linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60/*
  61 * migrate_prep() needs to be called before we start compiling a list of pages
  62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  63 * undesirable, use migrate_prep_local()
  64 */
  65int migrate_prep(void)
  66{
  67        /*
  68         * Clear the LRU lists so pages can be isolated.
  69         * Note that pages may be moved off the LRU after we have
  70         * drained them. Those pages will fail to migrate like other
  71         * pages that may be busy.
  72         */
  73        lru_add_drain_all();
  74
  75        return 0;
  76}
  77
  78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  79int migrate_prep_local(void)
  80{
  81        lru_add_drain();
  82
  83        return 0;
  84}
  85
  86int isolate_movable_page(struct page *page, isolate_mode_t mode)
  87{
  88        struct address_space *mapping;
  89
  90        /*
  91         * Avoid burning cycles with pages that are yet under __free_pages(),
  92         * or just got freed under us.
  93         *
  94         * In case we 'win' a race for a movable page being freed under us and
  95         * raise its refcount preventing __free_pages() from doing its job
  96         * the put_page() at the end of this block will take care of
  97         * release this page, thus avoiding a nasty leakage.
  98         */
  99        if (unlikely(!get_page_unless_zero(page)))
 100                goto out;
 101
 102        /*
 103         * Check PageMovable before holding a PG_lock because page's owner
 104         * assumes anybody doesn't touch PG_lock of newly allocated page
 105         * so unconditionally grabbing the lock ruins page's owner side.
 106         */
 107        if (unlikely(!__PageMovable(page)))
 108                goto out_putpage;
 109        /*
 110         * As movable pages are not isolated from LRU lists, concurrent
 111         * compaction threads can race against page migration functions
 112         * as well as race against the releasing a page.
 113         *
 114         * In order to avoid having an already isolated movable page
 115         * being (wrongly) re-isolated while it is under migration,
 116         * or to avoid attempting to isolate pages being released,
 117         * lets be sure we have the page lock
 118         * before proceeding with the movable page isolation steps.
 119         */
 120        if (unlikely(!trylock_page(page)))
 121                goto out_putpage;
 122
 123        if (!PageMovable(page) || PageIsolated(page))
 124                goto out_no_isolated;
 125
 126        mapping = page_mapping(page);
 127        VM_BUG_ON_PAGE(!mapping, page);
 128
 129        if (!mapping->a_ops->isolate_page(page, mode))
 130                goto out_no_isolated;
 131
 132        /* Driver shouldn't use PG_isolated bit of page->flags */
 133        WARN_ON_ONCE(PageIsolated(page));
 134        __SetPageIsolated(page);
 135        unlock_page(page);
 136
 137        return 0;
 138
 139out_no_isolated:
 140        unlock_page(page);
 141out_putpage:
 142        put_page(page);
 143out:
 144        return -EBUSY;
 145}
 146
 147/* It should be called on page which is PG_movable */
 148void putback_movable_page(struct page *page)
 149{
 150        struct address_space *mapping;
 151
 152        VM_BUG_ON_PAGE(!PageLocked(page), page);
 153        VM_BUG_ON_PAGE(!PageMovable(page), page);
 154        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 155
 156        mapping = page_mapping(page);
 157        mapping->a_ops->putback_page(page);
 158        __ClearPageIsolated(page);
 159}
 160
 161/*
 162 * Put previously isolated pages back onto the appropriate lists
 163 * from where they were once taken off for compaction/migration.
 164 *
 165 * This function shall be used whenever the isolated pageset has been
 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 167 * and isolate_huge_page().
 168 */
 169void putback_movable_pages(struct list_head *l)
 170{
 171        struct page *page;
 172        struct page *page2;
 173
 174        list_for_each_entry_safe(page, page2, l, lru) {
 175                if (unlikely(PageHuge(page))) {
 176                        putback_active_hugepage(page);
 177                        continue;
 178                }
 179                list_del(&page->lru);
 180                /*
 181                 * We isolated non-lru movable page so here we can use
 182                 * __PageMovable because LRU page's mapping cannot have
 183                 * PAGE_MAPPING_MOVABLE.
 184                 */
 185                if (unlikely(__PageMovable(page))) {
 186                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 187                        lock_page(page);
 188                        if (PageMovable(page))
 189                                putback_movable_page(page);
 190                        else
 191                                __ClearPageIsolated(page);
 192                        unlock_page(page);
 193                        put_page(page);
 194                } else {
 195                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 196                                        page_is_file_lru(page), -hpage_nr_pages(page));
 197                        putback_lru_page(page);
 198                }
 199        }
 200}
 201
 202/*
 203 * Restore a potential migration pte to a working pte entry
 204 */
 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 206                                 unsigned long addr, void *old)
 207{
 208        struct page_vma_mapped_walk pvmw = {
 209                .page = old,
 210                .vma = vma,
 211                .address = addr,
 212                .flags = PVMW_SYNC | PVMW_MIGRATION,
 213        };
 214        struct page *new;
 215        pte_t pte;
 216        swp_entry_t entry;
 217
 218        VM_BUG_ON_PAGE(PageTail(page), page);
 219        while (page_vma_mapped_walk(&pvmw)) {
 220                if (PageKsm(page))
 221                        new = page;
 222                else
 223                        new = page - pvmw.page->index +
 224                                linear_page_index(vma, pvmw.address);
 225
 226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 227                /* PMD-mapped THP migration entry */
 228                if (!pvmw.pte) {
 229                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 230                        remove_migration_pmd(&pvmw, new);
 231                        continue;
 232                }
 233#endif
 234
 235                get_page(new);
 236                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 237                if (pte_swp_soft_dirty(*pvmw.pte))
 238                        pte = pte_mksoft_dirty(pte);
 239
 240                /*
 241                 * Recheck VMA as permissions can change since migration started
 242                 */
 243                entry = pte_to_swp_entry(*pvmw.pte);
 244                if (is_write_migration_entry(entry))
 245                        pte = maybe_mkwrite(pte, vma);
 246                else if (pte_swp_uffd_wp(*pvmw.pte))
 247                        pte = pte_mkuffd_wp(pte);
 248
 249                if (unlikely(is_zone_device_page(new))) {
 250                        if (is_device_private_page(new)) {
 251                                entry = make_device_private_entry(new, pte_write(pte));
 252                                pte = swp_entry_to_pte(entry);
 253                                if (pte_swp_uffd_wp(*pvmw.pte))
 254                                        pte = pte_mkuffd_wp(pte);
 255                        }
 256                }
 257
 258#ifdef CONFIG_HUGETLB_PAGE
 259                if (PageHuge(new)) {
 260                        pte = pte_mkhuge(pte);
 261                        pte = arch_make_huge_pte(pte, vma, new, 0);
 262                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 263                        if (PageAnon(new))
 264                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 265                        else
 266                                page_dup_rmap(new, true);
 267                } else
 268#endif
 269                {
 270                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 271
 272                        if (PageAnon(new))
 273                                page_add_anon_rmap(new, vma, pvmw.address, false);
 274                        else
 275                                page_add_file_rmap(new, false);
 276                }
 277                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 278                        mlock_vma_page(new);
 279
 280                if (PageTransHuge(page) && PageMlocked(page))
 281                        clear_page_mlock(page);
 282
 283                /* No need to invalidate - it was non-present before */
 284                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 285        }
 286
 287        return true;
 288}
 289
 290/*
 291 * Get rid of all migration entries and replace them by
 292 * references to the indicated page.
 293 */
 294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 295{
 296        struct rmap_walk_control rwc = {
 297                .rmap_one = remove_migration_pte,
 298                .arg = old,
 299        };
 300
 301        if (locked)
 302                rmap_walk_locked(new, &rwc);
 303        else
 304                rmap_walk(new, &rwc);
 305}
 306
 307/*
 308 * Something used the pte of a page under migration. We need to
 309 * get to the page and wait until migration is finished.
 310 * When we return from this function the fault will be retried.
 311 */
 312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 313                                spinlock_t *ptl)
 314{
 315        pte_t pte;
 316        swp_entry_t entry;
 317        struct page *page;
 318
 319        spin_lock(ptl);
 320        pte = *ptep;
 321        if (!is_swap_pte(pte))
 322                goto out;
 323
 324        entry = pte_to_swp_entry(pte);
 325        if (!is_migration_entry(entry))
 326                goto out;
 327
 328        page = migration_entry_to_page(entry);
 329
 330        /*
 331         * Once page cache replacement of page migration started, page_count
 332         * is zero; but we must not call put_and_wait_on_page_locked() without
 333         * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 334         */
 335        if (!get_page_unless_zero(page))
 336                goto out;
 337        pte_unmap_unlock(ptep, ptl);
 338        put_and_wait_on_page_locked(page);
 339        return;
 340out:
 341        pte_unmap_unlock(ptep, ptl);
 342}
 343
 344void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 345                                unsigned long address)
 346{
 347        spinlock_t *ptl = pte_lockptr(mm, pmd);
 348        pte_t *ptep = pte_offset_map(pmd, address);
 349        __migration_entry_wait(mm, ptep, ptl);
 350}
 351
 352void migration_entry_wait_huge(struct vm_area_struct *vma,
 353                struct mm_struct *mm, pte_t *pte)
 354{
 355        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 356        __migration_entry_wait(mm, pte, ptl);
 357}
 358
 359#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 360void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 361{
 362        spinlock_t *ptl;
 363        struct page *page;
 364
 365        ptl = pmd_lock(mm, pmd);
 366        if (!is_pmd_migration_entry(*pmd))
 367                goto unlock;
 368        page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 369        if (!get_page_unless_zero(page))
 370                goto unlock;
 371        spin_unlock(ptl);
 372        put_and_wait_on_page_locked(page);
 373        return;
 374unlock:
 375        spin_unlock(ptl);
 376}
 377#endif
 378
 379static int expected_page_refs(struct address_space *mapping, struct page *page)
 380{
 381        int expected_count = 1;
 382
 383        /*
 384         * Device public or private pages have an extra refcount as they are
 385         * ZONE_DEVICE pages.
 386         */
 387        expected_count += is_device_private_page(page);
 388        if (mapping)
 389                expected_count += hpage_nr_pages(page) + page_has_private(page);
 390
 391        return expected_count;
 392}
 393
 394/*
 395 * Replace the page in the mapping.
 396 *
 397 * The number of remaining references must be:
 398 * 1 for anonymous pages without a mapping
 399 * 2 for pages with a mapping
 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 401 */
 402int migrate_page_move_mapping(struct address_space *mapping,
 403                struct page *newpage, struct page *page, int extra_count)
 404{
 405        XA_STATE(xas, &mapping->i_pages, page_index(page));
 406        struct zone *oldzone, *newzone;
 407        int dirty;
 408        int expected_count = expected_page_refs(mapping, page) + extra_count;
 409
 410        if (!mapping) {
 411                /* Anonymous page without mapping */
 412                if (page_count(page) != expected_count)
 413                        return -EAGAIN;
 414
 415                /* No turning back from here */
 416                newpage->index = page->index;
 417                newpage->mapping = page->mapping;
 418                if (PageSwapBacked(page))
 419                        __SetPageSwapBacked(newpage);
 420
 421                return MIGRATEPAGE_SUCCESS;
 422        }
 423
 424        oldzone = page_zone(page);
 425        newzone = page_zone(newpage);
 426
 427        xas_lock_irq(&xas);
 428        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 429                xas_unlock_irq(&xas);
 430                return -EAGAIN;
 431        }
 432
 433        if (!page_ref_freeze(page, expected_count)) {
 434                xas_unlock_irq(&xas);
 435                return -EAGAIN;
 436        }
 437
 438        /*
 439         * Now we know that no one else is looking at the page:
 440         * no turning back from here.
 441         */
 442        newpage->index = page->index;
 443        newpage->mapping = page->mapping;
 444        page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 445        if (PageSwapBacked(page)) {
 446                __SetPageSwapBacked(newpage);
 447                if (PageSwapCache(page)) {
 448                        SetPageSwapCache(newpage);
 449                        set_page_private(newpage, page_private(page));
 450                }
 451        } else {
 452                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 453        }
 454
 455        /* Move dirty while page refs frozen and newpage not yet exposed */
 456        dirty = PageDirty(page);
 457        if (dirty) {
 458                ClearPageDirty(page);
 459                SetPageDirty(newpage);
 460        }
 461
 462        xas_store(&xas, newpage);
 463        if (PageTransHuge(page)) {
 464                int i;
 465
 466                for (i = 1; i < HPAGE_PMD_NR; i++) {
 467                        xas_next(&xas);
 468                        xas_store(&xas, newpage);
 469                }
 470        }
 471
 472        /*
 473         * Drop cache reference from old page by unfreezing
 474         * to one less reference.
 475         * We know this isn't the last reference.
 476         */
 477        page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 478
 479        xas_unlock(&xas);
 480        /* Leave irq disabled to prevent preemption while updating stats */
 481
 482        /*
 483         * If moved to a different zone then also account
 484         * the page for that zone. Other VM counters will be
 485         * taken care of when we establish references to the
 486         * new page and drop references to the old page.
 487         *
 488         * Note that anonymous pages are accounted for
 489         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 490         * are mapped to swap space.
 491         */
 492        if (newzone != oldzone) {
 493                struct lruvec *old_lruvec, *new_lruvec;
 494                struct mem_cgroup *memcg;
 495
 496                memcg = page_memcg(page);
 497                old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 498                new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 499
 500                __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
 501                __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
 502                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 503                        __dec_lruvec_state(old_lruvec, NR_SHMEM);
 504                        __inc_lruvec_state(new_lruvec, NR_SHMEM);
 505                }
 506                if (dirty && mapping_cap_account_dirty(mapping)) {
 507                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 508                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 509                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 510                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 511                }
 512        }
 513        local_irq_enable();
 514
 515        return MIGRATEPAGE_SUCCESS;
 516}
 517EXPORT_SYMBOL(migrate_page_move_mapping);
 518
 519/*
 520 * The expected number of remaining references is the same as that
 521 * of migrate_page_move_mapping().
 522 */
 523int migrate_huge_page_move_mapping(struct address_space *mapping,
 524                                   struct page *newpage, struct page *page)
 525{
 526        XA_STATE(xas, &mapping->i_pages, page_index(page));
 527        int expected_count;
 528
 529        xas_lock_irq(&xas);
 530        expected_count = 2 + page_has_private(page);
 531        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 532                xas_unlock_irq(&xas);
 533                return -EAGAIN;
 534        }
 535
 536        if (!page_ref_freeze(page, expected_count)) {
 537                xas_unlock_irq(&xas);
 538                return -EAGAIN;
 539        }
 540
 541        newpage->index = page->index;
 542        newpage->mapping = page->mapping;
 543
 544        get_page(newpage);
 545
 546        xas_store(&xas, newpage);
 547
 548        page_ref_unfreeze(page, expected_count - 1);
 549
 550        xas_unlock_irq(&xas);
 551
 552        return MIGRATEPAGE_SUCCESS;
 553}
 554
 555/*
 556 * Gigantic pages are so large that we do not guarantee that page++ pointer
 557 * arithmetic will work across the entire page.  We need something more
 558 * specialized.
 559 */
 560static void __copy_gigantic_page(struct page *dst, struct page *src,
 561                                int nr_pages)
 562{
 563        int i;
 564        struct page *dst_base = dst;
 565        struct page *src_base = src;
 566
 567        for (i = 0; i < nr_pages; ) {
 568                cond_resched();
 569                copy_highpage(dst, src);
 570
 571                i++;
 572                dst = mem_map_next(dst, dst_base, i);
 573                src = mem_map_next(src, src_base, i);
 574        }
 575}
 576
 577static void copy_huge_page(struct page *dst, struct page *src)
 578{
 579        int i;
 580        int nr_pages;
 581
 582        if (PageHuge(src)) {
 583                /* hugetlbfs page */
 584                struct hstate *h = page_hstate(src);
 585                nr_pages = pages_per_huge_page(h);
 586
 587                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 588                        __copy_gigantic_page(dst, src, nr_pages);
 589                        return;
 590                }
 591        } else {
 592                /* thp page */
 593                BUG_ON(!PageTransHuge(src));
 594                nr_pages = hpage_nr_pages(src);
 595        }
 596
 597        for (i = 0; i < nr_pages; i++) {
 598                cond_resched();
 599                copy_highpage(dst + i, src + i);
 600        }
 601}
 602
 603/*
 604 * Copy the page to its new location
 605 */
 606void migrate_page_states(struct page *newpage, struct page *page)
 607{
 608        int cpupid;
 609
 610        if (PageError(page))
 611                SetPageError(newpage);
 612        if (PageReferenced(page))
 613                SetPageReferenced(newpage);
 614        if (PageUptodate(page))
 615                SetPageUptodate(newpage);
 616        if (TestClearPageActive(page)) {
 617                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 618                SetPageActive(newpage);
 619        } else if (TestClearPageUnevictable(page))
 620                SetPageUnevictable(newpage);
 621        if (PageWorkingset(page))
 622                SetPageWorkingset(newpage);
 623        if (PageChecked(page))
 624                SetPageChecked(newpage);
 625        if (PageMappedToDisk(page))
 626                SetPageMappedToDisk(newpage);
 627
 628        /* Move dirty on pages not done by migrate_page_move_mapping() */
 629        if (PageDirty(page))
 630                SetPageDirty(newpage);
 631
 632        if (page_is_young(page))
 633                set_page_young(newpage);
 634        if (page_is_idle(page))
 635                set_page_idle(newpage);
 636
 637        /*
 638         * Copy NUMA information to the new page, to prevent over-eager
 639         * future migrations of this same page.
 640         */
 641        cpupid = page_cpupid_xchg_last(page, -1);
 642        page_cpupid_xchg_last(newpage, cpupid);
 643
 644        ksm_migrate_page(newpage, page);
 645        /*
 646         * Please do not reorder this without considering how mm/ksm.c's
 647         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 648         */
 649        if (PageSwapCache(page))
 650                ClearPageSwapCache(page);
 651        ClearPagePrivate(page);
 652        set_page_private(page, 0);
 653
 654        /*
 655         * If any waiters have accumulated on the new page then
 656         * wake them up.
 657         */
 658        if (PageWriteback(newpage))
 659                end_page_writeback(newpage);
 660
 661        /*
 662         * PG_readahead shares the same bit with PG_reclaim.  The above
 663         * end_page_writeback() may clear PG_readahead mistakenly, so set the
 664         * bit after that.
 665         */
 666        if (PageReadahead(page))
 667                SetPageReadahead(newpage);
 668
 669        copy_page_owner(page, newpage);
 670
 671        mem_cgroup_migrate(page, newpage);
 672}
 673EXPORT_SYMBOL(migrate_page_states);
 674
 675void migrate_page_copy(struct page *newpage, struct page *page)
 676{
 677        if (PageHuge(page) || PageTransHuge(page))
 678                copy_huge_page(newpage, page);
 679        else
 680                copy_highpage(newpage, page);
 681
 682        migrate_page_states(newpage, page);
 683}
 684EXPORT_SYMBOL(migrate_page_copy);
 685
 686/************************************************************
 687 *                    Migration functions
 688 ***********************************************************/
 689
 690/*
 691 * Common logic to directly migrate a single LRU page suitable for
 692 * pages that do not use PagePrivate/PagePrivate2.
 693 *
 694 * Pages are locked upon entry and exit.
 695 */
 696int migrate_page(struct address_space *mapping,
 697                struct page *newpage, struct page *page,
 698                enum migrate_mode mode)
 699{
 700        int rc;
 701
 702        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 703
 704        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 705
 706        if (rc != MIGRATEPAGE_SUCCESS)
 707                return rc;
 708
 709        if (mode != MIGRATE_SYNC_NO_COPY)
 710                migrate_page_copy(newpage, page);
 711        else
 712                migrate_page_states(newpage, page);
 713        return MIGRATEPAGE_SUCCESS;
 714}
 715EXPORT_SYMBOL(migrate_page);
 716
 717#ifdef CONFIG_BLOCK
 718/* Returns true if all buffers are successfully locked */
 719static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 720                                                        enum migrate_mode mode)
 721{
 722        struct buffer_head *bh = head;
 723
 724        /* Simple case, sync compaction */
 725        if (mode != MIGRATE_ASYNC) {
 726                do {
 727                        lock_buffer(bh);
 728                        bh = bh->b_this_page;
 729
 730                } while (bh != head);
 731
 732                return true;
 733        }
 734
 735        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 736        do {
 737                if (!trylock_buffer(bh)) {
 738                        /*
 739                         * We failed to lock the buffer and cannot stall in
 740                         * async migration. Release the taken locks
 741                         */
 742                        struct buffer_head *failed_bh = bh;
 743                        bh = head;
 744                        while (bh != failed_bh) {
 745                                unlock_buffer(bh);
 746                                bh = bh->b_this_page;
 747                        }
 748                        return false;
 749                }
 750
 751                bh = bh->b_this_page;
 752        } while (bh != head);
 753        return true;
 754}
 755
 756static int __buffer_migrate_page(struct address_space *mapping,
 757                struct page *newpage, struct page *page, enum migrate_mode mode,
 758                bool check_refs)
 759{
 760        struct buffer_head *bh, *head;
 761        int rc;
 762        int expected_count;
 763
 764        if (!page_has_buffers(page))
 765                return migrate_page(mapping, newpage, page, mode);
 766
 767        /* Check whether page does not have extra refs before we do more work */
 768        expected_count = expected_page_refs(mapping, page);
 769        if (page_count(page) != expected_count)
 770                return -EAGAIN;
 771
 772        head = page_buffers(page);
 773        if (!buffer_migrate_lock_buffers(head, mode))
 774                return -EAGAIN;
 775
 776        if (check_refs) {
 777                bool busy;
 778                bool invalidated = false;
 779
 780recheck_buffers:
 781                busy = false;
 782                spin_lock(&mapping->private_lock);
 783                bh = head;
 784                do {
 785                        if (atomic_read(&bh->b_count)) {
 786                                busy = true;
 787                                break;
 788                        }
 789                        bh = bh->b_this_page;
 790                } while (bh != head);
 791                if (busy) {
 792                        if (invalidated) {
 793                                rc = -EAGAIN;
 794                                goto unlock_buffers;
 795                        }
 796                        spin_unlock(&mapping->private_lock);
 797                        invalidate_bh_lrus();
 798                        invalidated = true;
 799                        goto recheck_buffers;
 800                }
 801        }
 802
 803        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 804        if (rc != MIGRATEPAGE_SUCCESS)
 805                goto unlock_buffers;
 806
 807        attach_page_private(newpage, detach_page_private(page));
 808
 809        bh = head;
 810        do {
 811                set_bh_page(bh, newpage, bh_offset(bh));
 812                bh = bh->b_this_page;
 813
 814        } while (bh != head);
 815
 816        if (mode != MIGRATE_SYNC_NO_COPY)
 817                migrate_page_copy(newpage, page);
 818        else
 819                migrate_page_states(newpage, page);
 820
 821        rc = MIGRATEPAGE_SUCCESS;
 822unlock_buffers:
 823        if (check_refs)
 824                spin_unlock(&mapping->private_lock);
 825        bh = head;
 826        do {
 827                unlock_buffer(bh);
 828                bh = bh->b_this_page;
 829
 830        } while (bh != head);
 831
 832        return rc;
 833}
 834
 835/*
 836 * Migration function for pages with buffers. This function can only be used
 837 * if the underlying filesystem guarantees that no other references to "page"
 838 * exist. For example attached buffer heads are accessed only under page lock.
 839 */
 840int buffer_migrate_page(struct address_space *mapping,
 841                struct page *newpage, struct page *page, enum migrate_mode mode)
 842{
 843        return __buffer_migrate_page(mapping, newpage, page, mode, false);
 844}
 845EXPORT_SYMBOL(buffer_migrate_page);
 846
 847/*
 848 * Same as above except that this variant is more careful and checks that there
 849 * are also no buffer head references. This function is the right one for
 850 * mappings where buffer heads are directly looked up and referenced (such as
 851 * block device mappings).
 852 */
 853int buffer_migrate_page_norefs(struct address_space *mapping,
 854                struct page *newpage, struct page *page, enum migrate_mode mode)
 855{
 856        return __buffer_migrate_page(mapping, newpage, page, mode, true);
 857}
 858#endif
 859
 860/*
 861 * Writeback a page to clean the dirty state
 862 */
 863static int writeout(struct address_space *mapping, struct page *page)
 864{
 865        struct writeback_control wbc = {
 866                .sync_mode = WB_SYNC_NONE,
 867                .nr_to_write = 1,
 868                .range_start = 0,
 869                .range_end = LLONG_MAX,
 870                .for_reclaim = 1
 871        };
 872        int rc;
 873
 874        if (!mapping->a_ops->writepage)
 875                /* No write method for the address space */
 876                return -EINVAL;
 877
 878        if (!clear_page_dirty_for_io(page))
 879                /* Someone else already triggered a write */
 880                return -EAGAIN;
 881
 882        /*
 883         * A dirty page may imply that the underlying filesystem has
 884         * the page on some queue. So the page must be clean for
 885         * migration. Writeout may mean we loose the lock and the
 886         * page state is no longer what we checked for earlier.
 887         * At this point we know that the migration attempt cannot
 888         * be successful.
 889         */
 890        remove_migration_ptes(page, page, false);
 891
 892        rc = mapping->a_ops->writepage(page, &wbc);
 893
 894        if (rc != AOP_WRITEPAGE_ACTIVATE)
 895                /* unlocked. Relock */
 896                lock_page(page);
 897
 898        return (rc < 0) ? -EIO : -EAGAIN;
 899}
 900
 901/*
 902 * Default handling if a filesystem does not provide a migration function.
 903 */
 904static int fallback_migrate_page(struct address_space *mapping,
 905        struct page *newpage, struct page *page, enum migrate_mode mode)
 906{
 907        if (PageDirty(page)) {
 908                /* Only writeback pages in full synchronous migration */
 909                switch (mode) {
 910                case MIGRATE_SYNC:
 911                case MIGRATE_SYNC_NO_COPY:
 912                        break;
 913                default:
 914                        return -EBUSY;
 915                }
 916                return writeout(mapping, page);
 917        }
 918
 919        /*
 920         * Buffers may be managed in a filesystem specific way.
 921         * We must have no buffers or drop them.
 922         */
 923        if (page_has_private(page) &&
 924            !try_to_release_page(page, GFP_KERNEL))
 925                return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 926
 927        return migrate_page(mapping, newpage, page, mode);
 928}
 929
 930/*
 931 * Move a page to a newly allocated page
 932 * The page is locked and all ptes have been successfully removed.
 933 *
 934 * The new page will have replaced the old page if this function
 935 * is successful.
 936 *
 937 * Return value:
 938 *   < 0 - error code
 939 *  MIGRATEPAGE_SUCCESS - success
 940 */
 941static int move_to_new_page(struct page *newpage, struct page *page,
 942                                enum migrate_mode mode)
 943{
 944        struct address_space *mapping;
 945        int rc = -EAGAIN;
 946        bool is_lru = !__PageMovable(page);
 947
 948        VM_BUG_ON_PAGE(!PageLocked(page), page);
 949        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 950
 951        mapping = page_mapping(page);
 952
 953        if (likely(is_lru)) {
 954                if (!mapping)
 955                        rc = migrate_page(mapping, newpage, page, mode);
 956                else if (mapping->a_ops->migratepage)
 957                        /*
 958                         * Most pages have a mapping and most filesystems
 959                         * provide a migratepage callback. Anonymous pages
 960                         * are part of swap space which also has its own
 961                         * migratepage callback. This is the most common path
 962                         * for page migration.
 963                         */
 964                        rc = mapping->a_ops->migratepage(mapping, newpage,
 965                                                        page, mode);
 966                else
 967                        rc = fallback_migrate_page(mapping, newpage,
 968                                                        page, mode);
 969        } else {
 970                /*
 971                 * In case of non-lru page, it could be released after
 972                 * isolation step. In that case, we shouldn't try migration.
 973                 */
 974                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 975                if (!PageMovable(page)) {
 976                        rc = MIGRATEPAGE_SUCCESS;
 977                        __ClearPageIsolated(page);
 978                        goto out;
 979                }
 980
 981                rc = mapping->a_ops->migratepage(mapping, newpage,
 982                                                page, mode);
 983                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 984                        !PageIsolated(page));
 985        }
 986
 987        /*
 988         * When successful, old pagecache page->mapping must be cleared before
 989         * page is freed; but stats require that PageAnon be left as PageAnon.
 990         */
 991        if (rc == MIGRATEPAGE_SUCCESS) {
 992                if (__PageMovable(page)) {
 993                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 994
 995                        /*
 996                         * We clear PG_movable under page_lock so any compactor
 997                         * cannot try to migrate this page.
 998                         */
 999                        __ClearPageIsolated(page);
1000                }
1001
1002                /*
1003                 * Anonymous and movable page->mapping will be cleared by
1004                 * free_pages_prepare so don't reset it here for keeping
1005                 * the type to work PageAnon, for example.
1006                 */
1007                if (!PageMappingFlags(page))
1008                        page->mapping = NULL;
1009
1010                if (likely(!is_zone_device_page(newpage)))
1011                        flush_dcache_page(newpage);
1012
1013        }
1014out:
1015        return rc;
1016}
1017
1018static int __unmap_and_move(struct page *page, struct page *newpage,
1019                                int force, enum migrate_mode mode)
1020{
1021        int rc = -EAGAIN;
1022        int page_was_mapped = 0;
1023        struct anon_vma *anon_vma = NULL;
1024        bool is_lru = !__PageMovable(page);
1025
1026        if (!trylock_page(page)) {
1027                if (!force || mode == MIGRATE_ASYNC)
1028                        goto out;
1029
1030                /*
1031                 * It's not safe for direct compaction to call lock_page.
1032                 * For example, during page readahead pages are added locked
1033                 * to the LRU. Later, when the IO completes the pages are
1034                 * marked uptodate and unlocked. However, the queueing
1035                 * could be merging multiple pages for one bio (e.g.
1036                 * mpage_readahead). If an allocation happens for the
1037                 * second or third page, the process can end up locking
1038                 * the same page twice and deadlocking. Rather than
1039                 * trying to be clever about what pages can be locked,
1040                 * avoid the use of lock_page for direct compaction
1041                 * altogether.
1042                 */
1043                if (current->flags & PF_MEMALLOC)
1044                        goto out;
1045
1046                lock_page(page);
1047        }
1048
1049        if (PageWriteback(page)) {
1050                /*
1051                 * Only in the case of a full synchronous migration is it
1052                 * necessary to wait for PageWriteback. In the async case,
1053                 * the retry loop is too short and in the sync-light case,
1054                 * the overhead of stalling is too much
1055                 */
1056                switch (mode) {
1057                case MIGRATE_SYNC:
1058                case MIGRATE_SYNC_NO_COPY:
1059                        break;
1060                default:
1061                        rc = -EBUSY;
1062                        goto out_unlock;
1063                }
1064                if (!force)
1065                        goto out_unlock;
1066                wait_on_page_writeback(page);
1067        }
1068
1069        /*
1070         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1071         * we cannot notice that anon_vma is freed while we migrates a page.
1072         * This get_anon_vma() delays freeing anon_vma pointer until the end
1073         * of migration. File cache pages are no problem because of page_lock()
1074         * File Caches may use write_page() or lock_page() in migration, then,
1075         * just care Anon page here.
1076         *
1077         * Only page_get_anon_vma() understands the subtleties of
1078         * getting a hold on an anon_vma from outside one of its mms.
1079         * But if we cannot get anon_vma, then we won't need it anyway,
1080         * because that implies that the anon page is no longer mapped
1081         * (and cannot be remapped so long as we hold the page lock).
1082         */
1083        if (PageAnon(page) && !PageKsm(page))
1084                anon_vma = page_get_anon_vma(page);
1085
1086        /*
1087         * Block others from accessing the new page when we get around to
1088         * establishing additional references. We are usually the only one
1089         * holding a reference to newpage at this point. We used to have a BUG
1090         * here if trylock_page(newpage) fails, but would like to allow for
1091         * cases where there might be a race with the previous use of newpage.
1092         * This is much like races on refcount of oldpage: just don't BUG().
1093         */
1094        if (unlikely(!trylock_page(newpage)))
1095                goto out_unlock;
1096
1097        if (unlikely(!is_lru)) {
1098                rc = move_to_new_page(newpage, page, mode);
1099                goto out_unlock_both;
1100        }
1101
1102        /*
1103         * Corner case handling:
1104         * 1. When a new swap-cache page is read into, it is added to the LRU
1105         * and treated as swapcache but it has no rmap yet.
1106         * Calling try_to_unmap() against a page->mapping==NULL page will
1107         * trigger a BUG.  So handle it here.
1108         * 2. An orphaned page (see truncate_complete_page) might have
1109         * fs-private metadata. The page can be picked up due to memory
1110         * offlining.  Everywhere else except page reclaim, the page is
1111         * invisible to the vm, so the page can not be migrated.  So try to
1112         * free the metadata, so the page can be freed.
1113         */
1114        if (!page->mapping) {
1115                VM_BUG_ON_PAGE(PageAnon(page), page);
1116                if (page_has_private(page)) {
1117                        try_to_free_buffers(page);
1118                        goto out_unlock_both;
1119                }
1120        } else if (page_mapped(page)) {
1121                /* Establish migration ptes */
1122                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1123                                page);
1124                try_to_unmap(page,
1125                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1126                page_was_mapped = 1;
1127        }
1128
1129        if (!page_mapped(page))
1130                rc = move_to_new_page(newpage, page, mode);
1131
1132        if (page_was_mapped)
1133                remove_migration_ptes(page,
1134                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1135
1136out_unlock_both:
1137        unlock_page(newpage);
1138out_unlock:
1139        /* Drop an anon_vma reference if we took one */
1140        if (anon_vma)
1141                put_anon_vma(anon_vma);
1142        unlock_page(page);
1143out:
1144        /*
1145         * If migration is successful, decrease refcount of the newpage
1146         * which will not free the page because new page owner increased
1147         * refcounter. As well, if it is LRU page, add the page to LRU
1148         * list in here. Use the old state of the isolated source page to
1149         * determine if we migrated a LRU page. newpage was already unlocked
1150         * and possibly modified by its owner - don't rely on the page
1151         * state.
1152         */
1153        if (rc == MIGRATEPAGE_SUCCESS) {
1154                if (unlikely(!is_lru))
1155                        put_page(newpage);
1156                else
1157                        putback_lru_page(newpage);
1158        }
1159
1160        return rc;
1161}
1162
1163/*
1164 * Obtain the lock on page, remove all ptes and migrate the page
1165 * to the newly allocated page in newpage.
1166 */
1167static int unmap_and_move(new_page_t get_new_page,
1168                                   free_page_t put_new_page,
1169                                   unsigned long private, struct page *page,
1170                                   int force, enum migrate_mode mode,
1171                                   enum migrate_reason reason)
1172{
1173        int rc = MIGRATEPAGE_SUCCESS;
1174        struct page *newpage = NULL;
1175
1176        if (!thp_migration_supported() && PageTransHuge(page))
1177                return -ENOMEM;
1178
1179        if (page_count(page) == 1) {
1180                /* page was freed from under us. So we are done. */
1181                ClearPageActive(page);
1182                ClearPageUnevictable(page);
1183                if (unlikely(__PageMovable(page))) {
1184                        lock_page(page);
1185                        if (!PageMovable(page))
1186                                __ClearPageIsolated(page);
1187                        unlock_page(page);
1188                }
1189                goto out;
1190        }
1191
1192        newpage = get_new_page(page, private);
1193        if (!newpage)
1194                return -ENOMEM;
1195
1196        rc = __unmap_and_move(page, newpage, force, mode);
1197        if (rc == MIGRATEPAGE_SUCCESS)
1198                set_page_owner_migrate_reason(newpage, reason);
1199
1200out:
1201        if (rc != -EAGAIN) {
1202                /*
1203                 * A page that has been migrated has all references
1204                 * removed and will be freed. A page that has not been
1205                 * migrated will have kept its references and be restored.
1206                 */
1207                list_del(&page->lru);
1208
1209                /*
1210                 * Compaction can migrate also non-LRU pages which are
1211                 * not accounted to NR_ISOLATED_*. They can be recognized
1212                 * as __PageMovable
1213                 */
1214                if (likely(!__PageMovable(page)))
1215                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216                                        page_is_file_lru(page), -hpage_nr_pages(page));
1217        }
1218
1219        /*
1220         * If migration is successful, releases reference grabbed during
1221         * isolation. Otherwise, restore the page to right list unless
1222         * we want to retry.
1223         */
1224        if (rc == MIGRATEPAGE_SUCCESS) {
1225                put_page(page);
1226                if (reason == MR_MEMORY_FAILURE) {
1227                        /*
1228                         * Set PG_HWPoison on just freed page
1229                         * intentionally. Although it's rather weird,
1230                         * it's how HWPoison flag works at the moment.
1231                         */
1232                        if (set_hwpoison_free_buddy_page(page))
1233                                num_poisoned_pages_inc();
1234                }
1235        } else {
1236                if (rc != -EAGAIN) {
1237                        if (likely(!__PageMovable(page))) {
1238                                putback_lru_page(page);
1239                                goto put_new;
1240                        }
1241
1242                        lock_page(page);
1243                        if (PageMovable(page))
1244                                putback_movable_page(page);
1245                        else
1246                                __ClearPageIsolated(page);
1247                        unlock_page(page);
1248                        put_page(page);
1249                }
1250put_new:
1251                if (put_new_page)
1252                        put_new_page(newpage, private);
1253                else
1254                        put_page(newpage);
1255        }
1256
1257        return rc;
1258}
1259
1260/*
1261 * Counterpart of unmap_and_move_page() for hugepage migration.
1262 *
1263 * This function doesn't wait the completion of hugepage I/O
1264 * because there is no race between I/O and migration for hugepage.
1265 * Note that currently hugepage I/O occurs only in direct I/O
1266 * where no lock is held and PG_writeback is irrelevant,
1267 * and writeback status of all subpages are counted in the reference
1268 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269 * under direct I/O, the reference of the head page is 512 and a bit more.)
1270 * This means that when we try to migrate hugepage whose subpages are
1271 * doing direct I/O, some references remain after try_to_unmap() and
1272 * hugepage migration fails without data corruption.
1273 *
1274 * There is also no race when direct I/O is issued on the page under migration,
1275 * because then pte is replaced with migration swap entry and direct I/O code
1276 * will wait in the page fault for migration to complete.
1277 */
1278static int unmap_and_move_huge_page(new_page_t get_new_page,
1279                                free_page_t put_new_page, unsigned long private,
1280                                struct page *hpage, int force,
1281                                enum migrate_mode mode, int reason)
1282{
1283        int rc = -EAGAIN;
1284        int page_was_mapped = 0;
1285        struct page *new_hpage;
1286        struct anon_vma *anon_vma = NULL;
1287        struct address_space *mapping = NULL;
1288
1289        /*
1290         * Migratability of hugepages depends on architectures and their size.
1291         * This check is necessary because some callers of hugepage migration
1292         * like soft offline and memory hotremove don't walk through page
1293         * tables or check whether the hugepage is pmd-based or not before
1294         * kicking migration.
1295         */
1296        if (!hugepage_migration_supported(page_hstate(hpage))) {
1297                putback_active_hugepage(hpage);
1298                return -ENOSYS;
1299        }
1300
1301        new_hpage = get_new_page(hpage, private);
1302        if (!new_hpage)
1303                return -ENOMEM;
1304
1305        if (!trylock_page(hpage)) {
1306                if (!force)
1307                        goto out;
1308                switch (mode) {
1309                case MIGRATE_SYNC:
1310                case MIGRATE_SYNC_NO_COPY:
1311                        break;
1312                default:
1313                        goto out;
1314                }
1315                lock_page(hpage);
1316        }
1317
1318        /*
1319         * Check for pages which are in the process of being freed.  Without
1320         * page_mapping() set, hugetlbfs specific move page routine will not
1321         * be called and we could leak usage counts for subpools.
1322         */
1323        if (page_private(hpage) && !page_mapping(hpage)) {
1324                rc = -EBUSY;
1325                goto out_unlock;
1326        }
1327
1328        if (PageAnon(hpage))
1329                anon_vma = page_get_anon_vma(hpage);
1330
1331        if (unlikely(!trylock_page(new_hpage)))
1332                goto put_anon;
1333
1334        if (page_mapped(hpage)) {
1335                /*
1336                 * try_to_unmap could potentially call huge_pmd_unshare.
1337                 * Because of this, take semaphore in write mode here and
1338                 * set TTU_RMAP_LOCKED to let lower levels know we have
1339                 * taken the lock.
1340                 */
1341                mapping = hugetlb_page_mapping_lock_write(hpage);
1342                if (unlikely(!mapping))
1343                        goto unlock_put_anon;
1344
1345                try_to_unmap(hpage,
1346                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1347                        TTU_RMAP_LOCKED);
1348                page_was_mapped = 1;
1349                /*
1350                 * Leave mapping locked until after subsequent call to
1351                 * remove_migration_ptes()
1352                 */
1353        }
1354
1355        if (!page_mapped(hpage))
1356                rc = move_to_new_page(new_hpage, hpage, mode);
1357
1358        if (page_was_mapped) {
1359                remove_migration_ptes(hpage,
1360                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1361                i_mmap_unlock_write(mapping);
1362        }
1363
1364unlock_put_anon:
1365        unlock_page(new_hpage);
1366
1367put_anon:
1368        if (anon_vma)
1369                put_anon_vma(anon_vma);
1370
1371        if (rc == MIGRATEPAGE_SUCCESS) {
1372                move_hugetlb_state(hpage, new_hpage, reason);
1373                put_new_page = NULL;
1374        }
1375
1376out_unlock:
1377        unlock_page(hpage);
1378out:
1379        if (rc != -EAGAIN)
1380                putback_active_hugepage(hpage);
1381
1382        /*
1383         * If migration was not successful and there's a freeing callback, use
1384         * it.  Otherwise, put_page() will drop the reference grabbed during
1385         * isolation.
1386         */
1387        if (put_new_page)
1388                put_new_page(new_hpage, private);
1389        else
1390                putback_active_hugepage(new_hpage);
1391
1392        return rc;
1393}
1394
1395/*
1396 * migrate_pages - migrate the pages specified in a list, to the free pages
1397 *                 supplied as the target for the page migration
1398 *
1399 * @from:               The list of pages to be migrated.
1400 * @get_new_page:       The function used to allocate free pages to be used
1401 *                      as the target of the page migration.
1402 * @put_new_page:       The function used to free target pages if migration
1403 *                      fails, or NULL if no special handling is necessary.
1404 * @private:            Private data to be passed on to get_new_page()
1405 * @mode:               The migration mode that specifies the constraints for
1406 *                      page migration, if any.
1407 * @reason:             The reason for page migration.
1408 *
1409 * The function returns after 10 attempts or if no pages are movable any more
1410 * because the list has become empty or no retryable pages exist any more.
1411 * The caller should call putback_movable_pages() to return pages to the LRU
1412 * or free list only if ret != 0.
1413 *
1414 * Returns the number of pages that were not migrated, or an error code.
1415 */
1416int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417                free_page_t put_new_page, unsigned long private,
1418                enum migrate_mode mode, int reason)
1419{
1420        int retry = 1;
1421        int nr_failed = 0;
1422        int nr_succeeded = 0;
1423        int pass = 0;
1424        struct page *page;
1425        struct page *page2;
1426        int swapwrite = current->flags & PF_SWAPWRITE;
1427        int rc;
1428
1429        if (!swapwrite)
1430                current->flags |= PF_SWAPWRITE;
1431
1432        for(pass = 0; pass < 10 && retry; pass++) {
1433                retry = 0;
1434
1435                list_for_each_entry_safe(page, page2, from, lru) {
1436retry:
1437                        cond_resched();
1438
1439                        if (PageHuge(page))
1440                                rc = unmap_and_move_huge_page(get_new_page,
1441                                                put_new_page, private, page,
1442                                                pass > 2, mode, reason);
1443                        else
1444                                rc = unmap_and_move(get_new_page, put_new_page,
1445                                                private, page, pass > 2, mode,
1446                                                reason);
1447
1448                        switch(rc) {
1449                        case -ENOMEM:
1450                                /*
1451                                 * THP migration might be unsupported or the
1452                                 * allocation could've failed so we should
1453                                 * retry on the same page with the THP split
1454                                 * to base pages.
1455                                 *
1456                                 * Head page is retried immediately and tail
1457                                 * pages are added to the tail of the list so
1458                                 * we encounter them after the rest of the list
1459                                 * is processed.
1460                                 */
1461                                if (PageTransHuge(page) && !PageHuge(page)) {
1462                                        lock_page(page);
1463                                        rc = split_huge_page_to_list(page, from);
1464                                        unlock_page(page);
1465                                        if (!rc) {
1466                                                list_safe_reset_next(page, page2, lru);
1467                                                goto retry;
1468                                        }
1469                                }
1470                                nr_failed++;
1471                                goto out;
1472                        case -EAGAIN:
1473                                retry++;
1474                                break;
1475                        case MIGRATEPAGE_SUCCESS:
1476                                nr_succeeded++;
1477                                break;
1478                        default:
1479                                /*
1480                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1481                                 * unlike -EAGAIN case, the failed page is
1482                                 * removed from migration page list and not
1483                                 * retried in the next outer loop.
1484                                 */
1485                                nr_failed++;
1486                                break;
1487                        }
1488                }
1489        }
1490        nr_failed += retry;
1491        rc = nr_failed;
1492out:
1493        if (nr_succeeded)
1494                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1495        if (nr_failed)
1496                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1497        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1498
1499        if (!swapwrite)
1500                current->flags &= ~PF_SWAPWRITE;
1501
1502        return rc;
1503}
1504
1505#ifdef CONFIG_NUMA
1506
1507static int store_status(int __user *status, int start, int value, int nr)
1508{
1509        while (nr-- > 0) {
1510                if (put_user(value, status + start))
1511                        return -EFAULT;
1512                start++;
1513        }
1514
1515        return 0;
1516}
1517
1518static int do_move_pages_to_node(struct mm_struct *mm,
1519                struct list_head *pagelist, int node)
1520{
1521        int err;
1522
1523        err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1524                        MIGRATE_SYNC, MR_SYSCALL);
1525        if (err)
1526                putback_movable_pages(pagelist);
1527        return err;
1528}
1529
1530/*
1531 * Resolves the given address to a struct page, isolates it from the LRU and
1532 * puts it to the given pagelist.
1533 * Returns:
1534 *     errno - if the page cannot be found/isolated
1535 *     0 - when it doesn't have to be migrated because it is already on the
1536 *         target node
1537 *     1 - when it has been queued
1538 */
1539static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1540                int node, struct list_head *pagelist, bool migrate_all)
1541{
1542        struct vm_area_struct *vma;
1543        struct page *page;
1544        unsigned int follflags;
1545        int err;
1546
1547        mmap_read_lock(mm);
1548        err = -EFAULT;
1549        vma = find_vma(mm, addr);
1550        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1551                goto out;
1552
1553        /* FOLL_DUMP to ignore special (like zero) pages */
1554        follflags = FOLL_GET | FOLL_DUMP;
1555        page = follow_page(vma, addr, follflags);
1556
1557        err = PTR_ERR(page);
1558        if (IS_ERR(page))
1559                goto out;
1560
1561        err = -ENOENT;
1562        if (!page)
1563                goto out;
1564
1565        err = 0;
1566        if (page_to_nid(page) == node)
1567                goto out_putpage;
1568
1569        err = -EACCES;
1570        if (page_mapcount(page) > 1 && !migrate_all)
1571                goto out_putpage;
1572
1573        if (PageHuge(page)) {
1574                if (PageHead(page)) {
1575                        isolate_huge_page(page, pagelist);
1576                        err = 1;
1577                }
1578        } else {
1579                struct page *head;
1580
1581                head = compound_head(page);
1582                err = isolate_lru_page(head);
1583                if (err)
1584                        goto out_putpage;
1585
1586                err = 1;
1587                list_add_tail(&head->lru, pagelist);
1588                mod_node_page_state(page_pgdat(head),
1589                        NR_ISOLATED_ANON + page_is_file_lru(head),
1590                        hpage_nr_pages(head));
1591        }
1592out_putpage:
1593        /*
1594         * Either remove the duplicate refcount from
1595         * isolate_lru_page() or drop the page ref if it was
1596         * not isolated.
1597         */
1598        put_page(page);
1599out:
1600        mmap_read_unlock(mm);
1601        return err;
1602}
1603
1604static int move_pages_and_store_status(struct mm_struct *mm, int node,
1605                struct list_head *pagelist, int __user *status,
1606                int start, int i, unsigned long nr_pages)
1607{
1608        int err;
1609
1610        if (list_empty(pagelist))
1611                return 0;
1612
1613        err = do_move_pages_to_node(mm, pagelist, node);
1614        if (err) {
1615                /*
1616                 * Positive err means the number of failed
1617                 * pages to migrate.  Since we are going to
1618                 * abort and return the number of non-migrated
1619                 * pages, so need to incude the rest of the
1620                 * nr_pages that have not been attempted as
1621                 * well.
1622                 */
1623                if (err > 0)
1624                        err += nr_pages - i - 1;
1625                return err;
1626        }
1627        return store_status(status, start, node, i - start);
1628}
1629
1630/*
1631 * Migrate an array of page address onto an array of nodes and fill
1632 * the corresponding array of status.
1633 */
1634static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1635                         unsigned long nr_pages,
1636                         const void __user * __user *pages,
1637                         const int __user *nodes,
1638                         int __user *status, int flags)
1639{
1640        int current_node = NUMA_NO_NODE;
1641        LIST_HEAD(pagelist);
1642        int start, i;
1643        int err = 0, err1;
1644
1645        migrate_prep();
1646
1647        for (i = start = 0; i < nr_pages; i++) {
1648                const void __user *p;
1649                unsigned long addr;
1650                int node;
1651
1652                err = -EFAULT;
1653                if (get_user(p, pages + i))
1654                        goto out_flush;
1655                if (get_user(node, nodes + i))
1656                        goto out_flush;
1657                addr = (unsigned long)untagged_addr(p);
1658
1659                err = -ENODEV;
1660                if (node < 0 || node >= MAX_NUMNODES)
1661                        goto out_flush;
1662                if (!node_state(node, N_MEMORY))
1663                        goto out_flush;
1664
1665                err = -EACCES;
1666                if (!node_isset(node, task_nodes))
1667                        goto out_flush;
1668
1669                if (current_node == NUMA_NO_NODE) {
1670                        current_node = node;
1671                        start = i;
1672                } else if (node != current_node) {
1673                        err = move_pages_and_store_status(mm, current_node,
1674                                        &pagelist, status, start, i, nr_pages);
1675                        if (err)
1676                                goto out;
1677                        start = i;
1678                        current_node = node;
1679                }
1680
1681                /*
1682                 * Errors in the page lookup or isolation are not fatal and we simply
1683                 * report them via status
1684                 */
1685                err = add_page_for_migration(mm, addr, current_node,
1686                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1687
1688                if (err > 0) {
1689                        /* The page is successfully queued for migration */
1690                        continue;
1691                }
1692
1693                /*
1694                 * If the page is already on the target node (!err), store the
1695                 * node, otherwise, store the err.
1696                 */
1697                err = store_status(status, i, err ? : current_node, 1);
1698                if (err)
1699                        goto out_flush;
1700
1701                err = move_pages_and_store_status(mm, current_node, &pagelist,
1702                                status, start, i, nr_pages);
1703                if (err)
1704                        goto out;
1705                current_node = NUMA_NO_NODE;
1706        }
1707out_flush:
1708        /* Make sure we do not overwrite the existing error */
1709        err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1710                                status, start, i, nr_pages);
1711        if (err >= 0)
1712                err = err1;
1713out:
1714        return err;
1715}
1716
1717/*
1718 * Determine the nodes of an array of pages and store it in an array of status.
1719 */
1720static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1721                                const void __user **pages, int *status)
1722{
1723        unsigned long i;
1724
1725        mmap_read_lock(mm);
1726
1727        for (i = 0; i < nr_pages; i++) {
1728                unsigned long addr = (unsigned long)(*pages);
1729                struct vm_area_struct *vma;
1730                struct page *page;
1731                int err = -EFAULT;
1732
1733                vma = find_vma(mm, addr);
1734                if (!vma || addr < vma->vm_start)
1735                        goto set_status;
1736
1737                /* FOLL_DUMP to ignore special (like zero) pages */
1738                page = follow_page(vma, addr, FOLL_DUMP);
1739
1740                err = PTR_ERR(page);
1741                if (IS_ERR(page))
1742                        goto set_status;
1743
1744                err = page ? page_to_nid(page) : -ENOENT;
1745set_status:
1746                *status = err;
1747
1748                pages++;
1749                status++;
1750        }
1751
1752        mmap_read_unlock(mm);
1753}
1754
1755/*
1756 * Determine the nodes of a user array of pages and store it in
1757 * a user array of status.
1758 */
1759static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1760                         const void __user * __user *pages,
1761                         int __user *status)
1762{
1763#define DO_PAGES_STAT_CHUNK_NR 16
1764        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1765        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1766
1767        while (nr_pages) {
1768                unsigned long chunk_nr;
1769
1770                chunk_nr = nr_pages;
1771                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1772                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1773
1774                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1775                        break;
1776
1777                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1778
1779                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1780                        break;
1781
1782                pages += chunk_nr;
1783                status += chunk_nr;
1784                nr_pages -= chunk_nr;
1785        }
1786        return nr_pages ? -EFAULT : 0;
1787}
1788
1789/*
1790 * Move a list of pages in the address space of the currently executing
1791 * process.
1792 */
1793static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1794                             const void __user * __user *pages,
1795                             const int __user *nodes,
1796                             int __user *status, int flags)
1797{
1798        struct task_struct *task;
1799        struct mm_struct *mm;
1800        int err;
1801        nodemask_t task_nodes;
1802
1803        /* Check flags */
1804        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1805                return -EINVAL;
1806
1807        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1808                return -EPERM;
1809
1810        /* Find the mm_struct */
1811        rcu_read_lock();
1812        task = pid ? find_task_by_vpid(pid) : current;
1813        if (!task) {
1814                rcu_read_unlock();
1815                return -ESRCH;
1816        }
1817        get_task_struct(task);
1818
1819        /*
1820         * Check if this process has the right to modify the specified
1821         * process. Use the regular "ptrace_may_access()" checks.
1822         */
1823        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1824                rcu_read_unlock();
1825                err = -EPERM;
1826                goto out;
1827        }
1828        rcu_read_unlock();
1829
1830        err = security_task_movememory(task);
1831        if (err)
1832                goto out;
1833
1834        task_nodes = cpuset_mems_allowed(task);
1835        mm = get_task_mm(task);
1836        put_task_struct(task);
1837
1838        if (!mm)
1839                return -EINVAL;
1840
1841        if (nodes)
1842                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1843                                    nodes, status, flags);
1844        else
1845                err = do_pages_stat(mm, nr_pages, pages, status);
1846
1847        mmput(mm);
1848        return err;
1849
1850out:
1851        put_task_struct(task);
1852        return err;
1853}
1854
1855SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1856                const void __user * __user *, pages,
1857                const int __user *, nodes,
1858                int __user *, status, int, flags)
1859{
1860        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1861}
1862
1863#ifdef CONFIG_COMPAT
1864COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1865                       compat_uptr_t __user *, pages32,
1866                       const int __user *, nodes,
1867                       int __user *, status,
1868                       int, flags)
1869{
1870        const void __user * __user *pages;
1871        int i;
1872
1873        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1874        for (i = 0; i < nr_pages; i++) {
1875                compat_uptr_t p;
1876
1877                if (get_user(p, pages32 + i) ||
1878                        put_user(compat_ptr(p), pages + i))
1879                        return -EFAULT;
1880        }
1881        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1882}
1883#endif /* CONFIG_COMPAT */
1884
1885#ifdef CONFIG_NUMA_BALANCING
1886/*
1887 * Returns true if this is a safe migration target node for misplaced NUMA
1888 * pages. Currently it only checks the watermarks which crude
1889 */
1890static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1891                                   unsigned long nr_migrate_pages)
1892{
1893        int z;
1894
1895        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1896                struct zone *zone = pgdat->node_zones + z;
1897
1898                if (!populated_zone(zone))
1899                        continue;
1900
1901                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1902                if (!zone_watermark_ok(zone, 0,
1903                                       high_wmark_pages(zone) +
1904                                       nr_migrate_pages,
1905                                       ZONE_MOVABLE, 0))
1906                        continue;
1907                return true;
1908        }
1909        return false;
1910}
1911
1912static struct page *alloc_misplaced_dst_page(struct page *page,
1913                                           unsigned long data)
1914{
1915        int nid = (int) data;
1916        struct page *newpage;
1917
1918        newpage = __alloc_pages_node(nid,
1919                                         (GFP_HIGHUSER_MOVABLE |
1920                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1921                                          __GFP_NORETRY | __GFP_NOWARN) &
1922                                         ~__GFP_RECLAIM, 0);
1923
1924        return newpage;
1925}
1926
1927static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1928{
1929        int page_lru;
1930
1931        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1932
1933        /* Avoid migrating to a node that is nearly full */
1934        if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1935                return 0;
1936
1937        if (isolate_lru_page(page))
1938                return 0;
1939
1940        /*
1941         * migrate_misplaced_transhuge_page() skips page migration's usual
1942         * check on page_count(), so we must do it here, now that the page
1943         * has been isolated: a GUP pin, or any other pin, prevents migration.
1944         * The expected page count is 3: 1 for page's mapcount and 1 for the
1945         * caller's pin and 1 for the reference taken by isolate_lru_page().
1946         */
1947        if (PageTransHuge(page) && page_count(page) != 3) {
1948                putback_lru_page(page);
1949                return 0;
1950        }
1951
1952        page_lru = page_is_file_lru(page);
1953        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1954                                hpage_nr_pages(page));
1955
1956        /*
1957         * Isolating the page has taken another reference, so the
1958         * caller's reference can be safely dropped without the page
1959         * disappearing underneath us during migration.
1960         */
1961        put_page(page);
1962        return 1;
1963}
1964
1965bool pmd_trans_migrating(pmd_t pmd)
1966{
1967        struct page *page = pmd_page(pmd);
1968        return PageLocked(page);
1969}
1970
1971/*
1972 * Attempt to migrate a misplaced page to the specified destination
1973 * node. Caller is expected to have an elevated reference count on
1974 * the page that will be dropped by this function before returning.
1975 */
1976int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1977                           int node)
1978{
1979        pg_data_t *pgdat = NODE_DATA(node);
1980        int isolated;
1981        int nr_remaining;
1982        LIST_HEAD(migratepages);
1983
1984        /*
1985         * Don't migrate file pages that are mapped in multiple processes
1986         * with execute permissions as they are probably shared libraries.
1987         */
1988        if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1989            (vma->vm_flags & VM_EXEC))
1990                goto out;
1991
1992        /*
1993         * Also do not migrate dirty pages as not all filesystems can move
1994         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1995         */
1996        if (page_is_file_lru(page) && PageDirty(page))
1997                goto out;
1998
1999        isolated = numamigrate_isolate_page(pgdat, page);
2000        if (!isolated)
2001                goto out;
2002
2003        list_add(&page->lru, &migratepages);
2004        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2005                                     NULL, node, MIGRATE_ASYNC,
2006                                     MR_NUMA_MISPLACED);
2007        if (nr_remaining) {
2008                if (!list_empty(&migratepages)) {
2009                        list_del(&page->lru);
2010                        dec_node_page_state(page, NR_ISOLATED_ANON +
2011                                        page_is_file_lru(page));
2012                        putback_lru_page(page);
2013                }
2014                isolated = 0;
2015        } else
2016                count_vm_numa_event(NUMA_PAGE_MIGRATE);
2017        BUG_ON(!list_empty(&migratepages));
2018        return isolated;
2019
2020out:
2021        put_page(page);
2022        return 0;
2023}
2024#endif /* CONFIG_NUMA_BALANCING */
2025
2026#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2027/*
2028 * Migrates a THP to a given target node. page must be locked and is unlocked
2029 * before returning.
2030 */
2031int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2032                                struct vm_area_struct *vma,
2033                                pmd_t *pmd, pmd_t entry,
2034                                unsigned long address,
2035                                struct page *page, int node)
2036{
2037        spinlock_t *ptl;
2038        pg_data_t *pgdat = NODE_DATA(node);
2039        int isolated = 0;
2040        struct page *new_page = NULL;
2041        int page_lru = page_is_file_lru(page);
2042        unsigned long start = address & HPAGE_PMD_MASK;
2043
2044        new_page = alloc_pages_node(node,
2045                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2046                HPAGE_PMD_ORDER);
2047        if (!new_page)
2048                goto out_fail;
2049        prep_transhuge_page(new_page);
2050
2051        isolated = numamigrate_isolate_page(pgdat, page);
2052        if (!isolated) {
2053                put_page(new_page);
2054                goto out_fail;
2055        }
2056
2057        /* Prepare a page as a migration target */
2058        __SetPageLocked(new_page);
2059        if (PageSwapBacked(page))
2060                __SetPageSwapBacked(new_page);
2061
2062        /* anon mapping, we can simply copy page->mapping to the new page: */
2063        new_page->mapping = page->mapping;
2064        new_page->index = page->index;
2065        /* flush the cache before copying using the kernel virtual address */
2066        flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2067        migrate_page_copy(new_page, page);
2068        WARN_ON(PageLRU(new_page));
2069
2070        /* Recheck the target PMD */
2071        ptl = pmd_lock(mm, pmd);
2072        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2073                spin_unlock(ptl);
2074
2075                /* Reverse changes made by migrate_page_copy() */
2076                if (TestClearPageActive(new_page))
2077                        SetPageActive(page);
2078                if (TestClearPageUnevictable(new_page))
2079                        SetPageUnevictable(page);
2080
2081                unlock_page(new_page);
2082                put_page(new_page);             /* Free it */
2083
2084                /* Retake the callers reference and putback on LRU */
2085                get_page(page);
2086                putback_lru_page(page);
2087                mod_node_page_state(page_pgdat(page),
2088                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2089
2090                goto out_unlock;
2091        }
2092
2093        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2094        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2095
2096        /*
2097         * Overwrite the old entry under pagetable lock and establish
2098         * the new PTE. Any parallel GUP will either observe the old
2099         * page blocking on the page lock, block on the page table
2100         * lock or observe the new page. The SetPageUptodate on the
2101         * new page and page_add_new_anon_rmap guarantee the copy is
2102         * visible before the pagetable update.
2103         */
2104        page_add_anon_rmap(new_page, vma, start, true);
2105        /*
2106         * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2107         * has already been flushed globally.  So no TLB can be currently
2108         * caching this non present pmd mapping.  There's no need to clear the
2109         * pmd before doing set_pmd_at(), nor to flush the TLB after
2110         * set_pmd_at().  Clearing the pmd here would introduce a race
2111         * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2112         * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2113         * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2114         * pmd.
2115         */
2116        set_pmd_at(mm, start, pmd, entry);
2117        update_mmu_cache_pmd(vma, address, &entry);
2118
2119        page_ref_unfreeze(page, 2);
2120        mlock_migrate_page(new_page, page);
2121        page_remove_rmap(page, true);
2122        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2123
2124        spin_unlock(ptl);
2125
2126        /* Take an "isolate" reference and put new page on the LRU. */
2127        get_page(new_page);
2128        putback_lru_page(new_page);
2129
2130        unlock_page(new_page);
2131        unlock_page(page);
2132        put_page(page);                 /* Drop the rmap reference */
2133        put_page(page);                 /* Drop the LRU isolation reference */
2134
2135        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2136        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2137
2138        mod_node_page_state(page_pgdat(page),
2139                        NR_ISOLATED_ANON + page_lru,
2140                        -HPAGE_PMD_NR);
2141        return isolated;
2142
2143out_fail:
2144        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2145        ptl = pmd_lock(mm, pmd);
2146        if (pmd_same(*pmd, entry)) {
2147                entry = pmd_modify(entry, vma->vm_page_prot);
2148                set_pmd_at(mm, start, pmd, entry);
2149                update_mmu_cache_pmd(vma, address, &entry);
2150        }
2151        spin_unlock(ptl);
2152
2153out_unlock:
2154        unlock_page(page);
2155        put_page(page);
2156        return 0;
2157}
2158#endif /* CONFIG_NUMA_BALANCING */
2159
2160#endif /* CONFIG_NUMA */
2161
2162#ifdef CONFIG_DEVICE_PRIVATE
2163static int migrate_vma_collect_hole(unsigned long start,
2164                                    unsigned long end,
2165                                    __always_unused int depth,
2166                                    struct mm_walk *walk)
2167{
2168        struct migrate_vma *migrate = walk->private;
2169        unsigned long addr;
2170
2171        for (addr = start; addr < end; addr += PAGE_SIZE) {
2172                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2173                migrate->dst[migrate->npages] = 0;
2174                migrate->npages++;
2175                migrate->cpages++;
2176        }
2177
2178        return 0;
2179}
2180
2181static int migrate_vma_collect_skip(unsigned long start,
2182                                    unsigned long end,
2183                                    struct mm_walk *walk)
2184{
2185        struct migrate_vma *migrate = walk->private;
2186        unsigned long addr;
2187
2188        for (addr = start; addr < end; addr += PAGE_SIZE) {
2189                migrate->dst[migrate->npages] = 0;
2190                migrate->src[migrate->npages++] = 0;
2191        }
2192
2193        return 0;
2194}
2195
2196static int migrate_vma_collect_pmd(pmd_t *pmdp,
2197                                   unsigned long start,
2198                                   unsigned long end,
2199                                   struct mm_walk *walk)
2200{
2201        struct migrate_vma *migrate = walk->private;
2202        struct vm_area_struct *vma = walk->vma;
2203        struct mm_struct *mm = vma->vm_mm;
2204        unsigned long addr = start, unmapped = 0;
2205        spinlock_t *ptl;
2206        pte_t *ptep;
2207
2208again:
2209        if (pmd_none(*pmdp))
2210                return migrate_vma_collect_hole(start, end, -1, walk);
2211
2212        if (pmd_trans_huge(*pmdp)) {
2213                struct page *page;
2214
2215                ptl = pmd_lock(mm, pmdp);
2216                if (unlikely(!pmd_trans_huge(*pmdp))) {
2217                        spin_unlock(ptl);
2218                        goto again;
2219                }
2220
2221                page = pmd_page(*pmdp);
2222                if (is_huge_zero_page(page)) {
2223                        spin_unlock(ptl);
2224                        split_huge_pmd(vma, pmdp, addr);
2225                        if (pmd_trans_unstable(pmdp))
2226                                return migrate_vma_collect_skip(start, end,
2227                                                                walk);
2228                } else {
2229                        int ret;
2230
2231                        get_page(page);
2232                        spin_unlock(ptl);
2233                        if (unlikely(!trylock_page(page)))
2234                                return migrate_vma_collect_skip(start, end,
2235                                                                walk);
2236                        ret = split_huge_page(page);
2237                        unlock_page(page);
2238                        put_page(page);
2239                        if (ret)
2240                                return migrate_vma_collect_skip(start, end,
2241                                                                walk);
2242                        if (pmd_none(*pmdp))
2243                                return migrate_vma_collect_hole(start, end, -1,
2244                                                                walk);
2245                }
2246        }
2247
2248        if (unlikely(pmd_bad(*pmdp)))
2249                return migrate_vma_collect_skip(start, end, walk);
2250
2251        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2252        arch_enter_lazy_mmu_mode();
2253
2254        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2255                unsigned long mpfn = 0, pfn;
2256                struct page *page;
2257                swp_entry_t entry;
2258                pte_t pte;
2259
2260                pte = *ptep;
2261
2262                if (pte_none(pte)) {
2263                        mpfn = MIGRATE_PFN_MIGRATE;
2264                        migrate->cpages++;
2265                        goto next;
2266                }
2267
2268                if (!pte_present(pte)) {
2269                        /*
2270                         * Only care about unaddressable device page special
2271                         * page table entry. Other special swap entries are not
2272                         * migratable, and we ignore regular swapped page.
2273                         */
2274                        entry = pte_to_swp_entry(pte);
2275                        if (!is_device_private_entry(entry))
2276                                goto next;
2277
2278                        page = device_private_entry_to_page(entry);
2279                        if (page->pgmap->owner != migrate->src_owner)
2280                                goto next;
2281
2282                        mpfn = migrate_pfn(page_to_pfn(page)) |
2283                                        MIGRATE_PFN_MIGRATE;
2284                        if (is_write_device_private_entry(entry))
2285                                mpfn |= MIGRATE_PFN_WRITE;
2286                } else {
2287                        if (migrate->src_owner)
2288                                goto next;
2289                        pfn = pte_pfn(pte);
2290                        if (is_zero_pfn(pfn)) {
2291                                mpfn = MIGRATE_PFN_MIGRATE;
2292                                migrate->cpages++;
2293                                goto next;
2294                        }
2295                        page = vm_normal_page(migrate->vma, addr, pte);
2296                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2297                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2298                }
2299
2300                /* FIXME support THP */
2301                if (!page || !page->mapping || PageTransCompound(page)) {
2302                        mpfn = 0;
2303                        goto next;
2304                }
2305
2306                /*
2307                 * By getting a reference on the page we pin it and that blocks
2308                 * any kind of migration. Side effect is that it "freezes" the
2309                 * pte.
2310                 *
2311                 * We drop this reference after isolating the page from the lru
2312                 * for non device page (device page are not on the lru and thus
2313                 * can't be dropped from it).
2314                 */
2315                get_page(page);
2316                migrate->cpages++;
2317
2318                /*
2319                 * Optimize for the common case where page is only mapped once
2320                 * in one process. If we can lock the page, then we can safely
2321                 * set up a special migration page table entry now.
2322                 */
2323                if (trylock_page(page)) {
2324                        pte_t swp_pte;
2325
2326                        mpfn |= MIGRATE_PFN_LOCKED;
2327                        ptep_get_and_clear(mm, addr, ptep);
2328
2329                        /* Setup special migration page table entry */
2330                        entry = make_migration_entry(page, mpfn &
2331                                                     MIGRATE_PFN_WRITE);
2332                        swp_pte = swp_entry_to_pte(entry);
2333                        if (pte_soft_dirty(pte))
2334                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
2335                        if (pte_uffd_wp(pte))
2336                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
2337                        set_pte_at(mm, addr, ptep, swp_pte);
2338
2339                        /*
2340                         * This is like regular unmap: we remove the rmap and
2341                         * drop page refcount. Page won't be freed, as we took
2342                         * a reference just above.
2343                         */
2344                        page_remove_rmap(page, false);
2345                        put_page(page);
2346
2347                        if (pte_present(pte))
2348                                unmapped++;
2349                }
2350
2351next:
2352                migrate->dst[migrate->npages] = 0;
2353                migrate->src[migrate->npages++] = mpfn;
2354        }
2355        arch_leave_lazy_mmu_mode();
2356        pte_unmap_unlock(ptep - 1, ptl);
2357
2358        /* Only flush the TLB if we actually modified any entries */
2359        if (unmapped)
2360                flush_tlb_range(walk->vma, start, end);
2361
2362        return 0;
2363}
2364
2365static const struct mm_walk_ops migrate_vma_walk_ops = {
2366        .pmd_entry              = migrate_vma_collect_pmd,
2367        .pte_hole               = migrate_vma_collect_hole,
2368};
2369
2370/*
2371 * migrate_vma_collect() - collect pages over a range of virtual addresses
2372 * @migrate: migrate struct containing all migration information
2373 *
2374 * This will walk the CPU page table. For each virtual address backed by a
2375 * valid page, it updates the src array and takes a reference on the page, in
2376 * order to pin the page until we lock it and unmap it.
2377 */
2378static void migrate_vma_collect(struct migrate_vma *migrate)
2379{
2380        struct mmu_notifier_range range;
2381
2382        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2383                        migrate->vma->vm_mm, migrate->start, migrate->end);
2384        mmu_notifier_invalidate_range_start(&range);
2385
2386        walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2387                        &migrate_vma_walk_ops, migrate);
2388
2389        mmu_notifier_invalidate_range_end(&range);
2390        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2391}
2392
2393/*
2394 * migrate_vma_check_page() - check if page is pinned or not
2395 * @page: struct page to check
2396 *
2397 * Pinned pages cannot be migrated. This is the same test as in
2398 * migrate_page_move_mapping(), except that here we allow migration of a
2399 * ZONE_DEVICE page.
2400 */
2401static bool migrate_vma_check_page(struct page *page)
2402{
2403        /*
2404         * One extra ref because caller holds an extra reference, either from
2405         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2406         * a device page.
2407         */
2408        int extra = 1;
2409
2410        /*
2411         * FIXME support THP (transparent huge page), it is bit more complex to
2412         * check them than regular pages, because they can be mapped with a pmd
2413         * or with a pte (split pte mapping).
2414         */
2415        if (PageCompound(page))
2416                return false;
2417
2418        /* Page from ZONE_DEVICE have one extra reference */
2419        if (is_zone_device_page(page)) {
2420                /*
2421                 * Private page can never be pin as they have no valid pte and
2422                 * GUP will fail for those. Yet if there is a pending migration
2423                 * a thread might try to wait on the pte migration entry and
2424                 * will bump the page reference count. Sadly there is no way to
2425                 * differentiate a regular pin from migration wait. Hence to
2426                 * avoid 2 racing thread trying to migrate back to CPU to enter
2427                 * infinite loop (one stoping migration because the other is
2428                 * waiting on pte migration entry). We always return true here.
2429                 *
2430                 * FIXME proper solution is to rework migration_entry_wait() so
2431                 * it does not need to take a reference on page.
2432                 */
2433                return is_device_private_page(page);
2434        }
2435
2436        /* For file back page */
2437        if (page_mapping(page))
2438                extra += 1 + page_has_private(page);
2439
2440        if ((page_count(page) - extra) > page_mapcount(page))
2441                return false;
2442
2443        return true;
2444}
2445
2446/*
2447 * migrate_vma_prepare() - lock pages and isolate them from the lru
2448 * @migrate: migrate struct containing all migration information
2449 *
2450 * This locks pages that have been collected by migrate_vma_collect(). Once each
2451 * page is locked it is isolated from the lru (for non-device pages). Finally,
2452 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2453 * migrated by concurrent kernel threads.
2454 */
2455static void migrate_vma_prepare(struct migrate_vma *migrate)
2456{
2457        const unsigned long npages = migrate->npages;
2458        const unsigned long start = migrate->start;
2459        unsigned long addr, i, restore = 0;
2460        bool allow_drain = true;
2461
2462        lru_add_drain();
2463
2464        for (i = 0; (i < npages) && migrate->cpages; i++) {
2465                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2466                bool remap = true;
2467
2468                if (!page)
2469                        continue;
2470
2471                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2472                        /*
2473                         * Because we are migrating several pages there can be
2474                         * a deadlock between 2 concurrent migration where each
2475                         * are waiting on each other page lock.
2476                         *
2477                         * Make migrate_vma() a best effort thing and backoff
2478                         * for any page we can not lock right away.
2479                         */
2480                        if (!trylock_page(page)) {
2481                                migrate->src[i] = 0;
2482                                migrate->cpages--;
2483                                put_page(page);
2484                                continue;
2485                        }
2486                        remap = false;
2487                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2488                }
2489
2490                /* ZONE_DEVICE pages are not on LRU */
2491                if (!is_zone_device_page(page)) {
2492                        if (!PageLRU(page) && allow_drain) {
2493                                /* Drain CPU's pagevec */
2494                                lru_add_drain_all();
2495                                allow_drain = false;
2496                        }
2497
2498                        if (isolate_lru_page(page)) {
2499                                if (remap) {
2500                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2501                                        migrate->cpages--;
2502                                        restore++;
2503                                } else {
2504                                        migrate->src[i] = 0;
2505                                        unlock_page(page);
2506                                        migrate->cpages--;
2507                                        put_page(page);
2508                                }
2509                                continue;
2510                        }
2511
2512                        /* Drop the reference we took in collect */
2513                        put_page(page);
2514                }
2515
2516                if (!migrate_vma_check_page(page)) {
2517                        if (remap) {
2518                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2519                                migrate->cpages--;
2520                                restore++;
2521
2522                                if (!is_zone_device_page(page)) {
2523                                        get_page(page);
2524                                        putback_lru_page(page);
2525                                }
2526                        } else {
2527                                migrate->src[i] = 0;
2528                                unlock_page(page);
2529                                migrate->cpages--;
2530
2531                                if (!is_zone_device_page(page))
2532                                        putback_lru_page(page);
2533                                else
2534                                        put_page(page);
2535                        }
2536                }
2537        }
2538
2539        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2540                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2541
2542                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2543                        continue;
2544
2545                remove_migration_pte(page, migrate->vma, addr, page);
2546
2547                migrate->src[i] = 0;
2548                unlock_page(page);
2549                put_page(page);
2550                restore--;
2551        }
2552}
2553
2554/*
2555 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2556 * @migrate: migrate struct containing all migration information
2557 *
2558 * Replace page mapping (CPU page table pte) with a special migration pte entry
2559 * and check again if it has been pinned. Pinned pages are restored because we
2560 * cannot migrate them.
2561 *
2562 * This is the last step before we call the device driver callback to allocate
2563 * destination memory and copy contents of original page over to new page.
2564 */
2565static void migrate_vma_unmap(struct migrate_vma *migrate)
2566{
2567        int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2568        const unsigned long npages = migrate->npages;
2569        const unsigned long start = migrate->start;
2570        unsigned long addr, i, restore = 0;
2571
2572        for (i = 0; i < npages; i++) {
2573                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2574
2575                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2576                        continue;
2577
2578                if (page_mapped(page)) {
2579                        try_to_unmap(page, flags);
2580                        if (page_mapped(page))
2581                                goto restore;
2582                }
2583
2584                if (migrate_vma_check_page(page))
2585                        continue;
2586
2587restore:
2588                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2589                migrate->cpages--;
2590                restore++;
2591        }
2592
2593        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2594                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2595
2596                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2597                        continue;
2598
2599                remove_migration_ptes(page, page, false);
2600
2601                migrate->src[i] = 0;
2602                unlock_page(page);
2603                restore--;
2604
2605                if (is_zone_device_page(page))
2606                        put_page(page);
2607                else
2608                        putback_lru_page(page);
2609        }
2610}
2611
2612/**
2613 * migrate_vma_setup() - prepare to migrate a range of memory
2614 * @args: contains the vma, start, and and pfns arrays for the migration
2615 *
2616 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2617 * without an error.
2618 *
2619 * Prepare to migrate a range of memory virtual address range by collecting all
2620 * the pages backing each virtual address in the range, saving them inside the
2621 * src array.  Then lock those pages and unmap them. Once the pages are locked
2622 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2623 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2624 * corresponding src array entry.  Then restores any pages that are pinned, by
2625 * remapping and unlocking those pages.
2626 *
2627 * The caller should then allocate destination memory and copy source memory to
2628 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2629 * flag set).  Once these are allocated and copied, the caller must update each
2630 * corresponding entry in the dst array with the pfn value of the destination
2631 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2632 * (destination pages must have their struct pages locked, via lock_page()).
2633 *
2634 * Note that the caller does not have to migrate all the pages that are marked
2635 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2636 * device memory to system memory.  If the caller cannot migrate a device page
2637 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2638 * consequences for the userspace process, so it must be avoided if at all
2639 * possible.
2640 *
2641 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2642 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2643 * allowing the caller to allocate device memory for those unback virtual
2644 * address.  For this the caller simply has to allocate device memory and
2645 * properly set the destination entry like for regular migration.  Note that
2646 * this can still fails and thus inside the device driver must check if the
2647 * migration was successful for those entries after calling migrate_vma_pages()
2648 * just like for regular migration.
2649 *
2650 * After that, the callers must call migrate_vma_pages() to go over each entry
2651 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2652 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2653 * then migrate_vma_pages() to migrate struct page information from the source
2654 * struct page to the destination struct page.  If it fails to migrate the
2655 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2656 * src array.
2657 *
2658 * At this point all successfully migrated pages have an entry in the src
2659 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2660 * array entry with MIGRATE_PFN_VALID flag set.
2661 *
2662 * Once migrate_vma_pages() returns the caller may inspect which pages were
2663 * successfully migrated, and which were not.  Successfully migrated pages will
2664 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2665 *
2666 * It is safe to update device page table after migrate_vma_pages() because
2667 * both destination and source page are still locked, and the mmap_lock is held
2668 * in read mode (hence no one can unmap the range being migrated).
2669 *
2670 * Once the caller is done cleaning up things and updating its page table (if it
2671 * chose to do so, this is not an obligation) it finally calls
2672 * migrate_vma_finalize() to update the CPU page table to point to new pages
2673 * for successfully migrated pages or otherwise restore the CPU page table to
2674 * point to the original source pages.
2675 */
2676int migrate_vma_setup(struct migrate_vma *args)
2677{
2678        long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2679
2680        args->start &= PAGE_MASK;
2681        args->end &= PAGE_MASK;
2682        if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2683            (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2684                return -EINVAL;
2685        if (nr_pages <= 0)
2686                return -EINVAL;
2687        if (args->start < args->vma->vm_start ||
2688            args->start >= args->vma->vm_end)
2689                return -EINVAL;
2690        if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2691                return -EINVAL;
2692        if (!args->src || !args->dst)
2693                return -EINVAL;
2694
2695        memset(args->src, 0, sizeof(*args->src) * nr_pages);
2696        args->cpages = 0;
2697        args->npages = 0;
2698
2699        migrate_vma_collect(args);
2700
2701        if (args->cpages)
2702                migrate_vma_prepare(args);
2703        if (args->cpages)
2704                migrate_vma_unmap(args);
2705
2706        /*
2707         * At this point pages are locked and unmapped, and thus they have
2708         * stable content and can safely be copied to destination memory that
2709         * is allocated by the drivers.
2710         */
2711        return 0;
2712
2713}
2714EXPORT_SYMBOL(migrate_vma_setup);
2715
2716/*
2717 * This code closely matches the code in:
2718 *   __handle_mm_fault()
2719 *     handle_pte_fault()
2720 *       do_anonymous_page()
2721 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2722 * private page.
2723 */
2724static void migrate_vma_insert_page(struct migrate_vma *migrate,
2725                                    unsigned long addr,
2726                                    struct page *page,
2727                                    unsigned long *src,
2728                                    unsigned long *dst)
2729{
2730        struct vm_area_struct *vma = migrate->vma;
2731        struct mm_struct *mm = vma->vm_mm;
2732        bool flush = false;
2733        spinlock_t *ptl;
2734        pte_t entry;
2735        pgd_t *pgdp;
2736        p4d_t *p4dp;
2737        pud_t *pudp;
2738        pmd_t *pmdp;
2739        pte_t *ptep;
2740
2741        /* Only allow populating anonymous memory */
2742        if (!vma_is_anonymous(vma))
2743                goto abort;
2744
2745        pgdp = pgd_offset(mm, addr);
2746        p4dp = p4d_alloc(mm, pgdp, addr);
2747        if (!p4dp)
2748                goto abort;
2749        pudp = pud_alloc(mm, p4dp, addr);
2750        if (!pudp)
2751                goto abort;
2752        pmdp = pmd_alloc(mm, pudp, addr);
2753        if (!pmdp)
2754                goto abort;
2755
2756        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2757                goto abort;
2758
2759        /*
2760         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2761         * pte_offset_map() on pmds where a huge pmd might be created
2762         * from a different thread.
2763         *
2764         * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2765         * parallel threads are excluded by other means.
2766         *
2767         * Here we only have mmap_read_lock(mm).
2768         */
2769        if (pte_alloc(mm, pmdp))
2770                goto abort;
2771
2772        /* See the comment in pte_alloc_one_map() */
2773        if (unlikely(pmd_trans_unstable(pmdp)))
2774                goto abort;
2775
2776        if (unlikely(anon_vma_prepare(vma)))
2777                goto abort;
2778        if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2779                goto abort;
2780
2781        /*
2782         * The memory barrier inside __SetPageUptodate makes sure that
2783         * preceding stores to the page contents become visible before
2784         * the set_pte_at() write.
2785         */
2786        __SetPageUptodate(page);
2787
2788        if (is_zone_device_page(page)) {
2789                if (is_device_private_page(page)) {
2790                        swp_entry_t swp_entry;
2791
2792                        swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2793                        entry = swp_entry_to_pte(swp_entry);
2794                }
2795        } else {
2796                entry = mk_pte(page, vma->vm_page_prot);
2797                if (vma->vm_flags & VM_WRITE)
2798                        entry = pte_mkwrite(pte_mkdirty(entry));
2799        }
2800
2801        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2802
2803        if (check_stable_address_space(mm))
2804                goto unlock_abort;
2805
2806        if (pte_present(*ptep)) {
2807                unsigned long pfn = pte_pfn(*ptep);
2808
2809                if (!is_zero_pfn(pfn))
2810                        goto unlock_abort;
2811                flush = true;
2812        } else if (!pte_none(*ptep))
2813                goto unlock_abort;
2814
2815        /*
2816         * Check for userfaultfd but do not deliver the fault. Instead,
2817         * just back off.
2818         */
2819        if (userfaultfd_missing(vma))
2820                goto unlock_abort;
2821
2822        inc_mm_counter(mm, MM_ANONPAGES);
2823        page_add_new_anon_rmap(page, vma, addr, false);
2824        if (!is_zone_device_page(page))
2825                lru_cache_add_active_or_unevictable(page, vma);
2826        get_page(page);
2827
2828        if (flush) {
2829                flush_cache_page(vma, addr, pte_pfn(*ptep));
2830                ptep_clear_flush_notify(vma, addr, ptep);
2831                set_pte_at_notify(mm, addr, ptep, entry);
2832                update_mmu_cache(vma, addr, ptep);
2833        } else {
2834                /* No need to invalidate - it was non-present before */
2835                set_pte_at(mm, addr, ptep, entry);
2836                update_mmu_cache(vma, addr, ptep);
2837        }
2838
2839        pte_unmap_unlock(ptep, ptl);
2840        *src = MIGRATE_PFN_MIGRATE;
2841        return;
2842
2843unlock_abort:
2844        pte_unmap_unlock(ptep, ptl);
2845abort:
2846        *src &= ~MIGRATE_PFN_MIGRATE;
2847}
2848
2849/**
2850 * migrate_vma_pages() - migrate meta-data from src page to dst page
2851 * @migrate: migrate struct containing all migration information
2852 *
2853 * This migrates struct page meta-data from source struct page to destination
2854 * struct page. This effectively finishes the migration from source page to the
2855 * destination page.
2856 */
2857void migrate_vma_pages(struct migrate_vma *migrate)
2858{
2859        const unsigned long npages = migrate->npages;
2860        const unsigned long start = migrate->start;
2861        struct mmu_notifier_range range;
2862        unsigned long addr, i;
2863        bool notified = false;
2864
2865        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2866                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868                struct address_space *mapping;
2869                int r;
2870
2871                if (!newpage) {
2872                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2873                        continue;
2874                }
2875
2876                if (!page) {
2877                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2878                                continue;
2879                        if (!notified) {
2880                                notified = true;
2881
2882                                mmu_notifier_range_init(&range,
2883                                                        MMU_NOTIFY_CLEAR, 0,
2884                                                        NULL,
2885                                                        migrate->vma->vm_mm,
2886                                                        addr, migrate->end);
2887                                mmu_notifier_invalidate_range_start(&range);
2888                        }
2889                        migrate_vma_insert_page(migrate, addr, newpage,
2890                                                &migrate->src[i],
2891                                                &migrate->dst[i]);
2892                        continue;
2893                }
2894
2895                mapping = page_mapping(page);
2896
2897                if (is_zone_device_page(newpage)) {
2898                        if (is_device_private_page(newpage)) {
2899                                /*
2900                                 * For now only support private anonymous when
2901                                 * migrating to un-addressable device memory.
2902                                 */
2903                                if (mapping) {
2904                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2905                                        continue;
2906                                }
2907                        } else {
2908                                /*
2909                                 * Other types of ZONE_DEVICE page are not
2910                                 * supported.
2911                                 */
2912                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2913                                continue;
2914                        }
2915                }
2916
2917                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2918                if (r != MIGRATEPAGE_SUCCESS)
2919                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2920        }
2921
2922        /*
2923         * No need to double call mmu_notifier->invalidate_range() callback as
2924         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2925         * did already call it.
2926         */
2927        if (notified)
2928                mmu_notifier_invalidate_range_only_end(&range);
2929}
2930EXPORT_SYMBOL(migrate_vma_pages);
2931
2932/**
2933 * migrate_vma_finalize() - restore CPU page table entry
2934 * @migrate: migrate struct containing all migration information
2935 *
2936 * This replaces the special migration pte entry with either a mapping to the
2937 * new page if migration was successful for that page, or to the original page
2938 * otherwise.
2939 *
2940 * This also unlocks the pages and puts them back on the lru, or drops the extra
2941 * refcount, for device pages.
2942 */
2943void migrate_vma_finalize(struct migrate_vma *migrate)
2944{
2945        const unsigned long npages = migrate->npages;
2946        unsigned long i;
2947
2948        for (i = 0; i < npages; i++) {
2949                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2950                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2951
2952                if (!page) {
2953                        if (newpage) {
2954                                unlock_page(newpage);
2955                                put_page(newpage);
2956                        }
2957                        continue;
2958                }
2959
2960                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2961                        if (newpage) {
2962                                unlock_page(newpage);
2963                                put_page(newpage);
2964                        }
2965                        newpage = page;
2966                }
2967
2968                remove_migration_ptes(page, newpage, false);
2969                unlock_page(page);
2970                migrate->cpages--;
2971
2972                if (is_zone_device_page(page))
2973                        put_page(page);
2974                else
2975                        putback_lru_page(page);
2976
2977                if (newpage != page) {
2978                        unlock_page(newpage);
2979                        if (is_zone_device_page(newpage))
2980                                put_page(newpage);
2981                        else
2982                                putback_lru_page(newpage);
2983                }
2984        }
2985}
2986EXPORT_SYMBOL(migrate_vma_finalize);
2987#endif /* CONFIG_DEVICE_PRIVATE */
2988