linux/net/core/skbuff.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *      Fixes:
   9 *              Alan Cox        :       Fixed the worst of the load
  10 *                                      balancer bugs.
  11 *              Dave Platt      :       Interrupt stacking fix.
  12 *      Richard Kooijman        :       Timestamp fixes.
  13 *              Alan Cox        :       Changed buffer format.
  14 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  15 *              Linus Torvalds  :       Better skb_clone.
  16 *              Alan Cox        :       Added skb_copy.
  17 *              Alan Cox        :       Added all the changed routines Linus
  18 *                                      only put in the headers
  19 *              Ray VanTassle   :       Fixed --skb->lock in free
  20 *              Alan Cox        :       skb_copy copy arp field
  21 *              Andi Kleen      :       slabified it.
  22 *              Robert Olsson   :       Removed skb_head_pool
  23 *
  24 *      NOTE:
  25 *              The __skb_ routines should be called with interrupts
  26 *      disabled, or you better be *real* sure that the operation is atomic
  27 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *      or via disabling bottom half handlers, etc).
  29 */
  30
  31/*
  32 *      The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/if_vlan.h>
  62#include <linux/mpls.h>
  63
  64#include <net/protocol.h>
  65#include <net/dst.h>
  66#include <net/sock.h>
  67#include <net/checksum.h>
  68#include <net/ip6_checksum.h>
  69#include <net/xfrm.h>
  70#include <net/mpls.h>
  71#include <net/mptcp.h>
  72
  73#include <linux/uaccess.h>
  74#include <trace/events/skb.h>
  75#include <linux/highmem.h>
  76#include <linux/capability.h>
  77#include <linux/user_namespace.h>
  78#include <linux/indirect_call_wrapper.h>
  79
  80#include "datagram.h"
  81
  82struct kmem_cache *skbuff_head_cache __ro_after_init;
  83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  84#ifdef CONFIG_SKB_EXTENSIONS
  85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  86#endif
  87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  88EXPORT_SYMBOL(sysctl_max_skb_frags);
  89
  90/**
  91 *      skb_panic - private function for out-of-line support
  92 *      @skb:   buffer
  93 *      @sz:    size
  94 *      @addr:  address
  95 *      @msg:   skb_over_panic or skb_under_panic
  96 *
  97 *      Out-of-line support for skb_put() and skb_push().
  98 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  99 *      Keep out of line to prevent kernel bloat.
 100 *      __builtin_return_address is not used because it is not always reliable.
 101 */
 102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 103                      const char msg[])
 104{
 105        pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
 106                 msg, addr, skb->len, sz, skb->head, skb->data,
 107                 (unsigned long)skb->tail, (unsigned long)skb->end,
 108                 skb->dev ? skb->dev->name : "<NULL>");
 109        BUG();
 110}
 111
 112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 113{
 114        skb_panic(skb, sz, addr, __func__);
 115}
 116
 117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 118{
 119        skb_panic(skb, sz, addr, __func__);
 120}
 121
 122/*
 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 124 * the caller if emergency pfmemalloc reserves are being used. If it is and
 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 126 * may be used. Otherwise, the packet data may be discarded until enough
 127 * memory is free
 128 */
 129#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 130         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 131
 132static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 133                               unsigned long ip, bool *pfmemalloc)
 134{
 135        void *obj;
 136        bool ret_pfmemalloc = false;
 137
 138        /*
 139         * Try a regular allocation, when that fails and we're not entitled
 140         * to the reserves, fail.
 141         */
 142        obj = kmalloc_node_track_caller(size,
 143                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 144                                        node);
 145        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 146                goto out;
 147
 148        /* Try again but now we are using pfmemalloc reserves */
 149        ret_pfmemalloc = true;
 150        obj = kmalloc_node_track_caller(size, flags, node);
 151
 152out:
 153        if (pfmemalloc)
 154                *pfmemalloc = ret_pfmemalloc;
 155
 156        return obj;
 157}
 158
 159/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 160 *      'private' fields and also do memory statistics to find all the
 161 *      [BEEP] leaks.
 162 *
 163 */
 164
 165/**
 166 *      __alloc_skb     -       allocate a network buffer
 167 *      @size: size to allocate
 168 *      @gfp_mask: allocation mask
 169 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 170 *              instead of head cache and allocate a cloned (child) skb.
 171 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 172 *              allocations in case the data is required for writeback
 173 *      @node: numa node to allocate memory on
 174 *
 175 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 176 *      tail room of at least size bytes. The object has a reference count
 177 *      of one. The return is the buffer. On a failure the return is %NULL.
 178 *
 179 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 180 *      %GFP_ATOMIC.
 181 */
 182struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 183                            int flags, int node)
 184{
 185        struct kmem_cache *cache;
 186        struct skb_shared_info *shinfo;
 187        struct sk_buff *skb;
 188        u8 *data;
 189        bool pfmemalloc;
 190
 191        cache = (flags & SKB_ALLOC_FCLONE)
 192                ? skbuff_fclone_cache : skbuff_head_cache;
 193
 194        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 195                gfp_mask |= __GFP_MEMALLOC;
 196
 197        /* Get the HEAD */
 198        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 199        if (!skb)
 200                goto out;
 201        prefetchw(skb);
 202
 203        /* We do our best to align skb_shared_info on a separate cache
 204         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 205         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 206         * Both skb->head and skb_shared_info are cache line aligned.
 207         */
 208        size = SKB_DATA_ALIGN(size);
 209        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 210        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 211        if (!data)
 212                goto nodata;
 213        /* kmalloc(size) might give us more room than requested.
 214         * Put skb_shared_info exactly at the end of allocated zone,
 215         * to allow max possible filling before reallocation.
 216         */
 217        size = SKB_WITH_OVERHEAD(ksize(data));
 218        prefetchw(data + size);
 219
 220        /*
 221         * Only clear those fields we need to clear, not those that we will
 222         * actually initialise below. Hence, don't put any more fields after
 223         * the tail pointer in struct sk_buff!
 224         */
 225        memset(skb, 0, offsetof(struct sk_buff, tail));
 226        /* Account for allocated memory : skb + skb->head */
 227        skb->truesize = SKB_TRUESIZE(size);
 228        skb->pfmemalloc = pfmemalloc;
 229        refcount_set(&skb->users, 1);
 230        skb->head = data;
 231        skb->data = data;
 232        skb_reset_tail_pointer(skb);
 233        skb->end = skb->tail + size;
 234        skb->mac_header = (typeof(skb->mac_header))~0U;
 235        skb->transport_header = (typeof(skb->transport_header))~0U;
 236
 237        /* make sure we initialize shinfo sequentially */
 238        shinfo = skb_shinfo(skb);
 239        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 240        atomic_set(&shinfo->dataref, 1);
 241
 242        if (flags & SKB_ALLOC_FCLONE) {
 243                struct sk_buff_fclones *fclones;
 244
 245                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 246
 247                skb->fclone = SKB_FCLONE_ORIG;
 248                refcount_set(&fclones->fclone_ref, 1);
 249
 250                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 251        }
 252out:
 253        return skb;
 254nodata:
 255        kmem_cache_free(cache, skb);
 256        skb = NULL;
 257        goto out;
 258}
 259EXPORT_SYMBOL(__alloc_skb);
 260
 261/* Caller must provide SKB that is memset cleared */
 262static struct sk_buff *__build_skb_around(struct sk_buff *skb,
 263                                          void *data, unsigned int frag_size)
 264{
 265        struct skb_shared_info *shinfo;
 266        unsigned int size = frag_size ? : ksize(data);
 267
 268        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 269
 270        /* Assumes caller memset cleared SKB */
 271        skb->truesize = SKB_TRUESIZE(size);
 272        refcount_set(&skb->users, 1);
 273        skb->head = data;
 274        skb->data = data;
 275        skb_reset_tail_pointer(skb);
 276        skb->end = skb->tail + size;
 277        skb->mac_header = (typeof(skb->mac_header))~0U;
 278        skb->transport_header = (typeof(skb->transport_header))~0U;
 279
 280        /* make sure we initialize shinfo sequentially */
 281        shinfo = skb_shinfo(skb);
 282        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 283        atomic_set(&shinfo->dataref, 1);
 284
 285        return skb;
 286}
 287
 288/**
 289 * __build_skb - build a network buffer
 290 * @data: data buffer provided by caller
 291 * @frag_size: size of data, or 0 if head was kmalloced
 292 *
 293 * Allocate a new &sk_buff. Caller provides space holding head and
 294 * skb_shared_info. @data must have been allocated by kmalloc() only if
 295 * @frag_size is 0, otherwise data should come from the page allocator
 296 *  or vmalloc()
 297 * The return is the new skb buffer.
 298 * On a failure the return is %NULL, and @data is not freed.
 299 * Notes :
 300 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 301 *  Driver should add room at head (NET_SKB_PAD) and
 302 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 303 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 304 *  before giving packet to stack.
 305 *  RX rings only contains data buffers, not full skbs.
 306 */
 307struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 308{
 309        struct sk_buff *skb;
 310
 311        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 312        if (unlikely(!skb))
 313                return NULL;
 314
 315        memset(skb, 0, offsetof(struct sk_buff, tail));
 316
 317        return __build_skb_around(skb, data, frag_size);
 318}
 319
 320/* build_skb() is wrapper over __build_skb(), that specifically
 321 * takes care of skb->head and skb->pfmemalloc
 322 * This means that if @frag_size is not zero, then @data must be backed
 323 * by a page fragment, not kmalloc() or vmalloc()
 324 */
 325struct sk_buff *build_skb(void *data, unsigned int frag_size)
 326{
 327        struct sk_buff *skb = __build_skb(data, frag_size);
 328
 329        if (skb && frag_size) {
 330                skb->head_frag = 1;
 331                if (page_is_pfmemalloc(virt_to_head_page(data)))
 332                        skb->pfmemalloc = 1;
 333        }
 334        return skb;
 335}
 336EXPORT_SYMBOL(build_skb);
 337
 338/**
 339 * build_skb_around - build a network buffer around provided skb
 340 * @skb: sk_buff provide by caller, must be memset cleared
 341 * @data: data buffer provided by caller
 342 * @frag_size: size of data, or 0 if head was kmalloced
 343 */
 344struct sk_buff *build_skb_around(struct sk_buff *skb,
 345                                 void *data, unsigned int frag_size)
 346{
 347        if (unlikely(!skb))
 348                return NULL;
 349
 350        skb = __build_skb_around(skb, data, frag_size);
 351
 352        if (skb && frag_size) {
 353                skb->head_frag = 1;
 354                if (page_is_pfmemalloc(virt_to_head_page(data)))
 355                        skb->pfmemalloc = 1;
 356        }
 357        return skb;
 358}
 359EXPORT_SYMBOL(build_skb_around);
 360
 361#define NAPI_SKB_CACHE_SIZE     64
 362
 363struct napi_alloc_cache {
 364        struct page_frag_cache page;
 365        unsigned int skb_count;
 366        void *skb_cache[NAPI_SKB_CACHE_SIZE];
 367};
 368
 369static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 370static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 371
 372static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 373{
 374        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 375
 376        return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 377}
 378
 379void *napi_alloc_frag(unsigned int fragsz)
 380{
 381        fragsz = SKB_DATA_ALIGN(fragsz);
 382
 383        return __napi_alloc_frag(fragsz, GFP_ATOMIC);
 384}
 385EXPORT_SYMBOL(napi_alloc_frag);
 386
 387/**
 388 * netdev_alloc_frag - allocate a page fragment
 389 * @fragsz: fragment size
 390 *
 391 * Allocates a frag from a page for receive buffer.
 392 * Uses GFP_ATOMIC allocations.
 393 */
 394void *netdev_alloc_frag(unsigned int fragsz)
 395{
 396        struct page_frag_cache *nc;
 397        void *data;
 398
 399        fragsz = SKB_DATA_ALIGN(fragsz);
 400        if (in_irq() || irqs_disabled()) {
 401                nc = this_cpu_ptr(&netdev_alloc_cache);
 402                data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
 403        } else {
 404                local_bh_disable();
 405                data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
 406                local_bh_enable();
 407        }
 408        return data;
 409}
 410EXPORT_SYMBOL(netdev_alloc_frag);
 411
 412/**
 413 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 414 *      @dev: network device to receive on
 415 *      @len: length to allocate
 416 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 417 *
 418 *      Allocate a new &sk_buff and assign it a usage count of one. The
 419 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 420 *      the headroom they think they need without accounting for the
 421 *      built in space. The built in space is used for optimisations.
 422 *
 423 *      %NULL is returned if there is no free memory.
 424 */
 425struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 426                                   gfp_t gfp_mask)
 427{
 428        struct page_frag_cache *nc;
 429        struct sk_buff *skb;
 430        bool pfmemalloc;
 431        void *data;
 432
 433        len += NET_SKB_PAD;
 434
 435        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 436            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 437                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 438                if (!skb)
 439                        goto skb_fail;
 440                goto skb_success;
 441        }
 442
 443        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 444        len = SKB_DATA_ALIGN(len);
 445
 446        if (sk_memalloc_socks())
 447                gfp_mask |= __GFP_MEMALLOC;
 448
 449        if (in_irq() || irqs_disabled()) {
 450                nc = this_cpu_ptr(&netdev_alloc_cache);
 451                data = page_frag_alloc(nc, len, gfp_mask);
 452                pfmemalloc = nc->pfmemalloc;
 453        } else {
 454                local_bh_disable();
 455                nc = this_cpu_ptr(&napi_alloc_cache.page);
 456                data = page_frag_alloc(nc, len, gfp_mask);
 457                pfmemalloc = nc->pfmemalloc;
 458                local_bh_enable();
 459        }
 460
 461        if (unlikely(!data))
 462                return NULL;
 463
 464        skb = __build_skb(data, len);
 465        if (unlikely(!skb)) {
 466                skb_free_frag(data);
 467                return NULL;
 468        }
 469
 470        if (pfmemalloc)
 471                skb->pfmemalloc = 1;
 472        skb->head_frag = 1;
 473
 474skb_success:
 475        skb_reserve(skb, NET_SKB_PAD);
 476        skb->dev = dev;
 477
 478skb_fail:
 479        return skb;
 480}
 481EXPORT_SYMBOL(__netdev_alloc_skb);
 482
 483/**
 484 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 485 *      @napi: napi instance this buffer was allocated for
 486 *      @len: length to allocate
 487 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 488 *
 489 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 490 *      attempt to allocate the head from a special reserved region used
 491 *      only for NAPI Rx allocation.  By doing this we can save several
 492 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 493 *
 494 *      %NULL is returned if there is no free memory.
 495 */
 496struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 497                                 gfp_t gfp_mask)
 498{
 499        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 500        struct sk_buff *skb;
 501        void *data;
 502
 503        len += NET_SKB_PAD + NET_IP_ALIGN;
 504
 505        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 506            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 507                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 508                if (!skb)
 509                        goto skb_fail;
 510                goto skb_success;
 511        }
 512
 513        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 514        len = SKB_DATA_ALIGN(len);
 515
 516        if (sk_memalloc_socks())
 517                gfp_mask |= __GFP_MEMALLOC;
 518
 519        data = page_frag_alloc(&nc->page, len, gfp_mask);
 520        if (unlikely(!data))
 521                return NULL;
 522
 523        skb = __build_skb(data, len);
 524        if (unlikely(!skb)) {
 525                skb_free_frag(data);
 526                return NULL;
 527        }
 528
 529        if (nc->page.pfmemalloc)
 530                skb->pfmemalloc = 1;
 531        skb->head_frag = 1;
 532
 533skb_success:
 534        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 535        skb->dev = napi->dev;
 536
 537skb_fail:
 538        return skb;
 539}
 540EXPORT_SYMBOL(__napi_alloc_skb);
 541
 542void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 543                     int size, unsigned int truesize)
 544{
 545        skb_fill_page_desc(skb, i, page, off, size);
 546        skb->len += size;
 547        skb->data_len += size;
 548        skb->truesize += truesize;
 549}
 550EXPORT_SYMBOL(skb_add_rx_frag);
 551
 552void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 553                          unsigned int truesize)
 554{
 555        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 556
 557        skb_frag_size_add(frag, size);
 558        skb->len += size;
 559        skb->data_len += size;
 560        skb->truesize += truesize;
 561}
 562EXPORT_SYMBOL(skb_coalesce_rx_frag);
 563
 564static void skb_drop_list(struct sk_buff **listp)
 565{
 566        kfree_skb_list(*listp);
 567        *listp = NULL;
 568}
 569
 570static inline void skb_drop_fraglist(struct sk_buff *skb)
 571{
 572        skb_drop_list(&skb_shinfo(skb)->frag_list);
 573}
 574
 575static void skb_clone_fraglist(struct sk_buff *skb)
 576{
 577        struct sk_buff *list;
 578
 579        skb_walk_frags(skb, list)
 580                skb_get(list);
 581}
 582
 583static void skb_free_head(struct sk_buff *skb)
 584{
 585        unsigned char *head = skb->head;
 586
 587        if (skb->head_frag)
 588                skb_free_frag(head);
 589        else
 590                kfree(head);
 591}
 592
 593static void skb_release_data(struct sk_buff *skb)
 594{
 595        struct skb_shared_info *shinfo = skb_shinfo(skb);
 596        int i;
 597
 598        if (skb->cloned &&
 599            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 600                              &shinfo->dataref))
 601                return;
 602
 603        for (i = 0; i < shinfo->nr_frags; i++)
 604                __skb_frag_unref(&shinfo->frags[i]);
 605
 606        if (shinfo->frag_list)
 607                kfree_skb_list(shinfo->frag_list);
 608
 609        skb_zcopy_clear(skb, true);
 610        skb_free_head(skb);
 611}
 612
 613/*
 614 *      Free an skbuff by memory without cleaning the state.
 615 */
 616static void kfree_skbmem(struct sk_buff *skb)
 617{
 618        struct sk_buff_fclones *fclones;
 619
 620        switch (skb->fclone) {
 621        case SKB_FCLONE_UNAVAILABLE:
 622                kmem_cache_free(skbuff_head_cache, skb);
 623                return;
 624
 625        case SKB_FCLONE_ORIG:
 626                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 627
 628                /* We usually free the clone (TX completion) before original skb
 629                 * This test would have no chance to be true for the clone,
 630                 * while here, branch prediction will be good.
 631                 */
 632                if (refcount_read(&fclones->fclone_ref) == 1)
 633                        goto fastpath;
 634                break;
 635
 636        default: /* SKB_FCLONE_CLONE */
 637                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 638                break;
 639        }
 640        if (!refcount_dec_and_test(&fclones->fclone_ref))
 641                return;
 642fastpath:
 643        kmem_cache_free(skbuff_fclone_cache, fclones);
 644}
 645
 646void skb_release_head_state(struct sk_buff *skb)
 647{
 648        skb_dst_drop(skb);
 649        if (skb->destructor) {
 650                WARN_ON(in_irq());
 651                skb->destructor(skb);
 652        }
 653#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 654        nf_conntrack_put(skb_nfct(skb));
 655#endif
 656        skb_ext_put(skb);
 657}
 658
 659/* Free everything but the sk_buff shell. */
 660static void skb_release_all(struct sk_buff *skb)
 661{
 662        skb_release_head_state(skb);
 663        if (likely(skb->head))
 664                skb_release_data(skb);
 665}
 666
 667/**
 668 *      __kfree_skb - private function
 669 *      @skb: buffer
 670 *
 671 *      Free an sk_buff. Release anything attached to the buffer.
 672 *      Clean the state. This is an internal helper function. Users should
 673 *      always call kfree_skb
 674 */
 675
 676void __kfree_skb(struct sk_buff *skb)
 677{
 678        skb_release_all(skb);
 679        kfree_skbmem(skb);
 680}
 681EXPORT_SYMBOL(__kfree_skb);
 682
 683/**
 684 *      kfree_skb - free an sk_buff
 685 *      @skb: buffer to free
 686 *
 687 *      Drop a reference to the buffer and free it if the usage count has
 688 *      hit zero.
 689 */
 690void kfree_skb(struct sk_buff *skb)
 691{
 692        if (!skb_unref(skb))
 693                return;
 694
 695        trace_kfree_skb(skb, __builtin_return_address(0));
 696        __kfree_skb(skb);
 697}
 698EXPORT_SYMBOL(kfree_skb);
 699
 700void kfree_skb_list(struct sk_buff *segs)
 701{
 702        while (segs) {
 703                struct sk_buff *next = segs->next;
 704
 705                kfree_skb(segs);
 706                segs = next;
 707        }
 708}
 709EXPORT_SYMBOL(kfree_skb_list);
 710
 711/* Dump skb information and contents.
 712 *
 713 * Must only be called from net_ratelimit()-ed paths.
 714 *
 715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
 716 */
 717void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
 718{
 719        static atomic_t can_dump_full = ATOMIC_INIT(5);
 720        struct skb_shared_info *sh = skb_shinfo(skb);
 721        struct net_device *dev = skb->dev;
 722        struct sock *sk = skb->sk;
 723        struct sk_buff *list_skb;
 724        bool has_mac, has_trans;
 725        int headroom, tailroom;
 726        int i, len, seg_len;
 727
 728        if (full_pkt)
 729                full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
 730
 731        if (full_pkt)
 732                len = skb->len;
 733        else
 734                len = min_t(int, skb->len, MAX_HEADER + 128);
 735
 736        headroom = skb_headroom(skb);
 737        tailroom = skb_tailroom(skb);
 738
 739        has_mac = skb_mac_header_was_set(skb);
 740        has_trans = skb_transport_header_was_set(skb);
 741
 742        printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
 743               "mac=(%d,%d) net=(%d,%d) trans=%d\n"
 744               "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
 745               "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
 746               "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
 747               level, skb->len, headroom, skb_headlen(skb), tailroom,
 748               has_mac ? skb->mac_header : -1,
 749               has_mac ? skb_mac_header_len(skb) : -1,
 750               skb->network_header,
 751               has_trans ? skb_network_header_len(skb) : -1,
 752               has_trans ? skb->transport_header : -1,
 753               sh->tx_flags, sh->nr_frags,
 754               sh->gso_size, sh->gso_type, sh->gso_segs,
 755               skb->csum, skb->ip_summed, skb->csum_complete_sw,
 756               skb->csum_valid, skb->csum_level,
 757               skb->hash, skb->sw_hash, skb->l4_hash,
 758               ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
 759
 760        if (dev)
 761                printk("%sdev name=%s feat=0x%pNF\n",
 762                       level, dev->name, &dev->features);
 763        if (sk)
 764                printk("%ssk family=%hu type=%u proto=%u\n",
 765                       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
 766
 767        if (full_pkt && headroom)
 768                print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
 769                               16, 1, skb->head, headroom, false);
 770
 771        seg_len = min_t(int, skb_headlen(skb), len);
 772        if (seg_len)
 773                print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
 774                               16, 1, skb->data, seg_len, false);
 775        len -= seg_len;
 776
 777        if (full_pkt && tailroom)
 778                print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
 779                               16, 1, skb_tail_pointer(skb), tailroom, false);
 780
 781        for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
 782                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 783                u32 p_off, p_len, copied;
 784                struct page *p;
 785                u8 *vaddr;
 786
 787                skb_frag_foreach_page(frag, skb_frag_off(frag),
 788                                      skb_frag_size(frag), p, p_off, p_len,
 789                                      copied) {
 790                        seg_len = min_t(int, p_len, len);
 791                        vaddr = kmap_atomic(p);
 792                        print_hex_dump(level, "skb frag:     ",
 793                                       DUMP_PREFIX_OFFSET,
 794                                       16, 1, vaddr + p_off, seg_len, false);
 795                        kunmap_atomic(vaddr);
 796                        len -= seg_len;
 797                        if (!len)
 798                                break;
 799                }
 800        }
 801
 802        if (full_pkt && skb_has_frag_list(skb)) {
 803                printk("skb fraglist:\n");
 804                skb_walk_frags(skb, list_skb)
 805                        skb_dump(level, list_skb, true);
 806        }
 807}
 808EXPORT_SYMBOL(skb_dump);
 809
 810/**
 811 *      skb_tx_error - report an sk_buff xmit error
 812 *      @skb: buffer that triggered an error
 813 *
 814 *      Report xmit error if a device callback is tracking this skb.
 815 *      skb must be freed afterwards.
 816 */
 817void skb_tx_error(struct sk_buff *skb)
 818{
 819        skb_zcopy_clear(skb, true);
 820}
 821EXPORT_SYMBOL(skb_tx_error);
 822
 823/**
 824 *      consume_skb - free an skbuff
 825 *      @skb: buffer to free
 826 *
 827 *      Drop a ref to the buffer and free it if the usage count has hit zero
 828 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 829 *      is being dropped after a failure and notes that
 830 */
 831void consume_skb(struct sk_buff *skb)
 832{
 833        if (!skb_unref(skb))
 834                return;
 835
 836        trace_consume_skb(skb);
 837        __kfree_skb(skb);
 838}
 839EXPORT_SYMBOL(consume_skb);
 840
 841/**
 842 *      consume_stateless_skb - free an skbuff, assuming it is stateless
 843 *      @skb: buffer to free
 844 *
 845 *      Alike consume_skb(), but this variant assumes that this is the last
 846 *      skb reference and all the head states have been already dropped
 847 */
 848void __consume_stateless_skb(struct sk_buff *skb)
 849{
 850        trace_consume_skb(skb);
 851        skb_release_data(skb);
 852        kfree_skbmem(skb);
 853}
 854
 855void __kfree_skb_flush(void)
 856{
 857        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 858
 859        /* flush skb_cache if containing objects */
 860        if (nc->skb_count) {
 861                kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 862                                     nc->skb_cache);
 863                nc->skb_count = 0;
 864        }
 865}
 866
 867static inline void _kfree_skb_defer(struct sk_buff *skb)
 868{
 869        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 870
 871        /* drop skb->head and call any destructors for packet */
 872        skb_release_all(skb);
 873
 874        /* record skb to CPU local list */
 875        nc->skb_cache[nc->skb_count++] = skb;
 876
 877#ifdef CONFIG_SLUB
 878        /* SLUB writes into objects when freeing */
 879        prefetchw(skb);
 880#endif
 881
 882        /* flush skb_cache if it is filled */
 883        if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 884                kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 885                                     nc->skb_cache);
 886                nc->skb_count = 0;
 887        }
 888}
 889void __kfree_skb_defer(struct sk_buff *skb)
 890{
 891        _kfree_skb_defer(skb);
 892}
 893
 894void napi_consume_skb(struct sk_buff *skb, int budget)
 895{
 896        if (unlikely(!skb))
 897                return;
 898
 899        /* Zero budget indicate non-NAPI context called us, like netpoll */
 900        if (unlikely(!budget)) {
 901                dev_consume_skb_any(skb);
 902                return;
 903        }
 904
 905        if (!skb_unref(skb))
 906                return;
 907
 908        /* if reaching here SKB is ready to free */
 909        trace_consume_skb(skb);
 910
 911        /* if SKB is a clone, don't handle this case */
 912        if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 913                __kfree_skb(skb);
 914                return;
 915        }
 916
 917        _kfree_skb_defer(skb);
 918}
 919EXPORT_SYMBOL(napi_consume_skb);
 920
 921/* Make sure a field is enclosed inside headers_start/headers_end section */
 922#define CHECK_SKB_FIELD(field) \
 923        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 924                     offsetof(struct sk_buff, headers_start));  \
 925        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
 926                     offsetof(struct sk_buff, headers_end));    \
 927
 928static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 929{
 930        new->tstamp             = old->tstamp;
 931        /* We do not copy old->sk */
 932        new->dev                = old->dev;
 933        memcpy(new->cb, old->cb, sizeof(old->cb));
 934        skb_dst_copy(new, old);
 935        __skb_ext_copy(new, old);
 936        __nf_copy(new, old, false);
 937
 938        /* Note : this field could be in headers_start/headers_end section
 939         * It is not yet because we do not want to have a 16 bit hole
 940         */
 941        new->queue_mapping = old->queue_mapping;
 942
 943        memcpy(&new->headers_start, &old->headers_start,
 944               offsetof(struct sk_buff, headers_end) -
 945               offsetof(struct sk_buff, headers_start));
 946        CHECK_SKB_FIELD(protocol);
 947        CHECK_SKB_FIELD(csum);
 948        CHECK_SKB_FIELD(hash);
 949        CHECK_SKB_FIELD(priority);
 950        CHECK_SKB_FIELD(skb_iif);
 951        CHECK_SKB_FIELD(vlan_proto);
 952        CHECK_SKB_FIELD(vlan_tci);
 953        CHECK_SKB_FIELD(transport_header);
 954        CHECK_SKB_FIELD(network_header);
 955        CHECK_SKB_FIELD(mac_header);
 956        CHECK_SKB_FIELD(inner_protocol);
 957        CHECK_SKB_FIELD(inner_transport_header);
 958        CHECK_SKB_FIELD(inner_network_header);
 959        CHECK_SKB_FIELD(inner_mac_header);
 960        CHECK_SKB_FIELD(mark);
 961#ifdef CONFIG_NETWORK_SECMARK
 962        CHECK_SKB_FIELD(secmark);
 963#endif
 964#ifdef CONFIG_NET_RX_BUSY_POLL
 965        CHECK_SKB_FIELD(napi_id);
 966#endif
 967#ifdef CONFIG_XPS
 968        CHECK_SKB_FIELD(sender_cpu);
 969#endif
 970#ifdef CONFIG_NET_SCHED
 971        CHECK_SKB_FIELD(tc_index);
 972#endif
 973
 974}
 975
 976/*
 977 * You should not add any new code to this function.  Add it to
 978 * __copy_skb_header above instead.
 979 */
 980static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 981{
 982#define C(x) n->x = skb->x
 983
 984        n->next = n->prev = NULL;
 985        n->sk = NULL;
 986        __copy_skb_header(n, skb);
 987
 988        C(len);
 989        C(data_len);
 990        C(mac_len);
 991        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 992        n->cloned = 1;
 993        n->nohdr = 0;
 994        n->peeked = 0;
 995        C(pfmemalloc);
 996        n->destructor = NULL;
 997        C(tail);
 998        C(end);
 999        C(head);
1000        C(head_frag);
1001        C(data);
1002        C(truesize);
1003        refcount_set(&n->users, 1);
1004
1005        atomic_inc(&(skb_shinfo(skb)->dataref));
1006        skb->cloned = 1;
1007
1008        return n;
1009#undef C
1010}
1011
1012/**
1013 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1014 * @first: first sk_buff of the msg
1015 */
1016struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1017{
1018        struct sk_buff *n;
1019
1020        n = alloc_skb(0, GFP_ATOMIC);
1021        if (!n)
1022                return NULL;
1023
1024        n->len = first->len;
1025        n->data_len = first->len;
1026        n->truesize = first->truesize;
1027
1028        skb_shinfo(n)->frag_list = first;
1029
1030        __copy_skb_header(n, first);
1031        n->destructor = NULL;
1032
1033        return n;
1034}
1035EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1036
1037/**
1038 *      skb_morph       -       morph one skb into another
1039 *      @dst: the skb to receive the contents
1040 *      @src: the skb to supply the contents
1041 *
1042 *      This is identical to skb_clone except that the target skb is
1043 *      supplied by the user.
1044 *
1045 *      The target skb is returned upon exit.
1046 */
1047struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1048{
1049        skb_release_all(dst);
1050        return __skb_clone(dst, src);
1051}
1052EXPORT_SYMBOL_GPL(skb_morph);
1053
1054int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1055{
1056        unsigned long max_pg, num_pg, new_pg, old_pg;
1057        struct user_struct *user;
1058
1059        if (capable(CAP_IPC_LOCK) || !size)
1060                return 0;
1061
1062        num_pg = (size >> PAGE_SHIFT) + 2;      /* worst case */
1063        max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1064        user = mmp->user ? : current_user();
1065
1066        do {
1067                old_pg = atomic_long_read(&user->locked_vm);
1068                new_pg = old_pg + num_pg;
1069                if (new_pg > max_pg)
1070                        return -ENOBUFS;
1071        } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1072                 old_pg);
1073
1074        if (!mmp->user) {
1075                mmp->user = get_uid(user);
1076                mmp->num_pg = num_pg;
1077        } else {
1078                mmp->num_pg += num_pg;
1079        }
1080
1081        return 0;
1082}
1083EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1084
1085void mm_unaccount_pinned_pages(struct mmpin *mmp)
1086{
1087        if (mmp->user) {
1088                atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1089                free_uid(mmp->user);
1090        }
1091}
1092EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1093
1094struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1095{
1096        struct ubuf_info *uarg;
1097        struct sk_buff *skb;
1098
1099        WARN_ON_ONCE(!in_task());
1100
1101        skb = sock_omalloc(sk, 0, GFP_KERNEL);
1102        if (!skb)
1103                return NULL;
1104
1105        BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1106        uarg = (void *)skb->cb;
1107        uarg->mmp.user = NULL;
1108
1109        if (mm_account_pinned_pages(&uarg->mmp, size)) {
1110                kfree_skb(skb);
1111                return NULL;
1112        }
1113
1114        uarg->callback = sock_zerocopy_callback;
1115        uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1116        uarg->len = 1;
1117        uarg->bytelen = size;
1118        uarg->zerocopy = 1;
1119        refcount_set(&uarg->refcnt, 1);
1120        sock_hold(sk);
1121
1122        return uarg;
1123}
1124EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1125
1126static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1127{
1128        return container_of((void *)uarg, struct sk_buff, cb);
1129}
1130
1131struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1132                                        struct ubuf_info *uarg)
1133{
1134        if (uarg) {
1135                const u32 byte_limit = 1 << 19;         /* limit to a few TSO */
1136                u32 bytelen, next;
1137
1138                /* realloc only when socket is locked (TCP, UDP cork),
1139                 * so uarg->len and sk_zckey access is serialized
1140                 */
1141                if (!sock_owned_by_user(sk)) {
1142                        WARN_ON_ONCE(1);
1143                        return NULL;
1144                }
1145
1146                bytelen = uarg->bytelen + size;
1147                if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1148                        /* TCP can create new skb to attach new uarg */
1149                        if (sk->sk_type == SOCK_STREAM)
1150                                goto new_alloc;
1151                        return NULL;
1152                }
1153
1154                next = (u32)atomic_read(&sk->sk_zckey);
1155                if ((u32)(uarg->id + uarg->len) == next) {
1156                        if (mm_account_pinned_pages(&uarg->mmp, size))
1157                                return NULL;
1158                        uarg->len++;
1159                        uarg->bytelen = bytelen;
1160                        atomic_set(&sk->sk_zckey, ++next);
1161
1162                        /* no extra ref when appending to datagram (MSG_MORE) */
1163                        if (sk->sk_type == SOCK_STREAM)
1164                                sock_zerocopy_get(uarg);
1165
1166                        return uarg;
1167                }
1168        }
1169
1170new_alloc:
1171        return sock_zerocopy_alloc(sk, size);
1172}
1173EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1174
1175static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1176{
1177        struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1178        u32 old_lo, old_hi;
1179        u64 sum_len;
1180
1181        old_lo = serr->ee.ee_info;
1182        old_hi = serr->ee.ee_data;
1183        sum_len = old_hi - old_lo + 1ULL + len;
1184
1185        if (sum_len >= (1ULL << 32))
1186                return false;
1187
1188        if (lo != old_hi + 1)
1189                return false;
1190
1191        serr->ee.ee_data += len;
1192        return true;
1193}
1194
1195void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1196{
1197        struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1198        struct sock_exterr_skb *serr;
1199        struct sock *sk = skb->sk;
1200        struct sk_buff_head *q;
1201        unsigned long flags;
1202        u32 lo, hi;
1203        u16 len;
1204
1205        mm_unaccount_pinned_pages(&uarg->mmp);
1206
1207        /* if !len, there was only 1 call, and it was aborted
1208         * so do not queue a completion notification
1209         */
1210        if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1211                goto release;
1212
1213        len = uarg->len;
1214        lo = uarg->id;
1215        hi = uarg->id + len - 1;
1216
1217        serr = SKB_EXT_ERR(skb);
1218        memset(serr, 0, sizeof(*serr));
1219        serr->ee.ee_errno = 0;
1220        serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1221        serr->ee.ee_data = hi;
1222        serr->ee.ee_info = lo;
1223        if (!success)
1224                serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1225
1226        q = &sk->sk_error_queue;
1227        spin_lock_irqsave(&q->lock, flags);
1228        tail = skb_peek_tail(q);
1229        if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1230            !skb_zerocopy_notify_extend(tail, lo, len)) {
1231                __skb_queue_tail(q, skb);
1232                skb = NULL;
1233        }
1234        spin_unlock_irqrestore(&q->lock, flags);
1235
1236        sk->sk_error_report(sk);
1237
1238release:
1239        consume_skb(skb);
1240        sock_put(sk);
1241}
1242EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1243
1244void sock_zerocopy_put(struct ubuf_info *uarg)
1245{
1246        if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1247                if (uarg->callback)
1248                        uarg->callback(uarg, uarg->zerocopy);
1249                else
1250                        consume_skb(skb_from_uarg(uarg));
1251        }
1252}
1253EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1254
1255void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1256{
1257        if (uarg) {
1258                struct sock *sk = skb_from_uarg(uarg)->sk;
1259
1260                atomic_dec(&sk->sk_zckey);
1261                uarg->len--;
1262
1263                if (have_uref)
1264                        sock_zerocopy_put(uarg);
1265        }
1266}
1267EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1268
1269int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1270{
1271        return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1272}
1273EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1274
1275int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1276                             struct msghdr *msg, int len,
1277                             struct ubuf_info *uarg)
1278{
1279        struct ubuf_info *orig_uarg = skb_zcopy(skb);
1280        struct iov_iter orig_iter = msg->msg_iter;
1281        int err, orig_len = skb->len;
1282
1283        /* An skb can only point to one uarg. This edge case happens when
1284         * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1285         */
1286        if (orig_uarg && uarg != orig_uarg)
1287                return -EEXIST;
1288
1289        err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1290        if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1291                struct sock *save_sk = skb->sk;
1292
1293                /* Streams do not free skb on error. Reset to prev state. */
1294                msg->msg_iter = orig_iter;
1295                skb->sk = sk;
1296                ___pskb_trim(skb, orig_len);
1297                skb->sk = save_sk;
1298                return err;
1299        }
1300
1301        skb_zcopy_set(skb, uarg, NULL);
1302        return skb->len - orig_len;
1303}
1304EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1305
1306static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1307                              gfp_t gfp_mask)
1308{
1309        if (skb_zcopy(orig)) {
1310                if (skb_zcopy(nskb)) {
1311                        /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1312                        if (!gfp_mask) {
1313                                WARN_ON_ONCE(1);
1314                                return -ENOMEM;
1315                        }
1316                        if (skb_uarg(nskb) == skb_uarg(orig))
1317                                return 0;
1318                        if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1319                                return -EIO;
1320                }
1321                skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1322        }
1323        return 0;
1324}
1325
1326/**
1327 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
1328 *      @skb: the skb to modify
1329 *      @gfp_mask: allocation priority
1330 *
1331 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
1332 *      It will copy all frags into kernel and drop the reference
1333 *      to userspace pages.
1334 *
1335 *      If this function is called from an interrupt gfp_mask() must be
1336 *      %GFP_ATOMIC.
1337 *
1338 *      Returns 0 on success or a negative error code on failure
1339 *      to allocate kernel memory to copy to.
1340 */
1341int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1342{
1343        int num_frags = skb_shinfo(skb)->nr_frags;
1344        struct page *page, *head = NULL;
1345        int i, new_frags;
1346        u32 d_off;
1347
1348        if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1349                return -EINVAL;
1350
1351        if (!num_frags)
1352                goto release;
1353
1354        new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1355        for (i = 0; i < new_frags; i++) {
1356                page = alloc_page(gfp_mask);
1357                if (!page) {
1358                        while (head) {
1359                                struct page *next = (struct page *)page_private(head);
1360                                put_page(head);
1361                                head = next;
1362                        }
1363                        return -ENOMEM;
1364                }
1365                set_page_private(page, (unsigned long)head);
1366                head = page;
1367        }
1368
1369        page = head;
1370        d_off = 0;
1371        for (i = 0; i < num_frags; i++) {
1372                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1373                u32 p_off, p_len, copied;
1374                struct page *p;
1375                u8 *vaddr;
1376
1377                skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1378                                      p, p_off, p_len, copied) {
1379                        u32 copy, done = 0;
1380                        vaddr = kmap_atomic(p);
1381
1382                        while (done < p_len) {
1383                                if (d_off == PAGE_SIZE) {
1384                                        d_off = 0;
1385                                        page = (struct page *)page_private(page);
1386                                }
1387                                copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1388                                memcpy(page_address(page) + d_off,
1389                                       vaddr + p_off + done, copy);
1390                                done += copy;
1391                                d_off += copy;
1392                        }
1393                        kunmap_atomic(vaddr);
1394                }
1395        }
1396
1397        /* skb frags release userspace buffers */
1398        for (i = 0; i < num_frags; i++)
1399                skb_frag_unref(skb, i);
1400
1401        /* skb frags point to kernel buffers */
1402        for (i = 0; i < new_frags - 1; i++) {
1403                __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1404                head = (struct page *)page_private(head);
1405        }
1406        __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1407        skb_shinfo(skb)->nr_frags = new_frags;
1408
1409release:
1410        skb_zcopy_clear(skb, false);
1411        return 0;
1412}
1413EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1414
1415/**
1416 *      skb_clone       -       duplicate an sk_buff
1417 *      @skb: buffer to clone
1418 *      @gfp_mask: allocation priority
1419 *
1420 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1421 *      copies share the same packet data but not structure. The new
1422 *      buffer has a reference count of 1. If the allocation fails the
1423 *      function returns %NULL otherwise the new buffer is returned.
1424 *
1425 *      If this function is called from an interrupt gfp_mask() must be
1426 *      %GFP_ATOMIC.
1427 */
1428
1429struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1430{
1431        struct sk_buff_fclones *fclones = container_of(skb,
1432                                                       struct sk_buff_fclones,
1433                                                       skb1);
1434        struct sk_buff *n;
1435
1436        if (skb_orphan_frags(skb, gfp_mask))
1437                return NULL;
1438
1439        if (skb->fclone == SKB_FCLONE_ORIG &&
1440            refcount_read(&fclones->fclone_ref) == 1) {
1441                n = &fclones->skb2;
1442                refcount_set(&fclones->fclone_ref, 2);
1443        } else {
1444                if (skb_pfmemalloc(skb))
1445                        gfp_mask |= __GFP_MEMALLOC;
1446
1447                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1448                if (!n)
1449                        return NULL;
1450
1451                n->fclone = SKB_FCLONE_UNAVAILABLE;
1452        }
1453
1454        return __skb_clone(n, skb);
1455}
1456EXPORT_SYMBOL(skb_clone);
1457
1458void skb_headers_offset_update(struct sk_buff *skb, int off)
1459{
1460        /* Only adjust this if it actually is csum_start rather than csum */
1461        if (skb->ip_summed == CHECKSUM_PARTIAL)
1462                skb->csum_start += off;
1463        /* {transport,network,mac}_header and tail are relative to skb->head */
1464        skb->transport_header += off;
1465        skb->network_header   += off;
1466        if (skb_mac_header_was_set(skb))
1467                skb->mac_header += off;
1468        skb->inner_transport_header += off;
1469        skb->inner_network_header += off;
1470        skb->inner_mac_header += off;
1471}
1472EXPORT_SYMBOL(skb_headers_offset_update);
1473
1474void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1475{
1476        __copy_skb_header(new, old);
1477
1478        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1479        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1480        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1481}
1482EXPORT_SYMBOL(skb_copy_header);
1483
1484static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1485{
1486        if (skb_pfmemalloc(skb))
1487                return SKB_ALLOC_RX;
1488        return 0;
1489}
1490
1491/**
1492 *      skb_copy        -       create private copy of an sk_buff
1493 *      @skb: buffer to copy
1494 *      @gfp_mask: allocation priority
1495 *
1496 *      Make a copy of both an &sk_buff and its data. This is used when the
1497 *      caller wishes to modify the data and needs a private copy of the
1498 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1499 *      on success. The returned buffer has a reference count of 1.
1500 *
1501 *      As by-product this function converts non-linear &sk_buff to linear
1502 *      one, so that &sk_buff becomes completely private and caller is allowed
1503 *      to modify all the data of returned buffer. This means that this
1504 *      function is not recommended for use in circumstances when only
1505 *      header is going to be modified. Use pskb_copy() instead.
1506 */
1507
1508struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1509{
1510        int headerlen = skb_headroom(skb);
1511        unsigned int size = skb_end_offset(skb) + skb->data_len;
1512        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1513                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1514
1515        if (!n)
1516                return NULL;
1517
1518        /* Set the data pointer */
1519        skb_reserve(n, headerlen);
1520        /* Set the tail pointer and length */
1521        skb_put(n, skb->len);
1522
1523        BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1524
1525        skb_copy_header(n, skb);
1526        return n;
1527}
1528EXPORT_SYMBOL(skb_copy);
1529
1530/**
1531 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1532 *      @skb: buffer to copy
1533 *      @headroom: headroom of new skb
1534 *      @gfp_mask: allocation priority
1535 *      @fclone: if true allocate the copy of the skb from the fclone
1536 *      cache instead of the head cache; it is recommended to set this
1537 *      to true for the cases where the copy will likely be cloned
1538 *
1539 *      Make a copy of both an &sk_buff and part of its data, located
1540 *      in header. Fragmented data remain shared. This is used when
1541 *      the caller wishes to modify only header of &sk_buff and needs
1542 *      private copy of the header to alter. Returns %NULL on failure
1543 *      or the pointer to the buffer on success.
1544 *      The returned buffer has a reference count of 1.
1545 */
1546
1547struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1548                                   gfp_t gfp_mask, bool fclone)
1549{
1550        unsigned int size = skb_headlen(skb) + headroom;
1551        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1552        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1553
1554        if (!n)
1555                goto out;
1556
1557        /* Set the data pointer */
1558        skb_reserve(n, headroom);
1559        /* Set the tail pointer and length */
1560        skb_put(n, skb_headlen(skb));
1561        /* Copy the bytes */
1562        skb_copy_from_linear_data(skb, n->data, n->len);
1563
1564        n->truesize += skb->data_len;
1565        n->data_len  = skb->data_len;
1566        n->len       = skb->len;
1567
1568        if (skb_shinfo(skb)->nr_frags) {
1569                int i;
1570
1571                if (skb_orphan_frags(skb, gfp_mask) ||
1572                    skb_zerocopy_clone(n, skb, gfp_mask)) {
1573                        kfree_skb(n);
1574                        n = NULL;
1575                        goto out;
1576                }
1577                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1578                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1579                        skb_frag_ref(skb, i);
1580                }
1581                skb_shinfo(n)->nr_frags = i;
1582        }
1583
1584        if (skb_has_frag_list(skb)) {
1585                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1586                skb_clone_fraglist(n);
1587        }
1588
1589        skb_copy_header(n, skb);
1590out:
1591        return n;
1592}
1593EXPORT_SYMBOL(__pskb_copy_fclone);
1594
1595/**
1596 *      pskb_expand_head - reallocate header of &sk_buff
1597 *      @skb: buffer to reallocate
1598 *      @nhead: room to add at head
1599 *      @ntail: room to add at tail
1600 *      @gfp_mask: allocation priority
1601 *
1602 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1603 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1604 *      reference count of 1. Returns zero in the case of success or error,
1605 *      if expansion failed. In the last case, &sk_buff is not changed.
1606 *
1607 *      All the pointers pointing into skb header may change and must be
1608 *      reloaded after call to this function.
1609 */
1610
1611int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1612                     gfp_t gfp_mask)
1613{
1614        int i, osize = skb_end_offset(skb);
1615        int size = osize + nhead + ntail;
1616        long off;
1617        u8 *data;
1618
1619        BUG_ON(nhead < 0);
1620
1621        BUG_ON(skb_shared(skb));
1622
1623        size = SKB_DATA_ALIGN(size);
1624
1625        if (skb_pfmemalloc(skb))
1626                gfp_mask |= __GFP_MEMALLOC;
1627        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1628                               gfp_mask, NUMA_NO_NODE, NULL);
1629        if (!data)
1630                goto nodata;
1631        size = SKB_WITH_OVERHEAD(ksize(data));
1632
1633        /* Copy only real data... and, alas, header. This should be
1634         * optimized for the cases when header is void.
1635         */
1636        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1637
1638        memcpy((struct skb_shared_info *)(data + size),
1639               skb_shinfo(skb),
1640               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1641
1642        /*
1643         * if shinfo is shared we must drop the old head gracefully, but if it
1644         * is not we can just drop the old head and let the existing refcount
1645         * be since all we did is relocate the values
1646         */
1647        if (skb_cloned(skb)) {
1648                if (skb_orphan_frags(skb, gfp_mask))
1649                        goto nofrags;
1650                if (skb_zcopy(skb))
1651                        refcount_inc(&skb_uarg(skb)->refcnt);
1652                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1653                        skb_frag_ref(skb, i);
1654
1655                if (skb_has_frag_list(skb))
1656                        skb_clone_fraglist(skb);
1657
1658                skb_release_data(skb);
1659        } else {
1660                skb_free_head(skb);
1661        }
1662        off = (data + nhead) - skb->head;
1663
1664        skb->head     = data;
1665        skb->head_frag = 0;
1666        skb->data    += off;
1667#ifdef NET_SKBUFF_DATA_USES_OFFSET
1668        skb->end      = size;
1669        off           = nhead;
1670#else
1671        skb->end      = skb->head + size;
1672#endif
1673        skb->tail             += off;
1674        skb_headers_offset_update(skb, nhead);
1675        skb->cloned   = 0;
1676        skb->hdr_len  = 0;
1677        skb->nohdr    = 0;
1678        atomic_set(&skb_shinfo(skb)->dataref, 1);
1679
1680        skb_metadata_clear(skb);
1681
1682        /* It is not generally safe to change skb->truesize.
1683         * For the moment, we really care of rx path, or
1684         * when skb is orphaned (not attached to a socket).
1685         */
1686        if (!skb->sk || skb->destructor == sock_edemux)
1687                skb->truesize += size - osize;
1688
1689        return 0;
1690
1691nofrags:
1692        kfree(data);
1693nodata:
1694        return -ENOMEM;
1695}
1696EXPORT_SYMBOL(pskb_expand_head);
1697
1698/* Make private copy of skb with writable head and some headroom */
1699
1700struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1701{
1702        struct sk_buff *skb2;
1703        int delta = headroom - skb_headroom(skb);
1704
1705        if (delta <= 0)
1706                skb2 = pskb_copy(skb, GFP_ATOMIC);
1707        else {
1708                skb2 = skb_clone(skb, GFP_ATOMIC);
1709                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1710                                             GFP_ATOMIC)) {
1711                        kfree_skb(skb2);
1712                        skb2 = NULL;
1713                }
1714        }
1715        return skb2;
1716}
1717EXPORT_SYMBOL(skb_realloc_headroom);
1718
1719/**
1720 *      skb_copy_expand -       copy and expand sk_buff
1721 *      @skb: buffer to copy
1722 *      @newheadroom: new free bytes at head
1723 *      @newtailroom: new free bytes at tail
1724 *      @gfp_mask: allocation priority
1725 *
1726 *      Make a copy of both an &sk_buff and its data and while doing so
1727 *      allocate additional space.
1728 *
1729 *      This is used when the caller wishes to modify the data and needs a
1730 *      private copy of the data to alter as well as more space for new fields.
1731 *      Returns %NULL on failure or the pointer to the buffer
1732 *      on success. The returned buffer has a reference count of 1.
1733 *
1734 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1735 *      is called from an interrupt.
1736 */
1737struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1738                                int newheadroom, int newtailroom,
1739                                gfp_t gfp_mask)
1740{
1741        /*
1742         *      Allocate the copy buffer
1743         */
1744        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1745                                        gfp_mask, skb_alloc_rx_flag(skb),
1746                                        NUMA_NO_NODE);
1747        int oldheadroom = skb_headroom(skb);
1748        int head_copy_len, head_copy_off;
1749
1750        if (!n)
1751                return NULL;
1752
1753        skb_reserve(n, newheadroom);
1754
1755        /* Set the tail pointer and length */
1756        skb_put(n, skb->len);
1757
1758        head_copy_len = oldheadroom;
1759        head_copy_off = 0;
1760        if (newheadroom <= head_copy_len)
1761                head_copy_len = newheadroom;
1762        else
1763                head_copy_off = newheadroom - head_copy_len;
1764
1765        /* Copy the linear header and data. */
1766        BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1767                             skb->len + head_copy_len));
1768
1769        skb_copy_header(n, skb);
1770
1771        skb_headers_offset_update(n, newheadroom - oldheadroom);
1772
1773        return n;
1774}
1775EXPORT_SYMBOL(skb_copy_expand);
1776
1777/**
1778 *      __skb_pad               -       zero pad the tail of an skb
1779 *      @skb: buffer to pad
1780 *      @pad: space to pad
1781 *      @free_on_error: free buffer on error
1782 *
1783 *      Ensure that a buffer is followed by a padding area that is zero
1784 *      filled. Used by network drivers which may DMA or transfer data
1785 *      beyond the buffer end onto the wire.
1786 *
1787 *      May return error in out of memory cases. The skb is freed on error
1788 *      if @free_on_error is true.
1789 */
1790
1791int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1792{
1793        int err;
1794        int ntail;
1795
1796        /* If the skbuff is non linear tailroom is always zero.. */
1797        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1798                memset(skb->data+skb->len, 0, pad);
1799                return 0;
1800        }
1801
1802        ntail = skb->data_len + pad - (skb->end - skb->tail);
1803        if (likely(skb_cloned(skb) || ntail > 0)) {
1804                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1805                if (unlikely(err))
1806                        goto free_skb;
1807        }
1808
1809        /* FIXME: The use of this function with non-linear skb's really needs
1810         * to be audited.
1811         */
1812        err = skb_linearize(skb);
1813        if (unlikely(err))
1814                goto free_skb;
1815
1816        memset(skb->data + skb->len, 0, pad);
1817        return 0;
1818
1819free_skb:
1820        if (free_on_error)
1821                kfree_skb(skb);
1822        return err;
1823}
1824EXPORT_SYMBOL(__skb_pad);
1825
1826/**
1827 *      pskb_put - add data to the tail of a potentially fragmented buffer
1828 *      @skb: start of the buffer to use
1829 *      @tail: tail fragment of the buffer to use
1830 *      @len: amount of data to add
1831 *
1832 *      This function extends the used data area of the potentially
1833 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1834 *      @skb itself. If this would exceed the total buffer size the kernel
1835 *      will panic. A pointer to the first byte of the extra data is
1836 *      returned.
1837 */
1838
1839void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1840{
1841        if (tail != skb) {
1842                skb->data_len += len;
1843                skb->len += len;
1844        }
1845        return skb_put(tail, len);
1846}
1847EXPORT_SYMBOL_GPL(pskb_put);
1848
1849/**
1850 *      skb_put - add data to a buffer
1851 *      @skb: buffer to use
1852 *      @len: amount of data to add
1853 *
1854 *      This function extends the used data area of the buffer. If this would
1855 *      exceed the total buffer size the kernel will panic. A pointer to the
1856 *      first byte of the extra data is returned.
1857 */
1858void *skb_put(struct sk_buff *skb, unsigned int len)
1859{
1860        void *tmp = skb_tail_pointer(skb);
1861        SKB_LINEAR_ASSERT(skb);
1862        skb->tail += len;
1863        skb->len  += len;
1864        if (unlikely(skb->tail > skb->end))
1865                skb_over_panic(skb, len, __builtin_return_address(0));
1866        return tmp;
1867}
1868EXPORT_SYMBOL(skb_put);
1869
1870/**
1871 *      skb_push - add data to the start of a buffer
1872 *      @skb: buffer to use
1873 *      @len: amount of data to add
1874 *
1875 *      This function extends the used data area of the buffer at the buffer
1876 *      start. If this would exceed the total buffer headroom the kernel will
1877 *      panic. A pointer to the first byte of the extra data is returned.
1878 */
1879void *skb_push(struct sk_buff *skb, unsigned int len)
1880{
1881        skb->data -= len;
1882        skb->len  += len;
1883        if (unlikely(skb->data < skb->head))
1884                skb_under_panic(skb, len, __builtin_return_address(0));
1885        return skb->data;
1886}
1887EXPORT_SYMBOL(skb_push);
1888
1889/**
1890 *      skb_pull - remove data from the start of a buffer
1891 *      @skb: buffer to use
1892 *      @len: amount of data to remove
1893 *
1894 *      This function removes data from the start of a buffer, returning
1895 *      the memory to the headroom. A pointer to the next data in the buffer
1896 *      is returned. Once the data has been pulled future pushes will overwrite
1897 *      the old data.
1898 */
1899void *skb_pull(struct sk_buff *skb, unsigned int len)
1900{
1901        return skb_pull_inline(skb, len);
1902}
1903EXPORT_SYMBOL(skb_pull);
1904
1905/**
1906 *      skb_trim - remove end from a buffer
1907 *      @skb: buffer to alter
1908 *      @len: new length
1909 *
1910 *      Cut the length of a buffer down by removing data from the tail. If
1911 *      the buffer is already under the length specified it is not modified.
1912 *      The skb must be linear.
1913 */
1914void skb_trim(struct sk_buff *skb, unsigned int len)
1915{
1916        if (skb->len > len)
1917                __skb_trim(skb, len);
1918}
1919EXPORT_SYMBOL(skb_trim);
1920
1921/* Trims skb to length len. It can change skb pointers.
1922 */
1923
1924int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1925{
1926        struct sk_buff **fragp;
1927        struct sk_buff *frag;
1928        int offset = skb_headlen(skb);
1929        int nfrags = skb_shinfo(skb)->nr_frags;
1930        int i;
1931        int err;
1932
1933        if (skb_cloned(skb) &&
1934            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1935                return err;
1936
1937        i = 0;
1938        if (offset >= len)
1939                goto drop_pages;
1940
1941        for (; i < nfrags; i++) {
1942                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1943
1944                if (end < len) {
1945                        offset = end;
1946                        continue;
1947                }
1948
1949                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1950
1951drop_pages:
1952                skb_shinfo(skb)->nr_frags = i;
1953
1954                for (; i < nfrags; i++)
1955                        skb_frag_unref(skb, i);
1956
1957                if (skb_has_frag_list(skb))
1958                        skb_drop_fraglist(skb);
1959                goto done;
1960        }
1961
1962        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1963             fragp = &frag->next) {
1964                int end = offset + frag->len;
1965
1966                if (skb_shared(frag)) {
1967                        struct sk_buff *nfrag;
1968
1969                        nfrag = skb_clone(frag, GFP_ATOMIC);
1970                        if (unlikely(!nfrag))
1971                                return -ENOMEM;
1972
1973                        nfrag->next = frag->next;
1974                        consume_skb(frag);
1975                        frag = nfrag;
1976                        *fragp = frag;
1977                }
1978
1979                if (end < len) {
1980                        offset = end;
1981                        continue;
1982                }
1983
1984                if (end > len &&
1985                    unlikely((err = pskb_trim(frag, len - offset))))
1986                        return err;
1987
1988                if (frag->next)
1989                        skb_drop_list(&frag->next);
1990                break;
1991        }
1992
1993done:
1994        if (len > skb_headlen(skb)) {
1995                skb->data_len -= skb->len - len;
1996                skb->len       = len;
1997        } else {
1998                skb->len       = len;
1999                skb->data_len  = 0;
2000                skb_set_tail_pointer(skb, len);
2001        }
2002
2003        if (!skb->sk || skb->destructor == sock_edemux)
2004                skb_condense(skb);
2005        return 0;
2006}
2007EXPORT_SYMBOL(___pskb_trim);
2008
2009/* Note : use pskb_trim_rcsum() instead of calling this directly
2010 */
2011int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2012{
2013        if (skb->ip_summed == CHECKSUM_COMPLETE) {
2014                int delta = skb->len - len;
2015
2016                skb->csum = csum_block_sub(skb->csum,
2017                                           skb_checksum(skb, len, delta, 0),
2018                                           len);
2019        }
2020        return __pskb_trim(skb, len);
2021}
2022EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2023
2024/**
2025 *      __pskb_pull_tail - advance tail of skb header
2026 *      @skb: buffer to reallocate
2027 *      @delta: number of bytes to advance tail
2028 *
2029 *      The function makes a sense only on a fragmented &sk_buff,
2030 *      it expands header moving its tail forward and copying necessary
2031 *      data from fragmented part.
2032 *
2033 *      &sk_buff MUST have reference count of 1.
2034 *
2035 *      Returns %NULL (and &sk_buff does not change) if pull failed
2036 *      or value of new tail of skb in the case of success.
2037 *
2038 *      All the pointers pointing into skb header may change and must be
2039 *      reloaded after call to this function.
2040 */
2041
2042/* Moves tail of skb head forward, copying data from fragmented part,
2043 * when it is necessary.
2044 * 1. It may fail due to malloc failure.
2045 * 2. It may change skb pointers.
2046 *
2047 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2048 */
2049void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2050{
2051        /* If skb has not enough free space at tail, get new one
2052         * plus 128 bytes for future expansions. If we have enough
2053         * room at tail, reallocate without expansion only if skb is cloned.
2054         */
2055        int i, k, eat = (skb->tail + delta) - skb->end;
2056
2057        if (eat > 0 || skb_cloned(skb)) {
2058                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2059                                     GFP_ATOMIC))
2060                        return NULL;
2061        }
2062
2063        BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2064                             skb_tail_pointer(skb), delta));
2065
2066        /* Optimization: no fragments, no reasons to preestimate
2067         * size of pulled pages. Superb.
2068         */
2069        if (!skb_has_frag_list(skb))
2070                goto pull_pages;
2071
2072        /* Estimate size of pulled pages. */
2073        eat = delta;
2074        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2075                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2076
2077                if (size >= eat)
2078                        goto pull_pages;
2079                eat -= size;
2080        }
2081
2082        /* If we need update frag list, we are in troubles.
2083         * Certainly, it is possible to add an offset to skb data,
2084         * but taking into account that pulling is expected to
2085         * be very rare operation, it is worth to fight against
2086         * further bloating skb head and crucify ourselves here instead.
2087         * Pure masohism, indeed. 8)8)
2088         */
2089        if (eat) {
2090                struct sk_buff *list = skb_shinfo(skb)->frag_list;
2091                struct sk_buff *clone = NULL;
2092                struct sk_buff *insp = NULL;
2093
2094                do {
2095                        if (list->len <= eat) {
2096                                /* Eaten as whole. */
2097                                eat -= list->len;
2098                                list = list->next;
2099                                insp = list;
2100                        } else {
2101                                /* Eaten partially. */
2102
2103                                if (skb_shared(list)) {
2104                                        /* Sucks! We need to fork list. :-( */
2105                                        clone = skb_clone(list, GFP_ATOMIC);
2106                                        if (!clone)
2107                                                return NULL;
2108                                        insp = list->next;
2109                                        list = clone;
2110                                } else {
2111                                        /* This may be pulled without
2112                                         * problems. */
2113                                        insp = list;
2114                                }
2115                                if (!pskb_pull(list, eat)) {
2116                                        kfree_skb(clone);
2117                                        return NULL;
2118                                }
2119                                break;
2120                        }
2121                } while (eat);
2122
2123                /* Free pulled out fragments. */
2124                while ((list = skb_shinfo(skb)->frag_list) != insp) {
2125                        skb_shinfo(skb)->frag_list = list->next;
2126                        kfree_skb(list);
2127                }
2128                /* And insert new clone at head. */
2129                if (clone) {
2130                        clone->next = list;
2131                        skb_shinfo(skb)->frag_list = clone;
2132                }
2133        }
2134        /* Success! Now we may commit changes to skb data. */
2135
2136pull_pages:
2137        eat = delta;
2138        k = 0;
2139        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2140                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2141
2142                if (size <= eat) {
2143                        skb_frag_unref(skb, i);
2144                        eat -= size;
2145                } else {
2146                        skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2147
2148                        *frag = skb_shinfo(skb)->frags[i];
2149                        if (eat) {
2150                                skb_frag_off_add(frag, eat);
2151                                skb_frag_size_sub(frag, eat);
2152                                if (!i)
2153                                        goto end;
2154                                eat = 0;
2155                        }
2156                        k++;
2157                }
2158        }
2159        skb_shinfo(skb)->nr_frags = k;
2160
2161end:
2162        skb->tail     += delta;
2163        skb->data_len -= delta;
2164
2165        if (!skb->data_len)
2166                skb_zcopy_clear(skb, false);
2167
2168        return skb_tail_pointer(skb);
2169}
2170EXPORT_SYMBOL(__pskb_pull_tail);
2171
2172/**
2173 *      skb_copy_bits - copy bits from skb to kernel buffer
2174 *      @skb: source skb
2175 *      @offset: offset in source
2176 *      @to: destination buffer
2177 *      @len: number of bytes to copy
2178 *
2179 *      Copy the specified number of bytes from the source skb to the
2180 *      destination buffer.
2181 *
2182 *      CAUTION ! :
2183 *              If its prototype is ever changed,
2184 *              check arch/{*}/net/{*}.S files,
2185 *              since it is called from BPF assembly code.
2186 */
2187int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2188{
2189        int start = skb_headlen(skb);
2190        struct sk_buff *frag_iter;
2191        int i, copy;
2192
2193        if (offset > (int)skb->len - len)
2194                goto fault;
2195
2196        /* Copy header. */
2197        if ((copy = start - offset) > 0) {
2198                if (copy > len)
2199                        copy = len;
2200                skb_copy_from_linear_data_offset(skb, offset, to, copy);
2201                if ((len -= copy) == 0)
2202                        return 0;
2203                offset += copy;
2204                to     += copy;
2205        }
2206
2207        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2208                int end;
2209                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2210
2211                WARN_ON(start > offset + len);
2212
2213                end = start + skb_frag_size(f);
2214                if ((copy = end - offset) > 0) {
2215                        u32 p_off, p_len, copied;
2216                        struct page *p;
2217                        u8 *vaddr;
2218
2219                        if (copy > len)
2220                                copy = len;
2221
2222                        skb_frag_foreach_page(f,
2223                                              skb_frag_off(f) + offset - start,
2224                                              copy, p, p_off, p_len, copied) {
2225                                vaddr = kmap_atomic(p);
2226                                memcpy(to + copied, vaddr + p_off, p_len);
2227                                kunmap_atomic(vaddr);
2228                        }
2229
2230                        if ((len -= copy) == 0)
2231                                return 0;
2232                        offset += copy;
2233                        to     += copy;
2234                }
2235                start = end;
2236        }
2237
2238        skb_walk_frags(skb, frag_iter) {
2239                int end;
2240
2241                WARN_ON(start > offset + len);
2242
2243                end = start + frag_iter->len;
2244                if ((copy = end - offset) > 0) {
2245                        if (copy > len)
2246                                copy = len;
2247                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
2248                                goto fault;
2249                        if ((len -= copy) == 0)
2250                                return 0;
2251                        offset += copy;
2252                        to     += copy;
2253                }
2254                start = end;
2255        }
2256
2257        if (!len)
2258                return 0;
2259
2260fault:
2261        return -EFAULT;
2262}
2263EXPORT_SYMBOL(skb_copy_bits);
2264
2265/*
2266 * Callback from splice_to_pipe(), if we need to release some pages
2267 * at the end of the spd in case we error'ed out in filling the pipe.
2268 */
2269static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2270{
2271        put_page(spd->pages[i]);
2272}
2273
2274static struct page *linear_to_page(struct page *page, unsigned int *len,
2275                                   unsigned int *offset,
2276                                   struct sock *sk)
2277{
2278        struct page_frag *pfrag = sk_page_frag(sk);
2279
2280        if (!sk_page_frag_refill(sk, pfrag))
2281                return NULL;
2282
2283        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2284
2285        memcpy(page_address(pfrag->page) + pfrag->offset,
2286               page_address(page) + *offset, *len);
2287        *offset = pfrag->offset;
2288        pfrag->offset += *len;
2289
2290        return pfrag->page;
2291}
2292
2293static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2294                             struct page *page,
2295                             unsigned int offset)
2296{
2297        return  spd->nr_pages &&
2298                spd->pages[spd->nr_pages - 1] == page &&
2299                (spd->partial[spd->nr_pages - 1].offset +
2300                 spd->partial[spd->nr_pages - 1].len == offset);
2301}
2302
2303/*
2304 * Fill page/offset/length into spd, if it can hold more pages.
2305 */
2306static bool spd_fill_page(struct splice_pipe_desc *spd,
2307                          struct pipe_inode_info *pipe, struct page *page,
2308                          unsigned int *len, unsigned int offset,
2309                          bool linear,
2310                          struct sock *sk)
2311{
2312        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2313                return true;
2314
2315        if (linear) {
2316                page = linear_to_page(page, len, &offset, sk);
2317                if (!page)
2318                        return true;
2319        }
2320        if (spd_can_coalesce(spd, page, offset)) {
2321                spd->partial[spd->nr_pages - 1].len += *len;
2322                return false;
2323        }
2324        get_page(page);
2325        spd->pages[spd->nr_pages] = page;
2326        spd->partial[spd->nr_pages].len = *len;
2327        spd->partial[spd->nr_pages].offset = offset;
2328        spd->nr_pages++;
2329
2330        return false;
2331}
2332
2333static bool __splice_segment(struct page *page, unsigned int poff,
2334                             unsigned int plen, unsigned int *off,
2335                             unsigned int *len,
2336                             struct splice_pipe_desc *spd, bool linear,
2337                             struct sock *sk,
2338                             struct pipe_inode_info *pipe)
2339{
2340        if (!*len)
2341                return true;
2342
2343        /* skip this segment if already processed */
2344        if (*off >= plen) {
2345                *off -= plen;
2346                return false;
2347        }
2348
2349        /* ignore any bits we already processed */
2350        poff += *off;
2351        plen -= *off;
2352        *off = 0;
2353
2354        do {
2355                unsigned int flen = min(*len, plen);
2356
2357                if (spd_fill_page(spd, pipe, page, &flen, poff,
2358                                  linear, sk))
2359                        return true;
2360                poff += flen;
2361                plen -= flen;
2362                *len -= flen;
2363        } while (*len && plen);
2364
2365        return false;
2366}
2367
2368/*
2369 * Map linear and fragment data from the skb to spd. It reports true if the
2370 * pipe is full or if we already spliced the requested length.
2371 */
2372static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2373                              unsigned int *offset, unsigned int *len,
2374                              struct splice_pipe_desc *spd, struct sock *sk)
2375{
2376        int seg;
2377        struct sk_buff *iter;
2378
2379        /* map the linear part :
2380         * If skb->head_frag is set, this 'linear' part is backed by a
2381         * fragment, and if the head is not shared with any clones then
2382         * we can avoid a copy since we own the head portion of this page.
2383         */
2384        if (__splice_segment(virt_to_page(skb->data),
2385                             (unsigned long) skb->data & (PAGE_SIZE - 1),
2386                             skb_headlen(skb),
2387                             offset, len, spd,
2388                             skb_head_is_locked(skb),
2389                             sk, pipe))
2390                return true;
2391
2392        /*
2393         * then map the fragments
2394         */
2395        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2396                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2397
2398                if (__splice_segment(skb_frag_page(f),
2399                                     skb_frag_off(f), skb_frag_size(f),
2400                                     offset, len, spd, false, sk, pipe))
2401                        return true;
2402        }
2403
2404        skb_walk_frags(skb, iter) {
2405                if (*offset >= iter->len) {
2406                        *offset -= iter->len;
2407                        continue;
2408                }
2409                /* __skb_splice_bits() only fails if the output has no room
2410                 * left, so no point in going over the frag_list for the error
2411                 * case.
2412                 */
2413                if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2414                        return true;
2415        }
2416
2417        return false;
2418}
2419
2420/*
2421 * Map data from the skb to a pipe. Should handle both the linear part,
2422 * the fragments, and the frag list.
2423 */
2424int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2425                    struct pipe_inode_info *pipe, unsigned int tlen,
2426                    unsigned int flags)
2427{
2428        struct partial_page partial[MAX_SKB_FRAGS];
2429        struct page *pages[MAX_SKB_FRAGS];
2430        struct splice_pipe_desc spd = {
2431                .pages = pages,
2432                .partial = partial,
2433                .nr_pages_max = MAX_SKB_FRAGS,
2434                .ops = &nosteal_pipe_buf_ops,
2435                .spd_release = sock_spd_release,
2436        };
2437        int ret = 0;
2438
2439        __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2440
2441        if (spd.nr_pages)
2442                ret = splice_to_pipe(pipe, &spd);
2443
2444        return ret;
2445}
2446EXPORT_SYMBOL_GPL(skb_splice_bits);
2447
2448/* Send skb data on a socket. Socket must be locked. */
2449int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2450                         int len)
2451{
2452        unsigned int orig_len = len;
2453        struct sk_buff *head = skb;
2454        unsigned short fragidx;
2455        int slen, ret;
2456
2457do_frag_list:
2458
2459        /* Deal with head data */
2460        while (offset < skb_headlen(skb) && len) {
2461                struct kvec kv;
2462                struct msghdr msg;
2463
2464                slen = min_t(int, len, skb_headlen(skb) - offset);
2465                kv.iov_base = skb->data + offset;
2466                kv.iov_len = slen;
2467                memset(&msg, 0, sizeof(msg));
2468                msg.msg_flags = MSG_DONTWAIT;
2469
2470                ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2471                if (ret <= 0)
2472                        goto error;
2473
2474                offset += ret;
2475                len -= ret;
2476        }
2477
2478        /* All the data was skb head? */
2479        if (!len)
2480                goto out;
2481
2482        /* Make offset relative to start of frags */
2483        offset -= skb_headlen(skb);
2484
2485        /* Find where we are in frag list */
2486        for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2487                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2488
2489                if (offset < skb_frag_size(frag))
2490                        break;
2491
2492                offset -= skb_frag_size(frag);
2493        }
2494
2495        for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2496                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2497
2498                slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2499
2500                while (slen) {
2501                        ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2502                                                     skb_frag_off(frag) + offset,
2503                                                     slen, MSG_DONTWAIT);
2504                        if (ret <= 0)
2505                                goto error;
2506
2507                        len -= ret;
2508                        offset += ret;
2509                        slen -= ret;
2510                }
2511
2512                offset = 0;
2513        }
2514
2515        if (len) {
2516                /* Process any frag lists */
2517
2518                if (skb == head) {
2519                        if (skb_has_frag_list(skb)) {
2520                                skb = skb_shinfo(skb)->frag_list;
2521                                goto do_frag_list;
2522                        }
2523                } else if (skb->next) {
2524                        skb = skb->next;
2525                        goto do_frag_list;
2526                }
2527        }
2528
2529out:
2530        return orig_len - len;
2531
2532error:
2533        return orig_len == len ? ret : orig_len - len;
2534}
2535EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2536
2537/**
2538 *      skb_store_bits - store bits from kernel buffer to skb
2539 *      @skb: destination buffer
2540 *      @offset: offset in destination
2541 *      @from: source buffer
2542 *      @len: number of bytes to copy
2543 *
2544 *      Copy the specified number of bytes from the source buffer to the
2545 *      destination skb.  This function handles all the messy bits of
2546 *      traversing fragment lists and such.
2547 */
2548
2549int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2550{
2551        int start = skb_headlen(skb);
2552        struct sk_buff *frag_iter;
2553        int i, copy;
2554
2555        if (offset > (int)skb->len - len)
2556                goto fault;
2557
2558        if ((copy = start - offset) > 0) {
2559                if (copy > len)
2560                        copy = len;
2561                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2562                if ((len -= copy) == 0)
2563                        return 0;
2564                offset += copy;
2565                from += copy;
2566        }
2567
2568        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2570                int end;
2571
2572                WARN_ON(start > offset + len);
2573
2574                end = start + skb_frag_size(frag);
2575                if ((copy = end - offset) > 0) {
2576                        u32 p_off, p_len, copied;
2577                        struct page *p;
2578                        u8 *vaddr;
2579
2580                        if (copy > len)
2581                                copy = len;
2582
2583                        skb_frag_foreach_page(frag,
2584                                              skb_frag_off(frag) + offset - start,
2585                                              copy, p, p_off, p_len, copied) {
2586                                vaddr = kmap_atomic(p);
2587                                memcpy(vaddr + p_off, from + copied, p_len);
2588                                kunmap_atomic(vaddr);
2589                        }
2590
2591                        if ((len -= copy) == 0)
2592                                return 0;
2593                        offset += copy;
2594                        from += copy;
2595                }
2596                start = end;
2597        }
2598
2599        skb_walk_frags(skb, frag_iter) {
2600                int end;
2601
2602                WARN_ON(start > offset + len);
2603
2604                end = start + frag_iter->len;
2605                if ((copy = end - offset) > 0) {
2606                        if (copy > len)
2607                                copy = len;
2608                        if (skb_store_bits(frag_iter, offset - start,
2609                                           from, copy))
2610                                goto fault;
2611                        if ((len -= copy) == 0)
2612                                return 0;
2613                        offset += copy;
2614                        from += copy;
2615                }
2616                start = end;
2617        }
2618        if (!len)
2619                return 0;
2620
2621fault:
2622        return -EFAULT;
2623}
2624EXPORT_SYMBOL(skb_store_bits);
2625
2626/* Checksum skb data. */
2627__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2628                      __wsum csum, const struct skb_checksum_ops *ops)
2629{
2630        int start = skb_headlen(skb);
2631        int i, copy = start - offset;
2632        struct sk_buff *frag_iter;
2633        int pos = 0;
2634
2635        /* Checksum header. */
2636        if (copy > 0) {
2637                if (copy > len)
2638                        copy = len;
2639                csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2640                                       skb->data + offset, copy, csum);
2641                if ((len -= copy) == 0)
2642                        return csum;
2643                offset += copy;
2644                pos     = copy;
2645        }
2646
2647        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2648                int end;
2649                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2650
2651                WARN_ON(start > offset + len);
2652
2653                end = start + skb_frag_size(frag);
2654                if ((copy = end - offset) > 0) {
2655                        u32 p_off, p_len, copied;
2656                        struct page *p;
2657                        __wsum csum2;
2658                        u8 *vaddr;
2659
2660                        if (copy > len)
2661                                copy = len;
2662
2663                        skb_frag_foreach_page(frag,
2664                                              skb_frag_off(frag) + offset - start,
2665                                              copy, p, p_off, p_len, copied) {
2666                                vaddr = kmap_atomic(p);
2667                                csum2 = INDIRECT_CALL_1(ops->update,
2668                                                        csum_partial_ext,
2669                                                        vaddr + p_off, p_len, 0);
2670                                kunmap_atomic(vaddr);
2671                                csum = INDIRECT_CALL_1(ops->combine,
2672                                                       csum_block_add_ext, csum,
2673                                                       csum2, pos, p_len);
2674                                pos += p_len;
2675                        }
2676
2677                        if (!(len -= copy))
2678                                return csum;
2679                        offset += copy;
2680                }
2681                start = end;
2682        }
2683
2684        skb_walk_frags(skb, frag_iter) {
2685                int end;
2686
2687                WARN_ON(start > offset + len);
2688
2689                end = start + frag_iter->len;
2690                if ((copy = end - offset) > 0) {
2691                        __wsum csum2;
2692                        if (copy > len)
2693                                copy = len;
2694                        csum2 = __skb_checksum(frag_iter, offset - start,
2695                                               copy, 0, ops);
2696                        csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2697                                               csum, csum2, pos, copy);
2698                        if ((len -= copy) == 0)
2699                                return csum;
2700                        offset += copy;
2701                        pos    += copy;
2702                }
2703                start = end;
2704        }
2705        BUG_ON(len);
2706
2707        return csum;
2708}
2709EXPORT_SYMBOL(__skb_checksum);
2710
2711__wsum skb_checksum(const struct sk_buff *skb, int offset,
2712                    int len, __wsum csum)
2713{
2714        const struct skb_checksum_ops ops = {
2715                .update  = csum_partial_ext,
2716                .combine = csum_block_add_ext,
2717        };
2718
2719        return __skb_checksum(skb, offset, len, csum, &ops);
2720}
2721EXPORT_SYMBOL(skb_checksum);
2722
2723/* Both of above in one bottle. */
2724
2725__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2726                                    u8 *to, int len, __wsum csum)
2727{
2728        int start = skb_headlen(skb);
2729        int i, copy = start - offset;
2730        struct sk_buff *frag_iter;
2731        int pos = 0;
2732
2733        /* Copy header. */
2734        if (copy > 0) {
2735                if (copy > len)
2736                        copy = len;
2737                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2738                                                 copy, csum);
2739                if ((len -= copy) == 0)
2740                        return csum;
2741                offset += copy;
2742                to     += copy;
2743                pos     = copy;
2744        }
2745
2746        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2747                int end;
2748
2749                WARN_ON(start > offset + len);
2750
2751                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2752                if ((copy = end - offset) > 0) {
2753                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2754                        u32 p_off, p_len, copied;
2755                        struct page *p;
2756                        __wsum csum2;
2757                        u8 *vaddr;
2758
2759                        if (copy > len)
2760                                copy = len;
2761
2762                        skb_frag_foreach_page(frag,
2763                                              skb_frag_off(frag) + offset - start,
2764                                              copy, p, p_off, p_len, copied) {
2765                                vaddr = kmap_atomic(p);
2766                                csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2767                                                                  to + copied,
2768                                                                  p_len, 0);
2769                                kunmap_atomic(vaddr);
2770                                csum = csum_block_add(csum, csum2, pos);
2771                                pos += p_len;
2772                        }
2773
2774                        if (!(len -= copy))
2775                                return csum;
2776                        offset += copy;
2777                        to     += copy;
2778                }
2779                start = end;
2780        }
2781
2782        skb_walk_frags(skb, frag_iter) {
2783                __wsum csum2;
2784                int end;
2785
2786                WARN_ON(start > offset + len);
2787
2788                end = start + frag_iter->len;
2789                if ((copy = end - offset) > 0) {
2790                        if (copy > len)
2791                                copy = len;
2792                        csum2 = skb_copy_and_csum_bits(frag_iter,
2793                                                       offset - start,
2794                                                       to, copy, 0);
2795                        csum = csum_block_add(csum, csum2, pos);
2796                        if ((len -= copy) == 0)
2797                                return csum;
2798                        offset += copy;
2799                        to     += copy;
2800                        pos    += copy;
2801                }
2802                start = end;
2803        }
2804        BUG_ON(len);
2805        return csum;
2806}
2807EXPORT_SYMBOL(skb_copy_and_csum_bits);
2808
2809__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2810{
2811        __sum16 sum;
2812
2813        sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2814        /* See comments in __skb_checksum_complete(). */
2815        if (likely(!sum)) {
2816                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2817                    !skb->csum_complete_sw)
2818                        netdev_rx_csum_fault(skb->dev, skb);
2819        }
2820        if (!skb_shared(skb))
2821                skb->csum_valid = !sum;
2822        return sum;
2823}
2824EXPORT_SYMBOL(__skb_checksum_complete_head);
2825
2826/* This function assumes skb->csum already holds pseudo header's checksum,
2827 * which has been changed from the hardware checksum, for example, by
2828 * __skb_checksum_validate_complete(). And, the original skb->csum must
2829 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2830 *
2831 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2832 * zero. The new checksum is stored back into skb->csum unless the skb is
2833 * shared.
2834 */
2835__sum16 __skb_checksum_complete(struct sk_buff *skb)
2836{
2837        __wsum csum;
2838        __sum16 sum;
2839
2840        csum = skb_checksum(skb, 0, skb->len, 0);
2841
2842        sum = csum_fold(csum_add(skb->csum, csum));
2843        /* This check is inverted, because we already knew the hardware
2844         * checksum is invalid before calling this function. So, if the
2845         * re-computed checksum is valid instead, then we have a mismatch
2846         * between the original skb->csum and skb_checksum(). This means either
2847         * the original hardware checksum is incorrect or we screw up skb->csum
2848         * when moving skb->data around.
2849         */
2850        if (likely(!sum)) {
2851                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2852                    !skb->csum_complete_sw)
2853                        netdev_rx_csum_fault(skb->dev, skb);
2854        }
2855
2856        if (!skb_shared(skb)) {
2857                /* Save full packet checksum */
2858                skb->csum = csum;
2859                skb->ip_summed = CHECKSUM_COMPLETE;
2860                skb->csum_complete_sw = 1;
2861                skb->csum_valid = !sum;
2862        }
2863
2864        return sum;
2865}
2866EXPORT_SYMBOL(__skb_checksum_complete);
2867
2868static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2869{
2870        net_warn_ratelimited(
2871                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2872                __func__);
2873        return 0;
2874}
2875
2876static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2877                                       int offset, int len)
2878{
2879        net_warn_ratelimited(
2880                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2881                __func__);
2882        return 0;
2883}
2884
2885static const struct skb_checksum_ops default_crc32c_ops = {
2886        .update  = warn_crc32c_csum_update,
2887        .combine = warn_crc32c_csum_combine,
2888};
2889
2890const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2891        &default_crc32c_ops;
2892EXPORT_SYMBOL(crc32c_csum_stub);
2893
2894 /**
2895 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2896 *      @from: source buffer
2897 *
2898 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2899 *      into skb_zerocopy().
2900 */
2901unsigned int
2902skb_zerocopy_headlen(const struct sk_buff *from)
2903{
2904        unsigned int hlen = 0;
2905
2906        if (!from->head_frag ||
2907            skb_headlen(from) < L1_CACHE_BYTES ||
2908            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2909                hlen = skb_headlen(from);
2910
2911        if (skb_has_frag_list(from))
2912                hlen = from->len;
2913
2914        return hlen;
2915}
2916EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2917
2918/**
2919 *      skb_zerocopy - Zero copy skb to skb
2920 *      @to: destination buffer
2921 *      @from: source buffer
2922 *      @len: number of bytes to copy from source buffer
2923 *      @hlen: size of linear headroom in destination buffer
2924 *
2925 *      Copies up to `len` bytes from `from` to `to` by creating references
2926 *      to the frags in the source buffer.
2927 *
2928 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2929 *      headroom in the `to` buffer.
2930 *
2931 *      Return value:
2932 *      0: everything is OK
2933 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2934 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2935 */
2936int
2937skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2938{
2939        int i, j = 0;
2940        int plen = 0; /* length of skb->head fragment */
2941        int ret;
2942        struct page *page;
2943        unsigned int offset;
2944
2945        BUG_ON(!from->head_frag && !hlen);
2946
2947        /* dont bother with small payloads */
2948        if (len <= skb_tailroom(to))
2949                return skb_copy_bits(from, 0, skb_put(to, len), len);
2950
2951        if (hlen) {
2952                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2953                if (unlikely(ret))
2954                        return ret;
2955                len -= hlen;
2956        } else {
2957                plen = min_t(int, skb_headlen(from), len);
2958                if (plen) {
2959                        page = virt_to_head_page(from->head);
2960                        offset = from->data - (unsigned char *)page_address(page);
2961                        __skb_fill_page_desc(to, 0, page, offset, plen);
2962                        get_page(page);
2963                        j = 1;
2964                        len -= plen;
2965                }
2966        }
2967
2968        to->truesize += len + plen;
2969        to->len += len + plen;
2970        to->data_len += len + plen;
2971
2972        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2973                skb_tx_error(from);
2974                return -ENOMEM;
2975        }
2976        skb_zerocopy_clone(to, from, GFP_ATOMIC);
2977
2978        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2979                int size;
2980
2981                if (!len)
2982                        break;
2983                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2984                size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2985                                        len);
2986                skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2987                len -= size;
2988                skb_frag_ref(to, j);
2989                j++;
2990        }
2991        skb_shinfo(to)->nr_frags = j;
2992
2993        return 0;
2994}
2995EXPORT_SYMBOL_GPL(skb_zerocopy);
2996
2997void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2998{
2999        __wsum csum;
3000        long csstart;
3001
3002        if (skb->ip_summed == CHECKSUM_PARTIAL)
3003                csstart = skb_checksum_start_offset(skb);
3004        else
3005                csstart = skb_headlen(skb);
3006
3007        BUG_ON(csstart > skb_headlen(skb));
3008
3009        skb_copy_from_linear_data(skb, to, csstart);
3010
3011        csum = 0;
3012        if (csstart != skb->len)
3013                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3014                                              skb->len - csstart, 0);
3015
3016        if (skb->ip_summed == CHECKSUM_PARTIAL) {
3017                long csstuff = csstart + skb->csum_offset;
3018
3019                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3020        }
3021}
3022EXPORT_SYMBOL(skb_copy_and_csum_dev);
3023
3024/**
3025 *      skb_dequeue - remove from the head of the queue
3026 *      @list: list to dequeue from
3027 *
3028 *      Remove the head of the list. The list lock is taken so the function
3029 *      may be used safely with other locking list functions. The head item is
3030 *      returned or %NULL if the list is empty.
3031 */
3032
3033struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3034{
3035        unsigned long flags;
3036        struct sk_buff *result;
3037
3038        spin_lock_irqsave(&list->lock, flags);
3039        result = __skb_dequeue(list);
3040        spin_unlock_irqrestore(&list->lock, flags);
3041        return result;
3042}
3043EXPORT_SYMBOL(skb_dequeue);
3044
3045/**
3046 *      skb_dequeue_tail - remove from the tail of the queue
3047 *      @list: list to dequeue from
3048 *
3049 *      Remove the tail of the list. The list lock is taken so the function
3050 *      may be used safely with other locking list functions. The tail item is
3051 *      returned or %NULL if the list is empty.
3052 */
3053struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3054{
3055        unsigned long flags;
3056        struct sk_buff *result;
3057
3058        spin_lock_irqsave(&list->lock, flags);
3059        result = __skb_dequeue_tail(list);
3060        spin_unlock_irqrestore(&list->lock, flags);
3061        return result;
3062}
3063EXPORT_SYMBOL(skb_dequeue_tail);
3064
3065/**
3066 *      skb_queue_purge - empty a list
3067 *      @list: list to empty
3068 *
3069 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3070 *      the list and one reference dropped. This function takes the list
3071 *      lock and is atomic with respect to other list locking functions.
3072 */
3073void skb_queue_purge(struct sk_buff_head *list)
3074{
3075        struct sk_buff *skb;
3076        while ((skb = skb_dequeue(list)) != NULL)
3077                kfree_skb(skb);
3078}
3079EXPORT_SYMBOL(skb_queue_purge);
3080
3081/**
3082 *      skb_rbtree_purge - empty a skb rbtree
3083 *      @root: root of the rbtree to empty
3084 *      Return value: the sum of truesizes of all purged skbs.
3085 *
3086 *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3087 *      the list and one reference dropped. This function does not take
3088 *      any lock. Synchronization should be handled by the caller (e.g., TCP
3089 *      out-of-order queue is protected by the socket lock).
3090 */
3091unsigned int skb_rbtree_purge(struct rb_root *root)
3092{
3093        struct rb_node *p = rb_first(root);
3094        unsigned int sum = 0;
3095
3096        while (p) {
3097                struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3098
3099                p = rb_next(p);
3100                rb_erase(&skb->rbnode, root);
3101                sum += skb->truesize;
3102                kfree_skb(skb);
3103        }
3104        return sum;
3105}
3106
3107/**
3108 *      skb_queue_head - queue a buffer at the list head
3109 *      @list: list to use
3110 *      @newsk: buffer to queue
3111 *
3112 *      Queue a buffer at the start of the list. This function takes the
3113 *      list lock and can be used safely with other locking &sk_buff functions
3114 *      safely.
3115 *
3116 *      A buffer cannot be placed on two lists at the same time.
3117 */
3118void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3119{
3120        unsigned long flags;
3121
3122        spin_lock_irqsave(&list->lock, flags);
3123        __skb_queue_head(list, newsk);
3124        spin_unlock_irqrestore(&list->lock, flags);
3125}
3126EXPORT_SYMBOL(skb_queue_head);
3127
3128/**
3129 *      skb_queue_tail - queue a buffer at the list tail
3130 *      @list: list to use
3131 *      @newsk: buffer to queue
3132 *
3133 *      Queue a buffer at the tail of the list. This function takes the
3134 *      list lock and can be used safely with other locking &sk_buff functions
3135 *      safely.
3136 *
3137 *      A buffer cannot be placed on two lists at the same time.
3138 */
3139void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3140{
3141        unsigned long flags;
3142
3143        spin_lock_irqsave(&list->lock, flags);
3144        __skb_queue_tail(list, newsk);
3145        spin_unlock_irqrestore(&list->lock, flags);
3146}
3147EXPORT_SYMBOL(skb_queue_tail);
3148
3149/**
3150 *      skb_unlink      -       remove a buffer from a list
3151 *      @skb: buffer to remove
3152 *      @list: list to use
3153 *
3154 *      Remove a packet from a list. The list locks are taken and this
3155 *      function is atomic with respect to other list locked calls
3156 *
3157 *      You must know what list the SKB is on.
3158 */
3159void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3160{
3161        unsigned long flags;
3162
3163        spin_lock_irqsave(&list->lock, flags);
3164        __skb_unlink(skb, list);
3165        spin_unlock_irqrestore(&list->lock, flags);
3166}
3167EXPORT_SYMBOL(skb_unlink);
3168
3169/**
3170 *      skb_append      -       append a buffer
3171 *      @old: buffer to insert after
3172 *      @newsk: buffer to insert
3173 *      @list: list to use
3174 *
3175 *      Place a packet after a given packet in a list. The list locks are taken
3176 *      and this function is atomic with respect to other list locked calls.
3177 *      A buffer cannot be placed on two lists at the same time.
3178 */
3179void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3180{
3181        unsigned long flags;
3182
3183        spin_lock_irqsave(&list->lock, flags);
3184        __skb_queue_after(list, old, newsk);
3185        spin_unlock_irqrestore(&list->lock, flags);
3186}
3187EXPORT_SYMBOL(skb_append);
3188
3189static inline void skb_split_inside_header(struct sk_buff *skb,
3190                                           struct sk_buff* skb1,
3191                                           const u32 len, const int pos)
3192{
3193        int i;
3194
3195        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3196                                         pos - len);
3197        /* And move data appendix as is. */
3198        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3199                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3200
3201        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3202        skb_shinfo(skb)->nr_frags  = 0;
3203        skb1->data_len             = skb->data_len;
3204        skb1->len                  += skb1->data_len;
3205        skb->data_len              = 0;
3206        skb->len                   = len;
3207        skb_set_tail_pointer(skb, len);
3208}
3209
3210static inline void skb_split_no_header(struct sk_buff *skb,
3211                                       struct sk_buff* skb1,
3212                                       const u32 len, int pos)
3213{
3214        int i, k = 0;
3215        const int nfrags = skb_shinfo(skb)->nr_frags;
3216
3217        skb_shinfo(skb)->nr_frags = 0;
3218        skb1->len                 = skb1->data_len = skb->len - len;
3219        skb->len                  = len;
3220        skb->data_len             = len - pos;
3221
3222        for (i = 0; i < nfrags; i++) {
3223                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3224
3225                if (pos + size > len) {
3226                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3227
3228                        if (pos < len) {
3229                                /* Split frag.
3230                                 * We have two variants in this case:
3231                                 * 1. Move all the frag to the second
3232                                 *    part, if it is possible. F.e.
3233                                 *    this approach is mandatory for TUX,
3234                                 *    where splitting is expensive.
3235                                 * 2. Split is accurately. We make this.
3236                                 */
3237                                skb_frag_ref(skb, i);
3238                                skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3239                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3240                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3241                                skb_shinfo(skb)->nr_frags++;
3242                        }
3243                        k++;
3244                } else
3245                        skb_shinfo(skb)->nr_frags++;
3246                pos += size;
3247        }
3248        skb_shinfo(skb1)->nr_frags = k;
3249}
3250
3251/**
3252 * skb_split - Split fragmented skb to two parts at length len.
3253 * @skb: the buffer to split
3254 * @skb1: the buffer to receive the second part
3255 * @len: new length for skb
3256 */
3257void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3258{
3259        int pos = skb_headlen(skb);
3260
3261        skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3262                                      SKBTX_SHARED_FRAG;
3263        skb_zerocopy_clone(skb1, skb, 0);
3264        if (len < pos)  /* Split line is inside header. */
3265                skb_split_inside_header(skb, skb1, len, pos);
3266        else            /* Second chunk has no header, nothing to copy. */
3267                skb_split_no_header(skb, skb1, len, pos);
3268}
3269EXPORT_SYMBOL(skb_split);
3270
3271/* Shifting from/to a cloned skb is a no-go.
3272 *
3273 * Caller cannot keep skb_shinfo related pointers past calling here!
3274 */
3275static int skb_prepare_for_shift(struct sk_buff *skb)
3276{
3277        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3278}
3279
3280/**
3281 * skb_shift - Shifts paged data partially from skb to another
3282 * @tgt: buffer into which tail data gets added
3283 * @skb: buffer from which the paged data comes from
3284 * @shiftlen: shift up to this many bytes
3285 *
3286 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3287 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3288 * It's up to caller to free skb if everything was shifted.
3289 *
3290 * If @tgt runs out of frags, the whole operation is aborted.
3291 *
3292 * Skb cannot include anything else but paged data while tgt is allowed
3293 * to have non-paged data as well.
3294 *
3295 * TODO: full sized shift could be optimized but that would need
3296 * specialized skb free'er to handle frags without up-to-date nr_frags.
3297 */
3298int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3299{
3300        int from, to, merge, todo;
3301        skb_frag_t *fragfrom, *fragto;
3302
3303        BUG_ON(shiftlen > skb->len);
3304
3305        if (skb_headlen(skb))
3306                return 0;
3307        if (skb_zcopy(tgt) || skb_zcopy(skb))
3308                return 0;
3309
3310        todo = shiftlen;
3311        from = 0;
3312        to = skb_shinfo(tgt)->nr_frags;
3313        fragfrom = &skb_shinfo(skb)->frags[from];
3314
3315        /* Actual merge is delayed until the point when we know we can
3316         * commit all, so that we don't have to undo partial changes
3317         */
3318        if (!to ||
3319            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3320                              skb_frag_off(fragfrom))) {
3321                merge = -1;
3322        } else {
3323                merge = to - 1;
3324
3325                todo -= skb_frag_size(fragfrom);
3326                if (todo < 0) {
3327                        if (skb_prepare_for_shift(skb) ||
3328                            skb_prepare_for_shift(tgt))
3329                                return 0;
3330
3331                        /* All previous frag pointers might be stale! */
3332                        fragfrom = &skb_shinfo(skb)->frags[from];
3333                        fragto = &skb_shinfo(tgt)->frags[merge];
3334
3335                        skb_frag_size_add(fragto, shiftlen);
3336                        skb_frag_size_sub(fragfrom, shiftlen);
3337                        skb_frag_off_add(fragfrom, shiftlen);
3338
3339                        goto onlymerged;
3340                }
3341
3342                from++;
3343        }
3344
3345        /* Skip full, not-fitting skb to avoid expensive operations */
3346        if ((shiftlen == skb->len) &&
3347            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3348                return 0;
3349
3350        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3351                return 0;
3352
3353        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3354                if (to == MAX_SKB_FRAGS)
3355                        return 0;
3356
3357                fragfrom = &skb_shinfo(skb)->frags[from];
3358                fragto = &skb_shinfo(tgt)->frags[to];
3359
3360                if (todo >= skb_frag_size(fragfrom)) {
3361                        *fragto = *fragfrom;
3362                        todo -= skb_frag_size(fragfrom);
3363                        from++;
3364                        to++;
3365
3366                } else {
3367                        __skb_frag_ref(fragfrom);
3368                        skb_frag_page_copy(fragto, fragfrom);
3369                        skb_frag_off_copy(fragto, fragfrom);
3370                        skb_frag_size_set(fragto, todo);
3371
3372                        skb_frag_off_add(fragfrom, todo);
3373                        skb_frag_size_sub(fragfrom, todo);
3374                        todo = 0;
3375
3376                        to++;
3377                        break;
3378                }
3379        }
3380
3381        /* Ready to "commit" this state change to tgt */
3382        skb_shinfo(tgt)->nr_frags = to;
3383
3384        if (merge >= 0) {
3385                fragfrom = &skb_shinfo(skb)->frags[0];
3386                fragto = &skb_shinfo(tgt)->frags[merge];
3387
3388                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3389                __skb_frag_unref(fragfrom);
3390        }
3391
3392        /* Reposition in the original skb */
3393        to = 0;
3394        while (from < skb_shinfo(skb)->nr_frags)
3395                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3396        skb_shinfo(skb)->nr_frags = to;
3397
3398        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3399
3400onlymerged:
3401        /* Most likely the tgt won't ever need its checksum anymore, skb on
3402         * the other hand might need it if it needs to be resent
3403         */
3404        tgt->ip_summed = CHECKSUM_PARTIAL;
3405        skb->ip_summed = CHECKSUM_PARTIAL;
3406
3407        /* Yak, is it really working this way? Some helper please? */
3408        skb->len -= shiftlen;
3409        skb->data_len -= shiftlen;
3410        skb->truesize -= shiftlen;
3411        tgt->len += shiftlen;
3412        tgt->data_len += shiftlen;
3413        tgt->truesize += shiftlen;
3414
3415        return shiftlen;
3416}
3417
3418/**
3419 * skb_prepare_seq_read - Prepare a sequential read of skb data
3420 * @skb: the buffer to read
3421 * @from: lower offset of data to be read
3422 * @to: upper offset of data to be read
3423 * @st: state variable
3424 *
3425 * Initializes the specified state variable. Must be called before
3426 * invoking skb_seq_read() for the first time.
3427 */
3428void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3429                          unsigned int to, struct skb_seq_state *st)
3430{
3431        st->lower_offset = from;
3432        st->upper_offset = to;
3433        st->root_skb = st->cur_skb = skb;
3434        st->frag_idx = st->stepped_offset = 0;
3435        st->frag_data = NULL;
3436}
3437EXPORT_SYMBOL(skb_prepare_seq_read);
3438
3439/**
3440 * skb_seq_read - Sequentially read skb data
3441 * @consumed: number of bytes consumed by the caller so far
3442 * @data: destination pointer for data to be returned
3443 * @st: state variable
3444 *
3445 * Reads a block of skb data at @consumed relative to the
3446 * lower offset specified to skb_prepare_seq_read(). Assigns
3447 * the head of the data block to @data and returns the length
3448 * of the block or 0 if the end of the skb data or the upper
3449 * offset has been reached.
3450 *
3451 * The caller is not required to consume all of the data
3452 * returned, i.e. @consumed is typically set to the number
3453 * of bytes already consumed and the next call to
3454 * skb_seq_read() will return the remaining part of the block.
3455 *
3456 * Note 1: The size of each block of data returned can be arbitrary,
3457 *       this limitation is the cost for zerocopy sequential
3458 *       reads of potentially non linear data.
3459 *
3460 * Note 2: Fragment lists within fragments are not implemented
3461 *       at the moment, state->root_skb could be replaced with
3462 *       a stack for this purpose.
3463 */
3464unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3465                          struct skb_seq_state *st)
3466{
3467        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3468        skb_frag_t *frag;
3469
3470        if (unlikely(abs_offset >= st->upper_offset)) {
3471                if (st->frag_data) {
3472                        kunmap_atomic(st->frag_data);
3473                        st->frag_data = NULL;
3474                }
3475                return 0;
3476        }
3477
3478next_skb:
3479        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3480
3481        if (abs_offset < block_limit && !st->frag_data) {
3482                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3483                return block_limit - abs_offset;
3484        }
3485
3486        if (st->frag_idx == 0 && !st->frag_data)
3487                st->stepped_offset += skb_headlen(st->cur_skb);
3488
3489        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3490                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3491                block_limit = skb_frag_size(frag) + st->stepped_offset;
3492
3493                if (abs_offset < block_limit) {
3494                        if (!st->frag_data)
3495                                st->frag_data = kmap_atomic(skb_frag_page(frag));
3496
3497                        *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3498                                (abs_offset - st->stepped_offset);
3499
3500                        return block_limit - abs_offset;
3501                }
3502
3503                if (st->frag_data) {
3504                        kunmap_atomic(st->frag_data);
3505                        st->frag_data = NULL;
3506                }
3507
3508                st->frag_idx++;
3509                st->stepped_offset += skb_frag_size(frag);
3510        }
3511
3512        if (st->frag_data) {
3513                kunmap_atomic(st->frag_data);
3514                st->frag_data = NULL;
3515        }
3516
3517        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3518                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3519                st->frag_idx = 0;
3520                goto next_skb;
3521        } else if (st->cur_skb->next) {
3522                st->cur_skb = st->cur_skb->next;
3523                st->frag_idx = 0;
3524                goto next_skb;
3525        }
3526
3527        return 0;
3528}
3529EXPORT_SYMBOL(skb_seq_read);
3530
3531/**
3532 * skb_abort_seq_read - Abort a sequential read of skb data
3533 * @st: state variable
3534 *
3535 * Must be called if skb_seq_read() was not called until it
3536 * returned 0.
3537 */
3538void skb_abort_seq_read(struct skb_seq_state *st)
3539{
3540        if (st->frag_data)
3541                kunmap_atomic(st->frag_data);
3542}
3543EXPORT_SYMBOL(skb_abort_seq_read);
3544
3545#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
3546
3547static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3548                                          struct ts_config *conf,
3549                                          struct ts_state *state)
3550{
3551        return skb_seq_read(offset, text, TS_SKB_CB(state));
3552}
3553
3554static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3555{
3556        skb_abort_seq_read(TS_SKB_CB(state));
3557}
3558
3559/**
3560 * skb_find_text - Find a text pattern in skb data
3561 * @skb: the buffer to look in
3562 * @from: search offset
3563 * @to: search limit
3564 * @config: textsearch configuration
3565 *
3566 * Finds a pattern in the skb data according to the specified
3567 * textsearch configuration. Use textsearch_next() to retrieve
3568 * subsequent occurrences of the pattern. Returns the offset
3569 * to the first occurrence or UINT_MAX if no match was found.
3570 */
3571unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3572                           unsigned int to, struct ts_config *config)
3573{
3574        struct ts_state state;
3575        unsigned int ret;
3576
3577        config->get_next_block = skb_ts_get_next_block;
3578        config->finish = skb_ts_finish;
3579
3580        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3581
3582        ret = textsearch_find(config, &state);
3583        return (ret <= to - from ? ret : UINT_MAX);
3584}
3585EXPORT_SYMBOL(skb_find_text);
3586
3587int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3588                         int offset, size_t size)
3589{
3590        int i = skb_shinfo(skb)->nr_frags;
3591
3592        if (skb_can_coalesce(skb, i, page, offset)) {
3593                skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3594        } else if (i < MAX_SKB_FRAGS) {
3595                get_page(page);
3596                skb_fill_page_desc(skb, i, page, offset, size);
3597        } else {
3598                return -EMSGSIZE;
3599        }
3600
3601        return 0;
3602}
3603EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3604
3605/**
3606 *      skb_pull_rcsum - pull skb and update receive checksum
3607 *      @skb: buffer to update
3608 *      @len: length of data pulled
3609 *
3610 *      This function performs an skb_pull on the packet and updates
3611 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3612 *      receive path processing instead of skb_pull unless you know
3613 *      that the checksum difference is zero (e.g., a valid IP header)
3614 *      or you are setting ip_summed to CHECKSUM_NONE.
3615 */
3616void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3617{
3618        unsigned char *data = skb->data;
3619
3620        BUG_ON(len > skb->len);
3621        __skb_pull(skb, len);
3622        skb_postpull_rcsum(skb, data, len);
3623        return skb->data;
3624}
3625EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3626
3627static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3628{
3629        skb_frag_t head_frag;
3630        struct page *page;
3631
3632        page = virt_to_head_page(frag_skb->head);
3633        __skb_frag_set_page(&head_frag, page);
3634        skb_frag_off_set(&head_frag, frag_skb->data -
3635                         (unsigned char *)page_address(page));
3636        skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3637        return head_frag;
3638}
3639
3640struct sk_buff *skb_segment_list(struct sk_buff *skb,
3641                                 netdev_features_t features,
3642                                 unsigned int offset)
3643{
3644        struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3645        unsigned int tnl_hlen = skb_tnl_header_len(skb);
3646        unsigned int delta_truesize = 0;
3647        unsigned int delta_len = 0;
3648        struct sk_buff *tail = NULL;
3649        struct sk_buff *nskb;
3650
3651        skb_push(skb, -skb_network_offset(skb) + offset);
3652
3653        skb_shinfo(skb)->frag_list = NULL;
3654
3655        do {
3656                nskb = list_skb;
3657                list_skb = list_skb->next;
3658
3659                if (!tail)
3660                        skb->next = nskb;
3661                else
3662                        tail->next = nskb;
3663
3664                tail = nskb;
3665
3666                delta_len += nskb->len;
3667                delta_truesize += nskb->truesize;
3668
3669                skb_push(nskb, -skb_network_offset(nskb) + offset);
3670
3671                skb_release_head_state(nskb);
3672                 __copy_skb_header(nskb, skb);
3673
3674                skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3675                skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3676                                                 nskb->data - tnl_hlen,
3677                                                 offset + tnl_hlen);
3678
3679                if (skb_needs_linearize(nskb, features) &&
3680                    __skb_linearize(nskb))
3681                        goto err_linearize;
3682
3683        } while (list_skb);
3684
3685        skb->truesize = skb->truesize - delta_truesize;
3686        skb->data_len = skb->data_len - delta_len;
3687        skb->len = skb->len - delta_len;
3688
3689        skb_gso_reset(skb);
3690
3691        skb->prev = tail;
3692
3693        if (skb_needs_linearize(skb, features) &&
3694            __skb_linearize(skb))
3695                goto err_linearize;
3696
3697        skb_get(skb);
3698
3699        return skb;
3700
3701err_linearize:
3702        kfree_skb_list(skb->next);
3703        skb->next = NULL;
3704        return ERR_PTR(-ENOMEM);
3705}
3706EXPORT_SYMBOL_GPL(skb_segment_list);
3707
3708int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3709{
3710        if (unlikely(p->len + skb->len >= 65536))
3711                return -E2BIG;
3712
3713        if (NAPI_GRO_CB(p)->last == p)
3714                skb_shinfo(p)->frag_list = skb;
3715        else
3716                NAPI_GRO_CB(p)->last->next = skb;
3717
3718        skb_pull(skb, skb_gro_offset(skb));
3719
3720        NAPI_GRO_CB(p)->last = skb;
3721        NAPI_GRO_CB(p)->count++;
3722        p->data_len += skb->len;
3723        p->truesize += skb->truesize;
3724        p->len += skb->len;
3725
3726        NAPI_GRO_CB(skb)->same_flow = 1;
3727
3728        return 0;
3729}
3730
3731/**
3732 *      skb_segment - Perform protocol segmentation on skb.
3733 *      @head_skb: buffer to segment
3734 *      @features: features for the output path (see dev->features)
3735 *
3736 *      This function performs segmentation on the given skb.  It returns
3737 *      a pointer to the first in a list of new skbs for the segments.
3738 *      In case of error it returns ERR_PTR(err).
3739 */
3740struct sk_buff *skb_segment(struct sk_buff *head_skb,
3741                            netdev_features_t features)
3742{
3743        struct sk_buff *segs = NULL;
3744        struct sk_buff *tail = NULL;
3745        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3746        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3747        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3748        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3749        struct sk_buff *frag_skb = head_skb;
3750        unsigned int offset = doffset;
3751        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3752        unsigned int partial_segs = 0;
3753        unsigned int headroom;
3754        unsigned int len = head_skb->len;
3755        __be16 proto;
3756        bool csum, sg;
3757        int nfrags = skb_shinfo(head_skb)->nr_frags;
3758        int err = -ENOMEM;
3759        int i = 0;
3760        int pos;
3761        int dummy;
3762
3763        if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3764            (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3765                /* gso_size is untrusted, and we have a frag_list with a linear
3766                 * non head_frag head.
3767                 *
3768                 * (we assume checking the first list_skb member suffices;
3769                 * i.e if either of the list_skb members have non head_frag
3770                 * head, then the first one has too).
3771                 *
3772                 * If head_skb's headlen does not fit requested gso_size, it
3773                 * means that the frag_list members do NOT terminate on exact
3774                 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3775                 * sharing. Therefore we must fallback to copying the frag_list
3776                 * skbs; we do so by disabling SG.
3777                 */
3778                if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3779                        features &= ~NETIF_F_SG;
3780        }
3781
3782        __skb_push(head_skb, doffset);
3783        proto = skb_network_protocol(head_skb, &dummy);
3784        if (unlikely(!proto))
3785                return ERR_PTR(-EINVAL);
3786
3787        sg = !!(features & NETIF_F_SG);
3788        csum = !!can_checksum_protocol(features, proto);
3789
3790        if (sg && csum && (mss != GSO_BY_FRAGS))  {
3791                if (!(features & NETIF_F_GSO_PARTIAL)) {
3792                        struct sk_buff *iter;
3793                        unsigned int frag_len;
3794
3795                        if (!list_skb ||
3796                            !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3797                                goto normal;
3798
3799                        /* If we get here then all the required
3800                         * GSO features except frag_list are supported.
3801                         * Try to split the SKB to multiple GSO SKBs
3802                         * with no frag_list.
3803                         * Currently we can do that only when the buffers don't
3804                         * have a linear part and all the buffers except
3805                         * the last are of the same length.
3806                         */
3807                        frag_len = list_skb->len;
3808                        skb_walk_frags(head_skb, iter) {
3809                                if (frag_len != iter->len && iter->next)
3810                                        goto normal;
3811                                if (skb_headlen(iter) && !iter->head_frag)
3812                                        goto normal;
3813
3814                                len -= iter->len;
3815                        }
3816
3817                        if (len != frag_len)
3818                                goto normal;
3819                }
3820
3821                /* GSO partial only requires that we trim off any excess that
3822                 * doesn't fit into an MSS sized block, so take care of that
3823                 * now.
3824                 */
3825                partial_segs = len / mss;
3826                if (partial_segs > 1)
3827                        mss *= partial_segs;
3828                else
3829                        partial_segs = 0;
3830        }
3831
3832normal:
3833        headroom = skb_headroom(head_skb);
3834        pos = skb_headlen(head_skb);
3835
3836        do {
3837                struct sk_buff *nskb;
3838                skb_frag_t *nskb_frag;
3839                int hsize;
3840                int size;
3841
3842                if (unlikely(mss == GSO_BY_FRAGS)) {
3843                        len = list_skb->len;
3844                } else {
3845                        len = head_skb->len - offset;
3846                        if (len > mss)
3847                                len = mss;
3848                }
3849
3850                hsize = skb_headlen(head_skb) - offset;
3851                if (hsize < 0)
3852                        hsize = 0;
3853                if (hsize > len || !sg)
3854                        hsize = len;
3855
3856                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3857                    (skb_headlen(list_skb) == len || sg)) {
3858                        BUG_ON(skb_headlen(list_skb) > len);
3859
3860                        i = 0;
3861                        nfrags = skb_shinfo(list_skb)->nr_frags;
3862                        frag = skb_shinfo(list_skb)->frags;
3863                        frag_skb = list_skb;
3864                        pos += skb_headlen(list_skb);
3865
3866                        while (pos < offset + len) {
3867                                BUG_ON(i >= nfrags);
3868
3869                                size = skb_frag_size(frag);
3870                                if (pos + size > offset + len)
3871                                        break;
3872
3873                                i++;
3874                                pos += size;
3875                                frag++;
3876                        }
3877
3878                        nskb = skb_clone(list_skb, GFP_ATOMIC);
3879                        list_skb = list_skb->next;
3880
3881                        if (unlikely(!nskb))
3882                                goto err;
3883
3884                        if (unlikely(pskb_trim(nskb, len))) {
3885                                kfree_skb(nskb);
3886                                goto err;
3887                        }
3888
3889                        hsize = skb_end_offset(nskb);
3890                        if (skb_cow_head(nskb, doffset + headroom)) {
3891                                kfree_skb(nskb);
3892                                goto err;
3893                        }
3894
3895                        nskb->truesize += skb_end_offset(nskb) - hsize;
3896                        skb_release_head_state(nskb);
3897                        __skb_push(nskb, doffset);
3898                } else {
3899                        nskb = __alloc_skb(hsize + doffset + headroom,
3900                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3901                                           NUMA_NO_NODE);
3902
3903                        if (unlikely(!nskb))
3904                                goto err;
3905
3906                        skb_reserve(nskb, headroom);
3907                        __skb_put(nskb, doffset);
3908                }
3909
3910                if (segs)
3911                        tail->next = nskb;
3912                else
3913                        segs = nskb;
3914                tail = nskb;
3915
3916                __copy_skb_header(nskb, head_skb);
3917
3918                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3919                skb_reset_mac_len(nskb);
3920
3921                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3922                                                 nskb->data - tnl_hlen,
3923                                                 doffset + tnl_hlen);
3924
3925                if (nskb->len == len + doffset)
3926                        goto perform_csum_check;
3927
3928                if (!sg) {
3929                        if (!csum) {
3930                                if (!nskb->remcsum_offload)
3931                                        nskb->ip_summed = CHECKSUM_NONE;
3932                                SKB_GSO_CB(nskb)->csum =
3933                                        skb_copy_and_csum_bits(head_skb, offset,
3934                                                               skb_put(nskb,
3935                                                                       len),
3936                                                               len, 0);
3937                                SKB_GSO_CB(nskb)->csum_start =
3938                                        skb_headroom(nskb) + doffset;
3939                        } else {
3940                                skb_copy_bits(head_skb, offset,
3941                                              skb_put(nskb, len),
3942                                              len);
3943                        }
3944                        continue;
3945                }
3946
3947                nskb_frag = skb_shinfo(nskb)->frags;
3948
3949                skb_copy_from_linear_data_offset(head_skb, offset,
3950                                                 skb_put(nskb, hsize), hsize);
3951
3952                skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3953                                              SKBTX_SHARED_FRAG;
3954
3955                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3956                    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3957                        goto err;
3958
3959                while (pos < offset + len) {
3960                        if (i >= nfrags) {
3961                                i = 0;
3962                                nfrags = skb_shinfo(list_skb)->nr_frags;
3963                                frag = skb_shinfo(list_skb)->frags;
3964                                frag_skb = list_skb;
3965                                if (!skb_headlen(list_skb)) {
3966                                        BUG_ON(!nfrags);
3967                                } else {
3968                                        BUG_ON(!list_skb->head_frag);
3969
3970                                        /* to make room for head_frag. */
3971                                        i--;
3972                                        frag--;
3973                                }
3974                                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3975                                    skb_zerocopy_clone(nskb, frag_skb,
3976                                                       GFP_ATOMIC))
3977                                        goto err;
3978
3979                                list_skb = list_skb->next;
3980                        }
3981
3982                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
3983                                     MAX_SKB_FRAGS)) {
3984                                net_warn_ratelimited(
3985                                        "skb_segment: too many frags: %u %u\n",
3986                                        pos, mss);
3987                                err = -EINVAL;
3988                                goto err;
3989                        }
3990
3991                        *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3992                        __skb_frag_ref(nskb_frag);
3993                        size = skb_frag_size(nskb_frag);
3994
3995                        if (pos < offset) {
3996                                skb_frag_off_add(nskb_frag, offset - pos);
3997                                skb_frag_size_sub(nskb_frag, offset - pos);
3998                        }
3999
4000                        skb_shinfo(nskb)->nr_frags++;
4001
4002                        if (pos + size <= offset + len) {
4003                                i++;
4004                                frag++;
4005                                pos += size;
4006                        } else {
4007                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4008                                goto skip_fraglist;
4009                        }
4010
4011                        nskb_frag++;
4012                }
4013
4014skip_fraglist:
4015                nskb->data_len = len - hsize;
4016                nskb->len += nskb->data_len;
4017                nskb->truesize += nskb->data_len;
4018
4019perform_csum_check:
4020                if (!csum) {
4021                        if (skb_has_shared_frag(nskb) &&
4022                            __skb_linearize(nskb))
4023                                goto err;
4024
4025                        if (!nskb->remcsum_offload)
4026                                nskb->ip_summed = CHECKSUM_NONE;
4027                        SKB_GSO_CB(nskb)->csum =
4028                                skb_checksum(nskb, doffset,
4029                                             nskb->len - doffset, 0);
4030                        SKB_GSO_CB(nskb)->csum_start =
4031                                skb_headroom(nskb) + doffset;
4032                }
4033        } while ((offset += len) < head_skb->len);
4034
4035        /* Some callers want to get the end of the list.
4036         * Put it in segs->prev to avoid walking the list.
4037         * (see validate_xmit_skb_list() for example)
4038         */
4039        segs->prev = tail;
4040
4041        if (partial_segs) {
4042                struct sk_buff *iter;
4043                int type = skb_shinfo(head_skb)->gso_type;
4044                unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4045
4046                /* Update type to add partial and then remove dodgy if set */
4047                type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4048                type &= ~SKB_GSO_DODGY;
4049
4050                /* Update GSO info and prepare to start updating headers on
4051                 * our way back down the stack of protocols.
4052                 */
4053                for (iter = segs; iter; iter = iter->next) {
4054                        skb_shinfo(iter)->gso_size = gso_size;
4055                        skb_shinfo(iter)->gso_segs = partial_segs;
4056                        skb_shinfo(iter)->gso_type = type;
4057                        SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4058                }
4059
4060                if (tail->len - doffset <= gso_size)
4061                        skb_shinfo(tail)->gso_size = 0;
4062                else if (tail != segs)
4063                        skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4064        }
4065
4066        /* Following permits correct backpressure, for protocols
4067         * using skb_set_owner_w().
4068         * Idea is to tranfert ownership from head_skb to last segment.
4069         */
4070        if (head_skb->destructor == sock_wfree) {
4071                swap(tail->truesize, head_skb->truesize);
4072                swap(tail->destructor, head_skb->destructor);
4073                swap(tail->sk, head_skb->sk);
4074        }
4075        return segs;
4076
4077err:
4078        kfree_skb_list(segs);
4079        return ERR_PTR(err);
4080}
4081EXPORT_SYMBOL_GPL(skb_segment);
4082
4083int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4084{
4085        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4086        unsigned int offset = skb_gro_offset(skb);
4087        unsigned int headlen = skb_headlen(skb);
4088        unsigned int len = skb_gro_len(skb);
4089        unsigned int delta_truesize;
4090        struct sk_buff *lp;
4091
4092        if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4093                return -E2BIG;
4094
4095        lp = NAPI_GRO_CB(p)->last;
4096        pinfo = skb_shinfo(lp);
4097
4098        if (headlen <= offset) {
4099                skb_frag_t *frag;
4100                skb_frag_t *frag2;
4101                int i = skbinfo->nr_frags;
4102                int nr_frags = pinfo->nr_frags + i;
4103
4104                if (nr_frags > MAX_SKB_FRAGS)
4105                        goto merge;
4106
4107                offset -= headlen;
4108                pinfo->nr_frags = nr_frags;
4109                skbinfo->nr_frags = 0;
4110
4111                frag = pinfo->frags + nr_frags;
4112                frag2 = skbinfo->frags + i;
4113                do {
4114                        *--frag = *--frag2;
4115                } while (--i);
4116
4117                skb_frag_off_add(frag, offset);
4118                skb_frag_size_sub(frag, offset);
4119
4120                /* all fragments truesize : remove (head size + sk_buff) */
4121                delta_truesize = skb->truesize -
4122                                 SKB_TRUESIZE(skb_end_offset(skb));
4123
4124                skb->truesize -= skb->data_len;
4125                skb->len -= skb->data_len;
4126                skb->data_len = 0;
4127
4128                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4129                goto done;
4130        } else if (skb->head_frag) {
4131                int nr_frags = pinfo->nr_frags;
4132                skb_frag_t *frag = pinfo->frags + nr_frags;
4133                struct page *page = virt_to_head_page(skb->head);
4134                unsigned int first_size = headlen - offset;
4135                unsigned int first_offset;
4136
4137                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4138                        goto merge;
4139
4140                first_offset = skb->data -
4141                               (unsigned char *)page_address(page) +
4142                               offset;
4143
4144                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4145
4146                __skb_frag_set_page(frag, page);
4147                skb_frag_off_set(frag, first_offset);
4148                skb_frag_size_set(frag, first_size);
4149
4150                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4151                /* We dont need to clear skbinfo->nr_frags here */
4152
4153                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4154                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4155                goto done;
4156        }
4157
4158merge:
4159        delta_truesize = skb->truesize;
4160        if (offset > headlen) {
4161                unsigned int eat = offset - headlen;
4162
4163                skb_frag_off_add(&skbinfo->frags[0], eat);
4164                skb_frag_size_sub(&skbinfo->frags[0], eat);
4165                skb->data_len -= eat;
4166                skb->len -= eat;
4167                offset = headlen;
4168        }
4169
4170        __skb_pull(skb, offset);
4171
4172        if (NAPI_GRO_CB(p)->last == p)
4173                skb_shinfo(p)->frag_list = skb;
4174        else
4175                NAPI_GRO_CB(p)->last->next = skb;
4176        NAPI_GRO_CB(p)->last = skb;
4177        __skb_header_release(skb);
4178        lp = p;
4179
4180done:
4181        NAPI_GRO_CB(p)->count++;
4182        p->data_len += len;
4183        p->truesize += delta_truesize;
4184        p->len += len;
4185        if (lp != p) {
4186                lp->data_len += len;
4187                lp->truesize += delta_truesize;
4188                lp->len += len;
4189        }
4190        NAPI_GRO_CB(skb)->same_flow = 1;
4191        return 0;
4192}
4193
4194#ifdef CONFIG_SKB_EXTENSIONS
4195#define SKB_EXT_ALIGN_VALUE     8
4196#define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4197
4198static const u8 skb_ext_type_len[] = {
4199#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4200        [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4201#endif
4202#ifdef CONFIG_XFRM
4203        [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4204#endif
4205#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4206        [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4207#endif
4208#if IS_ENABLED(CONFIG_MPTCP)
4209        [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4210#endif
4211};
4212
4213static __always_inline unsigned int skb_ext_total_length(void)
4214{
4215        return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4216#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4217                skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4218#endif
4219#ifdef CONFIG_XFRM
4220                skb_ext_type_len[SKB_EXT_SEC_PATH] +
4221#endif
4222#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4223                skb_ext_type_len[TC_SKB_EXT] +
4224#endif
4225#if IS_ENABLED(CONFIG_MPTCP)
4226                skb_ext_type_len[SKB_EXT_MPTCP] +
4227#endif
4228                0;
4229}
4230
4231static void skb_extensions_init(void)
4232{
4233        BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4234        BUILD_BUG_ON(skb_ext_total_length() > 255);
4235
4236        skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4237                                             SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4238                                             0,
4239                                             SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4240                                             NULL);
4241}
4242#else
4243static void skb_extensions_init(void) {}
4244#endif
4245
4246void __init skb_init(void)
4247{
4248        skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4249                                              sizeof(struct sk_buff),
4250                                              0,
4251                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4252                                              offsetof(struct sk_buff, cb),
4253                                              sizeof_field(struct sk_buff, cb),
4254                                              NULL);
4255        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4256                                                sizeof(struct sk_buff_fclones),
4257                                                0,
4258                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4259                                                NULL);
4260        skb_extensions_init();
4261}
4262
4263static int
4264__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4265               unsigned int recursion_level)
4266{
4267        int start = skb_headlen(skb);
4268        int i, copy = start - offset;
4269        struct sk_buff *frag_iter;
4270        int elt = 0;
4271
4272        if (unlikely(recursion_level >= 24))
4273                return -EMSGSIZE;
4274
4275        if (copy > 0) {
4276                if (copy > len)
4277                        copy = len;
4278                sg_set_buf(sg, skb->data + offset, copy);
4279                elt++;
4280                if ((len -= copy) == 0)
4281                        return elt;
4282                offset += copy;
4283        }
4284
4285        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4286                int end;
4287
4288                WARN_ON(start > offset + len);
4289
4290                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4291                if ((copy = end - offset) > 0) {
4292                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4293                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4294                                return -EMSGSIZE;
4295
4296                        if (copy > len)
4297                                copy = len;
4298                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4299                                    skb_frag_off(frag) + offset - start);
4300                        elt++;
4301                        if (!(len -= copy))
4302                                return elt;
4303                        offset += copy;
4304                }
4305                start = end;
4306        }
4307
4308        skb_walk_frags(skb, frag_iter) {
4309                int end, ret;
4310
4311                WARN_ON(start > offset + len);
4312
4313                end = start + frag_iter->len;
4314                if ((copy = end - offset) > 0) {
4315                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4316                                return -EMSGSIZE;
4317
4318                        if (copy > len)
4319                                copy = len;
4320                        ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4321                                              copy, recursion_level + 1);
4322                        if (unlikely(ret < 0))
4323                                return ret;
4324                        elt += ret;
4325                        if ((len -= copy) == 0)
4326                                return elt;
4327                        offset += copy;
4328                }
4329                start = end;
4330        }
4331        BUG_ON(len);
4332        return elt;
4333}
4334
4335/**
4336 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4337 *      @skb: Socket buffer containing the buffers to be mapped
4338 *      @sg: The scatter-gather list to map into
4339 *      @offset: The offset into the buffer's contents to start mapping
4340 *      @len: Length of buffer space to be mapped
4341 *
4342 *      Fill the specified scatter-gather list with mappings/pointers into a
4343 *      region of the buffer space attached to a socket buffer. Returns either
4344 *      the number of scatterlist items used, or -EMSGSIZE if the contents
4345 *      could not fit.
4346 */
4347int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4348{
4349        int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4350
4351        if (nsg <= 0)
4352                return nsg;
4353
4354        sg_mark_end(&sg[nsg - 1]);
4355
4356        return nsg;
4357}
4358EXPORT_SYMBOL_GPL(skb_to_sgvec);
4359
4360/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4361 * sglist without mark the sg which contain last skb data as the end.
4362 * So the caller can mannipulate sg list as will when padding new data after
4363 * the first call without calling sg_unmark_end to expend sg list.
4364 *
4365 * Scenario to use skb_to_sgvec_nomark:
4366 * 1. sg_init_table
4367 * 2. skb_to_sgvec_nomark(payload1)
4368 * 3. skb_to_sgvec_nomark(payload2)
4369 *
4370 * This is equivalent to:
4371 * 1. sg_init_table
4372 * 2. skb_to_sgvec(payload1)
4373 * 3. sg_unmark_end
4374 * 4. skb_to_sgvec(payload2)
4375 *
4376 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4377 * is more preferable.
4378 */
4379int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4380                        int offset, int len)
4381{
4382        return __skb_to_sgvec(skb, sg, offset, len, 0);
4383}
4384EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4385
4386
4387
4388/**
4389 *      skb_cow_data - Check that a socket buffer's data buffers are writable
4390 *      @skb: The socket buffer to check.
4391 *      @tailbits: Amount of trailing space to be added
4392 *      @trailer: Returned pointer to the skb where the @tailbits space begins
4393 *
4394 *      Make sure that the data buffers attached to a socket buffer are
4395 *      writable. If they are not, private copies are made of the data buffers
4396 *      and the socket buffer is set to use these instead.
4397 *
4398 *      If @tailbits is given, make sure that there is space to write @tailbits
4399 *      bytes of data beyond current end of socket buffer.  @trailer will be
4400 *      set to point to the skb in which this space begins.
4401 *
4402 *      The number of scatterlist elements required to completely map the
4403 *      COW'd and extended socket buffer will be returned.
4404 */
4405int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4406{
4407        int copyflag;
4408        int elt;
4409        struct sk_buff *skb1, **skb_p;
4410
4411        /* If skb is cloned or its head is paged, reallocate
4412         * head pulling out all the pages (pages are considered not writable
4413         * at the moment even if they are anonymous).
4414         */
4415        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4416            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4417                return -ENOMEM;
4418
4419        /* Easy case. Most of packets will go this way. */
4420        if (!skb_has_frag_list(skb)) {
4421                /* A little of trouble, not enough of space for trailer.
4422                 * This should not happen, when stack is tuned to generate
4423                 * good frames. OK, on miss we reallocate and reserve even more
4424                 * space, 128 bytes is fair. */
4425
4426                if (skb_tailroom(skb) < tailbits &&
4427                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4428                        return -ENOMEM;
4429
4430                /* Voila! */
4431                *trailer = skb;
4432                return 1;
4433        }
4434
4435        /* Misery. We are in troubles, going to mincer fragments... */
4436
4437        elt = 1;
4438        skb_p = &skb_shinfo(skb)->frag_list;
4439        copyflag = 0;
4440
4441        while ((skb1 = *skb_p) != NULL) {
4442                int ntail = 0;
4443
4444                /* The fragment is partially pulled by someone,
4445                 * this can happen on input. Copy it and everything
4446                 * after it. */
4447
4448                if (skb_shared(skb1))
4449                        copyflag = 1;
4450
4451                /* If the skb is the last, worry about trailer. */
4452
4453                if (skb1->next == NULL && tailbits) {
4454                        if (skb_shinfo(skb1)->nr_frags ||
4455                            skb_has_frag_list(skb1) ||
4456                            skb_tailroom(skb1) < tailbits)
4457                                ntail = tailbits + 128;
4458                }
4459
4460                if (copyflag ||
4461                    skb_cloned(skb1) ||
4462                    ntail ||
4463                    skb_shinfo(skb1)->nr_frags ||
4464                    skb_has_frag_list(skb1)) {
4465                        struct sk_buff *skb2;
4466
4467                        /* Fuck, we are miserable poor guys... */
4468                        if (ntail == 0)
4469                                skb2 = skb_copy(skb1, GFP_ATOMIC);
4470                        else
4471                                skb2 = skb_copy_expand(skb1,
4472                                                       skb_headroom(skb1),
4473                                                       ntail,
4474                                                       GFP_ATOMIC);
4475                        if (unlikely(skb2 == NULL))
4476                                return -ENOMEM;
4477
4478                        if (skb1->sk)
4479                                skb_set_owner_w(skb2, skb1->sk);
4480
4481                        /* Looking around. Are we still alive?
4482                         * OK, link new skb, drop old one */
4483
4484                        skb2->next = skb1->next;
4485                        *skb_p = skb2;
4486                        kfree_skb(skb1);
4487                        skb1 = skb2;
4488                }
4489                elt++;
4490                *trailer = skb1;
4491                skb_p = &skb1->next;
4492        }
4493
4494        return elt;
4495}
4496EXPORT_SYMBOL_GPL(skb_cow_data);
4497
4498static void sock_rmem_free(struct sk_buff *skb)
4499{
4500        struct sock *sk = skb->sk;
4501
4502        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4503}
4504
4505static void skb_set_err_queue(struct sk_buff *skb)
4506{
4507        /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4508         * So, it is safe to (mis)use it to mark skbs on the error queue.
4509         */
4510        skb->pkt_type = PACKET_OUTGOING;
4511        BUILD_BUG_ON(PACKET_OUTGOING == 0);
4512}
4513
4514/*
4515 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4516 */
4517int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4518{
4519        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4520            (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4521                return -ENOMEM;
4522
4523        skb_orphan(skb);
4524        skb->sk = sk;
4525        skb->destructor = sock_rmem_free;
4526        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4527        skb_set_err_queue(skb);
4528
4529        /* before exiting rcu section, make sure dst is refcounted */
4530        skb_dst_force(skb);
4531
4532        skb_queue_tail(&sk->sk_error_queue, skb);
4533        if (!sock_flag(sk, SOCK_DEAD))
4534                sk->sk_error_report(sk);
4535        return 0;
4536}
4537EXPORT_SYMBOL(sock_queue_err_skb);
4538
4539static bool is_icmp_err_skb(const struct sk_buff *skb)
4540{
4541        return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4542                       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4543}
4544
4545struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4546{
4547        struct sk_buff_head *q = &sk->sk_error_queue;
4548        struct sk_buff *skb, *skb_next = NULL;
4549        bool icmp_next = false;
4550        unsigned long flags;
4551
4552        spin_lock_irqsave(&q->lock, flags);
4553        skb = __skb_dequeue(q);
4554        if (skb && (skb_next = skb_peek(q))) {
4555                icmp_next = is_icmp_err_skb(skb_next);
4556                if (icmp_next)
4557                        sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4558        }
4559        spin_unlock_irqrestore(&q->lock, flags);
4560
4561        if (is_icmp_err_skb(skb) && !icmp_next)
4562                sk->sk_err = 0;
4563
4564        if (skb_next)
4565                sk->sk_error_report(sk);
4566
4567        return skb;
4568}
4569EXPORT_SYMBOL(sock_dequeue_err_skb);
4570
4571/**
4572 * skb_clone_sk - create clone of skb, and take reference to socket
4573 * @skb: the skb to clone
4574 *
4575 * This function creates a clone of a buffer that holds a reference on
4576 * sk_refcnt.  Buffers created via this function are meant to be
4577 * returned using sock_queue_err_skb, or free via kfree_skb.
4578 *
4579 * When passing buffers allocated with this function to sock_queue_err_skb
4580 * it is necessary to wrap the call with sock_hold/sock_put in order to
4581 * prevent the socket from being released prior to being enqueued on
4582 * the sk_error_queue.
4583 */
4584struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4585{
4586        struct sock *sk = skb->sk;
4587        struct sk_buff *clone;
4588
4589        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4590                return NULL;
4591
4592        clone = skb_clone(skb, GFP_ATOMIC);
4593        if (!clone) {
4594                sock_put(sk);
4595                return NULL;
4596        }
4597
4598        clone->sk = sk;
4599        clone->destructor = sock_efree;
4600
4601        return clone;
4602}
4603EXPORT_SYMBOL(skb_clone_sk);
4604
4605static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4606                                        struct sock *sk,
4607                                        int tstype,
4608                                        bool opt_stats)
4609{
4610        struct sock_exterr_skb *serr;
4611        int err;
4612
4613        BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4614
4615        serr = SKB_EXT_ERR(skb);
4616        memset(serr, 0, sizeof(*serr));
4617        serr->ee.ee_errno = ENOMSG;
4618        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4619        serr->ee.ee_info = tstype;
4620        serr->opt_stats = opt_stats;
4621        serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4622        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4623                serr->ee.ee_data = skb_shinfo(skb)->tskey;
4624                if (sk->sk_protocol == IPPROTO_TCP &&
4625                    sk->sk_type == SOCK_STREAM)
4626                        serr->ee.ee_data -= sk->sk_tskey;
4627        }
4628
4629        err = sock_queue_err_skb(sk, skb);
4630
4631        if (err)
4632                kfree_skb(skb);
4633}
4634
4635static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4636{
4637        bool ret;
4638
4639        if (likely(sysctl_tstamp_allow_data || tsonly))
4640                return true;
4641
4642        read_lock_bh(&sk->sk_callback_lock);
4643        ret = sk->sk_socket && sk->sk_socket->file &&
4644              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4645        read_unlock_bh(&sk->sk_callback_lock);
4646        return ret;
4647}
4648
4649void skb_complete_tx_timestamp(struct sk_buff *skb,
4650                               struct skb_shared_hwtstamps *hwtstamps)
4651{
4652        struct sock *sk = skb->sk;
4653
4654        if (!skb_may_tx_timestamp(sk, false))
4655                goto err;
4656
4657        /* Take a reference to prevent skb_orphan() from freeing the socket,
4658         * but only if the socket refcount is not zero.
4659         */
4660        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4661                *skb_hwtstamps(skb) = *hwtstamps;
4662                __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4663                sock_put(sk);
4664                return;
4665        }
4666
4667err:
4668        kfree_skb(skb);
4669}
4670EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4671
4672void __skb_tstamp_tx(struct sk_buff *orig_skb,
4673                     struct skb_shared_hwtstamps *hwtstamps,
4674                     struct sock *sk, int tstype)
4675{
4676        struct sk_buff *skb;
4677        bool tsonly, opt_stats = false;
4678
4679        if (!sk)
4680                return;
4681
4682        if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4683            skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4684                return;
4685
4686        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4687        if (!skb_may_tx_timestamp(sk, tsonly))
4688                return;
4689
4690        if (tsonly) {
4691#ifdef CONFIG_INET
4692                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4693                    sk->sk_protocol == IPPROTO_TCP &&
4694                    sk->sk_type == SOCK_STREAM) {
4695                        skb = tcp_get_timestamping_opt_stats(sk);
4696                        opt_stats = true;
4697                } else
4698#endif
4699                        skb = alloc_skb(0, GFP_ATOMIC);
4700        } else {
4701                skb = skb_clone(orig_skb, GFP_ATOMIC);
4702        }
4703        if (!skb)
4704                return;
4705
4706        if (tsonly) {
4707                skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4708                                             SKBTX_ANY_TSTAMP;
4709                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4710        }
4711
4712        if (hwtstamps)
4713                *skb_hwtstamps(skb) = *hwtstamps;
4714        else
4715                skb->tstamp = ktime_get_real();
4716
4717        __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4718}
4719EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4720
4721void skb_tstamp_tx(struct sk_buff *orig_skb,
4722                   struct skb_shared_hwtstamps *hwtstamps)
4723{
4724        return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4725                               SCM_TSTAMP_SND);
4726}
4727EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4728
4729void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4730{
4731        struct sock *sk = skb->sk;
4732        struct sock_exterr_skb *serr;
4733        int err = 1;
4734
4735        skb->wifi_acked_valid = 1;
4736        skb->wifi_acked = acked;
4737
4738        serr = SKB_EXT_ERR(skb);
4739        memset(serr, 0, sizeof(*serr));
4740        serr->ee.ee_errno = ENOMSG;
4741        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4742
4743        /* Take a reference to prevent skb_orphan() from freeing the socket,
4744         * but only if the socket refcount is not zero.
4745         */
4746        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4747                err = sock_queue_err_skb(sk, skb);
4748                sock_put(sk);
4749        }
4750        if (err)
4751                kfree_skb(skb);
4752}
4753EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4754
4755/**
4756 * skb_partial_csum_set - set up and verify partial csum values for packet
4757 * @skb: the skb to set
4758 * @start: the number of bytes after skb->data to start checksumming.
4759 * @off: the offset from start to place the checksum.
4760 *
4761 * For untrusted partially-checksummed packets, we need to make sure the values
4762 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4763 *
4764 * This function checks and sets those values and skb->ip_summed: if this
4765 * returns false you should drop the packet.
4766 */
4767bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4768{
4769        u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4770        u32 csum_start = skb_headroom(skb) + (u32)start;
4771
4772        if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4773                net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4774                                     start, off, skb_headroom(skb), skb_headlen(skb));
4775                return false;
4776        }
4777        skb->ip_summed = CHECKSUM_PARTIAL;
4778        skb->csum_start = csum_start;
4779        skb->csum_offset = off;
4780        skb_set_transport_header(skb, start);
4781        return true;
4782}
4783EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4784
4785static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4786                               unsigned int max)
4787{
4788        if (skb_headlen(skb) >= len)
4789                return 0;
4790
4791        /* If we need to pullup then pullup to the max, so we
4792         * won't need to do it again.
4793         */
4794        if (max > skb->len)
4795                max = skb->len;
4796
4797        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4798                return -ENOMEM;
4799
4800        if (skb_headlen(skb) < len)
4801                return -EPROTO;
4802
4803        return 0;
4804}
4805
4806#define MAX_TCP_HDR_LEN (15 * 4)
4807
4808static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4809                                      typeof(IPPROTO_IP) proto,
4810                                      unsigned int off)
4811{
4812        int err;
4813
4814        switch (proto) {
4815        case IPPROTO_TCP:
4816                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4817                                          off + MAX_TCP_HDR_LEN);
4818                if (!err && !skb_partial_csum_set(skb, off,
4819                                                  offsetof(struct tcphdr,
4820                                                           check)))
4821                        err = -EPROTO;
4822                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4823
4824        case IPPROTO_UDP:
4825                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4826                                          off + sizeof(struct udphdr));
4827                if (!err && !skb_partial_csum_set(skb, off,
4828                                                  offsetof(struct udphdr,
4829                                                           check)))
4830                        err = -EPROTO;
4831                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4832        }
4833
4834        return ERR_PTR(-EPROTO);
4835}
4836
4837/* This value should be large enough to cover a tagged ethernet header plus
4838 * maximally sized IP and TCP or UDP headers.
4839 */
4840#define MAX_IP_HDR_LEN 128
4841
4842static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4843{
4844        unsigned int off;
4845        bool fragment;
4846        __sum16 *csum;
4847        int err;
4848
4849        fragment = false;
4850
4851        err = skb_maybe_pull_tail(skb,
4852                                  sizeof(struct iphdr),
4853                                  MAX_IP_HDR_LEN);
4854        if (err < 0)
4855                goto out;
4856
4857        if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4858                fragment = true;
4859
4860        off = ip_hdrlen(skb);
4861
4862        err = -EPROTO;
4863
4864        if (fragment)
4865                goto out;
4866
4867        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4868        if (IS_ERR(csum))
4869                return PTR_ERR(csum);
4870
4871        if (recalculate)
4872                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4873                                           ip_hdr(skb)->daddr,
4874                                           skb->len - off,
4875                                           ip_hdr(skb)->protocol, 0);
4876        err = 0;
4877
4878out:
4879        return err;
4880}
4881
4882/* This value should be large enough to cover a tagged ethernet header plus
4883 * an IPv6 header, all options, and a maximal TCP or UDP header.
4884 */
4885#define MAX_IPV6_HDR_LEN 256
4886
4887#define OPT_HDR(type, skb, off) \
4888        (type *)(skb_network_header(skb) + (off))
4889
4890static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4891{
4892        int err;
4893        u8 nexthdr;
4894        unsigned int off;
4895        unsigned int len;
4896        bool fragment;
4897        bool done;
4898        __sum16 *csum;
4899
4900        fragment = false;
4901        done = false;
4902
4903        off = sizeof(struct ipv6hdr);
4904
4905        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4906        if (err < 0)
4907                goto out;
4908
4909        nexthdr = ipv6_hdr(skb)->nexthdr;
4910
4911        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4912        while (off <= len && !done) {
4913                switch (nexthdr) {
4914                case IPPROTO_DSTOPTS:
4915                case IPPROTO_HOPOPTS:
4916                case IPPROTO_ROUTING: {
4917                        struct ipv6_opt_hdr *hp;
4918
4919                        err = skb_maybe_pull_tail(skb,
4920                                                  off +
4921                                                  sizeof(struct ipv6_opt_hdr),
4922                                                  MAX_IPV6_HDR_LEN);
4923                        if (err < 0)
4924                                goto out;
4925
4926                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4927                        nexthdr = hp->nexthdr;
4928                        off += ipv6_optlen(hp);
4929                        break;
4930                }
4931                case IPPROTO_AH: {
4932                        struct ip_auth_hdr *hp;
4933
4934                        err = skb_maybe_pull_tail(skb,
4935                                                  off +
4936                                                  sizeof(struct ip_auth_hdr),
4937                                                  MAX_IPV6_HDR_LEN);
4938                        if (err < 0)
4939                                goto out;
4940
4941                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4942                        nexthdr = hp->nexthdr;
4943                        off += ipv6_authlen(hp);
4944                        break;
4945                }
4946                case IPPROTO_FRAGMENT: {
4947                        struct frag_hdr *hp;
4948
4949                        err = skb_maybe_pull_tail(skb,
4950                                                  off +
4951                                                  sizeof(struct frag_hdr),
4952                                                  MAX_IPV6_HDR_LEN);
4953                        if (err < 0)
4954                                goto out;
4955
4956                        hp = OPT_HDR(struct frag_hdr, skb, off);
4957
4958                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4959                                fragment = true;
4960
4961                        nexthdr = hp->nexthdr;
4962                        off += sizeof(struct frag_hdr);
4963                        break;
4964                }
4965                default:
4966                        done = true;
4967                        break;
4968                }
4969        }
4970
4971        err = -EPROTO;
4972
4973        if (!done || fragment)
4974                goto out;
4975
4976        csum = skb_checksum_setup_ip(skb, nexthdr, off);
4977        if (IS_ERR(csum))
4978                return PTR_ERR(csum);
4979
4980        if (recalculate)
4981                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4982                                         &ipv6_hdr(skb)->daddr,
4983                                         skb->len - off, nexthdr, 0);
4984        err = 0;
4985
4986out:
4987        return err;
4988}
4989
4990/**
4991 * skb_checksum_setup - set up partial checksum offset
4992 * @skb: the skb to set up
4993 * @recalculate: if true the pseudo-header checksum will be recalculated
4994 */
4995int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4996{
4997        int err;
4998
4999        switch (skb->protocol) {
5000        case htons(ETH_P_IP):
5001                err = skb_checksum_setup_ipv4(skb, recalculate);
5002                break;
5003
5004        case htons(ETH_P_IPV6):
5005                err = skb_checksum_setup_ipv6(skb, recalculate);
5006                break;
5007
5008        default:
5009                err = -EPROTO;
5010                break;
5011        }
5012
5013        return err;
5014}
5015EXPORT_SYMBOL(skb_checksum_setup);
5016
5017/**
5018 * skb_checksum_maybe_trim - maybe trims the given skb
5019 * @skb: the skb to check
5020 * @transport_len: the data length beyond the network header
5021 *
5022 * Checks whether the given skb has data beyond the given transport length.
5023 * If so, returns a cloned skb trimmed to this transport length.
5024 * Otherwise returns the provided skb. Returns NULL in error cases
5025 * (e.g. transport_len exceeds skb length or out-of-memory).
5026 *
5027 * Caller needs to set the skb transport header and free any returned skb if it
5028 * differs from the provided skb.
5029 */
5030static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5031                                               unsigned int transport_len)
5032{
5033        struct sk_buff *skb_chk;
5034        unsigned int len = skb_transport_offset(skb) + transport_len;
5035        int ret;
5036
5037        if (skb->len < len)
5038                return NULL;
5039        else if (skb->len == len)
5040                return skb;
5041
5042        skb_chk = skb_clone(skb, GFP_ATOMIC);
5043        if (!skb_chk)
5044                return NULL;
5045
5046        ret = pskb_trim_rcsum(skb_chk, len);
5047        if (ret) {
5048                kfree_skb(skb_chk);
5049                return NULL;
5050        }
5051
5052        return skb_chk;
5053}
5054
5055/**
5056 * skb_checksum_trimmed - validate checksum of an skb
5057 * @skb: the skb to check
5058 * @transport_len: the data length beyond the network header
5059 * @skb_chkf: checksum function to use
5060 *
5061 * Applies the given checksum function skb_chkf to the provided skb.
5062 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5063 *
5064 * If the skb has data beyond the given transport length, then a
5065 * trimmed & cloned skb is checked and returned.
5066 *
5067 * Caller needs to set the skb transport header and free any returned skb if it
5068 * differs from the provided skb.
5069 */
5070struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5071                                     unsigned int transport_len,
5072                                     __sum16(*skb_chkf)(struct sk_buff *skb))
5073{
5074        struct sk_buff *skb_chk;
5075        unsigned int offset = skb_transport_offset(skb);
5076        __sum16 ret;
5077
5078        skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5079        if (!skb_chk)
5080                goto err;
5081
5082        if (!pskb_may_pull(skb_chk, offset))
5083                goto err;
5084
5085        skb_pull_rcsum(skb_chk, offset);
5086        ret = skb_chkf(skb_chk);
5087        skb_push_rcsum(skb_chk, offset);
5088
5089        if (ret)
5090                goto err;
5091
5092        return skb_chk;
5093
5094err:
5095        if (skb_chk && skb_chk != skb)
5096                kfree_skb(skb_chk);
5097
5098        return NULL;
5099
5100}
5101EXPORT_SYMBOL(skb_checksum_trimmed);
5102
5103void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5104{
5105        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5106                             skb->dev->name);
5107}
5108EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5109
5110void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5111{
5112        if (head_stolen) {
5113                skb_release_head_state(skb);
5114                kmem_cache_free(skbuff_head_cache, skb);
5115        } else {
5116                __kfree_skb(skb);
5117        }
5118}
5119EXPORT_SYMBOL(kfree_skb_partial);
5120
5121/**
5122 * skb_try_coalesce - try to merge skb to prior one
5123 * @to: prior buffer
5124 * @from: buffer to add
5125 * @fragstolen: pointer to boolean
5126 * @delta_truesize: how much more was allocated than was requested
5127 */
5128bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5129                      bool *fragstolen, int *delta_truesize)
5130{
5131        struct skb_shared_info *to_shinfo, *from_shinfo;
5132        int i, delta, len = from->len;
5133
5134        *fragstolen = false;
5135
5136        if (skb_cloned(to))
5137                return false;
5138
5139        if (len <= skb_tailroom(to)) {
5140                if (len)
5141                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5142                *delta_truesize = 0;
5143                return true;
5144        }
5145
5146        to_shinfo = skb_shinfo(to);
5147        from_shinfo = skb_shinfo(from);
5148        if (to_shinfo->frag_list || from_shinfo->frag_list)
5149                return false;
5150        if (skb_zcopy(to) || skb_zcopy(from))
5151                return false;
5152
5153        if (skb_headlen(from) != 0) {
5154                struct page *page;
5155                unsigned int offset;
5156
5157                if (to_shinfo->nr_frags +
5158                    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5159                        return false;
5160
5161                if (skb_head_is_locked(from))
5162                        return false;
5163
5164                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5165
5166                page = virt_to_head_page(from->head);
5167                offset = from->data - (unsigned char *)page_address(page);
5168
5169                skb_fill_page_desc(to, to_shinfo->nr_frags,
5170                                   page, offset, skb_headlen(from));
5171                *fragstolen = true;
5172        } else {
5173                if (to_shinfo->nr_frags +
5174                    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5175                        return false;
5176
5177                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5178        }
5179
5180        WARN_ON_ONCE(delta < len);
5181
5182        memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5183               from_shinfo->frags,
5184               from_shinfo->nr_frags * sizeof(skb_frag_t));
5185        to_shinfo->nr_frags += from_shinfo->nr_frags;
5186
5187        if (!skb_cloned(from))
5188                from_shinfo->nr_frags = 0;
5189
5190        /* if the skb is not cloned this does nothing
5191         * since we set nr_frags to 0.
5192         */
5193        for (i = 0; i < from_shinfo->nr_frags; i++)
5194                __skb_frag_ref(&from_shinfo->frags[i]);
5195
5196        to->truesize += delta;
5197        to->len += len;
5198        to->data_len += len;
5199
5200        *delta_truesize = delta;
5201        return true;
5202}
5203EXPORT_SYMBOL(skb_try_coalesce);
5204
5205/**
5206 * skb_scrub_packet - scrub an skb
5207 *
5208 * @skb: buffer to clean
5209 * @xnet: packet is crossing netns
5210 *
5211 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5212 * into/from a tunnel. Some information have to be cleared during these
5213 * operations.
5214 * skb_scrub_packet can also be used to clean a skb before injecting it in
5215 * another namespace (@xnet == true). We have to clear all information in the
5216 * skb that could impact namespace isolation.
5217 */
5218void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5219{
5220        skb->pkt_type = PACKET_HOST;
5221        skb->skb_iif = 0;
5222        skb->ignore_df = 0;
5223        skb_dst_drop(skb);
5224        skb_ext_reset(skb);
5225        nf_reset_ct(skb);
5226        nf_reset_trace(skb);
5227
5228#ifdef CONFIG_NET_SWITCHDEV
5229        skb->offload_fwd_mark = 0;
5230        skb->offload_l3_fwd_mark = 0;
5231#endif
5232
5233        if (!xnet)
5234                return;
5235
5236        ipvs_reset(skb);
5237        skb->mark = 0;
5238        skb->tstamp = 0;
5239}
5240EXPORT_SYMBOL_GPL(skb_scrub_packet);
5241
5242/**
5243 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5244 *
5245 * @skb: GSO skb
5246 *
5247 * skb_gso_transport_seglen is used to determine the real size of the
5248 * individual segments, including Layer4 headers (TCP/UDP).
5249 *
5250 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5251 */
5252static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5253{
5254        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5255        unsigned int thlen = 0;
5256
5257        if (skb->encapsulation) {
5258                thlen = skb_inner_transport_header(skb) -
5259                        skb_transport_header(skb);
5260
5261                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5262                        thlen += inner_tcp_hdrlen(skb);
5263        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5264                thlen = tcp_hdrlen(skb);
5265        } else if (unlikely(skb_is_gso_sctp(skb))) {
5266                thlen = sizeof(struct sctphdr);
5267        } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5268                thlen = sizeof(struct udphdr);
5269        }
5270        /* UFO sets gso_size to the size of the fragmentation
5271         * payload, i.e. the size of the L4 (UDP) header is already
5272         * accounted for.
5273         */
5274        return thlen + shinfo->gso_size;
5275}
5276
5277/**
5278 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5279 *
5280 * @skb: GSO skb
5281 *
5282 * skb_gso_network_seglen is used to determine the real size of the
5283 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5284 *
5285 * The MAC/L2 header is not accounted for.
5286 */
5287static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5288{
5289        unsigned int hdr_len = skb_transport_header(skb) -
5290                               skb_network_header(skb);
5291
5292        return hdr_len + skb_gso_transport_seglen(skb);
5293}
5294
5295/**
5296 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5297 *
5298 * @skb: GSO skb
5299 *
5300 * skb_gso_mac_seglen is used to determine the real size of the
5301 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5302 * headers (TCP/UDP).
5303 */
5304static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5305{
5306        unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5307
5308        return hdr_len + skb_gso_transport_seglen(skb);
5309}
5310
5311/**
5312 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5313 *
5314 * There are a couple of instances where we have a GSO skb, and we
5315 * want to determine what size it would be after it is segmented.
5316 *
5317 * We might want to check:
5318 * -    L3+L4+payload size (e.g. IP forwarding)
5319 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5320 *
5321 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5322 *
5323 * @skb: GSO skb
5324 *
5325 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5326 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5327 *
5328 * @max_len: The maximum permissible length.
5329 *
5330 * Returns true if the segmented length <= max length.
5331 */
5332static inline bool skb_gso_size_check(const struct sk_buff *skb,
5333                                      unsigned int seg_len,
5334                                      unsigned int max_len) {
5335        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5336        const struct sk_buff *iter;
5337
5338        if (shinfo->gso_size != GSO_BY_FRAGS)
5339                return seg_len <= max_len;
5340
5341        /* Undo this so we can re-use header sizes */
5342        seg_len -= GSO_BY_FRAGS;
5343
5344        skb_walk_frags(skb, iter) {
5345                if (seg_len + skb_headlen(iter) > max_len)
5346                        return false;
5347        }
5348
5349        return true;
5350}
5351
5352/**
5353 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5354 *
5355 * @skb: GSO skb
5356 * @mtu: MTU to validate against
5357 *
5358 * skb_gso_validate_network_len validates if a given skb will fit a
5359 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5360 * payload.
5361 */
5362bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5363{
5364        return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5365}
5366EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5367
5368/**
5369 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5370 *
5371 * @skb: GSO skb
5372 * @len: length to validate against
5373 *
5374 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5375 * length once split, including L2, L3 and L4 headers and the payload.
5376 */
5377bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5378{
5379        return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5380}
5381EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5382
5383static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5384{
5385        int mac_len, meta_len;
5386        void *meta;
5387
5388        if (skb_cow(skb, skb_headroom(skb)) < 0) {
5389                kfree_skb(skb);
5390                return NULL;
5391        }
5392
5393        mac_len = skb->data - skb_mac_header(skb);
5394        if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5395                memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5396                        mac_len - VLAN_HLEN - ETH_TLEN);
5397        }
5398
5399        meta_len = skb_metadata_len(skb);
5400        if (meta_len) {
5401                meta = skb_metadata_end(skb) - meta_len;
5402                memmove(meta + VLAN_HLEN, meta, meta_len);
5403        }
5404
5405        skb->mac_header += VLAN_HLEN;
5406        return skb;
5407}
5408
5409struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5410{
5411        struct vlan_hdr *vhdr;
5412        u16 vlan_tci;
5413
5414        if (unlikely(skb_vlan_tag_present(skb))) {
5415                /* vlan_tci is already set-up so leave this for another time */
5416                return skb;
5417        }
5418
5419        skb = skb_share_check(skb, GFP_ATOMIC);
5420        if (unlikely(!skb))
5421                goto err_free;
5422
5423        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5424                goto err_free;
5425
5426        vhdr = (struct vlan_hdr *)skb->data;
5427        vlan_tci = ntohs(vhdr->h_vlan_TCI);
5428        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5429
5430        skb_pull_rcsum(skb, VLAN_HLEN);
5431        vlan_set_encap_proto(skb, vhdr);
5432
5433        skb = skb_reorder_vlan_header(skb);
5434        if (unlikely(!skb))
5435                goto err_free;
5436
5437        skb_reset_network_header(skb);
5438        skb_reset_transport_header(skb);
5439        skb_reset_mac_len(skb);
5440
5441        return skb;
5442
5443err_free:
5444        kfree_skb(skb);
5445        return NULL;
5446}
5447EXPORT_SYMBOL(skb_vlan_untag);
5448
5449int skb_ensure_writable(struct sk_buff *skb, int write_len)
5450{
5451        if (!pskb_may_pull(skb, write_len))
5452                return -ENOMEM;
5453
5454        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5455                return 0;
5456
5457        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5458}
5459EXPORT_SYMBOL(skb_ensure_writable);
5460
5461/* remove VLAN header from packet and update csum accordingly.
5462 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5463 */
5464int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5465{
5466        struct vlan_hdr *vhdr;
5467        int offset = skb->data - skb_mac_header(skb);
5468        int err;
5469
5470        if (WARN_ONCE(offset,
5471                      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5472                      offset)) {
5473                return -EINVAL;
5474        }
5475
5476        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5477        if (unlikely(err))
5478                return err;
5479
5480        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5481
5482        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5483        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5484
5485        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5486        __skb_pull(skb, VLAN_HLEN);
5487
5488        vlan_set_encap_proto(skb, vhdr);
5489        skb->mac_header += VLAN_HLEN;
5490
5491        if (skb_network_offset(skb) < ETH_HLEN)
5492                skb_set_network_header(skb, ETH_HLEN);
5493
5494        skb_reset_mac_len(skb);
5495
5496        return err;
5497}
5498EXPORT_SYMBOL(__skb_vlan_pop);
5499
5500/* Pop a vlan tag either from hwaccel or from payload.
5501 * Expects skb->data at mac header.
5502 */
5503int skb_vlan_pop(struct sk_buff *skb)
5504{
5505        u16 vlan_tci;
5506        __be16 vlan_proto;
5507        int err;
5508
5509        if (likely(skb_vlan_tag_present(skb))) {
5510                __vlan_hwaccel_clear_tag(skb);
5511        } else {
5512                if (unlikely(!eth_type_vlan(skb->protocol)))
5513                        return 0;
5514
5515                err = __skb_vlan_pop(skb, &vlan_tci);
5516                if (err)
5517                        return err;
5518        }
5519        /* move next vlan tag to hw accel tag */
5520        if (likely(!eth_type_vlan(skb->protocol)))
5521                return 0;
5522
5523        vlan_proto = skb->protocol;
5524        err = __skb_vlan_pop(skb, &vlan_tci);
5525        if (unlikely(err))
5526                return err;
5527
5528        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5529        return 0;
5530}
5531EXPORT_SYMBOL(skb_vlan_pop);
5532
5533/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5534 * Expects skb->data at mac header.
5535 */
5536int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5537{
5538        if (skb_vlan_tag_present(skb)) {
5539                int offset = skb->data - skb_mac_header(skb);
5540                int err;
5541
5542                if (WARN_ONCE(offset,
5543                              "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5544                              offset)) {
5545                        return -EINVAL;
5546                }
5547
5548                err = __vlan_insert_tag(skb, skb->vlan_proto,
5549                                        skb_vlan_tag_get(skb));
5550                if (err)
5551                        return err;
5552
5553                skb->protocol = skb->vlan_proto;
5554                skb->mac_len += VLAN_HLEN;
5555
5556                skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5557        }
5558        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5559        return 0;
5560}
5561EXPORT_SYMBOL(skb_vlan_push);
5562
5563/* Update the ethertype of hdr and the skb csum value if required. */
5564static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5565                             __be16 ethertype)
5566{
5567        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5568                __be16 diff[] = { ~hdr->h_proto, ethertype };
5569
5570                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5571        }
5572
5573        hdr->h_proto = ethertype;
5574}
5575
5576/**
5577 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5578 *                   the packet
5579 *
5580 * @skb: buffer
5581 * @mpls_lse: MPLS label stack entry to push
5582 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5583 * @mac_len: length of the MAC header
5584 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5585 *            ethernet
5586 *
5587 * Expects skb->data at mac header.
5588 *
5589 * Returns 0 on success, -errno otherwise.
5590 */
5591int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5592                  int mac_len, bool ethernet)
5593{
5594        struct mpls_shim_hdr *lse;
5595        int err;
5596
5597        if (unlikely(!eth_p_mpls(mpls_proto)))
5598                return -EINVAL;
5599
5600        /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5601        if (skb->encapsulation)
5602                return -EINVAL;
5603
5604        err = skb_cow_head(skb, MPLS_HLEN);
5605        if (unlikely(err))
5606                return err;
5607
5608        if (!skb->inner_protocol) {
5609                skb_set_inner_network_header(skb, skb_network_offset(skb));
5610                skb_set_inner_protocol(skb, skb->protocol);
5611        }
5612
5613        skb_push(skb, MPLS_HLEN);
5614        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5615                mac_len);
5616        skb_reset_mac_header(skb);
5617        skb_set_network_header(skb, mac_len);
5618        skb_reset_mac_len(skb);
5619
5620        lse = mpls_hdr(skb);
5621        lse->label_stack_entry = mpls_lse;
5622        skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5623
5624        if (ethernet)
5625                skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5626        skb->protocol = mpls_proto;
5627
5628        return 0;
5629}
5630EXPORT_SYMBOL_GPL(skb_mpls_push);
5631
5632/**
5633 * skb_mpls_pop() - pop the outermost MPLS header
5634 *
5635 * @skb: buffer
5636 * @next_proto: ethertype of header after popped MPLS header
5637 * @mac_len: length of the MAC header
5638 * @ethernet: flag to indicate if the packet is ethernet
5639 *
5640 * Expects skb->data at mac header.
5641 *
5642 * Returns 0 on success, -errno otherwise.
5643 */
5644int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5645                 bool ethernet)
5646{
5647        int err;
5648
5649        if (unlikely(!eth_p_mpls(skb->protocol)))
5650                return 0;
5651
5652        err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5653        if (unlikely(err))
5654                return err;
5655
5656        skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5657        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5658                mac_len);
5659
5660        __skb_pull(skb, MPLS_HLEN);
5661        skb_reset_mac_header(skb);
5662        skb_set_network_header(skb, mac_len);
5663
5664        if (ethernet) {
5665                struct ethhdr *hdr;
5666
5667                /* use mpls_hdr() to get ethertype to account for VLANs. */
5668                hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5669                skb_mod_eth_type(skb, hdr, next_proto);
5670        }
5671        skb->protocol = next_proto;
5672
5673        return 0;
5674}
5675EXPORT_SYMBOL_GPL(skb_mpls_pop);
5676
5677/**
5678 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5679 *
5680 * @skb: buffer
5681 * @mpls_lse: new MPLS label stack entry to update to
5682 *
5683 * Expects skb->data at mac header.
5684 *
5685 * Returns 0 on success, -errno otherwise.
5686 */
5687int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5688{
5689        int err;
5690
5691        if (unlikely(!eth_p_mpls(skb->protocol)))
5692                return -EINVAL;
5693
5694        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5695        if (unlikely(err))
5696                return err;
5697
5698        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5699                __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5700
5701                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5702        }
5703
5704        mpls_hdr(skb)->label_stack_entry = mpls_lse;
5705
5706        return 0;
5707}
5708EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5709
5710/**
5711 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5712 *
5713 * @skb: buffer
5714 *
5715 * Expects skb->data at mac header.
5716 *
5717 * Returns 0 on success, -errno otherwise.
5718 */
5719int skb_mpls_dec_ttl(struct sk_buff *skb)
5720{
5721        u32 lse;
5722        u8 ttl;
5723
5724        if (unlikely(!eth_p_mpls(skb->protocol)))
5725                return -EINVAL;
5726
5727        lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5728        ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5729        if (!--ttl)
5730                return -EINVAL;
5731
5732        lse &= ~MPLS_LS_TTL_MASK;
5733        lse |= ttl << MPLS_LS_TTL_SHIFT;
5734
5735        return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5736}
5737EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5738
5739/**
5740 * alloc_skb_with_frags - allocate skb with page frags
5741 *
5742 * @header_len: size of linear part
5743 * @data_len: needed length in frags
5744 * @max_page_order: max page order desired.
5745 * @errcode: pointer to error code if any
5746 * @gfp_mask: allocation mask
5747 *
5748 * This can be used to allocate a paged skb, given a maximal order for frags.
5749 */
5750struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5751                                     unsigned long data_len,
5752                                     int max_page_order,
5753                                     int *errcode,
5754                                     gfp_t gfp_mask)
5755{
5756        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5757        unsigned long chunk;
5758        struct sk_buff *skb;
5759        struct page *page;
5760        int i;
5761
5762        *errcode = -EMSGSIZE;
5763        /* Note this test could be relaxed, if we succeed to allocate
5764         * high order pages...
5765         */
5766        if (npages > MAX_SKB_FRAGS)
5767                return NULL;
5768
5769        *errcode = -ENOBUFS;
5770        skb = alloc_skb(header_len, gfp_mask);
5771        if (!skb)
5772                return NULL;
5773
5774        skb->truesize += npages << PAGE_SHIFT;
5775
5776        for (i = 0; npages > 0; i++) {
5777                int order = max_page_order;
5778
5779                while (order) {
5780                        if (npages >= 1 << order) {
5781                                page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5782                                                   __GFP_COMP |
5783                                                   __GFP_NOWARN,
5784                                                   order);
5785                                if (page)
5786                                        goto fill_page;
5787                                /* Do not retry other high order allocations */
5788                                order = 1;
5789                                max_page_order = 0;
5790                        }
5791                        order--;
5792                }
5793                page = alloc_page(gfp_mask);
5794                if (!page)
5795                        goto failure;
5796fill_page:
5797                chunk = min_t(unsigned long, data_len,
5798                              PAGE_SIZE << order);
5799                skb_fill_page_desc(skb, i, page, 0, chunk);
5800                data_len -= chunk;
5801                npages -= 1 << order;
5802        }
5803        return skb;
5804
5805failure:
5806        kfree_skb(skb);
5807        return NULL;
5808}
5809EXPORT_SYMBOL(alloc_skb_with_frags);
5810
5811/* carve out the first off bytes from skb when off < headlen */
5812static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5813                                    const int headlen, gfp_t gfp_mask)
5814{
5815        int i;
5816        int size = skb_end_offset(skb);
5817        int new_hlen = headlen - off;
5818        u8 *data;
5819
5820        size = SKB_DATA_ALIGN(size);
5821
5822        if (skb_pfmemalloc(skb))
5823                gfp_mask |= __GFP_MEMALLOC;
5824        data = kmalloc_reserve(size +
5825                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5826                               gfp_mask, NUMA_NO_NODE, NULL);
5827        if (!data)
5828                return -ENOMEM;
5829
5830        size = SKB_WITH_OVERHEAD(ksize(data));
5831
5832        /* Copy real data, and all frags */
5833        skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5834        skb->len -= off;
5835
5836        memcpy((struct skb_shared_info *)(data + size),
5837               skb_shinfo(skb),
5838               offsetof(struct skb_shared_info,
5839                        frags[skb_shinfo(skb)->nr_frags]));
5840        if (skb_cloned(skb)) {
5841                /* drop the old head gracefully */
5842                if (skb_orphan_frags(skb, gfp_mask)) {
5843                        kfree(data);
5844                        return -ENOMEM;
5845                }
5846                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5847                        skb_frag_ref(skb, i);
5848                if (skb_has_frag_list(skb))
5849                        skb_clone_fraglist(skb);
5850                skb_release_data(skb);
5851        } else {
5852                /* we can reuse existing recount- all we did was
5853                 * relocate values
5854                 */
5855                skb_free_head(skb);
5856        }
5857
5858        skb->head = data;
5859        skb->data = data;
5860        skb->head_frag = 0;
5861#ifdef NET_SKBUFF_DATA_USES_OFFSET
5862        skb->end = size;
5863#else
5864        skb->end = skb->head + size;
5865#endif
5866        skb_set_tail_pointer(skb, skb_headlen(skb));
5867        skb_headers_offset_update(skb, 0);
5868        skb->cloned = 0;
5869        skb->hdr_len = 0;
5870        skb->nohdr = 0;
5871        atomic_set(&skb_shinfo(skb)->dataref, 1);
5872
5873        return 0;
5874}
5875
5876static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5877
5878/* carve out the first eat bytes from skb's frag_list. May recurse into
5879 * pskb_carve()
5880 */
5881static int pskb_carve_frag_list(struct sk_buff *skb,
5882                                struct skb_shared_info *shinfo, int eat,
5883                                gfp_t gfp_mask)
5884{
5885        struct sk_buff *list = shinfo->frag_list;
5886        struct sk_buff *clone = NULL;
5887        struct sk_buff *insp = NULL;
5888
5889        do {
5890                if (!list) {
5891                        pr_err("Not enough bytes to eat. Want %d\n", eat);
5892                        return -EFAULT;
5893                }
5894                if (list->len <= eat) {
5895                        /* Eaten as whole. */
5896                        eat -= list->len;
5897                        list = list->next;
5898                        insp = list;
5899                } else {
5900                        /* Eaten partially. */
5901                        if (skb_shared(list)) {
5902                                clone = skb_clone(list, gfp_mask);
5903                                if (!clone)
5904                                        return -ENOMEM;
5905                                insp = list->next;
5906                                list = clone;
5907                        } else {
5908                                /* This may be pulled without problems. */
5909                                insp = list;
5910                        }
5911                        if (pskb_carve(list, eat, gfp_mask) < 0) {
5912                                kfree_skb(clone);
5913                                return -ENOMEM;
5914                        }
5915                        break;
5916                }
5917        } while (eat);
5918
5919        /* Free pulled out fragments. */
5920        while ((list = shinfo->frag_list) != insp) {
5921                shinfo->frag_list = list->next;
5922                kfree_skb(list);
5923        }
5924        /* And insert new clone at head. */
5925        if (clone) {
5926                clone->next = list;
5927                shinfo->frag_list = clone;
5928        }
5929        return 0;
5930}
5931
5932/* carve off first len bytes from skb. Split line (off) is in the
5933 * non-linear part of skb
5934 */
5935static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5936                                       int pos, gfp_t gfp_mask)
5937{
5938        int i, k = 0;
5939        int size = skb_end_offset(skb);
5940        u8 *data;
5941        const int nfrags = skb_shinfo(skb)->nr_frags;
5942        struct skb_shared_info *shinfo;
5943
5944        size = SKB_DATA_ALIGN(size);
5945
5946        if (skb_pfmemalloc(skb))
5947                gfp_mask |= __GFP_MEMALLOC;
5948        data = kmalloc_reserve(size +
5949                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5950                               gfp_mask, NUMA_NO_NODE, NULL);
5951        if (!data)
5952                return -ENOMEM;
5953
5954        size = SKB_WITH_OVERHEAD(ksize(data));
5955
5956        memcpy((struct skb_shared_info *)(data + size),
5957               skb_shinfo(skb), offsetof(struct skb_shared_info,
5958                                         frags[skb_shinfo(skb)->nr_frags]));
5959        if (skb_orphan_frags(skb, gfp_mask)) {
5960                kfree(data);
5961                return -ENOMEM;
5962        }
5963        shinfo = (struct skb_shared_info *)(data + size);
5964        for (i = 0; i < nfrags; i++) {
5965                int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5966
5967                if (pos + fsize > off) {
5968                        shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5969
5970                        if (pos < off) {
5971                                /* Split frag.
5972                                 * We have two variants in this case:
5973                                 * 1. Move all the frag to the second
5974                                 *    part, if it is possible. F.e.
5975                                 *    this approach is mandatory for TUX,
5976                                 *    where splitting is expensive.
5977                                 * 2. Split is accurately. We make this.
5978                                 */
5979                                skb_frag_off_add(&shinfo->frags[0], off - pos);
5980                                skb_frag_size_sub(&shinfo->frags[0], off - pos);
5981                        }
5982                        skb_frag_ref(skb, i);
5983                        k++;
5984                }
5985                pos += fsize;
5986        }
5987        shinfo->nr_frags = k;
5988        if (skb_has_frag_list(skb))
5989                skb_clone_fraglist(skb);
5990
5991        if (k == 0) {
5992                /* split line is in frag list */
5993                pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5994        }
5995        skb_release_data(skb);
5996
5997        skb->head = data;
5998        skb->head_frag = 0;
5999        skb->data = data;
6000#ifdef NET_SKBUFF_DATA_USES_OFFSET
6001        skb->end = size;
6002#else
6003        skb->end = skb->head + size;
6004#endif
6005        skb_reset_tail_pointer(skb);
6006        skb_headers_offset_update(skb, 0);
6007        skb->cloned   = 0;
6008        skb->hdr_len  = 0;
6009        skb->nohdr    = 0;
6010        skb->len -= off;
6011        skb->data_len = skb->len;
6012        atomic_set(&skb_shinfo(skb)->dataref, 1);
6013        return 0;
6014}
6015
6016/* remove len bytes from the beginning of the skb */
6017static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6018{
6019        int headlen = skb_headlen(skb);
6020
6021        if (len < headlen)
6022                return pskb_carve_inside_header(skb, len, headlen, gfp);
6023        else
6024                return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6025}
6026
6027/* Extract to_copy bytes starting at off from skb, and return this in
6028 * a new skb
6029 */
6030struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6031                             int to_copy, gfp_t gfp)
6032{
6033        struct sk_buff  *clone = skb_clone(skb, gfp);
6034
6035        if (!clone)
6036                return NULL;
6037
6038        if (pskb_carve(clone, off, gfp) < 0 ||
6039            pskb_trim(clone, to_copy)) {
6040                kfree_skb(clone);
6041                return NULL;
6042        }
6043        return clone;
6044}
6045EXPORT_SYMBOL(pskb_extract);
6046
6047/**
6048 * skb_condense - try to get rid of fragments/frag_list if possible
6049 * @skb: buffer
6050 *
6051 * Can be used to save memory before skb is added to a busy queue.
6052 * If packet has bytes in frags and enough tail room in skb->head,
6053 * pull all of them, so that we can free the frags right now and adjust
6054 * truesize.
6055 * Notes:
6056 *      We do not reallocate skb->head thus can not fail.
6057 *      Caller must re-evaluate skb->truesize if needed.
6058 */
6059void skb_condense(struct sk_buff *skb)
6060{
6061        if (skb->data_len) {
6062                if (skb->data_len > skb->end - skb->tail ||
6063                    skb_cloned(skb))
6064                        return;
6065
6066                /* Nice, we can free page frag(s) right now */
6067                __pskb_pull_tail(skb, skb->data_len);
6068        }
6069        /* At this point, skb->truesize might be over estimated,
6070         * because skb had a fragment, and fragments do not tell
6071         * their truesize.
6072         * When we pulled its content into skb->head, fragment
6073         * was freed, but __pskb_pull_tail() could not possibly
6074         * adjust skb->truesize, not knowing the frag truesize.
6075         */
6076        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6077}
6078
6079#ifdef CONFIG_SKB_EXTENSIONS
6080static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6081{
6082        return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6083}
6084
6085/**
6086 * __skb_ext_alloc - allocate a new skb extensions storage
6087 *
6088 * @flags: See kmalloc().
6089 *
6090 * Returns the newly allocated pointer. The pointer can later attached to a
6091 * skb via __skb_ext_set().
6092 * Note: caller must handle the skb_ext as an opaque data.
6093 */
6094struct skb_ext *__skb_ext_alloc(gfp_t flags)
6095{
6096        struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6097
6098        if (new) {
6099                memset(new->offset, 0, sizeof(new->offset));
6100                refcount_set(&new->refcnt, 1);
6101        }
6102
6103        return new;
6104}
6105
6106static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6107                                         unsigned int old_active)
6108{
6109        struct skb_ext *new;
6110
6111        if (refcount_read(&old->refcnt) == 1)
6112                return old;
6113
6114        new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6115        if (!new)
6116                return NULL;
6117
6118        memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6119        refcount_set(&new->refcnt, 1);
6120
6121#ifdef CONFIG_XFRM
6122        if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6123                struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6124                unsigned int i;
6125
6126                for (i = 0; i < sp->len; i++)
6127                        xfrm_state_hold(sp->xvec[i]);
6128        }
6129#endif
6130        __skb_ext_put(old);
6131        return new;
6132}
6133
6134/**
6135 * __skb_ext_set - attach the specified extension storage to this skb
6136 * @skb: buffer
6137 * @id: extension id
6138 * @ext: extension storage previously allocated via __skb_ext_alloc()
6139 *
6140 * Existing extensions, if any, are cleared.
6141 *
6142 * Returns the pointer to the extension.
6143 */
6144void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6145                    struct skb_ext *ext)
6146{
6147        unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6148
6149        skb_ext_put(skb);
6150        newlen = newoff + skb_ext_type_len[id];
6151        ext->chunks = newlen;
6152        ext->offset[id] = newoff;
6153        skb->extensions = ext;
6154        skb->active_extensions = 1 << id;
6155        return skb_ext_get_ptr(ext, id);
6156}
6157
6158/**
6159 * skb_ext_add - allocate space for given extension, COW if needed
6160 * @skb: buffer
6161 * @id: extension to allocate space for
6162 *
6163 * Allocates enough space for the given extension.
6164 * If the extension is already present, a pointer to that extension
6165 * is returned.
6166 *
6167 * If the skb was cloned, COW applies and the returned memory can be
6168 * modified without changing the extension space of clones buffers.
6169 *
6170 * Returns pointer to the extension or NULL on allocation failure.
6171 */
6172void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6173{
6174        struct skb_ext *new, *old = NULL;
6175        unsigned int newlen, newoff;
6176
6177        if (skb->active_extensions) {
6178                old = skb->extensions;
6179
6180                new = skb_ext_maybe_cow(old, skb->active_extensions);
6181                if (!new)
6182                        return NULL;
6183
6184                if (__skb_ext_exist(new, id))
6185                        goto set_active;
6186
6187                newoff = new->chunks;
6188        } else {
6189                newoff = SKB_EXT_CHUNKSIZEOF(*new);
6190
6191                new = __skb_ext_alloc(GFP_ATOMIC);
6192                if (!new)
6193                        return NULL;
6194        }
6195
6196        newlen = newoff + skb_ext_type_len[id];
6197        new->chunks = newlen;
6198        new->offset[id] = newoff;
6199set_active:
6200        skb->extensions = new;
6201        skb->active_extensions |= 1 << id;
6202        return skb_ext_get_ptr(new, id);
6203}
6204EXPORT_SYMBOL(skb_ext_add);
6205
6206#ifdef CONFIG_XFRM
6207static void skb_ext_put_sp(struct sec_path *sp)
6208{
6209        unsigned int i;
6210
6211        for (i = 0; i < sp->len; i++)
6212                xfrm_state_put(sp->xvec[i]);
6213}
6214#endif
6215
6216void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6217{
6218        struct skb_ext *ext = skb->extensions;
6219
6220        skb->active_extensions &= ~(1 << id);
6221        if (skb->active_extensions == 0) {
6222                skb->extensions = NULL;
6223                __skb_ext_put(ext);
6224#ifdef CONFIG_XFRM
6225        } else if (id == SKB_EXT_SEC_PATH &&
6226                   refcount_read(&ext->refcnt) == 1) {
6227                struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6228
6229                skb_ext_put_sp(sp);
6230                sp->len = 0;
6231#endif
6232        }
6233}
6234EXPORT_SYMBOL(__skb_ext_del);
6235
6236void __skb_ext_put(struct skb_ext *ext)
6237{
6238        /* If this is last clone, nothing can increment
6239         * it after check passes.  Avoids one atomic op.
6240         */
6241        if (refcount_read(&ext->refcnt) == 1)
6242                goto free_now;
6243
6244        if (!refcount_dec_and_test(&ext->refcnt))
6245                return;
6246free_now:
6247#ifdef CONFIG_XFRM
6248        if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6249                skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6250#endif
6251
6252        kmem_cache_free(skbuff_ext_cache, ext);
6253}
6254EXPORT_SYMBOL(__skb_ext_put);
6255#endif /* CONFIG_SKB_EXTENSIONS */
6256