linux/mm/memblock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.     June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS                   128
  26#define INIT_PHYSMEM_REGIONS                    4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS         INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32/**
  33 * DOC: memblock overview
  34 *
  35 * Memblock is a method of managing memory regions during the early
  36 * boot period when the usual kernel memory allocators are not up and
  37 * running.
  38 *
  39 * Memblock views the system memory as collections of contiguous
  40 * regions. There are several types of these collections:
  41 *
  42 * * ``memory`` - describes the physical memory available to the
  43 *   kernel; this may differ from the actual physical memory installed
  44 *   in the system, for instance when the memory is restricted with
  45 *   ``mem=`` command line parameter
  46 * * ``reserved`` - describes the regions that were allocated
  47 * * ``physmap`` - describes the actual physical memory regardless of
  48 *   the possible restrictions; the ``physmap`` type is only available
  49 *   on some architectures.
  50 *
  51 * Each region is represented by :c:type:`struct memblock_region` that
  52 * defines the region extents, its attributes and NUMA node id on NUMA
  53 * systems. Every memory type is described by the :c:type:`struct
  54 * memblock_type` which contains an array of memory regions along with
  55 * the allocator metadata. The memory types are nicely wrapped with
  56 * :c:type:`struct memblock`. This structure is statically initialzed
  57 * at build time. The region arrays for the "memory" and "reserved"
  58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
  59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
  60 * The memblock_allow_resize() enables automatic resizing of the region
  61 * arrays during addition of new regions. This feature should be used
  62 * with care so that memory allocated for the region array will not
  63 * overlap with areas that should be reserved, for example initrd.
  64 *
  65 * The early architecture setup should tell memblock what the physical
  66 * memory layout is by using memblock_add() or memblock_add_node()
  67 * functions. The first function does not assign the region to a NUMA
  68 * node and it is appropriate for UMA systems. Yet, it is possible to
  69 * use it on NUMA systems as well and assign the region to a NUMA node
  70 * later in the setup process using memblock_set_node(). The
  71 * memblock_add_node() performs such an assignment directly.
  72 *
  73 * Once memblock is setup the memory can be allocated using one of the
  74 * API variants:
  75 *
  76 * * memblock_phys_alloc*() - these functions return the **physical**
  77 *   address of the allocated memory
  78 * * memblock_alloc*() - these functions return the **virtual** address
  79 *   of the allocated memory.
  80 *
  81 * Note, that both API variants use implicit assumptions about allowed
  82 * memory ranges and the fallback methods. Consult the documentation
  83 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  84 * functions for more elaborate description.
  85 *
  86 * As the system boot progresses, the architecture specific mem_init()
  87 * function frees all the memory to the buddy page allocator.
  88 *
  89 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  90 * memblock data structures will be discarded after the system
  91 * initialization completes.
  92 */
  93
  94#ifndef CONFIG_NEED_MULTIPLE_NODES
  95struct pglist_data __refdata contig_page_data;
  96EXPORT_SYMBOL(contig_page_data);
  97#endif
  98
  99unsigned long max_low_pfn;
 100unsigned long min_low_pfn;
 101unsigned long max_pfn;
 102unsigned long long max_possible_pfn;
 103
 104static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 105static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 106#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 107static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
 108#endif
 109
 110struct memblock memblock __initdata_memblock = {
 111        .memory.regions         = memblock_memory_init_regions,
 112        .memory.cnt             = 1,    /* empty dummy entry */
 113        .memory.max             = INIT_MEMBLOCK_REGIONS,
 114        .memory.name            = "memory",
 115
 116        .reserved.regions       = memblock_reserved_init_regions,
 117        .reserved.cnt           = 1,    /* empty dummy entry */
 118        .reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,
 119        .reserved.name          = "reserved",
 120
 121#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 122        .physmem.regions        = memblock_physmem_init_regions,
 123        .physmem.cnt            = 1,    /* empty dummy entry */
 124        .physmem.max            = INIT_PHYSMEM_REGIONS,
 125        .physmem.name           = "physmem",
 126#endif
 127
 128        .bottom_up              = false,
 129        .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
 130};
 131
 132int memblock_debug __initdata_memblock;
 133static bool system_has_some_mirror __initdata_memblock = false;
 134static int memblock_can_resize __initdata_memblock;
 135static int memblock_memory_in_slab __initdata_memblock = 0;
 136static int memblock_reserved_in_slab __initdata_memblock = 0;
 137
 138static enum memblock_flags __init_memblock choose_memblock_flags(void)
 139{
 140        return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 141}
 142
 143/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 144static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 145{
 146        return *size = min(*size, PHYS_ADDR_MAX - base);
 147}
 148
 149/*
 150 * Address comparison utilities
 151 */
 152static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 153                                       phys_addr_t base2, phys_addr_t size2)
 154{
 155        return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 156}
 157
 158bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 159                                        phys_addr_t base, phys_addr_t size)
 160{
 161        unsigned long i;
 162
 163        for (i = 0; i < type->cnt; i++)
 164                if (memblock_addrs_overlap(base, size, type->regions[i].base,
 165                                           type->regions[i].size))
 166                        break;
 167        return i < type->cnt;
 168}
 169
 170/**
 171 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 172 * @start: start of candidate range
 173 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 174 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 175 * @size: size of free area to find
 176 * @align: alignment of free area to find
 177 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 178 * @flags: pick from blocks based on memory attributes
 179 *
 180 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 181 *
 182 * Return:
 183 * Found address on success, 0 on failure.
 184 */
 185static phys_addr_t __init_memblock
 186__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 187                                phys_addr_t size, phys_addr_t align, int nid,
 188                                enum memblock_flags flags)
 189{
 190        phys_addr_t this_start, this_end, cand;
 191        u64 i;
 192
 193        for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 194                this_start = clamp(this_start, start, end);
 195                this_end = clamp(this_end, start, end);
 196
 197                cand = round_up(this_start, align);
 198                if (cand < this_end && this_end - cand >= size)
 199                        return cand;
 200        }
 201
 202        return 0;
 203}
 204
 205/**
 206 * __memblock_find_range_top_down - find free area utility, in top-down
 207 * @start: start of candidate range
 208 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 209 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 210 * @size: size of free area to find
 211 * @align: alignment of free area to find
 212 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 213 * @flags: pick from blocks based on memory attributes
 214 *
 215 * Utility called from memblock_find_in_range_node(), find free area top-down.
 216 *
 217 * Return:
 218 * Found address on success, 0 on failure.
 219 */
 220static phys_addr_t __init_memblock
 221__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 222                               phys_addr_t size, phys_addr_t align, int nid,
 223                               enum memblock_flags flags)
 224{
 225        phys_addr_t this_start, this_end, cand;
 226        u64 i;
 227
 228        for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 229                                        NULL) {
 230                this_start = clamp(this_start, start, end);
 231                this_end = clamp(this_end, start, end);
 232
 233                if (this_end < size)
 234                        continue;
 235
 236                cand = round_down(this_end - size, align);
 237                if (cand >= this_start)
 238                        return cand;
 239        }
 240
 241        return 0;
 242}
 243
 244/**
 245 * memblock_find_in_range_node - find free area in given range and node
 246 * @size: size of free area to find
 247 * @align: alignment of free area to find
 248 * @start: start of candidate range
 249 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 250 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 251 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 252 * @flags: pick from blocks based on memory attributes
 253 *
 254 * Find @size free area aligned to @align in the specified range and node.
 255 *
 256 * When allocation direction is bottom-up, the @start should be greater
 257 * than the end of the kernel image. Otherwise, it will be trimmed. The
 258 * reason is that we want the bottom-up allocation just near the kernel
 259 * image so it is highly likely that the allocated memory and the kernel
 260 * will reside in the same node.
 261 *
 262 * If bottom-up allocation failed, will try to allocate memory top-down.
 263 *
 264 * Return:
 265 * Found address on success, 0 on failure.
 266 */
 267static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 268                                        phys_addr_t align, phys_addr_t start,
 269                                        phys_addr_t end, int nid,
 270                                        enum memblock_flags flags)
 271{
 272        phys_addr_t kernel_end, ret;
 273
 274        /* pump up @end */
 275        if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 276            end == MEMBLOCK_ALLOC_KASAN)
 277                end = memblock.current_limit;
 278
 279        /* avoid allocating the first page */
 280        start = max_t(phys_addr_t, start, PAGE_SIZE);
 281        end = max(start, end);
 282        kernel_end = __pa_symbol(_end);
 283
 284        /*
 285         * try bottom-up allocation only when bottom-up mode
 286         * is set and @end is above the kernel image.
 287         */
 288        if (memblock_bottom_up() && end > kernel_end) {
 289                phys_addr_t bottom_up_start;
 290
 291                /* make sure we will allocate above the kernel */
 292                bottom_up_start = max(start, kernel_end);
 293
 294                /* ok, try bottom-up allocation first */
 295                ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 296                                                      size, align, nid, flags);
 297                if (ret)
 298                        return ret;
 299
 300                /*
 301                 * we always limit bottom-up allocation above the kernel,
 302                 * but top-down allocation doesn't have the limit, so
 303                 * retrying top-down allocation may succeed when bottom-up
 304                 * allocation failed.
 305                 *
 306                 * bottom-up allocation is expected to be fail very rarely,
 307                 * so we use WARN_ONCE() here to see the stack trace if
 308                 * fail happens.
 309                 */
 310                WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
 311                          "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
 312        }
 313
 314        return __memblock_find_range_top_down(start, end, size, align, nid,
 315                                              flags);
 316}
 317
 318/**
 319 * memblock_find_in_range - find free area in given range
 320 * @start: start of candidate range
 321 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 322 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 323 * @size: size of free area to find
 324 * @align: alignment of free area to find
 325 *
 326 * Find @size free area aligned to @align in the specified range.
 327 *
 328 * Return:
 329 * Found address on success, 0 on failure.
 330 */
 331phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 332                                        phys_addr_t end, phys_addr_t size,
 333                                        phys_addr_t align)
 334{
 335        phys_addr_t ret;
 336        enum memblock_flags flags = choose_memblock_flags();
 337
 338again:
 339        ret = memblock_find_in_range_node(size, align, start, end,
 340                                            NUMA_NO_NODE, flags);
 341
 342        if (!ret && (flags & MEMBLOCK_MIRROR)) {
 343                pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 344                        &size);
 345                flags &= ~MEMBLOCK_MIRROR;
 346                goto again;
 347        }
 348
 349        return ret;
 350}
 351
 352static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 353{
 354        type->total_size -= type->regions[r].size;
 355        memmove(&type->regions[r], &type->regions[r + 1],
 356                (type->cnt - (r + 1)) * sizeof(type->regions[r]));
 357        type->cnt--;
 358
 359        /* Special case for empty arrays */
 360        if (type->cnt == 0) {
 361                WARN_ON(type->total_size != 0);
 362                type->cnt = 1;
 363                type->regions[0].base = 0;
 364                type->regions[0].size = 0;
 365                type->regions[0].flags = 0;
 366                memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 367        }
 368}
 369
 370#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 371/**
 372 * memblock_discard - discard memory and reserved arrays if they were allocated
 373 */
 374void __init memblock_discard(void)
 375{
 376        phys_addr_t addr, size;
 377
 378        if (memblock.reserved.regions != memblock_reserved_init_regions) {
 379                addr = __pa(memblock.reserved.regions);
 380                size = PAGE_ALIGN(sizeof(struct memblock_region) *
 381                                  memblock.reserved.max);
 382                __memblock_free_late(addr, size);
 383        }
 384
 385        if (memblock.memory.regions != memblock_memory_init_regions) {
 386                addr = __pa(memblock.memory.regions);
 387                size = PAGE_ALIGN(sizeof(struct memblock_region) *
 388                                  memblock.memory.max);
 389                __memblock_free_late(addr, size);
 390        }
 391}
 392#endif
 393
 394/**
 395 * memblock_double_array - double the size of the memblock regions array
 396 * @type: memblock type of the regions array being doubled
 397 * @new_area_start: starting address of memory range to avoid overlap with
 398 * @new_area_size: size of memory range to avoid overlap with
 399 *
 400 * Double the size of the @type regions array. If memblock is being used to
 401 * allocate memory for a new reserved regions array and there is a previously
 402 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 403 * waiting to be reserved, ensure the memory used by the new array does
 404 * not overlap.
 405 *
 406 * Return:
 407 * 0 on success, -1 on failure.
 408 */
 409static int __init_memblock memblock_double_array(struct memblock_type *type,
 410                                                phys_addr_t new_area_start,
 411                                                phys_addr_t new_area_size)
 412{
 413        struct memblock_region *new_array, *old_array;
 414        phys_addr_t old_alloc_size, new_alloc_size;
 415        phys_addr_t old_size, new_size, addr, new_end;
 416        int use_slab = slab_is_available();
 417        int *in_slab;
 418
 419        /* We don't allow resizing until we know about the reserved regions
 420         * of memory that aren't suitable for allocation
 421         */
 422        if (!memblock_can_resize)
 423                return -1;
 424
 425        /* Calculate new doubled size */
 426        old_size = type->max * sizeof(struct memblock_region);
 427        new_size = old_size << 1;
 428        /*
 429         * We need to allocated new one align to PAGE_SIZE,
 430         *   so we can free them completely later.
 431         */
 432        old_alloc_size = PAGE_ALIGN(old_size);
 433        new_alloc_size = PAGE_ALIGN(new_size);
 434
 435        /* Retrieve the slab flag */
 436        if (type == &memblock.memory)
 437                in_slab = &memblock_memory_in_slab;
 438        else
 439                in_slab = &memblock_reserved_in_slab;
 440
 441        /* Try to find some space for it */
 442        if (use_slab) {
 443                new_array = kmalloc(new_size, GFP_KERNEL);
 444                addr = new_array ? __pa(new_array) : 0;
 445        } else {
 446                /* only exclude range when trying to double reserved.regions */
 447                if (type != &memblock.reserved)
 448                        new_area_start = new_area_size = 0;
 449
 450                addr = memblock_find_in_range(new_area_start + new_area_size,
 451                                                memblock.current_limit,
 452                                                new_alloc_size, PAGE_SIZE);
 453                if (!addr && new_area_size)
 454                        addr = memblock_find_in_range(0,
 455                                min(new_area_start, memblock.current_limit),
 456                                new_alloc_size, PAGE_SIZE);
 457
 458                new_array = addr ? __va(addr) : NULL;
 459        }
 460        if (!addr) {
 461                pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 462                       type->name, type->max, type->max * 2);
 463                return -1;
 464        }
 465
 466        new_end = addr + new_size - 1;
 467        memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 468                        type->name, type->max * 2, &addr, &new_end);
 469
 470        /*
 471         * Found space, we now need to move the array over before we add the
 472         * reserved region since it may be our reserved array itself that is
 473         * full.
 474         */
 475        memcpy(new_array, type->regions, old_size);
 476        memset(new_array + type->max, 0, old_size);
 477        old_array = type->regions;
 478        type->regions = new_array;
 479        type->max <<= 1;
 480
 481        /* Free old array. We needn't free it if the array is the static one */
 482        if (*in_slab)
 483                kfree(old_array);
 484        else if (old_array != memblock_memory_init_regions &&
 485                 old_array != memblock_reserved_init_regions)
 486                memblock_free(__pa(old_array), old_alloc_size);
 487
 488        /*
 489         * Reserve the new array if that comes from the memblock.  Otherwise, we
 490         * needn't do it
 491         */
 492        if (!use_slab)
 493                BUG_ON(memblock_reserve(addr, new_alloc_size));
 494
 495        /* Update slab flag */
 496        *in_slab = use_slab;
 497
 498        return 0;
 499}
 500
 501/**
 502 * memblock_merge_regions - merge neighboring compatible regions
 503 * @type: memblock type to scan
 504 *
 505 * Scan @type and merge neighboring compatible regions.
 506 */
 507static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 508{
 509        int i = 0;
 510
 511        /* cnt never goes below 1 */
 512        while (i < type->cnt - 1) {
 513                struct memblock_region *this = &type->regions[i];
 514                struct memblock_region *next = &type->regions[i + 1];
 515
 516                if (this->base + this->size != next->base ||
 517                    memblock_get_region_node(this) !=
 518                    memblock_get_region_node(next) ||
 519                    this->flags != next->flags) {
 520                        BUG_ON(this->base + this->size > next->base);
 521                        i++;
 522                        continue;
 523                }
 524
 525                this->size += next->size;
 526                /* move forward from next + 1, index of which is i + 2 */
 527                memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 528                type->cnt--;
 529        }
 530}
 531
 532/**
 533 * memblock_insert_region - insert new memblock region
 534 * @type:       memblock type to insert into
 535 * @idx:        index for the insertion point
 536 * @base:       base address of the new region
 537 * @size:       size of the new region
 538 * @nid:        node id of the new region
 539 * @flags:      flags of the new region
 540 *
 541 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 542 * @type must already have extra room to accommodate the new region.
 543 */
 544static void __init_memblock memblock_insert_region(struct memblock_type *type,
 545                                                   int idx, phys_addr_t base,
 546                                                   phys_addr_t size,
 547                                                   int nid,
 548                                                   enum memblock_flags flags)
 549{
 550        struct memblock_region *rgn = &type->regions[idx];
 551
 552        BUG_ON(type->cnt >= type->max);
 553        memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 554        rgn->base = base;
 555        rgn->size = size;
 556        rgn->flags = flags;
 557        memblock_set_region_node(rgn, nid);
 558        type->cnt++;
 559        type->total_size += size;
 560}
 561
 562/**
 563 * memblock_add_range - add new memblock region
 564 * @type: memblock type to add new region into
 565 * @base: base address of the new region
 566 * @size: size of the new region
 567 * @nid: nid of the new region
 568 * @flags: flags of the new region
 569 *
 570 * Add new memblock region [@base, @base + @size) into @type.  The new region
 571 * is allowed to overlap with existing ones - overlaps don't affect already
 572 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 573 * compatible regions are merged) after the addition.
 574 *
 575 * Return:
 576 * 0 on success, -errno on failure.
 577 */
 578static int __init_memblock memblock_add_range(struct memblock_type *type,
 579                                phys_addr_t base, phys_addr_t size,
 580                                int nid, enum memblock_flags flags)
 581{
 582        bool insert = false;
 583        phys_addr_t obase = base;
 584        phys_addr_t end = base + memblock_cap_size(base, &size);
 585        int idx, nr_new;
 586        struct memblock_region *rgn;
 587
 588        if (!size)
 589                return 0;
 590
 591        /* special case for empty array */
 592        if (type->regions[0].size == 0) {
 593                WARN_ON(type->cnt != 1 || type->total_size);
 594                type->regions[0].base = base;
 595                type->regions[0].size = size;
 596                type->regions[0].flags = flags;
 597                memblock_set_region_node(&type->regions[0], nid);
 598                type->total_size = size;
 599                return 0;
 600        }
 601repeat:
 602        /*
 603         * The following is executed twice.  Once with %false @insert and
 604         * then with %true.  The first counts the number of regions needed
 605         * to accommodate the new area.  The second actually inserts them.
 606         */
 607        base = obase;
 608        nr_new = 0;
 609
 610        for_each_memblock_type(idx, type, rgn) {
 611                phys_addr_t rbase = rgn->base;
 612                phys_addr_t rend = rbase + rgn->size;
 613
 614                if (rbase >= end)
 615                        break;
 616                if (rend <= base)
 617                        continue;
 618                /*
 619                 * @rgn overlaps.  If it separates the lower part of new
 620                 * area, insert that portion.
 621                 */
 622                if (rbase > base) {
 623#ifdef CONFIG_NEED_MULTIPLE_NODES
 624                        WARN_ON(nid != memblock_get_region_node(rgn));
 625#endif
 626                        WARN_ON(flags != rgn->flags);
 627                        nr_new++;
 628                        if (insert)
 629                                memblock_insert_region(type, idx++, base,
 630                                                       rbase - base, nid,
 631                                                       flags);
 632                }
 633                /* area below @rend is dealt with, forget about it */
 634                base = min(rend, end);
 635        }
 636
 637        /* insert the remaining portion */
 638        if (base < end) {
 639                nr_new++;
 640                if (insert)
 641                        memblock_insert_region(type, idx, base, end - base,
 642                                               nid, flags);
 643        }
 644
 645        if (!nr_new)
 646                return 0;
 647
 648        /*
 649         * If this was the first round, resize array and repeat for actual
 650         * insertions; otherwise, merge and return.
 651         */
 652        if (!insert) {
 653                while (type->cnt + nr_new > type->max)
 654                        if (memblock_double_array(type, obase, size) < 0)
 655                                return -ENOMEM;
 656                insert = true;
 657                goto repeat;
 658        } else {
 659                memblock_merge_regions(type);
 660                return 0;
 661        }
 662}
 663
 664/**
 665 * memblock_add_node - add new memblock region within a NUMA node
 666 * @base: base address of the new region
 667 * @size: size of the new region
 668 * @nid: nid of the new region
 669 *
 670 * Add new memblock region [@base, @base + @size) to the "memory"
 671 * type. See memblock_add_range() description for mode details
 672 *
 673 * Return:
 674 * 0 on success, -errno on failure.
 675 */
 676int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 677                                       int nid)
 678{
 679        return memblock_add_range(&memblock.memory, base, size, nid, 0);
 680}
 681
 682/**
 683 * memblock_add - add new memblock region
 684 * @base: base address of the new region
 685 * @size: size of the new region
 686 *
 687 * Add new memblock region [@base, @base + @size) to the "memory"
 688 * type. See memblock_add_range() description for mode details
 689 *
 690 * Return:
 691 * 0 on success, -errno on failure.
 692 */
 693int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 694{
 695        phys_addr_t end = base + size - 1;
 696
 697        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 698                     &base, &end, (void *)_RET_IP_);
 699
 700        return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 701}
 702
 703/**
 704 * memblock_isolate_range - isolate given range into disjoint memblocks
 705 * @type: memblock type to isolate range for
 706 * @base: base of range to isolate
 707 * @size: size of range to isolate
 708 * @start_rgn: out parameter for the start of isolated region
 709 * @end_rgn: out parameter for the end of isolated region
 710 *
 711 * Walk @type and ensure that regions don't cross the boundaries defined by
 712 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 713 * which may create at most two more regions.  The index of the first
 714 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 715 *
 716 * Return:
 717 * 0 on success, -errno on failure.
 718 */
 719static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 720                                        phys_addr_t base, phys_addr_t size,
 721                                        int *start_rgn, int *end_rgn)
 722{
 723        phys_addr_t end = base + memblock_cap_size(base, &size);
 724        int idx;
 725        struct memblock_region *rgn;
 726
 727        *start_rgn = *end_rgn = 0;
 728
 729        if (!size)
 730                return 0;
 731
 732        /* we'll create at most two more regions */
 733        while (type->cnt + 2 > type->max)
 734                if (memblock_double_array(type, base, size) < 0)
 735                        return -ENOMEM;
 736
 737        for_each_memblock_type(idx, type, rgn) {
 738                phys_addr_t rbase = rgn->base;
 739                phys_addr_t rend = rbase + rgn->size;
 740
 741                if (rbase >= end)
 742                        break;
 743                if (rend <= base)
 744                        continue;
 745
 746                if (rbase < base) {
 747                        /*
 748                         * @rgn intersects from below.  Split and continue
 749                         * to process the next region - the new top half.
 750                         */
 751                        rgn->base = base;
 752                        rgn->size -= base - rbase;
 753                        type->total_size -= base - rbase;
 754                        memblock_insert_region(type, idx, rbase, base - rbase,
 755                                               memblock_get_region_node(rgn),
 756                                               rgn->flags);
 757                } else if (rend > end) {
 758                        /*
 759                         * @rgn intersects from above.  Split and redo the
 760                         * current region - the new bottom half.
 761                         */
 762                        rgn->base = end;
 763                        rgn->size -= end - rbase;
 764                        type->total_size -= end - rbase;
 765                        memblock_insert_region(type, idx--, rbase, end - rbase,
 766                                               memblock_get_region_node(rgn),
 767                                               rgn->flags);
 768                } else {
 769                        /* @rgn is fully contained, record it */
 770                        if (!*end_rgn)
 771                                *start_rgn = idx;
 772                        *end_rgn = idx + 1;
 773                }
 774        }
 775
 776        return 0;
 777}
 778
 779static int __init_memblock memblock_remove_range(struct memblock_type *type,
 780                                          phys_addr_t base, phys_addr_t size)
 781{
 782        int start_rgn, end_rgn;
 783        int i, ret;
 784
 785        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 786        if (ret)
 787                return ret;
 788
 789        for (i = end_rgn - 1; i >= start_rgn; i--)
 790                memblock_remove_region(type, i);
 791        return 0;
 792}
 793
 794int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 795{
 796        phys_addr_t end = base + size - 1;
 797
 798        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 799                     &base, &end, (void *)_RET_IP_);
 800
 801        return memblock_remove_range(&memblock.memory, base, size);
 802}
 803
 804/**
 805 * memblock_free - free boot memory block
 806 * @base: phys starting address of the  boot memory block
 807 * @size: size of the boot memory block in bytes
 808 *
 809 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 810 * The freeing memory will not be released to the buddy allocator.
 811 */
 812int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 813{
 814        phys_addr_t end = base + size - 1;
 815
 816        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 817                     &base, &end, (void *)_RET_IP_);
 818
 819        kmemleak_free_part_phys(base, size);
 820        return memblock_remove_range(&memblock.reserved, base, size);
 821}
 822
 823int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 824{
 825        phys_addr_t end = base + size - 1;
 826
 827        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 828                     &base, &end, (void *)_RET_IP_);
 829
 830        return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 831}
 832
 833#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 834int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 835{
 836        phys_addr_t end = base + size - 1;
 837
 838        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 839                     &base, &end, (void *)_RET_IP_);
 840
 841        return memblock_add_range(&memblock.physmem, base, size, MAX_NUMNODES, 0);
 842}
 843#endif
 844
 845/**
 846 * memblock_setclr_flag - set or clear flag for a memory region
 847 * @base: base address of the region
 848 * @size: size of the region
 849 * @set: set or clear the flag
 850 * @flag: the flag to udpate
 851 *
 852 * This function isolates region [@base, @base + @size), and sets/clears flag
 853 *
 854 * Return: 0 on success, -errno on failure.
 855 */
 856static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 857                                phys_addr_t size, int set, int flag)
 858{
 859        struct memblock_type *type = &memblock.memory;
 860        int i, ret, start_rgn, end_rgn;
 861
 862        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 863        if (ret)
 864                return ret;
 865
 866        for (i = start_rgn; i < end_rgn; i++) {
 867                struct memblock_region *r = &type->regions[i];
 868
 869                if (set)
 870                        r->flags |= flag;
 871                else
 872                        r->flags &= ~flag;
 873        }
 874
 875        memblock_merge_regions(type);
 876        return 0;
 877}
 878
 879/**
 880 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 881 * @base: the base phys addr of the region
 882 * @size: the size of the region
 883 *
 884 * Return: 0 on success, -errno on failure.
 885 */
 886int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 887{
 888        return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 889}
 890
 891/**
 892 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 893 * @base: the base phys addr of the region
 894 * @size: the size of the region
 895 *
 896 * Return: 0 on success, -errno on failure.
 897 */
 898int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 899{
 900        return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 901}
 902
 903/**
 904 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 905 * @base: the base phys addr of the region
 906 * @size: the size of the region
 907 *
 908 * Return: 0 on success, -errno on failure.
 909 */
 910int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 911{
 912        system_has_some_mirror = true;
 913
 914        return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 915}
 916
 917/**
 918 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 919 * @base: the base phys addr of the region
 920 * @size: the size of the region
 921 *
 922 * Return: 0 on success, -errno on failure.
 923 */
 924int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 925{
 926        return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 927}
 928
 929/**
 930 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 931 * @base: the base phys addr of the region
 932 * @size: the size of the region
 933 *
 934 * Return: 0 on success, -errno on failure.
 935 */
 936int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 937{
 938        return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 939}
 940
 941/**
 942 * __next_reserved_mem_region - next function for for_each_reserved_region()
 943 * @idx: pointer to u64 loop variable
 944 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 945 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 946 *
 947 * Iterate over all reserved memory regions.
 948 */
 949void __init_memblock __next_reserved_mem_region(u64 *idx,
 950                                           phys_addr_t *out_start,
 951                                           phys_addr_t *out_end)
 952{
 953        struct memblock_type *type = &memblock.reserved;
 954
 955        if (*idx < type->cnt) {
 956                struct memblock_region *r = &type->regions[*idx];
 957                phys_addr_t base = r->base;
 958                phys_addr_t size = r->size;
 959
 960                if (out_start)
 961                        *out_start = base;
 962                if (out_end)
 963                        *out_end = base + size - 1;
 964
 965                *idx += 1;
 966                return;
 967        }
 968
 969        /* signal end of iteration */
 970        *idx = ULLONG_MAX;
 971}
 972
 973static bool should_skip_region(struct memblock_region *m, int nid, int flags)
 974{
 975        int m_nid = memblock_get_region_node(m);
 976
 977        /* only memory regions are associated with nodes, check it */
 978        if (nid != NUMA_NO_NODE && nid != m_nid)
 979                return true;
 980
 981        /* skip hotpluggable memory regions if needed */
 982        if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 983                return true;
 984
 985        /* if we want mirror memory skip non-mirror memory regions */
 986        if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 987                return true;
 988
 989        /* skip nomap memory unless we were asked for it explicitly */
 990        if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 991                return true;
 992
 993        return false;
 994}
 995
 996/**
 997 * __next_mem_range - next function for for_each_free_mem_range() etc.
 998 * @idx: pointer to u64 loop variable
 999 * @nid: node selector, %NUMA_NO_NODE for all nodes
1000 * @flags: pick from blocks based on memory attributes
1001 * @type_a: pointer to memblock_type from where the range is taken
1002 * @type_b: pointer to memblock_type which excludes memory from being taken
1003 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1004 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1005 * @out_nid: ptr to int for nid of the range, can be %NULL
1006 *
1007 * Find the first area from *@idx which matches @nid, fill the out
1008 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1009 * *@idx contains index into type_a and the upper 32bit indexes the
1010 * areas before each region in type_b.  For example, if type_b regions
1011 * look like the following,
1012 *
1013 *      0:[0-16), 1:[32-48), 2:[128-130)
1014 *
1015 * The upper 32bit indexes the following regions.
1016 *
1017 *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1018 *
1019 * As both region arrays are sorted, the function advances the two indices
1020 * in lockstep and returns each intersection.
1021 */
1022void __init_memblock __next_mem_range(u64 *idx, int nid,
1023                                      enum memblock_flags flags,
1024                                      struct memblock_type *type_a,
1025                                      struct memblock_type *type_b,
1026                                      phys_addr_t *out_start,
1027                                      phys_addr_t *out_end, int *out_nid)
1028{
1029        int idx_a = *idx & 0xffffffff;
1030        int idx_b = *idx >> 32;
1031
1032        if (WARN_ONCE(nid == MAX_NUMNODES,
1033        "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1034                nid = NUMA_NO_NODE;
1035
1036        for (; idx_a < type_a->cnt; idx_a++) {
1037                struct memblock_region *m = &type_a->regions[idx_a];
1038
1039                phys_addr_t m_start = m->base;
1040                phys_addr_t m_end = m->base + m->size;
1041                int         m_nid = memblock_get_region_node(m);
1042
1043                if (should_skip_region(m, nid, flags))
1044                        continue;
1045
1046                if (!type_b) {
1047                        if (out_start)
1048                                *out_start = m_start;
1049                        if (out_end)
1050                                *out_end = m_end;
1051                        if (out_nid)
1052                                *out_nid = m_nid;
1053                        idx_a++;
1054                        *idx = (u32)idx_a | (u64)idx_b << 32;
1055                        return;
1056                }
1057
1058                /* scan areas before each reservation */
1059                for (; idx_b < type_b->cnt + 1; idx_b++) {
1060                        struct memblock_region *r;
1061                        phys_addr_t r_start;
1062                        phys_addr_t r_end;
1063
1064                        r = &type_b->regions[idx_b];
1065                        r_start = idx_b ? r[-1].base + r[-1].size : 0;
1066                        r_end = idx_b < type_b->cnt ?
1067                                r->base : PHYS_ADDR_MAX;
1068
1069                        /*
1070                         * if idx_b advanced past idx_a,
1071                         * break out to advance idx_a
1072                         */
1073                        if (r_start >= m_end)
1074                                break;
1075                        /* if the two regions intersect, we're done */
1076                        if (m_start < r_end) {
1077                                if (out_start)
1078                                        *out_start =
1079                                                max(m_start, r_start);
1080                                if (out_end)
1081                                        *out_end = min(m_end, r_end);
1082                                if (out_nid)
1083                                        *out_nid = m_nid;
1084                                /*
1085                                 * The region which ends first is
1086                                 * advanced for the next iteration.
1087                                 */
1088                                if (m_end <= r_end)
1089                                        idx_a++;
1090                                else
1091                                        idx_b++;
1092                                *idx = (u32)idx_a | (u64)idx_b << 32;
1093                                return;
1094                        }
1095                }
1096        }
1097
1098        /* signal end of iteration */
1099        *idx = ULLONG_MAX;
1100}
1101
1102/**
1103 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1104 *
1105 * @idx: pointer to u64 loop variable
1106 * @nid: node selector, %NUMA_NO_NODE for all nodes
1107 * @flags: pick from blocks based on memory attributes
1108 * @type_a: pointer to memblock_type from where the range is taken
1109 * @type_b: pointer to memblock_type which excludes memory from being taken
1110 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1111 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1112 * @out_nid: ptr to int for nid of the range, can be %NULL
1113 *
1114 * Finds the next range from type_a which is not marked as unsuitable
1115 * in type_b.
1116 *
1117 * Reverse of __next_mem_range().
1118 */
1119void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1120                                          enum memblock_flags flags,
1121                                          struct memblock_type *type_a,
1122                                          struct memblock_type *type_b,
1123                                          phys_addr_t *out_start,
1124                                          phys_addr_t *out_end, int *out_nid)
1125{
1126        int idx_a = *idx & 0xffffffff;
1127        int idx_b = *idx >> 32;
1128
1129        if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1130                nid = NUMA_NO_NODE;
1131
1132        if (*idx == (u64)ULLONG_MAX) {
1133                idx_a = type_a->cnt - 1;
1134                if (type_b != NULL)
1135                        idx_b = type_b->cnt;
1136                else
1137                        idx_b = 0;
1138        }
1139
1140        for (; idx_a >= 0; idx_a--) {
1141                struct memblock_region *m = &type_a->regions[idx_a];
1142
1143                phys_addr_t m_start = m->base;
1144                phys_addr_t m_end = m->base + m->size;
1145                int m_nid = memblock_get_region_node(m);
1146
1147                if (should_skip_region(m, nid, flags))
1148                        continue;
1149
1150                if (!type_b) {
1151                        if (out_start)
1152                                *out_start = m_start;
1153                        if (out_end)
1154                                *out_end = m_end;
1155                        if (out_nid)
1156                                *out_nid = m_nid;
1157                        idx_a--;
1158                        *idx = (u32)idx_a | (u64)idx_b << 32;
1159                        return;
1160                }
1161
1162                /* scan areas before each reservation */
1163                for (; idx_b >= 0; idx_b--) {
1164                        struct memblock_region *r;
1165                        phys_addr_t r_start;
1166                        phys_addr_t r_end;
1167
1168                        r = &type_b->regions[idx_b];
1169                        r_start = idx_b ? r[-1].base + r[-1].size : 0;
1170                        r_end = idx_b < type_b->cnt ?
1171                                r->base : PHYS_ADDR_MAX;
1172                        /*
1173                         * if idx_b advanced past idx_a,
1174                         * break out to advance idx_a
1175                         */
1176
1177                        if (r_end <= m_start)
1178                                break;
1179                        /* if the two regions intersect, we're done */
1180                        if (m_end > r_start) {
1181                                if (out_start)
1182                                        *out_start = max(m_start, r_start);
1183                                if (out_end)
1184                                        *out_end = min(m_end, r_end);
1185                                if (out_nid)
1186                                        *out_nid = m_nid;
1187                                if (m_start >= r_start)
1188                                        idx_a--;
1189                                else
1190                                        idx_b--;
1191                                *idx = (u32)idx_a | (u64)idx_b << 32;
1192                                return;
1193                        }
1194                }
1195        }
1196        /* signal end of iteration */
1197        *idx = ULLONG_MAX;
1198}
1199
1200/*
1201 * Common iterator interface used to define for_each_mem_pfn_range().
1202 */
1203void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1204                                unsigned long *out_start_pfn,
1205                                unsigned long *out_end_pfn, int *out_nid)
1206{
1207        struct memblock_type *type = &memblock.memory;
1208        struct memblock_region *r;
1209        int r_nid;
1210
1211        while (++*idx < type->cnt) {
1212                r = &type->regions[*idx];
1213                r_nid = memblock_get_region_node(r);
1214
1215                if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1216                        continue;
1217                if (nid == MAX_NUMNODES || nid == r_nid)
1218                        break;
1219        }
1220        if (*idx >= type->cnt) {
1221                *idx = -1;
1222                return;
1223        }
1224
1225        if (out_start_pfn)
1226                *out_start_pfn = PFN_UP(r->base);
1227        if (out_end_pfn)
1228                *out_end_pfn = PFN_DOWN(r->base + r->size);
1229        if (out_nid)
1230                *out_nid = r_nid;
1231}
1232
1233/**
1234 * memblock_set_node - set node ID on memblock regions
1235 * @base: base of area to set node ID for
1236 * @size: size of area to set node ID for
1237 * @type: memblock type to set node ID for
1238 * @nid: node ID to set
1239 *
1240 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1241 * Regions which cross the area boundaries are split as necessary.
1242 *
1243 * Return:
1244 * 0 on success, -errno on failure.
1245 */
1246int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1247                                      struct memblock_type *type, int nid)
1248{
1249#ifdef CONFIG_NEED_MULTIPLE_NODES
1250        int start_rgn, end_rgn;
1251        int i, ret;
1252
1253        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1254        if (ret)
1255                return ret;
1256
1257        for (i = start_rgn; i < end_rgn; i++)
1258                memblock_set_region_node(&type->regions[i], nid);
1259
1260        memblock_merge_regions(type);
1261#endif
1262        return 0;
1263}
1264
1265#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1266/**
1267 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1268 *
1269 * @idx: pointer to u64 loop variable
1270 * @zone: zone in which all of the memory blocks reside
1271 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1272 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1273 *
1274 * This function is meant to be a zone/pfn specific wrapper for the
1275 * for_each_mem_range type iterators. Specifically they are used in the
1276 * deferred memory init routines and as such we were duplicating much of
1277 * this logic throughout the code. So instead of having it in multiple
1278 * locations it seemed like it would make more sense to centralize this to
1279 * one new iterator that does everything they need.
1280 */
1281void __init_memblock
1282__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1283                             unsigned long *out_spfn, unsigned long *out_epfn)
1284{
1285        int zone_nid = zone_to_nid(zone);
1286        phys_addr_t spa, epa;
1287        int nid;
1288
1289        __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1290                         &memblock.memory, &memblock.reserved,
1291                         &spa, &epa, &nid);
1292
1293        while (*idx != U64_MAX) {
1294                unsigned long epfn = PFN_DOWN(epa);
1295                unsigned long spfn = PFN_UP(spa);
1296
1297                /*
1298                 * Verify the end is at least past the start of the zone and
1299                 * that we have at least one PFN to initialize.
1300                 */
1301                if (zone->zone_start_pfn < epfn && spfn < epfn) {
1302                        /* if we went too far just stop searching */
1303                        if (zone_end_pfn(zone) <= spfn) {
1304                                *idx = U64_MAX;
1305                                break;
1306                        }
1307
1308                        if (out_spfn)
1309                                *out_spfn = max(zone->zone_start_pfn, spfn);
1310                        if (out_epfn)
1311                                *out_epfn = min(zone_end_pfn(zone), epfn);
1312
1313                        return;
1314                }
1315
1316                __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1317                                 &memblock.memory, &memblock.reserved,
1318                                 &spa, &epa, &nid);
1319        }
1320
1321        /* signal end of iteration */
1322        if (out_spfn)
1323                *out_spfn = ULONG_MAX;
1324        if (out_epfn)
1325                *out_epfn = 0;
1326}
1327
1328#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1329
1330/**
1331 * memblock_alloc_range_nid - allocate boot memory block
1332 * @size: size of memory block to be allocated in bytes
1333 * @align: alignment of the region and block's size
1334 * @start: the lower bound of the memory region to allocate (phys address)
1335 * @end: the upper bound of the memory region to allocate (phys address)
1336 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1337 * @exact_nid: control the allocation fall back to other nodes
1338 *
1339 * The allocation is performed from memory region limited by
1340 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1341 *
1342 * If the specified node can not hold the requested memory and @exact_nid
1343 * is false, the allocation falls back to any node in the system.
1344 *
1345 * For systems with memory mirroring, the allocation is attempted first
1346 * from the regions with mirroring enabled and then retried from any
1347 * memory region.
1348 *
1349 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1350 * allocated boot memory block, so that it is never reported as leaks.
1351 *
1352 * Return:
1353 * Physical address of allocated memory block on success, %0 on failure.
1354 */
1355phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1356                                        phys_addr_t align, phys_addr_t start,
1357                                        phys_addr_t end, int nid,
1358                                        bool exact_nid)
1359{
1360        enum memblock_flags flags = choose_memblock_flags();
1361        phys_addr_t found;
1362
1363        if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1364                nid = NUMA_NO_NODE;
1365
1366        if (!align) {
1367                /* Can't use WARNs this early in boot on powerpc */
1368                dump_stack();
1369                align = SMP_CACHE_BYTES;
1370        }
1371
1372again:
1373        found = memblock_find_in_range_node(size, align, start, end, nid,
1374                                            flags);
1375        if (found && !memblock_reserve(found, size))
1376                goto done;
1377
1378        if (nid != NUMA_NO_NODE && !exact_nid) {
1379                found = memblock_find_in_range_node(size, align, start,
1380                                                    end, NUMA_NO_NODE,
1381                                                    flags);
1382                if (found && !memblock_reserve(found, size))
1383                        goto done;
1384        }
1385
1386        if (flags & MEMBLOCK_MIRROR) {
1387                flags &= ~MEMBLOCK_MIRROR;
1388                pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1389                        &size);
1390                goto again;
1391        }
1392
1393        return 0;
1394
1395done:
1396        /* Skip kmemleak for kasan_init() due to high volume. */
1397        if (end != MEMBLOCK_ALLOC_KASAN)
1398                /*
1399                 * The min_count is set to 0 so that memblock allocated
1400                 * blocks are never reported as leaks. This is because many
1401                 * of these blocks are only referred via the physical
1402                 * address which is not looked up by kmemleak.
1403                 */
1404                kmemleak_alloc_phys(found, size, 0, 0);
1405
1406        return found;
1407}
1408
1409/**
1410 * memblock_phys_alloc_range - allocate a memory block inside specified range
1411 * @size: size of memory block to be allocated in bytes
1412 * @align: alignment of the region and block's size
1413 * @start: the lower bound of the memory region to allocate (physical address)
1414 * @end: the upper bound of the memory region to allocate (physical address)
1415 *
1416 * Allocate @size bytes in the between @start and @end.
1417 *
1418 * Return: physical address of the allocated memory block on success,
1419 * %0 on failure.
1420 */
1421phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1422                                             phys_addr_t align,
1423                                             phys_addr_t start,
1424                                             phys_addr_t end)
1425{
1426        return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1427                                        false);
1428}
1429
1430/**
1431 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1432 * @size: size of memory block to be allocated in bytes
1433 * @align: alignment of the region and block's size
1434 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1435 *
1436 * Allocates memory block from the specified NUMA node. If the node
1437 * has no available memory, attempts to allocated from any node in the
1438 * system.
1439 *
1440 * Return: physical address of the allocated memory block on success,
1441 * %0 on failure.
1442 */
1443phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1444{
1445        return memblock_alloc_range_nid(size, align, 0,
1446                                        MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1447}
1448
1449/**
1450 * memblock_alloc_internal - allocate boot memory block
1451 * @size: size of memory block to be allocated in bytes
1452 * @align: alignment of the region and block's size
1453 * @min_addr: the lower bound of the memory region to allocate (phys address)
1454 * @max_addr: the upper bound of the memory region to allocate (phys address)
1455 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1456 * @exact_nid: control the allocation fall back to other nodes
1457 *
1458 * Allocates memory block using memblock_alloc_range_nid() and
1459 * converts the returned physical address to virtual.
1460 *
1461 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1462 * will fall back to memory below @min_addr. Other constraints, such
1463 * as node and mirrored memory will be handled again in
1464 * memblock_alloc_range_nid().
1465 *
1466 * Return:
1467 * Virtual address of allocated memory block on success, NULL on failure.
1468 */
1469static void * __init memblock_alloc_internal(
1470                                phys_addr_t size, phys_addr_t align,
1471                                phys_addr_t min_addr, phys_addr_t max_addr,
1472                                int nid, bool exact_nid)
1473{
1474        phys_addr_t alloc;
1475
1476        /*
1477         * Detect any accidental use of these APIs after slab is ready, as at
1478         * this moment memblock may be deinitialized already and its
1479         * internal data may be destroyed (after execution of memblock_free_all)
1480         */
1481        if (WARN_ON_ONCE(slab_is_available()))
1482                return kzalloc_node(size, GFP_NOWAIT, nid);
1483
1484        if (max_addr > memblock.current_limit)
1485                max_addr = memblock.current_limit;
1486
1487        alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1488                                        exact_nid);
1489
1490        /* retry allocation without lower limit */
1491        if (!alloc && min_addr)
1492                alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1493                                                exact_nid);
1494
1495        if (!alloc)
1496                return NULL;
1497
1498        return phys_to_virt(alloc);
1499}
1500
1501/**
1502 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1503 * without zeroing memory
1504 * @size: size of memory block to be allocated in bytes
1505 * @align: alignment of the region and block's size
1506 * @min_addr: the lower bound of the memory region from where the allocation
1507 *        is preferred (phys address)
1508 * @max_addr: the upper bound of the memory region from where the allocation
1509 *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1510 *            allocate only from memory limited by memblock.current_limit value
1511 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1512 *
1513 * Public function, provides additional debug information (including caller
1514 * info), if enabled. Does not zero allocated memory.
1515 *
1516 * Return:
1517 * Virtual address of allocated memory block on success, NULL on failure.
1518 */
1519void * __init memblock_alloc_exact_nid_raw(
1520                        phys_addr_t size, phys_addr_t align,
1521                        phys_addr_t min_addr, phys_addr_t max_addr,
1522                        int nid)
1523{
1524        void *ptr;
1525
1526        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1527                     __func__, (u64)size, (u64)align, nid, &min_addr,
1528                     &max_addr, (void *)_RET_IP_);
1529
1530        ptr = memblock_alloc_internal(size, align,
1531                                           min_addr, max_addr, nid, true);
1532        if (ptr && size > 0)
1533                page_init_poison(ptr, size);
1534
1535        return ptr;
1536}
1537
1538/**
1539 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1540 * memory and without panicking
1541 * @size: size of memory block to be allocated in bytes
1542 * @align: alignment of the region and block's size
1543 * @min_addr: the lower bound of the memory region from where the allocation
1544 *        is preferred (phys address)
1545 * @max_addr: the upper bound of the memory region from where the allocation
1546 *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1547 *            allocate only from memory limited by memblock.current_limit value
1548 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1549 *
1550 * Public function, provides additional debug information (including caller
1551 * info), if enabled. Does not zero allocated memory, does not panic if request
1552 * cannot be satisfied.
1553 *
1554 * Return:
1555 * Virtual address of allocated memory block on success, NULL on failure.
1556 */
1557void * __init memblock_alloc_try_nid_raw(
1558                        phys_addr_t size, phys_addr_t align,
1559                        phys_addr_t min_addr, phys_addr_t max_addr,
1560                        int nid)
1561{
1562        void *ptr;
1563
1564        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1565                     __func__, (u64)size, (u64)align, nid, &min_addr,
1566                     &max_addr, (void *)_RET_IP_);
1567
1568        ptr = memblock_alloc_internal(size, align,
1569                                           min_addr, max_addr, nid, false);
1570        if (ptr && size > 0)
1571                page_init_poison(ptr, size);
1572
1573        return ptr;
1574}
1575
1576/**
1577 * memblock_alloc_try_nid - allocate boot memory block
1578 * @size: size of memory block to be allocated in bytes
1579 * @align: alignment of the region and block's size
1580 * @min_addr: the lower bound of the memory region from where the allocation
1581 *        is preferred (phys address)
1582 * @max_addr: the upper bound of the memory region from where the allocation
1583 *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1584 *            allocate only from memory limited by memblock.current_limit value
1585 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1586 *
1587 * Public function, provides additional debug information (including caller
1588 * info), if enabled. This function zeroes the allocated memory.
1589 *
1590 * Return:
1591 * Virtual address of allocated memory block on success, NULL on failure.
1592 */
1593void * __init memblock_alloc_try_nid(
1594                        phys_addr_t size, phys_addr_t align,
1595                        phys_addr_t min_addr, phys_addr_t max_addr,
1596                        int nid)
1597{
1598        void *ptr;
1599
1600        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1601                     __func__, (u64)size, (u64)align, nid, &min_addr,
1602                     &max_addr, (void *)_RET_IP_);
1603        ptr = memblock_alloc_internal(size, align,
1604                                           min_addr, max_addr, nid, false);
1605        if (ptr)
1606                memset(ptr, 0, size);
1607
1608        return ptr;
1609}
1610
1611/**
1612 * __memblock_free_late - free pages directly to buddy allocator
1613 * @base: phys starting address of the  boot memory block
1614 * @size: size of the boot memory block in bytes
1615 *
1616 * This is only useful when the memblock allocator has already been torn
1617 * down, but we are still initializing the system.  Pages are released directly
1618 * to the buddy allocator.
1619 */
1620void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1621{
1622        phys_addr_t cursor, end;
1623
1624        end = base + size - 1;
1625        memblock_dbg("%s: [%pa-%pa] %pS\n",
1626                     __func__, &base, &end, (void *)_RET_IP_);
1627        kmemleak_free_part_phys(base, size);
1628        cursor = PFN_UP(base);
1629        end = PFN_DOWN(base + size);
1630
1631        for (; cursor < end; cursor++) {
1632                memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1633                totalram_pages_inc();
1634        }
1635}
1636
1637/*
1638 * Remaining API functions
1639 */
1640
1641phys_addr_t __init_memblock memblock_phys_mem_size(void)
1642{
1643        return memblock.memory.total_size;
1644}
1645
1646phys_addr_t __init_memblock memblock_reserved_size(void)
1647{
1648        return memblock.reserved.total_size;
1649}
1650
1651phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1652{
1653        unsigned long pages = 0;
1654        struct memblock_region *r;
1655        unsigned long start_pfn, end_pfn;
1656
1657        for_each_memblock(memory, r) {
1658                start_pfn = memblock_region_memory_base_pfn(r);
1659                end_pfn = memblock_region_memory_end_pfn(r);
1660                start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1661                end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1662                pages += end_pfn - start_pfn;
1663        }
1664
1665        return PFN_PHYS(pages);
1666}
1667
1668/* lowest address */
1669phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1670{
1671        return memblock.memory.regions[0].base;
1672}
1673
1674phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1675{
1676        int idx = memblock.memory.cnt - 1;
1677
1678        return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1679}
1680
1681static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1682{
1683        phys_addr_t max_addr = PHYS_ADDR_MAX;
1684        struct memblock_region *r;
1685
1686        /*
1687         * translate the memory @limit size into the max address within one of
1688         * the memory memblock regions, if the @limit exceeds the total size
1689         * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1690         */
1691        for_each_memblock(memory, r) {
1692                if (limit <= r->size) {
1693                        max_addr = r->base + limit;
1694                        break;
1695                }
1696                limit -= r->size;
1697        }
1698
1699        return max_addr;
1700}
1701
1702void __init memblock_enforce_memory_limit(phys_addr_t limit)
1703{
1704        phys_addr_t max_addr;
1705
1706        if (!limit)
1707                return;
1708
1709        max_addr = __find_max_addr(limit);
1710
1711        /* @limit exceeds the total size of the memory, do nothing */
1712        if (max_addr == PHYS_ADDR_MAX)
1713                return;
1714
1715        /* truncate both memory and reserved regions */
1716        memblock_remove_range(&memblock.memory, max_addr,
1717                              PHYS_ADDR_MAX);
1718        memblock_remove_range(&memblock.reserved, max_addr,
1719                              PHYS_ADDR_MAX);
1720}
1721
1722void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1723{
1724        int start_rgn, end_rgn;
1725        int i, ret;
1726
1727        if (!size)
1728                return;
1729
1730        ret = memblock_isolate_range(&memblock.memory, base, size,
1731                                                &start_rgn, &end_rgn);
1732        if (ret)
1733                return;
1734
1735        /* remove all the MAP regions */
1736        for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1737                if (!memblock_is_nomap(&memblock.memory.regions[i]))
1738                        memblock_remove_region(&memblock.memory, i);
1739
1740        for (i = start_rgn - 1; i >= 0; i--)
1741                if (!memblock_is_nomap(&memblock.memory.regions[i]))
1742                        memblock_remove_region(&memblock.memory, i);
1743
1744        /* truncate the reserved regions */
1745        memblock_remove_range(&memblock.reserved, 0, base);
1746        memblock_remove_range(&memblock.reserved,
1747                        base + size, PHYS_ADDR_MAX);
1748}
1749
1750void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1751{
1752        phys_addr_t max_addr;
1753
1754        if (!limit)
1755                return;
1756
1757        max_addr = __find_max_addr(limit);
1758
1759        /* @limit exceeds the total size of the memory, do nothing */
1760        if (max_addr == PHYS_ADDR_MAX)
1761                return;
1762
1763        memblock_cap_memory_range(0, max_addr);
1764}
1765
1766static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1767{
1768        unsigned int left = 0, right = type->cnt;
1769
1770        do {
1771                unsigned int mid = (right + left) / 2;
1772
1773                if (addr < type->regions[mid].base)
1774                        right = mid;
1775                else if (addr >= (type->regions[mid].base +
1776                                  type->regions[mid].size))
1777                        left = mid + 1;
1778                else
1779                        return mid;
1780        } while (left < right);
1781        return -1;
1782}
1783
1784bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1785{
1786        return memblock_search(&memblock.reserved, addr) != -1;
1787}
1788
1789bool __init_memblock memblock_is_memory(phys_addr_t addr)
1790{
1791        return memblock_search(&memblock.memory, addr) != -1;
1792}
1793
1794bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1795{
1796        int i = memblock_search(&memblock.memory, addr);
1797
1798        if (i == -1)
1799                return false;
1800        return !memblock_is_nomap(&memblock.memory.regions[i]);
1801}
1802
1803int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1804                         unsigned long *start_pfn, unsigned long *end_pfn)
1805{
1806        struct memblock_type *type = &memblock.memory;
1807        int mid = memblock_search(type, PFN_PHYS(pfn));
1808
1809        if (mid == -1)
1810                return -1;
1811
1812        *start_pfn = PFN_DOWN(type->regions[mid].base);
1813        *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1814
1815        return memblock_get_region_node(&type->regions[mid]);
1816}
1817
1818/**
1819 * memblock_is_region_memory - check if a region is a subset of memory
1820 * @base: base of region to check
1821 * @size: size of region to check
1822 *
1823 * Check if the region [@base, @base + @size) is a subset of a memory block.
1824 *
1825 * Return:
1826 * 0 if false, non-zero if true
1827 */
1828bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1829{
1830        int idx = memblock_search(&memblock.memory, base);
1831        phys_addr_t end = base + memblock_cap_size(base, &size);
1832
1833        if (idx == -1)
1834                return false;
1835        return (memblock.memory.regions[idx].base +
1836                 memblock.memory.regions[idx].size) >= end;
1837}
1838
1839/**
1840 * memblock_is_region_reserved - check if a region intersects reserved memory
1841 * @base: base of region to check
1842 * @size: size of region to check
1843 *
1844 * Check if the region [@base, @base + @size) intersects a reserved
1845 * memory block.
1846 *
1847 * Return:
1848 * True if they intersect, false if not.
1849 */
1850bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1851{
1852        memblock_cap_size(base, &size);
1853        return memblock_overlaps_region(&memblock.reserved, base, size);
1854}
1855
1856void __init_memblock memblock_trim_memory(phys_addr_t align)
1857{
1858        phys_addr_t start, end, orig_start, orig_end;
1859        struct memblock_region *r;
1860
1861        for_each_memblock(memory, r) {
1862                orig_start = r->base;
1863                orig_end = r->base + r->size;
1864                start = round_up(orig_start, align);
1865                end = round_down(orig_end, align);
1866
1867                if (start == orig_start && end == orig_end)
1868                        continue;
1869
1870                if (start < end) {
1871                        r->base = start;
1872                        r->size = end - start;
1873                } else {
1874                        memblock_remove_region(&memblock.memory,
1875                                               r - memblock.memory.regions);
1876                        r--;
1877                }
1878        }
1879}
1880
1881void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1882{
1883        memblock.current_limit = limit;
1884}
1885
1886phys_addr_t __init_memblock memblock_get_current_limit(void)
1887{
1888        return memblock.current_limit;
1889}
1890
1891static void __init_memblock memblock_dump(struct memblock_type *type)
1892{
1893        phys_addr_t base, end, size;
1894        enum memblock_flags flags;
1895        int idx;
1896        struct memblock_region *rgn;
1897
1898        pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1899
1900        for_each_memblock_type(idx, type, rgn) {
1901                char nid_buf[32] = "";
1902
1903                base = rgn->base;
1904                size = rgn->size;
1905                end = base + size - 1;
1906                flags = rgn->flags;
1907#ifdef CONFIG_NEED_MULTIPLE_NODES
1908                if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1909                        snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1910                                 memblock_get_region_node(rgn));
1911#endif
1912                pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1913                        type->name, idx, &base, &end, &size, nid_buf, flags);
1914        }
1915}
1916
1917void __init_memblock __memblock_dump_all(void)
1918{
1919        pr_info("MEMBLOCK configuration:\n");
1920        pr_info(" memory size = %pa reserved size = %pa\n",
1921                &memblock.memory.total_size,
1922                &memblock.reserved.total_size);
1923
1924        memblock_dump(&memblock.memory);
1925        memblock_dump(&memblock.reserved);
1926#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1927        memblock_dump(&memblock.physmem);
1928#endif
1929}
1930
1931void __init memblock_allow_resize(void)
1932{
1933        memblock_can_resize = 1;
1934}
1935
1936static int __init early_memblock(char *p)
1937{
1938        if (p && strstr(p, "debug"))
1939                memblock_debug = 1;
1940        return 0;
1941}
1942early_param("memblock", early_memblock);
1943
1944static void __init __free_pages_memory(unsigned long start, unsigned long end)
1945{
1946        int order;
1947
1948        while (start < end) {
1949                order = min(MAX_ORDER - 1UL, __ffs(start));
1950
1951                while (start + (1UL << order) > end)
1952                        order--;
1953
1954                memblock_free_pages(pfn_to_page(start), start, order);
1955
1956                start += (1UL << order);
1957        }
1958}
1959
1960static unsigned long __init __free_memory_core(phys_addr_t start,
1961                                 phys_addr_t end)
1962{
1963        unsigned long start_pfn = PFN_UP(start);
1964        unsigned long end_pfn = min_t(unsigned long,
1965                                      PFN_DOWN(end), max_low_pfn);
1966
1967        if (start_pfn >= end_pfn)
1968                return 0;
1969
1970        __free_pages_memory(start_pfn, end_pfn);
1971
1972        return end_pfn - start_pfn;
1973}
1974
1975static unsigned long __init free_low_memory_core_early(void)
1976{
1977        unsigned long count = 0;
1978        phys_addr_t start, end;
1979        u64 i;
1980
1981        memblock_clear_hotplug(0, -1);
1982
1983        for_each_reserved_mem_region(i, &start, &end)
1984                reserve_bootmem_region(start, end);
1985
1986        /*
1987         * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1988         *  because in some case like Node0 doesn't have RAM installed
1989         *  low ram will be on Node1
1990         */
1991        for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1992                                NULL)
1993                count += __free_memory_core(start, end);
1994
1995        return count;
1996}
1997
1998static int reset_managed_pages_done __initdata;
1999
2000void reset_node_managed_pages(pg_data_t *pgdat)
2001{
2002        struct zone *z;
2003
2004        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2005                atomic_long_set(&z->managed_pages, 0);
2006}
2007
2008void __init reset_all_zones_managed_pages(void)
2009{
2010        struct pglist_data *pgdat;
2011
2012        if (reset_managed_pages_done)
2013                return;
2014
2015        for_each_online_pgdat(pgdat)
2016                reset_node_managed_pages(pgdat);
2017
2018        reset_managed_pages_done = 1;
2019}
2020
2021/**
2022 * memblock_free_all - release free pages to the buddy allocator
2023 *
2024 * Return: the number of pages actually released.
2025 */
2026unsigned long __init memblock_free_all(void)
2027{
2028        unsigned long pages;
2029
2030        reset_all_zones_managed_pages();
2031
2032        pages = free_low_memory_core_early();
2033        totalram_pages_add(pages);
2034
2035        return pages;
2036}
2037
2038#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2039
2040static int memblock_debug_show(struct seq_file *m, void *private)
2041{
2042        struct memblock_type *type = m->private;
2043        struct memblock_region *reg;
2044        int i;
2045        phys_addr_t end;
2046
2047        for (i = 0; i < type->cnt; i++) {
2048                reg = &type->regions[i];
2049                end = reg->base + reg->size - 1;
2050
2051                seq_printf(m, "%4d: ", i);
2052                seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2053        }
2054        return 0;
2055}
2056DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2057
2058static int __init memblock_init_debugfs(void)
2059{
2060        struct dentry *root = debugfs_create_dir("memblock", NULL);
2061
2062        debugfs_create_file("memory", 0444, root,
2063                            &memblock.memory, &memblock_debug_fops);
2064        debugfs_create_file("reserved", 0444, root,
2065                            &memblock.reserved, &memblock_debug_fops);
2066#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2067        debugfs_create_file("physmem", 0444, root,
2068                            &memblock.physmem, &memblock_debug_fops);
2069#endif
2070
2071        return 0;
2072}
2073__initcall(memblock_init_debugfs);
2074
2075#endif /* CONFIG_DEBUG_FS */
2076