
3035        struct ring_buffer_per_cpu *cpu_buffer;
3036        struct ring_buffer_event *event;
3037        int cpu;
3038
3039        /* If we are tracing schedule, we don't want to recurse */
3040        preempt_disable_notrace();
3041
3042        if (unlikely(atomic_read(&buffer->record_disabled)))
3043                goto out;
3044
3045        cpu = raw_smp_processor_id();
3046
3047        if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3048                goto out;
3049
3050        cpu_buffer = buffer->buffers[cpu];
3051
3052        if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3053                goto out;
3054
3055        if (unlikely(length > BUF_MAX_DATA_SIZE))
3056                goto out;
3057
3058        if (unlikely(trace_recursive_lock(cpu_buffer)))
3059                goto out;
3060
3061        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3062        if (!event)
3063                goto out_unlock;
3064
3065        return event;
3066
3067 out_unlock:
3068        trace_recursive_unlock(cpu_buffer);
3069 out:
3070        preempt_enable_notrace();
3071        return NULL;
3072}
3073EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3074
3075/*
3076 * Decrement the entries to the page that an event is on.
3077 * The event does not even need to exist, only the pointer
3078 * to the page it is on. This may only be called before the commit
3079 * takes place.
3080 */
3081static inline void
3082rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3083                   struct ring_buffer_event *event)
3084{
3085        unsigned long addr = (unsigned long)event;
3086        struct buffer_page *bpage = cpu_buffer->commit_page;
3087        struct buffer_page *start;
3088
3089        addr &= PAGE_MASK;
3090
3091        /* Do the likely case first */
3092        if (likely(bpage->page == (void *)addr)) {
3093                local_dec(&bpage->entries);
3094                return;
3095        }
3096
3097        /*
3098         * Because the commit page may be on the reader page we
3099         * start with the next page and check the end loop there.
3100         */
3101        rb_inc_page(cpu_buffer, &bpage);
3102        start = bpage;
3103        do {
3104                if (bpage->page == (void *)addr) {
3105                        local_dec(&bpage->entries);
3106                        return;
3107                }
3108                rb_inc_page(cpu_buffer, &bpage);
3109        } while (bpage != start);
3110
3111        /* commit not part of this buffer?? */
3112        RB_WARN_ON(cpu_buffer, 1);
3113}
3114
3115/**
3116 * ring_buffer_commit_discard - discard an event that has not been committed
3117 * @buffer: the ring buffer
3118 * @event: non committed event to discard
3119 *
3120 * Sometimes an event that is in the ring buffer needs to be ignored.
3121 * This function lets the user discard an event in the ring buffer
3122 * and then that event will not be read later.
3123 *
3124 * This function only works if it is called before the item has been
3125 * committed. It will try to free the event from the ring buffer
3126 * if another event has not been added behind it.
3127 *
3128 * If another event has been added behind it, it will set the event
3129 * up as discarded, and perform the commit.
3130 *
3131 * If this function is called, do not call ring_buffer_unlock_commit on
3132 * the event.
3133 */
3134void ring_buffer_discard_commit(struct trace_buffer *buffer,
3135                                struct ring_buffer_event *event)
3136{
3137        struct ring_buffer_per_cpu *cpu_buffer;
3138        int cpu;
3139
3140        /* The event is discarded regardless */
3141        rb_event_discard(event);
3142
3143        cpu = smp_processor_id();
3144        cpu_buffer = buffer->buffers[cpu];
3145
3146        /*
3147         * This must only be called if the event has not been
3148         * committed yet. Thus we can assume that preemption
3149         * is still disabled.
3150         */
3151        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3152
3153        rb_decrement_entry(cpu_buffer, event);
3154        if (rb_try_to_discard(cpu_buffer, event))
3155                goto out;
3156
3157        /*
3158         * The commit is still visible by the reader, so we
3159         * must still update the timestamp.
3160         */
3161        rb_update_write_stamp(cpu_buffer, event);
3162 out:
3163        rb_end_commit(cpu_buffer);
3164
3165        trace_recursive_unlock(cpu_buffer);
3166
3167        preempt_enable_notrace();
3168
3169}
3170EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3171
3172/**
3173 * ring_buffer_write - write data to the buffer without reserving
3174 * @buffer: The ring buffer to write to.
3175 * @length: The length of the data being written (excluding the event header)
3176 * @data: The data to write to the buffer.
3177 *
3178 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3179 * one function. If you already have the data to write to the buffer, it
3180 * may be easier to simply call this function.
3181 *
3182 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3183 * and not the length of the event which would hold the header.
3184 */
3185int ring_buffer_write(struct trace_buffer *buffer,
3186                      unsigned long length,
3187                      void *data)
3188{
3189        struct ring_buffer_per_cpu *cpu_buffer;
3190        struct ring_buffer_event *event;
3191        void *body;
3192        int ret = -EBUSY;
3193        int cpu;
3194
3195        preempt_disable_notrace();
3196
3197        if (atomic_read(&buffer->record_disabled))
3198                goto out;
3199
3200        cpu = raw_smp_processor_id();
3201
3202        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203                goto out;
3204
3205        cpu_buffer = buffer->buffers[cpu];
3206
3207        if (atomic_read(&cpu_buffer->record_disabled))
3208                goto out;
3209
3210        if (length > BUF_MAX_DATA_SIZE)
3211                goto out;
3212
3213        if (unlikely(trace_recursive_lock(cpu_buffer)))
3214                goto out;
3215
3216        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3217        if (!event)
3218                goto out_unlock;
3219
3220        body = rb_event_data(event);
3221
3222        memcpy(body, data, length);
3223
3224        rb_commit(cpu_buffer, event);
3225
3226        rb_wakeups(buffer, cpu_buffer);
3227
3228        ret = 0;
3229
3230 out_unlock:
3231        trace_recursive_unlock(cpu_buffer);
3232
3233 out:
3234        preempt_enable_notrace();
3235
3236        return ret;
3237}
3238EXPORT_SYMBOL_GPL(ring_buffer_write);
3239
3240static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3241{
3242        struct buffer_page *reader = cpu_buffer->reader_page;
3243        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3244        struct buffer_page *commit = cpu_buffer->commit_page;
3245
3246        /* In case of error, head will be NULL */
3247        if (unlikely(!head))
3248                return true;
3249
3250        return reader->read == rb_page_commit(reader) &&
3251                (commit == reader ||
3252                 (commit == head &&
3253                  head->read == rb_page_commit(commit)));
3254}
3255
3256/**
3257 * ring_buffer_record_disable - stop all writes into the buffer
3258 * @buffer: The ring buffer to stop writes to.
3259 *
3260 * This prevents all writes to the buffer. Any attempt to write
3261 * to the buffer after this will fail and return NULL.
3262 *
3263 * The caller should call synchronize_rcu() after this.
3264 */
3265void ring_buffer_record_disable(struct trace_buffer *buffer)
3266{
3267        atomic_inc(&buffer->record_disabled);
3268}
3269EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3270
3271/**
3272 * ring_buffer_record_enable - enable writes to the buffer
3273 * @buffer: The ring buffer to enable writes
3274 *
3275 * Note, multiple disables will need the same number of enables
3276 * to truly enable the writing (much like preempt_disable).
3277 */
3278void ring_buffer_record_enable(struct trace_buffer *buffer)
3279{
3280        atomic_dec(&buffer->record_disabled);
3281}
3282EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3283
3284/**
3285 * ring_buffer_record_off - stop all writes into the buffer
3286 * @buffer: The ring buffer to stop writes to.
3287 *
3288 * This prevents all writes to the buffer. Any attempt to write
3289 * to the buffer after this will fail and return NULL.
3290 *
3291 * This is different than ring_buffer_record_disable() as
3292 * it works like an on/off switch, where as the disable() version
3293 * must be paired with a enable().
3294 */
3295void ring_buffer_record_off(struct trace_buffer *buffer)
3296{
3297        unsigned int rd;
3298        unsigned int new_rd;
3299
3300        do {
3301                rd = atomic_read(&buffer->record_disabled);
3302                new_rd = rd | RB_BUFFER_OFF;
3303        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3304}
3305EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3306
3307/**
3308 * ring_buffer_record_on - restart writes into the buffer
3309 * @buffer: The ring buffer to start writes to.
3310 *
3311 * This enables all writes to the buffer that was disabled by
3312 * ring_buffer_record_off().
3313 *
3314 * This is different than ring_buffer_record_enable() as
3315 * it works like an on/off switch, where as the enable() version
3316 * must be paired with a disable().
3317 */
3318void ring_buffer_record_on(struct trace_buffer *buffer)
3319{
3320        unsigned int rd;
3321        unsigned int new_rd;
3322
3323        do {
3324                rd = atomic_read(&buffer->record_disabled);
3325                new_rd = rd & ~RB_BUFFER_OFF;
3326        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3327}
3328EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3329
3330/**
3331 * ring_buffer_record_is_on - return true if the ring buffer can write
3332 * @buffer: The ring buffer to see if write is enabled
3333 *
3334 * Returns true if the ring buffer is in a state that it accepts writes.
3335 */
3336bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3337{
3338        return !atomic_read(&buffer->record_disabled);
3339}
3340
3341/**
3342 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3343 * @buffer: The ring buffer to see if write is set enabled
3344 *
3345 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3346 * Note that this does NOT mean it is in a writable state.
3347 *
3348 * It may return true when the ring buffer has been disabled by
3349 * ring_buffer_record_disable(), as that is a temporary disabling of
3350 * the ring buffer.
3351 */
3352bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3353{
3354        return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3355}
3356
3357/**
3358 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3359 * @buffer: The ring buffer to stop writes to.
3360 * @cpu: The CPU buffer to stop
3361 *
3362 * This prevents all writes to the buffer. Any attempt to write
3363 * to the buffer after this will fail and return NULL.
3364 *
3365 * The caller should call synchronize_rcu() after this.
3366 */
3367void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3368{
3369        struct ring_buffer_per_cpu *cpu_buffer;
3370
3371        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3372                return;
3373
3374        cpu_buffer = buffer->buffers[cpu];
3375        atomic_inc(&cpu_buffer->record_disabled);
3376}
3377EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3378
3379/**
3380 * ring_buffer_record_enable_cpu - enable writes to the buffer
3381 * @buffer: The ring buffer to enable writes
3382 * @cpu: The CPU to enable.
3383 *
3384 * Note, multiple disables will need the same number of enables
3385 * to truly enable the writing (much like preempt_disable).
3386 */
3387void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3388{
3389        struct ring_buffer_per_cpu *cpu_buffer;
3390
3391        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3392                return;
3393
3394        cpu_buffer = buffer->buffers[cpu];
3395        atomic_dec(&cpu_buffer->record_disabled);
3396}
3397EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3398
3399/*
3400 * The total entries in the ring buffer is the running counter
3401 * of entries entered into the ring buffer, minus the sum of
3402 * the entries read from the ring buffer and the number of
3403 * entries that were overwritten.
3404 */
3405static inline unsigned long
3406rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3407{
3408        return local_read(&cpu_buffer->entries) -
3409                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3410}
3411
3412/**
3413 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3414 * @buffer: The ring buffer
3415 * @cpu: The per CPU buffer to read from.
3416 */
3417u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3418{
3419        unsigned long flags;
3420        struct ring_buffer_per_cpu *cpu_buffer;
3421        struct buffer_page *bpage;
3422        u64 ret = 0;
3423
3424        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425                return 0;
3426
3427        cpu_buffer = buffer->buffers[cpu];
3428        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3429        /*
3430         * if the tail is on reader_page, oldest time stamp is on the reader
3431         * page
3432         */
3433        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3434                bpage = cpu_buffer->reader_page;
3435        else
3436                bpage = rb_set_head_page(cpu_buffer);
3437        if (bpage)
3438                ret = bpage->page->time_stamp;
3439        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3440
3441        return ret;
3442}
3443EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3444
3445/**
3446 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3447 * @buffer: The ring buffer
3448 * @cpu: The per CPU buffer to read from.
3449 */
3450unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3451{
3452        struct ring_buffer_per_cpu *cpu_buffer;
3453        unsigned long ret;
3454
3455        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3456                return 0;
3457
3458        cpu_buffer = buffer->buffers[cpu];
3459        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3460
3461        return ret;
3462}
3463EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3464
3465/**
3466 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3467 * @buffer: The ring buffer
3468 * @cpu: The per CPU buffer to get the entries from.
3469 */
3470unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3471{
3472        struct ring_buffer_per_cpu *cpu_buffer;
3473
3474        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3475                return 0;
3476
3477        cpu_buffer = buffer->buffers[cpu];
3478
3479        return rb_num_of_entries(cpu_buffer);
3480}
3481EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3482
3483/**
3484 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3485 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3486 * @buffer: The ring buffer
3487 * @cpu: The per CPU buffer to get the number of overruns from
3488 */
3489unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3490{
3491        struct ring_buffer_per_cpu *cpu_buffer;
3492        unsigned long ret;
3493
3494        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3495                return 0;
3496
3497        cpu_buffer = buffer->buffers[cpu];
3498        ret = local_read(&cpu_buffer->overrun);
3499
3500        return ret;
3501}
3502EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3503
3504/**
3505 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3506 * commits failing due to the buffer wrapping around while there are uncommitted
3507 * events, such as during an interrupt storm.
3508 * @buffer: The ring buffer
3509 * @cpu: The per CPU buffer to get the number of overruns from
3510 */
3511unsigned long
3512ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3513{
3514        struct ring_buffer_per_cpu *cpu_buffer;
3515        unsigned long ret;
3516
3517        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3518                return 0;
3519
3520        cpu_buffer = buffer->buffers[cpu];
3521        ret = local_read(&cpu_buffer->commit_overrun);
3522
3523        return ret;
3524}
3525EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3526
3527/**
3528 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3529 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3530 * @buffer: The ring buffer
3531 * @cpu: The per CPU buffer to get the number of overruns from
3532 */
3533unsigned long
3534ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3535{
3536        struct ring_buffer_per_cpu *cpu_buffer;
3537        unsigned long ret;
3538
3539        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3540                return 0;
3541
3542        cpu_buffer = buffer->buffers[cpu];
3543        ret = local_read(&cpu_buffer->dropped_events);
3544
3545        return ret;
3546}
3547EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3548
3549/**
3550 * ring_buffer_read_events_cpu - get the number of events successfully read
3551 * @buffer: The ring buffer
3552 * @cpu: The per CPU buffer to get the number of events read
3553 */
3554unsigned long
3555ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3556{
3557        struct ring_buffer_per_cpu *cpu_buffer;
3558
3559        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3560                return 0;
3561
3562        cpu_buffer = buffer->buffers[cpu];
3563        return cpu_buffer->read;
3564}
3565EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3566
3567/**
3568 * ring_buffer_entries - get the number of entries in a buffer
3569 * @buffer: The ring buffer
3570 *
3571 * Returns the total number of entries in the ring buffer
3572 * (all CPU entries)
3573 */
3574unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3575{
3576        struct ring_buffer_per_cpu *cpu_buffer;
3577        unsigned long entries = 0;
3578        int cpu;
3579
3580        /* if you care about this being correct, lock the buffer */
3581        for_each_buffer_cpu(buffer, cpu) {
3582                cpu_buffer = buffer->buffers[cpu];
3583                entries += rb_num_of_entries(cpu_buffer);
3584        }
3585
3586        return entries;
3587}
3588EXPORT_SYMBOL_GPL(ring_buffer_entries);
3589
3590/**
3591 * ring_buffer_overruns - get the number of overruns in buffer
3592 * @buffer: The ring buffer
3593 *
3594 * Returns the total number of overruns in the ring buffer
3595 * (all CPU entries)
3596 */
3597unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3598{
3599        struct ring_buffer_per_cpu *cpu_buffer;
3600        unsigned long overruns = 0;
3601        int cpu;
3602
3603        /* if you care about this being correct, lock the buffer */
3604        for_each_buffer_cpu(buffer, cpu) {
3605                cpu_buffer = buffer->buffers[cpu];
3606                overruns += local_read(&cpu_buffer->overrun);
3607        }
3608
3609        return overruns;
3610}
3611EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3612
3613static void rb_iter_reset(struct ring_buffer_iter *iter)
3614{
3615        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3616
3617        /* Iterator usage is expected to have record disabled */
3618        iter->head_page = cpu_buffer->reader_page;
3619        iter->head = cpu_buffer->reader_page->read;
3620        iter->next_event = iter->head;
3621
3622        iter->cache_reader_page = iter->head_page;
3623        iter->cache_read = cpu_buffer->read;
3624
3625        if (iter->head) {
3626                iter->read_stamp = cpu_buffer->read_stamp;
3627                iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3628        } else {
3629                iter->read_stamp = iter->head_page->page->time_stamp;
3630                iter->page_stamp = iter->read_stamp;
3631        }
3632}
3633
3634/**
3635 * ring_buffer_iter_reset - reset an iterator
3636 * @iter: The iterator to reset
3637 *
3638 * Resets the iterator, so that it will start from the beginning
3639 * again.
3640 */
3641void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3642{
3643        struct ring_buffer_per_cpu *cpu_buffer;
3644        unsigned long flags;
3645
3646        if (!iter)
3647                return;
3648
3649        cpu_buffer = iter->cpu_buffer;
3650
3651        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3652        rb_iter_reset(iter);
3653        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3654}
3655EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3656
3657/**
3658 * ring_buffer_iter_empty - check if an iterator has no more to read
3659 * @iter: The iterator to check
3660 */
3661int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3662{
3663        struct ring_buffer_per_cpu *cpu_buffer;
3664        struct buffer_page *reader;
3665        struct buffer_page *head_page;
3666        struct buffer_page *commit_page;
3667        struct buffer_page *curr_commit_page;
3668        unsigned commit;
3669        u64 curr_commit_ts;
3670        u64 commit_ts;
3671
3672        cpu_buffer = iter->cpu_buffer;
3673        reader = cpu_buffer->reader_page;
3674        head_page = cpu_buffer->head_page;
3675        commit_page = cpu_buffer->commit_page;
3676        commit_ts = commit_page->page->time_stamp;
3677
3678        /*
3679         * When the writer goes across pages, it issues a cmpxchg which
3680         * is a mb(), which will synchronize with the rmb here.
3681         * (see rb_tail_page_update())
3682         */
3683        smp_rmb();
3684        commit = rb_page_commit(commit_page);
3685        /* We want to make sure that the commit page doesn't change */
3686        smp_rmb();
3687
3688        /* Make sure commit page didn't change */
3689        curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
3690        curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
3691
3692        /* If the commit page changed, then there's more data */
3693        if (curr_commit_page != commit_page ||
3694            curr_commit_ts != commit_ts)
3695                return 0;
3696
3697        /* Still racy, as it may return a false positive, but that's OK */
3698        return ((iter->head_page == commit_page && iter->head >= commit) ||
3699                (iter->head_page == reader && commit_page == head_page &&
3700                 head_page->read == commit &&
3701                 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3702}
3703EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3704
3705static void
3706rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3707                     struct ring_buffer_event *event)
3708{
3709        u64 delta;
3710
3711        switch (event->type_len) {
3712        case RINGBUF_TYPE_PADDING:
3713                return;
3714
3715        case RINGBUF_TYPE_TIME_EXTEND:
3716                delta = ring_buffer_event_time_stamp(event);
3717                cpu_buffer->read_stamp += delta;
3718                return;
3719
3720        case RINGBUF_TYPE_TIME_STAMP:
3721                delta = ring_buffer_event_time_stamp(event);
3722                cpu_buffer->read_stamp = delta;
3723                return;
3724
3725        case RINGBUF_TYPE_DATA:
3726                cpu_buffer->read_stamp += event->time_delta;
3727                return;
3728
3729        default:
3730                RB_WARN_ON(cpu_buffer, 1);
3731        }
3732        return;
3733}
3734
3735static void
3736rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3737                          struct ring_buffer_event *event)
3738{
3739        u64 delta;
3740
3741        switch (event->type_len) {
3742        case RINGBUF_TYPE_PADDING:
3743                return;
3744
3745        case RINGBUF_TYPE_TIME_EXTEND:
3746                delta = ring_buffer_event_time_stamp(event);
3747                iter->read_stamp += delta;
3748                return;
3749
3750        case RINGBUF_TYPE_TIME_STAMP:
3751                delta = ring_buffer_event_time_stamp(event);
3752                iter->read_stamp = delta;
3753                return;
3754
3755        case RINGBUF_TYPE_DATA:
3756                iter->read_stamp += event->time_delta;
3757                return;
3758
3759        default:
3760                RB_WARN_ON(iter->cpu_buffer, 1);
3761        }
3762        return;
3763}
3764
3765static struct buffer_page *
3766rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3767{
3768        struct buffer_page *reader = NULL;
3769        unsigned long overwrite;
3770        unsigned long flags;
3771        int nr_loops = 0;
3772        int ret;
3773
3774        local_irq_save(flags);
3775        arch_spin_lock(&cpu_buffer->lock);
3776
3777 again:
3778        /*
3779         * This should normally only loop twice. But because the
3780         * start of the reader inserts an empty page, it causes
3781         * a case where we will loop three times. There should be no
3782         * reason to loop four times (that I know of).
3783         */
3784        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3785                reader = NULL;
3786                goto out;
3787        }
3788
3789        reader = cpu_buffer->reader_page;
3790
3791        /* If there's more to read, return this page */
3792        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3793                goto out;
3794
3795        /* Never should we have an index greater than the size */
3796        if (RB_WARN_ON(cpu_buffer,
3797                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3798                goto out;
3799
3800        /* check if we caught up to the tail */
3801        reader = NULL;
3802        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3803                goto out;
3804
3805        /* Don't bother swapping if the ring buffer is empty */
3806        if (rb_num_of_entries(cpu_buffer) == 0)
3807                goto out;
3808
3809        /*
3810         * Reset the reader page to size zero.
3811         */
3812        local_set(&cpu_buffer->reader_page->write, 0);
3813        local_set(&cpu_buffer->reader_page->entries, 0);
3814        local_set(&cpu_buffer->reader_page->page->commit, 0);
3815        cpu_buffer->reader_page->real_end = 0;
3816
3817 spin:
3818        /*
3819         * Splice the empty reader page into the list around the head.
3820         */
3821        reader = rb_set_head_page(cpu_buffer);
3822        if (!reader)
3823                goto out;
3824        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3825        cpu_buffer->reader_page->list.prev = reader->list.prev;
3826
3827        /*
3828         * cpu_buffer->pages just needs to point to the buffer, it
3829         *  has no specific buffer page to point to. Lets move it out
3830         *  of our way so we don't accidentally swap it.
3831         */
3832        cpu_buffer->pages = reader->list.prev;
3833
3834        /* The reader page will be pointing to the new head */
3835        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3836
3837        /*
3838         * We want to make sure we read the overruns after we set up our
3839         * pointers to the next object. The writer side does a
3840         * cmpxchg to cross pages which acts as the mb on the writer
3841         * side. Note, the reader will constantly fail the swap
3842         * while the writer is updating the pointers, so this
3843         * guarantees that the overwrite recorded here is the one we
3844         * want to compare with the last_overrun.
3845         */
3846        smp_mb();
3847        overwrite = local_read(&(cpu_buffer->overrun));
3848
3849        /*
3850         * Here's the tricky part.
3851         *
3852         * We need to move the pointer past the header page.
3853         * But we can only do that if a writer is not currently
3854         * moving it. The page before the header page has the
3855         * flag bit '1' set if it is pointing to the page we want.
3856         * but if the writer is in the process of moving it
3857         * than it will be '2' or already moved '0'.
3858         */
3859
3860        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3861
3862        /*
3863         * If we did not convert it, then we must try again.
3864         */
3865        if (!ret)
3866                goto spin;
3867
3868        /*
3869         * Yay! We succeeded in replacing the page.
3870         *
3871         * Now make the new head point back to the reader page.
3872         */
3873        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3874        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3875
3876        local_inc(&cpu_buffer->pages_read);
3877
3878        /* Finally update the reader page to the new head */
3879        cpu_buffer->reader_page = reader;
3880        cpu_buffer->reader_page->read = 0;
3881
3882        if (overwrite != cpu_buffer->last_overrun) {
3883                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3884                cpu_buffer->last_overrun = overwrite;
3885        }
3886
3887        goto again;
3888
3889 out:
3890        /* Update the read_stamp on the first event */
3891        if (reader && reader->read == 0)
3892                cpu_buffer->read_stamp = reader->page->time_stamp;
3893
3894        arch_spin_unlock(&cpu_buffer->lock);
3895        local_irq_restore(flags);
3896
3897        return reader;
3898}
3899
3900static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3901{
3902        struct ring_buffer_event *event;
3903        struct buffer_page *reader;
3904        unsigned length;
3905
3906        reader = rb_get_reader_page(cpu_buffer);
3907
3908        /* This function should not be called when buffer is empty */
3909        if (RB_WARN_ON(cpu_buffer, !reader))
3910                return;
3911
3912        event = rb_reader_event(cpu_buffer);
3913
3914        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3915                cpu_buffer->read++;
3916
3917        rb_update_read_stamp(cpu_buffer, event);
3918
3919        length = rb_event_length(event);
3920        cpu_buffer->reader_page->read += length;
3921}
3922
3923static void rb_advance_iter(struct ring_buffer_iter *iter)
3924{
3925        struct ring_buffer_per_cpu *cpu_buffer;
3926
3927        cpu_buffer = iter->cpu_buffer;
3928
3929        /* If head == next_event then we need to jump to the next event */
3930        if (iter->head == iter->next_event) {
3931                /* If the event gets overwritten again, there's nothing to do */
3932                if (rb_iter_head_event(iter) == NULL)
3933                        return;
3934        }
3935
3936        iter->head = iter->next_event;
3937
3938        /*
3939         * Check if we are at the end of the buffer.
3940         */
3941        if (iter->next_event >= rb_page_size(iter->head_page)) {
3942                /* discarded commits can make the page empty */
3943                if (iter->head_page == cpu_buffer->commit_page)
3944                        return;
3945                rb_inc_iter(iter);
3946                return;
3947        }
3948
3949        rb_update_iter_read_stamp(iter, iter->event);
3950}
3951
3952static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3953{
3954        return cpu_buffer->lost_events;
3955}
3956
3957static struct ring_buffer_event *
3958rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3959               unsigned long *lost_events)
3960{
3961        struct ring_buffer_event *event;
3962        struct buffer_page *reader;
3963        int nr_loops = 0;
3964
3965        if (ts)
3966                *ts = 0;
3967 again:
3968        /*
3969         * We repeat when a time extend is encountered.
3970         * Since the time extend is always attached to a data event,
3971         * we should never loop more than once.
3972         * (We never hit the following condition more than twice).
3973         */
3974        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3975                return NULL;
3976
3977        reader = rb_get_reader_page(cpu_buffer);
3978        if (!reader)
3979                return NULL;
3980
3981        event = rb_reader_event(cpu_buffer);
3982
3983        switch (event->type_len) {
3984        case RINGBUF_TYPE_PADDING:
3985                if (rb_null_event(event))
3986                        RB_WARN_ON(cpu_buffer, 1);
3987                /*
3988                 * Because the writer could be discarding every
3989                 * event it creates (which would probably be bad)
3990                 * if we were to go back to "again" then we may never
3991                 * catch up, and will trigger the warn on, or lock
3992                 * the box. Return the padding, and we will release
3993                 * the current locks, and try again.
3994                 */
3995                return event;
3996
3997        case RINGBUF_TYPE_TIME_EXTEND:
3998                /* Internal data, OK to advance */
3999                rb_advance_reader(cpu_buffer);
4000                goto again;
4001
4002        case RINGBUF_TYPE_TIME_STAMP:
4003                if (ts) {
4004                        *ts = ring_buffer_event_time_stamp(event);
4005                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4006                                                         cpu_buffer->cpu, ts);
4007                }
4008                /* Internal data, OK to advance */
4009                rb_advance_reader(cpu_buffer);
4010                goto again;
4011
4012        case RINGBUF_TYPE_DATA:
4013                if (ts && !(*ts)) {
4014                        *ts = cpu_buffer->read_stamp + event->time_delta;
4015                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4016                                                         cpu_buffer->cpu, ts);
4017                }
4018                if (lost_events)
4019                        *lost_events = rb_lost_events(cpu_buffer);
4020                return event;
4021
4022        default:
4023                RB_WARN_ON(cpu_buffer, 1);
4024        }
4025
4026        return NULL;
4027}
4028EXPORT_SYMBOL_GPL(ring_buffer_peek);
4029
4030static struct ring_buffer_event *
4031rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4032{
4033        struct trace_buffer *buffer;
4034        struct ring_buffer_per_cpu *cpu_buffer;
4035        struct ring_buffer_event *event;
4036        int nr_loops = 0;
4037
4038        if (ts)
4039                *ts = 0;
4040
4041        cpu_buffer = iter->cpu_buffer;
4042        buffer = cpu_buffer->buffer;
4043
4044        /*
4045         * Check if someone performed a consuming read to
4046         * the buffer. A consuming read invalidates the iterator
4047         * and we need to reset the iterator in this case.
4048         */
4049        if (unlikely(iter->cache_read != cpu_buffer->read ||
4050                     iter->cache_reader_page != cpu_buffer->reader_page))
4051                rb_iter_reset(iter);
4052
4053 again:
4054        if (ring_buffer_iter_empty(iter))
4055                return NULL;
4056
4057        /*
4058         * As the writer can mess with what the iterator is trying
4059         * to read, just give up if we fail to get an event after
4060         * three tries. The iterator is not as reliable when reading
4061         * the ring buffer with an active write as the consumer is.
4062         * Do not warn if the three failures is reached.
4063         */
4064        if (++nr_loops > 3)
4065                return NULL;
4066
4067        if (rb_per_cpu_empty(cpu_buffer))
4068                return NULL;
4069
4070        if (iter->head >= rb_page_size(iter->head_page)) {
4071                rb_inc_iter(iter);
4072                goto again;
4073        }
4074
4075        event = rb_iter_head_event(iter);
4076        if (!event)
4077                goto again;
4078
4079        switch (event->type_len) {
4080        case RINGBUF_TYPE_PADDING:
4081                if (rb_null_event(event)) {
4082                        rb_inc_iter(iter);
4083                        goto again;
4084                }
4085                rb_advance_iter(iter);
4086                return event;
4087
4088        case RINGBUF_TYPE_TIME_EXTEND:
4089                /* Internal data, OK to advance */
4090                rb_advance_iter(iter);
4091                goto again;
4092
4093        case RINGBUF_TYPE_TIME_STAMP:
4094                if (ts) {
4095                        *ts = ring_buffer_event_time_stamp(event);
4096                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4097                                                         cpu_buffer->cpu, ts);
4098                }
4099                /* Internal data, OK to advance */
4100                rb_advance_iter(iter);
4101                goto again;
4102
4103        case RINGBUF_TYPE_DATA:
4104                if (ts && !(*ts)) {
4105                        *ts = iter->read_stamp + event->time_delta;
4106                        ring_buffer_normalize_time_stamp(buffer,
4107                                                         cpu_buffer->cpu, ts);
4108                }
4109                return event;
4110
4111        default:
4112                RB_WARN_ON(cpu_buffer, 1);
4113        }
4114
4115        return NULL;
4116}
4117EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4118
4119static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4120{
4121        if (likely(!in_nmi())) {
4122                raw_spin_lock(&cpu_buffer->reader_lock);
4123                return true;
4124        }
4125
4126        /*
4127         * If an NMI die dumps out the content of the ring buffer
4128         * trylock must be used to prevent a deadlock if the NMI
4129         * preempted a task that holds the ring buffer locks. If
4130         * we get the lock then all is fine, if not, then continue
4131         * to do the read, but this can corrupt the ring buffer,
4132         * so it must be permanently disabled from future writes.
4133         * Reading from NMI is a oneshot deal.
4134         */
4135        if (raw_spin_trylock(&cpu_buffer->reader_lock))
4136                return true;
4137
4138        /* Continue without locking, but disable the ring buffer */
4139        atomic_inc(&cpu_buffer->record_disabled);
4140        return false;
4141}
4142
4143static inline void
4144rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4145{
4146        if (likely(locked))
4147                raw_spin_unlock(&cpu_buffer->reader_lock);
4148        return;
4149}
4150
4151/**
4152 * ring_buffer_peek - peek at the next event to be read
4153 * @buffer: The ring buffer to read
4154 * @cpu: The cpu to peak at
4155 * @ts: The timestamp counter of this event.
4156 * @lost_events: a variable to store if events were lost (may be NULL)
4157 *
4158 * This will return the event that will be read next, but does
4159 * not consume the data.
4160 */
4161struct ring_buffer_event *
4162ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4163                 unsigned long *lost_events)
4164{
4165        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4166        struct ring_buffer_event *event;
4167        unsigned long flags;
4168        bool dolock;
4169
4170        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4171                return NULL;
4172
4173 again:
4174        local_irq_save(flags);
4175        dolock = rb_reader_lock(cpu_buffer);
4176        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4177        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4178                rb_advance_reader(cpu_buffer);
4179        rb_reader_unlock(cpu_buffer, dolock);
4180        local_irq_restore(flags);
4181
4182        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4183                goto again;
4184
4185        return event;
4186}
4187
4188/** ring_buffer_iter_dropped - report if there are dropped events
4189 * @iter: The ring buffer iterator
4190 *
4191 * Returns true if there was dropped events since the last peek.
4192 */
4193bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4194{
4195        bool ret = iter->missed_events != 0;
4196
4197        iter->missed_events = 0;
4198        return ret;
4199}
4200EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4201
4202/**
4203 * ring_buffer_iter_peek - peek at the next event to be read
4204 * @iter: The ring buffer iterator
4205 * @ts: The timestamp counter of this event.
4206 *
4207 * This will return the event that will be read next, but does
4208 * not increment the iterator.
4209 */
4210struct ring_buffer_event *
4211ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4212{
4213        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4214        struct ring_buffer_event *event;
4215        unsigned long flags;
4216
4217 again:
4218        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4219        event = rb_iter_peek(iter, ts);
4220        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4221
4222        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4223                goto again;
4224
4225        return event;
4226}
4227
4228/**
4229 * ring_buffer_consume - return an event and consume it
4230 * @buffer: The ring buffer to get the next event from
4231 * @cpu: the cpu to read the buffer from
4232 * @ts: a variable to store the timestamp (may be NULL)
4233 * @lost_events: a variable to store if events were lost (may be NULL)
4234 *
4235 * Returns the next event in the ring buffer, and that event is consumed.
4236 * Meaning, that sequential reads will keep returning a different event,
4237 * and eventually empty the ring buffer if the producer is slower.
4238 */
4239struct ring_buffer_event *
4240ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4241                    unsigned long *lost_events)
4242{
4243        struct ring_buffer_per_cpu *cpu_buffer;
4244        struct ring_buffer_event *event = NULL;
4245        unsigned long flags;
4246        bool dolock;
4247
4248 again:
4249        /* might be called in atomic */
4250        preempt_disable();
4251
4252        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4253                goto out;
4254
4255        cpu_buffer = buffer->buffers[cpu];
4256        local_irq_save(flags);
4257        dolock = rb_reader_lock(cpu_buffer);
4258
4259        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4260        if (event) {
4261                cpu_buffer->lost_events = 0;
4262                rb_advance_reader(cpu_buffer);
4263        }
4264
4265        rb_reader_unlock(cpu_buffer, dolock);
4266        local_irq_restore(flags);
4267
4268 out:
4269        preempt_enable();
4270
4271        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4272                goto again;
4273
4274        return event;
4275}
4276EXPORT_SYMBOL_GPL(ring_buffer_consume);
4277
4278/**
4279 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4280 * @buffer: The ring buffer to read from
4281 * @cpu: The cpu buffer to iterate over
4282 * @flags: gfp flags to use for memory allocation
4283 *
4284 * This performs the initial preparations necessary to iterate
4285 * through the buffer.  Memory is allocated, buffer recording
4286 * is disabled, and the iterator pointer is returned to the caller.
4287 *
4288 * Disabling buffer recording prevents the reading from being
4289 * corrupted. This is not a consuming read, so a producer is not
4290 * expected.
4291 *
4292 * After a sequence of ring_buffer_read_prepare calls, the user is
4293 * expected to make at least one call to ring_buffer_read_prepare_sync.
4294 * Afterwards, ring_buffer_read_start is invoked to get things going
4295 * for real.
4296 *
4297 * This overall must be paired with ring_buffer_read_finish.
4298 */
4299struct ring_buffer_iter *
4300ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4301{
4302        struct ring_buffer_per_cpu *cpu_buffer;
4303        struct ring_buffer_iter *iter;
4304
4305        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4306                return NULL;
4307
4308        iter = kzalloc(sizeof(*iter), flags);
4309        if (!iter)
4310                return NULL;
4311
4312        iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4313        if (!iter->event) {
4314                kfree(iter);
4315                return NULL;
4316        }
4317
4318        cpu_buffer = buffer->buffers[cpu];
4319
4320        iter->cpu_buffer = cpu_buffer;
4321
4322        atomic_inc(&cpu_buffer->resize_disabled);
4323
4324        return iter;
4325}
4326EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4327
4328/**
4329 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4330 *
4331 * All previously invoked ring_buffer_read_prepare calls to prepare
4332 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4333 * calls on those iterators are allowed.
4334 */
4335void
4336ring_buffer_read_prepare_sync(void)
4337{
4338        synchronize_rcu();
4339}
4340EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4341
4342/**
4343 * ring_buffer_read_start - start a non consuming read of the buffer
4344 * @iter: The iterator returned by ring_buffer_read_prepare
4345 *
4346 * This finalizes the startup of an iteration through the buffer.
4347 * The iterator comes from a call to ring_buffer_read_prepare and
4348 * an intervening ring_buffer_read_prepare_sync must have been
4349 * performed.
4350 *
4351 * Must be paired with ring_buffer_read_finish.
4352 */
4353void
4354ring_buffer_read_start(struct ring_buffer_iter *iter)
4355{
4356        struct ring_buffer_per_cpu *cpu_buffer;
4357        unsigned long flags;
4358
4359        if (!iter)
4360                return;
4361
4362        cpu_buffer = iter->cpu_buffer;
4363
4364        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4365        arch_spin_lock(&cpu_buffer->lock);
4366        rb_iter_reset(iter);
4367        arch_spin_unlock(&cpu_buffer->lock);
4368        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4369}
4370EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4371
4372/**
4373 * ring_buffer_read_finish - finish reading the iterator of the buffer
4374 * @iter: The iterator retrieved by ring_buffer_start
4375 *
4376 * This re-enables the recording to the buffer, and frees the
4377 * iterator.
4378 */
4379void
4380ring_buffer_read_finish(struct ring_buffer_iter *iter)
4381{
4382        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4383        unsigned long flags;
4384
4385        /*
4386         * Ring buffer is disabled from recording, here's a good place
4387         * to check the integrity of the ring buffer.
4388         * Must prevent readers from trying to read, as the check
4389         * clears the HEAD page and readers require it.
4390         */
4391        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4392        rb_check_pages(cpu_buffer);
4393        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4394
4395        atomic_dec(&cpu_buffer->resize_disabled);
4396        kfree(iter->event);
4397        kfree(iter);
4398}
4399EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4400
4401/**
4402 * ring_buffer_iter_advance - advance the iterator to the next location
4403 * @iter: The ring buffer iterator
4404 *
4405 * Move the location of the iterator such that the next read will
4406 * be the next location of the iterator.
4407 */
4408void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4409{
4410        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4411        unsigned long flags;
4412
4413        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4414
4415        rb_advance_iter(iter);
4416
4417        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4418}
4419EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4420
4421/**
4422 * ring_buffer_size - return the size of the ring buffer (in bytes)
4423 * @buffer: The ring buffer.
4424 * @cpu: The CPU to get ring buffer size from.
4425 */
4426unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4427{
4428        /*
4429         * Earlier, this method returned
4430         *      BUF_PAGE_SIZE * buffer->nr_pages
4431         * Since the nr_pages field is now removed, we have converted this to
4432         * return the per cpu buffer value.
4433         */
4434        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4435                return 0;
4436
4437        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4438}
4439EXPORT_SYMBOL_GPL(ring_buffer_size);
4440
4441static void
4442rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4443{
4444        rb_head_page_deactivate(cpu_buffer);
4445
4446        cpu_buffer->head_page
4447                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4448        local_set(&cpu_buffer->head_page->write, 0);
4449        local_set(&cpu_buffer->head_page->entries, 0);
4450        local_set(&cpu_buffer->head_page->page->commit, 0);
4451
4452        cpu_buffer->head_page->read = 0;
4453
4454        cpu_buffer->tail_page = cpu_buffer->head_page;
4455        cpu_buffer->commit_page = cpu_buffer->head_page;
4456
4457        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4458        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4459        local_set(&cpu_buffer->reader_page->write, 0);
4460        local_set(&cpu_buffer->reader_page->entries, 0);
4461        local_set(&cpu_buffer->reader_page->page->commit, 0);
4462        cpu_buffer->reader_page->read = 0;
4463
4464        local_set(&cpu_buffer->entries_bytes, 0);
4465        local_set(&cpu_buffer->overrun, 0);
4466        local_set(&cpu_buffer->commit_overrun, 0);
4467        local_set(&cpu_buffer->dropped_events, 0);
4468        local_set(&cpu_buffer->entries, 0);
4469        local_set(&cpu_buffer->committing, 0);
4470        local_set(&cpu_buffer->commits, 0);
4471        local_set(&cpu_buffer->pages_touched, 0);
4472        local_set(&cpu_buffer->pages_read, 0);
4473        cpu_buffer->last_pages_touch = 0;
4474        cpu_buffer->shortest_full = 0;
4475        cpu_buffer->read = 0;
4476        cpu_buffer->read_bytes = 0;
4477
4478        cpu_buffer->write_stamp = 0;
4479        cpu_buffer->read_stamp = 0;
4480
4481        cpu_buffer->lost_events = 0;
4482        cpu_buffer->last_overrun = 0;
4483
4484        rb_head_page_activate(cpu_buffer);
4485}
4486
4487/**
4488 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4489 * @buffer: The ring buffer to reset a per cpu buffer of
4490 * @cpu: The CPU buffer to be reset
4491 */
4492void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4493{
4494        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4495        unsigned long flags;
4496
4497        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4498                return;
4499
4500        atomic_inc(&cpu_buffer->resize_disabled);
4501        atomic_inc(&cpu_buffer->record_disabled);
4502
4503        /* Make sure all commits have finished */
4504        synchronize_rcu();
4505
4506        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4507
4508        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4509                goto out;
4510
4511        arch_spin_lock(&cpu_buffer->lock);
4512
4513        rb_reset_cpu(cpu_buffer);
4514
4515        arch_spin_unlock(&cpu_buffer->lock);
4516
4517 out:
4518        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4519
4520        atomic_dec(&cpu_buffer->record_disabled);
4521        atomic_dec(&cpu_buffer->resize_disabled);
4522}
4523EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4524
4525/**
4526 * ring_buffer_reset - reset a ring buffer
4527 * @buffer: The ring buffer to reset all cpu buffers
4528 */
4529void ring_buffer_reset(struct trace_buffer *buffer)
4530{
4531        int cpu;
4532
4533        for_each_buffer_cpu(buffer, cpu)
4534                ring_buffer_reset_cpu(buffer, cpu);
4535}
4536EXPORT_SYMBOL_GPL(ring_buffer_reset);
4537
4538/**
4539 * rind_buffer_empty - is the ring buffer empty?
4540 * @buffer: The ring buffer to test
4541 */
4542bool ring_buffer_empty(struct trace_buffer *buffer)
4543{
4544        struct ring_buffer_per_cpu *cpu_buffer;
4545        unsigned long flags;
4546        bool dolock;
4547        int cpu;
4548        int ret;
4549
4550        /* yes this is racy, but if you don't like the race, lock the buffer */
4551        for_each_buffer_cpu(buffer, cpu) {
4552                cpu_buffer = buffer->buffers[cpu];
4553                local_irq_save(flags);
4554                dolock = rb_reader_lock(cpu_buffer);
4555                ret = rb_per_cpu_empty(cpu_buffer);
4556                rb_reader_unlock(cpu_buffer, dolock);
4557                local_irq_restore(flags);
4558
4559                if (!ret)
4560                        return false;
4561        }
4562
4563        return true;
4564}
4565EXPORT_SYMBOL_GPL(ring_buffer_empty);
4566
4567/**
4568 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4569 * @buffer: The ring buffer
4570 * @cpu: The CPU buffer to test
4571 */
4572bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4573{
4574        struct ring_buffer_per_cpu *cpu_buffer;
4575        unsigned long flags;
4576        bool dolock;
4577        int ret;
4578
4579        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4580                return true;
4581
4582        cpu_buffer = buffer->buffers[cpu];
4583        local_irq_save(flags);
4584        dolock = rb_reader_lock(cpu_buffer);
4585        ret = rb_per_cpu_empty(cpu_buffer);
4586        rb_reader_unlock(cpu_buffer, dolock);
4587        local_irq_restore(flags);
4588
4589        return ret;
4590}
4591EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4592
4593#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4594/**
4595 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4596 * @buffer_a: One buffer to swap with
4597 * @buffer_b: The other buffer to swap with
4598 * @cpu: the CPU of the buffers to swap
4599 *
4600 * This function is useful for tracers that want to take a "snapshot"
4601 * of a CPU buffer and has another back up buffer lying around.
4602 * it is expected that the tracer handles the cpu buffer not being
4603 * used at the moment.
4604 */
4605int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
4606                         struct trace_buffer *buffer_b, int cpu)
4607{
4608        struct ring_buffer_per_cpu *cpu_buffer_a;
4609        struct ring_buffer_per_cpu *cpu_buffer_b;
4610        int ret = -EINVAL;
4611
4612        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4613            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4614                goto out;
4615
4616        cpu_buffer_a = buffer_a->buffers[cpu];
4617        cpu_buffer_b = buffer_b->buffers[cpu];
4618
4619        /* At least make sure the two buffers are somewhat the same */
4620        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4621                goto out;
4622
4623        ret = -EAGAIN;
4624
4625        if (atomic_read(&buffer_a->record_disabled))
4626                goto out;
4627
4628        if (atomic_read(&buffer_b->record_disabled))
4629                goto out;
4630
4631        if (atomic_read(&cpu_buffer_a->record_disabled))
4632                goto out;
4633
4634        if (atomic_read(&cpu_buffer_b->record_disabled))
4635                goto out;
4636
4637        /*
4638         * We can't do a synchronize_rcu here because this
4639         * function can be called in atomic context.
4640         * Normally this will be called from the same CPU as cpu.
4641         * If not it's up to the caller to protect this.
4642         */
4643        atomic_inc(&cpu_buffer_a->record_disabled);
4644        atomic_inc(&cpu_buffer_b->record_disabled);
4645
4646        ret = -EBUSY;
4647        if (local_read(&cpu_buffer_a->committing))
4648                goto out_dec;
4649        if (local_read(&cpu_buffer_b->committing))
4650                goto out_dec;
4651
4652        buffer_a->buffers[cpu] = cpu_buffer_b;
4653        buffer_b->buffers[cpu] = cpu_buffer_a;
4654
4655        cpu_buffer_b->buffer = buffer_a;
4656        cpu_buffer_a->buffer = buffer_b;
4657
4658        ret = 0;
4659
4660out_dec:
4661        atomic_dec(&cpu_buffer_a->record_disabled);
4662        atomic_dec(&cpu_buffer_b->record_disabled);
4663out:
4664        return ret;
4665}
4666EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4667#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4668
4669/**
4670 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4671 * @buffer: the buffer to allocate for.
4672 * @cpu: the cpu buffer to allocate.
4673 *
4674 * This function is used in conjunction with ring_buffer_read_page.
4675 * When reading a full page from the ring buffer, these functions
4676 * can be used to speed up the process. The calling function should
4677 * allocate a few pages first with this function. Then when it
4678 * needs to get pages from the ring buffer, it passes the result
4679 * of this function into ring_buffer_read_page, which will swap
4680 * the page that was allocated, with the read page of the buffer.
4681 *
4682 * Returns:
4683 *  The page allocated, or ERR_PTR
4684 */
4685void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
4686{
4687        struct ring_buffer_per_cpu *cpu_buffer;
4688        struct buffer_data_page *bpage = NULL;
4689        unsigned long flags;
4690        struct page *page;
4691
4692        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4693                return ERR_PTR(-ENODEV);
4694
4695        cpu_buffer = buffer->buffers[cpu];
4696        local_irq_save(flags);
4697        arch_spin_lock(&cpu_buffer->lock);
4698
4699        if (cpu_buffer->free_page) {
4700                bpage = cpu_buffer->free_page;
4701                cpu_buffer->free_page = NULL;
4702        }
4703
4704        arch_spin_unlock(&cpu_buffer->lock);
4705        local_irq_restore(flags);
4706
4707        if (bpage)
4708                goto out;
4709
4710        page = alloc_pages_node(cpu_to_node(cpu),
4711                                GFP_KERNEL | __GFP_NORETRY, 0);
4712        if (!page)
4713                return ERR_PTR(-ENOMEM);
4714
4715        bpage = page_address(page);
4716
4717 out:
4718        rb_init_page(bpage);
4719
4720        return bpage;
4721}
4722EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4723
4724/**
4725 * ring_buffer_free_read_page - free an allocated read page
4726 * @buffer: the buffer the page was allocate for
4727 * @cpu: the cpu buffer the page came from
4728 * @data: the page to free
4729 *
4730 * Free a page allocated from ring_buffer_alloc_read_page.
4731 */
4732void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
4733{
4734        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4735        struct buffer_data_page *bpage = data;
4736        struct page *page = virt_to_page(bpage);
4737        unsigned long flags;
4738
4739        /* If the page is still in use someplace else, we can't reuse it */
4740        if (page_ref_count(page) > 1)
4741                goto out;
4742
4743        local_irq_save(flags);
4744        arch_spin_lock(&cpu_buffer->lock);
4745
4746        if (!cpu_buffer->free_page) {
4747                cpu_buffer->free_page = bpage;
4748                bpage = NULL;
4749        }
4750
4751        arch_spin_unlock(&cpu_buffer->lock);
4752        local_irq_restore(flags);
4753
4754 out:
4755        free_page((unsigned long)bpage);
4756}
4757EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4758
4759/**
4760 * ring_buffer_read_page - extract a page from the ring buffer
4761 * @buffer: buffer to extract from
4762 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4763 * @len: amount to extract
4764 * @cpu: the cpu of the buffer to extract
4765 * @full: should the extraction only happen when the page is full.
4766 *
4767 * This function will pull out a page from the ring buffer and consume it.
4768 * @data_page must be the address of the variable that was returned
4769 * from ring_buffer_alloc_read_page. This is because the page might be used
4770 * to swap with a page in the ring buffer.
4771 *
4772 * for example:
4773 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4774 *      if (IS_ERR(rpage))
4775 *              return PTR_ERR(rpage);
4776 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4777 *      if (ret >= 0)
4778 *              process_page(rpage, ret);
4779 *
4780 * When @full is set, the function will not return true unless
4781 * the writer is off the reader page.
4782 *
4783 * Note: it is up to the calling functions to handle sleeps and wakeups.
4784 *  The ring buffer can be used anywhere in the kernel and can not
4785 *  blindly call wake_up. The layer that uses the ring buffer must be
4786 *  responsible for that.
4787 *
4788 * Returns:
4789 *  >=0 if data has been transferred, returns the offset of consumed data.
4790 *  <0 if no data has been transferred.
4791 */
4792int ring_buffer_read_page(struct trace_buffer *buffer,
4793                          void **data_page, size_t len, int cpu, int full)
4794{
4795        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4796        struct ring_buffer_event *event;
4797        struct buffer_data_page *bpage;
4798        struct buffer_page *reader;
4799        unsigned long missed_events;
4800        unsigned long flags;
4801        unsigned int commit;
4802        unsigned int read;
4803        u64 save_timestamp;
4804        int ret = -1;
4805
4806        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4807                goto out;
4808
4809        /*
4810         * If len is not big enough to hold the page header, then
4811         * we can not copy anything.
4812         */
4813        if (len <= BUF_PAGE_HDR_SIZE)
4814                goto out;
4815
4816        len -= BUF_PAGE_HDR_SIZE;
4817
4818        if (!data_page)
4819                goto out;
4820
4821        bpage = *data_page;
4822        if (!bpage)
4823                goto out;
4824
4825        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4826
4827        reader = rb_get_reader_page(cpu_buffer);
4828        if (!reader)
4829                goto out_unlock;
4830
4831        event = rb_reader_event(cpu_buffer);
4832
4833        read = reader->read;
4834        commit = rb_page_commit(reader);
4835
4836        /* Check if any events were dropped */
4837        missed_events = cpu_buffer->lost_events;
4838
4839        /*
4840         * If this page has been partially read or
4841         * if len is not big enough to read the rest of the page or
4842         * a writer is still on the page, then
4843         * we must copy the data from the page to the buffer.
4844         * Otherwise, we can simply swap the page with the one passed in.
4845         */
4846        if (read || (len < (commit - read)) ||
4847            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4848                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4849                unsigned int rpos = read;
4850                unsigned int pos = 0;
4851                unsigned int size;
4852
4853                if (full)
4854                        goto out_unlock;
4855
4856                if (len > (commit - read))
4857                        len = (commit - read);
4858
4859                /* Always keep the time extend and data together */
4860                size = rb_event_ts_length(event);
4861
4862                if (len < size)
4863                        goto out_unlock;
4864
4865                /* save the current timestamp, since the user will need it */
4866                save_timestamp = cpu_buffer->read_stamp;
4867
4868                /* Need to copy one event at a time */
4869                do {
4870                        /* We need the size of one event, because
4871                         * rb_advance_reader only advances by one event,
4872                         * whereas rb_event_ts_length may include the size of
4873                         * one or two events.
4874                         * We have already ensured there's enough space if this
4875                         * is a time extend. */
4876                        size = rb_event_length(event);
4877                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4878
4879                        len -= size;
4880
4881                        rb_advance_reader(cpu_buffer);
4882                        rpos = reader->read;
4883                        pos += size;
4884
4885                        if (rpos >= commit)
4886                                break;
4887
4888                        event = rb_reader_event(cpu_buffer);
4889                        /* Always keep the time extend and data together */
4890                        size = rb_event_ts_length(event);
4891                } while (len >= size);
4892
4893                /* update bpage */
4894                local_set(&bpage->commit, pos);
4895                bpage->time_stamp = save_timestamp;
4896
4897                /* we copied everything to the beginning */
4898                read = 0;
4899        } else {
4900                /* update the entry counter */
4901                cpu_buffer->read += rb_page_entries(reader);
4902                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4903
4904                /* swap the pages */
4905                rb_init_page(bpage);
4906                bpage = reader->page;
4907                reader->page = *data_page;
4908                local_set(&reader->write, 0);
4909                local_set(&reader->entries, 0);
4910                reader->read = 0;
4911                *data_page = bpage;
4912
4913                /*
4914                 * Use the real_end for the data size,
4915                 * This gives us a chance to store the lost events
4916                 * on the page.
4917                 */
4918                if (reader->real_end)
4919                        local_set(&bpage->commit, reader->real_end);
4920        }
4921        ret = read;
4922
4923        cpu_buffer->lost_events = 0;
4924
4925        commit = local_read(&bpage->commit);
4926        /*
4927         * Set a flag in the commit field if we lost events
4928         */
4929        if (missed_events) {
4930                /* If there is room at the end of the page to save the
4931                 * missed events, then record it there.
4932                 */
4933                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4934                        memcpy(&bpage->data[commit], &missed_events,
4935                               sizeof(missed_events));
4936                        local_add(RB_MISSED_STORED, &bpage->commit);
4937                        commit += sizeof(missed_events);
4938                }
4939                local_add(RB_MISSED_EVENTS, &bpage->commit);
4940        }
4941
4942        /*
4943         * This page may be off to user land. Zero it out here.
4944         */
4945        if (commit < BUF_PAGE_SIZE)
4946                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4947
4948 out_unlock:
4949        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4950
4951 out:
4952        return ret;
4953}
4954EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4955
4956/*
4957 * We only allocate new buffers, never free them if the CPU goes down.
4958 * If we were to free the buffer, then the user would lose any trace that was in
4959 * the buffer.
4960 */
4961int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4962{
4963        struct trace_buffer *buffer;
4964        long nr_pages_same;
4965        int cpu_i;
4966        unsigned long nr_pages;
4967
4968        buffer = container_of(node, struct trace_buffer, node);
4969        if (cpumask_test_cpu(cpu, buffer->cpumask))
4970                return 0;
4971
4972        nr_pages = 0;
4973        nr_pages_same = 1;
4974        /* check if all cpu sizes are same */
4975        for_each_buffer_cpu(buffer, cpu_i) {
4976                /* fill in the size from first enabled cpu */
4977                if (nr_pages == 0)
4978                        nr_pages = buffer->buffers[cpu_i]->nr_pages;
4979                if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4980                        nr_pages_same = 0;
4981                        break;
4982                }
4983        }
4984        /* allocate minimum pages, user can later expand it */
4985        if (!nr_pages_same)
4986                nr_pages = 2;
4987        buffer->buffers[cpu] =
4988                rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4989        if (!buffer->buffers[cpu]) {
4990                WARN(1, "failed to allocate ring buffer on CPU %u\n",
4991                     cpu);
4992                return -ENOMEM;
4993        }
4994        smp_wmb();
4995        cpumask_set_cpu(cpu, buffer->cpumask);
4996        return 0;
4997}
4998
4999#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5000/*
5001 * This is a basic integrity check of the ring buffer.
5002 * Late in the boot cycle this test will run when configured in.
5003 * It will kick off a thread per CPU that will go into a loop
5004 * writing to the per cpu ring buffer various sizes of data.
5005 * Some of the data will be large items, some small.
5006 *
5007 * Another thread is created that goes into a spin, sending out
5008 * IPIs to the other CPUs to also write into the ring buffer.
5009 * this is to test the nesting ability of the buffer.
5010 *
5011 * Basic stats are recorded and reported. If something in the
5012 * ring buffer should happen that's not expected, a big warning
5013 * is displayed and all ring buffers are disabled.
5014 */
5015static struct task_struct *rb_threads[NR_CPUS] __initdata;
5016
5017struct rb_test_data {
5018        struct trace_buffer *buffer;
5019        unsigned long           events;
5020        unsigned long           bytes_written;
5021        unsigned long           bytes_alloc;
5022        unsigned long           bytes_dropped;
5023        unsigned long           events_nested;
5024        unsigned long           bytes_written_nested;
5025        unsigned long           bytes_alloc_nested;
5026        unsigned long           bytes_dropped_nested;
5027        int                     min_size_nested;
5028        int                     max_size_nested;
5029        int                     max_size;
5030        int                     min_size;
5031        int                     cpu;
5032        int                     cnt;
5033};
5034
5035static struct rb_test_data rb_data[NR_CPUS] __initdata;
5036
5037/* 1 meg per cpu */
5038#define RB_TEST_BUFFER_SIZE     1048576
5039
5040static char rb_string[] __initdata =
5041        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5042        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5043        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5044
5045static bool rb_test_started __initdata;
5046
5047struct rb_item {
5048        int size;
5049        char str[];
5050};
5051
5052static __init int rb_write_something(struct rb_test_data *data, bool nested)
5053{
5054        struct ring_buffer_event *event;
5055        struct rb_item *item;
5056        bool started;
5057        int event_len;
5058        int size;
5059        int len;
5060        int cnt;
5061
5062        /* Have nested writes different that what is written */
5063        cnt = data->cnt + (nested ? 27 : 0);
5064
5065        /* Multiply cnt by ~e, to make some unique increment */
5066        size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5067
5068        len = size + sizeof(struct rb_item);
5069
5070        started = rb_test_started;
5071        /* read rb_test_started before checking buffer enabled */
5072        smp_rmb();
5073
5074        event = ring_buffer_lock_reserve(data->buffer, len);
5075        if (!event) {
5076                /* Ignore dropped events before test starts. */
5077                if (started) {
5078                        if (nested)
5079                                data->bytes_dropped += len;
5080                        else
5081                                data->bytes_dropped_nested += len;
5082                }
5083                return len;
5084        }
5085
5086        event_len = ring_buffer_event_length(event);
5087
5088        if (RB_WARN_ON(data->buffer, event_len < len))
5089                goto out;
5090
5091        item = ring_buffer_event_data(event);
5092        item->size = size;
5093        memcpy(item->str, rb_string, size);
5094
5095        if (nested) {
5096                data->bytes_alloc_nested += event_len;
5097                data->bytes_written_nested += len;
5098                data->events_nested++;
5099                if (!data->min_size_nested || len < data->min_size_nested)
5100                        data->min_size_nested = len;
5101                if (len > data->max_size_nested)
5102                        data->max_size_nested = len;
5103        } else {
5104                data->bytes_alloc += event_len;
5105                data->bytes_written += len;
5106                data->events++;
5107                if (!data->min_size || len < data->min_size)
5108                        data->max_size = len;
5109                if (len > data->max_size)
5110                        data->max_size = len;
5111        }
5112
5113 out:
5114        ring_buffer_unlock_commit(data->buffer, event);
5115
5116        return 0;
5117}
5118
5119static __init int rb_test(void *arg)
5120{
5121        struct rb_test_data *data = arg;
5122
5123        while (!kthread_should_stop()) {
5124                rb_write_something(data, false);
5125                data->cnt++;
5126
5127                set_current_state(TASK_INTERRUPTIBLE);
5128                /* Now sleep between a min of 100-300us and a max of 1ms */
5129                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5130        }
5131
5132        return 0;
5133}
5134
5135static __init void rb_ipi(void *ignore)
5136{
5137        struct rb_test_data *data;
5138        int cpu = smp_processor_id();
5139
5140        data = &rb_data[cpu];
5141        rb_write_something(data, true);
5142}
5143
5144static __init int rb_hammer_test(void *arg)
5145{
5146        while (!kthread_should_stop()) {
5147
5148                /* Send an IPI to all cpus to write data! */
5149                smp_call_function(rb_ipi, NULL, 1);
5150                /* No sleep, but for non preempt, let others run */
5151                schedule();
5152        }
5153
5154        return 0;
5155}
5156
5157static __init int test_ringbuffer(void)
5158{
5159        struct task_struct *rb_hammer;
5160        struct trace_buffer *buffer;
5161        int cpu;
5162        int ret = 0;
5163
5164        if (security_locked_down(LOCKDOWN_TRACEFS)) {
5165                pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5166                return 0;
5167        }
5168
5169        pr_info("Running ring buffer tests...\n");
5170
5171        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5172        if (WARN_ON(!buffer))
5173                return 0;
5174
5175        /* Disable buffer so that threads can't write to it yet */
5176        ring_buffer_record_off(buffer);
5177
5178        for_each_online_cpu(cpu) {
5179                rb_data[cpu].buffer = buffer;
5180                rb_data[cpu].cpu = cpu;
5181                rb_data[cpu].cnt = cpu;
5182                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5183                                                 "rbtester/%d", cpu);
5184                if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5185                        pr_cont("FAILED\n");
5186                        ret = PTR_ERR(rb_threads[cpu]);
5187                        goto out_free;
5188                }
5189
5190                kthread_bind(rb_threads[cpu], cpu);
5191                wake_up_process(rb_threads[cpu]);
5192        }
5193
5194        /* Now create the rb hammer! */
5195        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5196        if (WARN_ON(IS_ERR(rb_hammer))) {
5197                pr_cont("FAILED\n");
5198                ret = PTR_ERR(rb_hammer);
5199                goto out_free;
5200        }
5201
5202        ring_buffer_record_on(buffer);
5203        /*
5204         * Show buffer is enabled before setting rb_test_started.
5205         * Yes there's a small race window where events could be
5206         * dropped and the thread wont catch it. But when a ring
5207         * buffer gets enabled, there will always be some kind of
5208         * delay before other CPUs see it. Thus, we don't care about
5209         * those dropped events. We care about events dropped after
5210         * the threads see that the buffer is active.
5211         */
5212        smp_wmb();
5213        rb_test_started = true;
5214
5215        set_current_state(TASK_INTERRUPTIBLE);
5216        /* Just run for 10 seconds */;
5217        schedule_timeout(10 * HZ);
5218
5219        kthread_stop(rb_hammer);
5220
5221 out_free:
5222        for_each_online_cpu(cpu) {
5223                if (!rb_threads[cpu])
5224                        break;
5225                kthread_stop(rb_threads[cpu]);
5226        }
5227        if (ret) {
5228                ring_buffer_free(buffer);
5229                return ret;
5230        }
5231
5232        /* Report! */
5233        pr_info("finished\n");
5234        for_each_online_cpu(cpu) {
5235                struct ring_buffer_event *event;
5236                struct rb_test_data *data = &rb_data[cpu];
5237                struct rb_item *item;
5238                unsigned long total_events;
5239                unsigned long total_dropped;
5240                unsigned long total_written;
5241                unsigned long total_alloc;
5242                unsigned long total_read = 0;
5243                unsigned long total_size = 0;
5244                unsigned long total_len = 0;
5245                unsigned long total_lost = 0;
5246                unsigned long lost;
5247                int big_event_size;
5248                int small_event_size;
5249
5250                ret = -1;
5251
5252                total_events = data->events + data->events_nested;
5253                total_written = data->bytes_written + data->bytes_written_nested;
5254                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5255                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5256
5257                big_event_size = data->max_size + data->max_size_nested;
5258                small_event_size = data->min_size + data->min_size_nested;
5259
5260                pr_info("CPU %d:\n", cpu);
5261                pr_info("              events:    %ld\n", total_events);
5262                pr_info("       dropped bytes:    %ld\n", total_dropped);
5263                pr_info("       alloced bytes:    %ld\n", total_alloc);
5264                pr_info("       written bytes:    %ld\n", total_written);
5265                pr_info("       biggest event:    %d\n", big_event_size);
5266                pr_info("      smallest event:    %d\n", small_event_size);
5267
5268                if (RB_WARN_ON(buffer, total_dropped))
5269                        break;
5270
5271                ret = 0;
5272
5273                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5274                        total_lost += lost;
5275                        item = ring_buffer_event_data(event);
5276                        total_len += ring_buffer_event_length(event);
5277                        total_size += item->size + sizeof(struct rb_item);
5278                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5279                                pr_info("FAILED!\n");
5280                                pr_info("buffer had: %.*s\n", item->size, item->str);
5281                                pr_info("expected:   %.*s\n", item->size, rb_string);
5282                                RB_WARN_ON(buffer, 1);
5283                                ret = -1;
5284                                break;
5285                        }
5286                        total_read++;
5287                }
5288                if (ret)
5289                        break;
5290
5291                ret = -1;
5292
5293                pr_info("         read events:   %ld\n", total_read);
5294                pr_info("         lost events:   %ld\n", total_lost);
5295                pr_info("        total events:   %ld\n", total_lost + total_read);
5296                pr_info("  recorded len bytes:   %ld\n", total_len);
5297                pr_info(" recorded size bytes:   %ld\n", total_size);
5298                if (total_lost)
5299                        pr_info(" With dropped events, record len and size may not match\n"
5300                                " alloced and written from above\n");
5301                if (!total_lost) {
5302                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
5303                                       total_size != total_written))
5304                                break;
5305                }
5306                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5307                        break;
5308
5309                ret = 0;
5310        }
5311        if (!ret)
5312                pr_info("Ring buffer PASSED!\n");
5313
5314        ring_buffer_free(buffer);
5315        return 0;
5316}
5317
5318late_initcall(test_ringbuffer);
5319#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5320