linux/mm/page_ext.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/mm.h>
   3#include <linux/mmzone.h>
   4#include <linux/memblock.h>
   5#include <linux/page_ext.h>
   6#include <linux/memory.h>
   7#include <linux/vmalloc.h>
   8#include <linux/kmemleak.h>
   9#include <linux/page_owner.h>
  10#include <linux/page_idle.h>
  11
  12/*
  13 * struct page extension
  14 *
  15 * This is the feature to manage memory for extended data per page.
  16 *
  17 * Until now, we must modify struct page itself to store extra data per page.
  18 * This requires rebuilding the kernel and it is really time consuming process.
  19 * And, sometimes, rebuild is impossible due to third party module dependency.
  20 * At last, enlarging struct page could cause un-wanted system behaviour change.
  21 *
  22 * This feature is intended to overcome above mentioned problems. This feature
  23 * allocates memory for extended data per page in certain place rather than
  24 * the struct page itself. This memory can be accessed by the accessor
  25 * functions provided by this code. During the boot process, it checks whether
  26 * allocation of huge chunk of memory is needed or not. If not, it avoids
  27 * allocating memory at all. With this advantage, we can include this feature
  28 * into the kernel in default and can avoid rebuild and solve related problems.
  29 *
  30 * To help these things to work well, there are two callbacks for clients. One
  31 * is the need callback which is mandatory if user wants to avoid useless
  32 * memory allocation at boot-time. The other is optional, init callback, which
  33 * is used to do proper initialization after memory is allocated.
  34 *
  35 * The need callback is used to decide whether extended memory allocation is
  36 * needed or not. Sometimes users want to deactivate some features in this
  37 * boot and extra memory would be unneccessary. In this case, to avoid
  38 * allocating huge chunk of memory, each clients represent their need of
  39 * extra memory through the need callback. If one of the need callbacks
  40 * returns true, it means that someone needs extra memory so that
  41 * page extension core should allocates memory for page extension. If
  42 * none of need callbacks return true, memory isn't needed at all in this boot
  43 * and page extension core can skip to allocate memory. As result,
  44 * none of memory is wasted.
  45 *
  46 * When need callback returns true, page_ext checks if there is a request for
  47 * extra memory through size in struct page_ext_operations. If it is non-zero,
  48 * extra space is allocated for each page_ext entry and offset is returned to
  49 * user through offset in struct page_ext_operations.
  50 *
  51 * The init callback is used to do proper initialization after page extension
  52 * is completely initialized. In sparse memory system, extra memory is
  53 * allocated some time later than memmap is allocated. In other words, lifetime
  54 * of memory for page extension isn't same with memmap for struct page.
  55 * Therefore, clients can't store extra data until page extension is
  56 * initialized, even if pages are allocated and used freely. This could
  57 * cause inadequate state of extra data per page, so, to prevent it, client
  58 * can utilize this callback to initialize the state of it correctly.
  59 */
  60
  61static struct page_ext_operations *page_ext_ops[] = {
  62#ifdef CONFIG_PAGE_OWNER
  63        &page_owner_ops,
  64#endif
  65#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  66        &page_idle_ops,
  67#endif
  68};
  69
  70unsigned long page_ext_size = sizeof(struct page_ext);
  71
  72static unsigned long total_usage;
  73
  74static bool __init invoke_need_callbacks(void)
  75{
  76        int i;
  77        int entries = ARRAY_SIZE(page_ext_ops);
  78        bool need = false;
  79
  80        for (i = 0; i < entries; i++) {
  81                if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  82                        page_ext_ops[i]->offset = page_ext_size;
  83                        page_ext_size += page_ext_ops[i]->size;
  84                        need = true;
  85                }
  86        }
  87
  88        return need;
  89}
  90
  91static void __init invoke_init_callbacks(void)
  92{
  93        int i;
  94        int entries = ARRAY_SIZE(page_ext_ops);
  95
  96        for (i = 0; i < entries; i++) {
  97                if (page_ext_ops[i]->init)
  98                        page_ext_ops[i]->init();
  99        }
 100}
 101
 102static inline struct page_ext *get_entry(void *base, unsigned long index)
 103{
 104        return base + page_ext_size * index;
 105}
 106
 107#if !defined(CONFIG_SPARSEMEM)
 108
 109
 110void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 111{
 112        pgdat->node_page_ext = NULL;
 113}
 114
 115struct page_ext *lookup_page_ext(const struct page *page)
 116{
 117        unsigned long pfn = page_to_pfn(page);
 118        unsigned long index;
 119        struct page_ext *base;
 120
 121        base = NODE_DATA(page_to_nid(page))->node_page_ext;
 122        /*
 123         * The sanity checks the page allocator does upon freeing a
 124         * page can reach here before the page_ext arrays are
 125         * allocated when feeding a range of pages to the allocator
 126         * for the first time during bootup or memory hotplug.
 127         */
 128        if (unlikely(!base))
 129                return NULL;
 130        index = pfn - round_down(node_start_pfn(page_to_nid(page)),
 131                                        MAX_ORDER_NR_PAGES);
 132        return get_entry(base, index);
 133}
 134
 135static int __init alloc_node_page_ext(int nid)
 136{
 137        struct page_ext *base;
 138        unsigned long table_size;
 139        unsigned long nr_pages;
 140
 141        nr_pages = NODE_DATA(nid)->node_spanned_pages;
 142        if (!nr_pages)
 143                return 0;
 144
 145        /*
 146         * Need extra space if node range is not aligned with
 147         * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
 148         * checks buddy's status, range could be out of exact node range.
 149         */
 150        if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
 151                !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
 152                nr_pages += MAX_ORDER_NR_PAGES;
 153
 154        table_size = page_ext_size * nr_pages;
 155
 156        base = memblock_alloc_try_nid(
 157                        table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 158                        MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 159        if (!base)
 160                return -ENOMEM;
 161        NODE_DATA(nid)->node_page_ext = base;
 162        total_usage += table_size;
 163        return 0;
 164}
 165
 166void __init page_ext_init_flatmem(void)
 167{
 168
 169        int nid, fail;
 170
 171        if (!invoke_need_callbacks())
 172                return;
 173
 174        for_each_online_node(nid)  {
 175                fail = alloc_node_page_ext(nid);
 176                if (fail)
 177                        goto fail;
 178        }
 179        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 180        invoke_init_callbacks();
 181        return;
 182
 183fail:
 184        pr_crit("allocation of page_ext failed.\n");
 185        panic("Out of memory");
 186}
 187
 188#else /* CONFIG_FLAT_NODE_MEM_MAP */
 189
 190struct page_ext *lookup_page_ext(const struct page *page)
 191{
 192        unsigned long pfn = page_to_pfn(page);
 193        struct mem_section *section = __pfn_to_section(pfn);
 194        /*
 195         * The sanity checks the page allocator does upon freeing a
 196         * page can reach here before the page_ext arrays are
 197         * allocated when feeding a range of pages to the allocator
 198         * for the first time during bootup or memory hotplug.
 199         */
 200        if (!section->page_ext)
 201                return NULL;
 202        return get_entry(section->page_ext, pfn);
 203}
 204
 205static void *__meminit alloc_page_ext(size_t size, int nid)
 206{
 207        gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
 208        void *addr = NULL;
 209
 210        addr = alloc_pages_exact_nid(nid, size, flags);
 211        if (addr) {
 212                kmemleak_alloc(addr, size, 1, flags);
 213                return addr;
 214        }
 215
 216        addr = vzalloc_node(size, nid);
 217
 218        return addr;
 219}
 220
 221static int __meminit init_section_page_ext(unsigned long pfn, int nid)
 222{
 223        struct mem_section *section;
 224        struct page_ext *base;
 225        unsigned long table_size;
 226
 227        section = __pfn_to_section(pfn);
 228
 229        if (section->page_ext)
 230                return 0;
 231
 232        table_size = page_ext_size * PAGES_PER_SECTION;
 233        base = alloc_page_ext(table_size, nid);
 234
 235        /*
 236         * The value stored in section->page_ext is (base - pfn)
 237         * and it does not point to the memory block allocated above,
 238         * causing kmemleak false positives.
 239         */
 240        kmemleak_not_leak(base);
 241
 242        if (!base) {
 243                pr_err("page ext allocation failure\n");
 244                return -ENOMEM;
 245        }
 246
 247        /*
 248         * The passed "pfn" may not be aligned to SECTION.  For the calculation
 249         * we need to apply a mask.
 250         */
 251        pfn &= PAGE_SECTION_MASK;
 252        section->page_ext = (void *)base - page_ext_size * pfn;
 253        total_usage += table_size;
 254        return 0;
 255}
 256#ifdef CONFIG_MEMORY_HOTPLUG
 257static void free_page_ext(void *addr)
 258{
 259        if (is_vmalloc_addr(addr)) {
 260                vfree(addr);
 261        } else {
 262                struct page *page = virt_to_page(addr);
 263                size_t table_size;
 264
 265                table_size = page_ext_size * PAGES_PER_SECTION;
 266
 267                BUG_ON(PageReserved(page));
 268                kmemleak_free(addr);
 269                free_pages_exact(addr, table_size);
 270        }
 271}
 272
 273static void __free_page_ext(unsigned long pfn)
 274{
 275        struct mem_section *ms;
 276        struct page_ext *base;
 277
 278        ms = __pfn_to_section(pfn);
 279        if (!ms || !ms->page_ext)
 280                return;
 281        base = get_entry(ms->page_ext, pfn);
 282        free_page_ext(base);
 283        ms->page_ext = NULL;
 284}
 285
 286static int __meminit online_page_ext(unsigned long start_pfn,
 287                                unsigned long nr_pages,
 288                                int nid)
 289{
 290        unsigned long start, end, pfn;
 291        int fail = 0;
 292
 293        start = SECTION_ALIGN_DOWN(start_pfn);
 294        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 295
 296        if (nid == NUMA_NO_NODE) {
 297                /*
 298                 * In this case, "nid" already exists and contains valid memory.
 299                 * "start_pfn" passed to us is a pfn which is an arg for
 300                 * online__pages(), and start_pfn should exist.
 301                 */
 302                nid = pfn_to_nid(start_pfn);
 303                VM_BUG_ON(!node_state(nid, N_ONLINE));
 304        }
 305
 306        for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
 307                fail = init_section_page_ext(pfn, nid);
 308        if (!fail)
 309                return 0;
 310
 311        /* rollback */
 312        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 313                __free_page_ext(pfn);
 314
 315        return -ENOMEM;
 316}
 317
 318static int __meminit offline_page_ext(unsigned long start_pfn,
 319                                unsigned long nr_pages, int nid)
 320{
 321        unsigned long start, end, pfn;
 322
 323        start = SECTION_ALIGN_DOWN(start_pfn);
 324        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 325
 326        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 327                __free_page_ext(pfn);
 328        return 0;
 329
 330}
 331
 332static int __meminit page_ext_callback(struct notifier_block *self,
 333                               unsigned long action, void *arg)
 334{
 335        struct memory_notify *mn = arg;
 336        int ret = 0;
 337
 338        switch (action) {
 339        case MEM_GOING_ONLINE:
 340                ret = online_page_ext(mn->start_pfn,
 341                                   mn->nr_pages, mn->status_change_nid);
 342                break;
 343        case MEM_OFFLINE:
 344                offline_page_ext(mn->start_pfn,
 345                                mn->nr_pages, mn->status_change_nid);
 346                break;
 347        case MEM_CANCEL_ONLINE:
 348                offline_page_ext(mn->start_pfn,
 349                                mn->nr_pages, mn->status_change_nid);
 350                break;
 351        case MEM_GOING_OFFLINE:
 352                break;
 353        case MEM_ONLINE:
 354        case MEM_CANCEL_OFFLINE:
 355                break;
 356        }
 357
 358        return notifier_from_errno(ret);
 359}
 360
 361#endif
 362
 363void __init page_ext_init(void)
 364{
 365        unsigned long pfn;
 366        int nid;
 367
 368        if (!invoke_need_callbacks())
 369                return;
 370
 371        for_each_node_state(nid, N_MEMORY) {
 372                unsigned long start_pfn, end_pfn;
 373
 374                start_pfn = node_start_pfn(nid);
 375                end_pfn = node_end_pfn(nid);
 376                /*
 377                 * start_pfn and end_pfn may not be aligned to SECTION and the
 378                 * page->flags of out of node pages are not initialized.  So we
 379                 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
 380                 */
 381                for (pfn = start_pfn; pfn < end_pfn;
 382                        pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
 383
 384                        if (!pfn_valid(pfn))
 385                                continue;
 386                        /*
 387                         * Nodes's pfns can be overlapping.
 388                         * We know some arch can have a nodes layout such as
 389                         * -------------pfn-------------->
 390                         * N0 | N1 | N2 | N0 | N1 | N2|....
 391                         */
 392                        if (pfn_to_nid(pfn) != nid)
 393                                continue;
 394                        if (init_section_page_ext(pfn, nid))
 395                                goto oom;
 396                        cond_resched();
 397                }
 398        }
 399        hotplug_memory_notifier(page_ext_callback, 0);
 400        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 401        invoke_init_callbacks();
 402        return;
 403
 404oom:
 405        panic("Out of memory");
 406}
 407
 408void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 409{
 410}
 411
 412#endif
 413