linux/net/ipv4/tcp_output.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:     Ross Biro
  10 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche, <flla@stud.uni-sb.de>
  14 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *              Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:     Pedro Roque     :       Retransmit queue handled by TCP.
  24 *                              :       Fragmentation on mtu decrease
  25 *                              :       Segment collapse on retransmit
  26 *                              :       AF independence
  27 *
  28 *              Linus Torvalds  :       send_delayed_ack
  29 *              David S. Miller :       Charge memory using the right skb
  30 *                                      during syn/ack processing.
  31 *              David S. Miller :       Output engine completely rewritten.
  32 *              Andrea Arcangeli:       SYNACK carry ts_recent in tsecr.
  33 *              Cacophonix Gaul :       draft-minshall-nagle-01
  34 *              J Hadi Salim    :       ECN support
  35 *
  36 */
  37
  38#define pr_fmt(fmt) "TCP: " fmt
  39
  40#include <net/tcp.h>
  41#include <net/mptcp.h>
  42
  43#include <linux/compiler.h>
  44#include <linux/gfp.h>
  45#include <linux/module.h>
  46#include <linux/static_key.h>
  47
  48#include <trace/events/tcp.h>
  49
  50/* Refresh clocks of a TCP socket,
  51 * ensuring monotically increasing values.
  52 */
  53void tcp_mstamp_refresh(struct tcp_sock *tp)
  54{
  55        u64 val = tcp_clock_ns();
  56
  57        tp->tcp_clock_cache = val;
  58        tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
  59}
  60
  61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  62                           int push_one, gfp_t gfp);
  63
  64/* Account for new data that has been sent to the network. */
  65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  66{
  67        struct inet_connection_sock *icsk = inet_csk(sk);
  68        struct tcp_sock *tp = tcp_sk(sk);
  69        unsigned int prior_packets = tp->packets_out;
  70
  71        WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
  72
  73        __skb_unlink(skb, &sk->sk_write_queue);
  74        tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  75
  76        if (tp->highest_sack == NULL)
  77                tp->highest_sack = skb;
  78
  79        tp->packets_out += tcp_skb_pcount(skb);
  80        if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  81                tcp_rearm_rto(sk);
  82
  83        NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  84                      tcp_skb_pcount(skb));
  85}
  86
  87/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  88 * window scaling factor due to loss of precision.
  89 * If window has been shrunk, what should we make? It is not clear at all.
  90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  92 * invalid. OK, let's make this for now:
  93 */
  94static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  95{
  96        const struct tcp_sock *tp = tcp_sk(sk);
  97
  98        if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  99            (tp->rx_opt.wscale_ok &&
 100             ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
 101                return tp->snd_nxt;
 102        else
 103                return tcp_wnd_end(tp);
 104}
 105
 106/* Calculate mss to advertise in SYN segment.
 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 108 *
 109 * 1. It is independent of path mtu.
 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 112 *    attached devices, because some buggy hosts are confused by
 113 *    large MSS.
 114 * 4. We do not make 3, we advertise MSS, calculated from first
 115 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 116 *    This may be overridden via information stored in routing table.
 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 118 *    probably even Jumbo".
 119 */
 120static __u16 tcp_advertise_mss(struct sock *sk)
 121{
 122        struct tcp_sock *tp = tcp_sk(sk);
 123        const struct dst_entry *dst = __sk_dst_get(sk);
 124        int mss = tp->advmss;
 125
 126        if (dst) {
 127                unsigned int metric = dst_metric_advmss(dst);
 128
 129                if (metric < mss) {
 130                        mss = metric;
 131                        tp->advmss = mss;
 132                }
 133        }
 134
 135        return (__u16)mss;
 136}
 137
 138/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 139 * This is the first part of cwnd validation mechanism.
 140 */
 141void tcp_cwnd_restart(struct sock *sk, s32 delta)
 142{
 143        struct tcp_sock *tp = tcp_sk(sk);
 144        u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 145        u32 cwnd = tp->snd_cwnd;
 146
 147        tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 148
 149        tp->snd_ssthresh = tcp_current_ssthresh(sk);
 150        restart_cwnd = min(restart_cwnd, cwnd);
 151
 152        while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 153                cwnd >>= 1;
 154        tp->snd_cwnd = max(cwnd, restart_cwnd);
 155        tp->snd_cwnd_stamp = tcp_jiffies32;
 156        tp->snd_cwnd_used = 0;
 157}
 158
 159/* Congestion state accounting after a packet has been sent. */
 160static void tcp_event_data_sent(struct tcp_sock *tp,
 161                                struct sock *sk)
 162{
 163        struct inet_connection_sock *icsk = inet_csk(sk);
 164        const u32 now = tcp_jiffies32;
 165
 166        if (tcp_packets_in_flight(tp) == 0)
 167                tcp_ca_event(sk, CA_EVENT_TX_START);
 168
 169        /* If this is the first data packet sent in response to the
 170         * previous received data,
 171         * and it is a reply for ato after last received packet,
 172         * increase pingpong count.
 173         */
 174        if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
 175            (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 176                inet_csk_inc_pingpong_cnt(sk);
 177
 178        tp->lsndtime = now;
 179}
 180
 181/* Account for an ACK we sent. */
 182static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
 183                                      u32 rcv_nxt)
 184{
 185        struct tcp_sock *tp = tcp_sk(sk);
 186
 187        if (unlikely(tp->compressed_ack)) {
 188                NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
 189                              tp->compressed_ack);
 190                tp->compressed_ack = 0;
 191                if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
 192                        __sock_put(sk);
 193        }
 194
 195        if (unlikely(rcv_nxt != tp->rcv_nxt))
 196                return;  /* Special ACK sent by DCTCP to reflect ECN */
 197        tcp_dec_quickack_mode(sk, pkts);
 198        inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 199}
 200
 201/* Determine a window scaling and initial window to offer.
 202 * Based on the assumption that the given amount of space
 203 * will be offered. Store the results in the tp structure.
 204 * NOTE: for smooth operation initial space offering should
 205 * be a multiple of mss if possible. We assume here that mss >= 1.
 206 * This MUST be enforced by all callers.
 207 */
 208void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 209                               __u32 *rcv_wnd, __u32 *window_clamp,
 210                               int wscale_ok, __u8 *rcv_wscale,
 211                               __u32 init_rcv_wnd)
 212{
 213        unsigned int space = (__space < 0 ? 0 : __space);
 214
 215        /* If no clamp set the clamp to the max possible scaled window */
 216        if (*window_clamp == 0)
 217                (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 218        space = min(*window_clamp, space);
 219
 220        /* Quantize space offering to a multiple of mss if possible. */
 221        if (space > mss)
 222                space = rounddown(space, mss);
 223
 224        /* NOTE: offering an initial window larger than 32767
 225         * will break some buggy TCP stacks. If the admin tells us
 226         * it is likely we could be speaking with such a buggy stack
 227         * we will truncate our initial window offering to 32K-1
 228         * unless the remote has sent us a window scaling option,
 229         * which we interpret as a sign the remote TCP is not
 230         * misinterpreting the window field as a signed quantity.
 231         */
 232        if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 233                (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 234        else
 235                (*rcv_wnd) = min_t(u32, space, U16_MAX);
 236
 237        if (init_rcv_wnd)
 238                *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 239
 240        *rcv_wscale = 0;
 241        if (wscale_ok) {
 242                /* Set window scaling on max possible window */
 243                space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 244                space = max_t(u32, space, sysctl_rmem_max);
 245                space = min_t(u32, space, *window_clamp);
 246                *rcv_wscale = clamp_t(int, ilog2(space) - 15,
 247                                      0, TCP_MAX_WSCALE);
 248        }
 249        /* Set the clamp no higher than max representable value */
 250        (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 251}
 252EXPORT_SYMBOL(tcp_select_initial_window);
 253
 254/* Chose a new window to advertise, update state in tcp_sock for the
 255 * socket, and return result with RFC1323 scaling applied.  The return
 256 * value can be stuffed directly into th->window for an outgoing
 257 * frame.
 258 */
 259static u16 tcp_select_window(struct sock *sk)
 260{
 261        struct tcp_sock *tp = tcp_sk(sk);
 262        u32 old_win = tp->rcv_wnd;
 263        u32 cur_win = tcp_receive_window(tp);
 264        u32 new_win = __tcp_select_window(sk);
 265
 266        /* Never shrink the offered window */
 267        if (new_win < cur_win) {
 268                /* Danger Will Robinson!
 269                 * Don't update rcv_wup/rcv_wnd here or else
 270                 * we will not be able to advertise a zero
 271                 * window in time.  --DaveM
 272                 *
 273                 * Relax Will Robinson.
 274                 */
 275                if (new_win == 0)
 276                        NET_INC_STATS(sock_net(sk),
 277                                      LINUX_MIB_TCPWANTZEROWINDOWADV);
 278                new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 279        }
 280        tp->rcv_wnd = new_win;
 281        tp->rcv_wup = tp->rcv_nxt;
 282
 283        /* Make sure we do not exceed the maximum possible
 284         * scaled window.
 285         */
 286        if (!tp->rx_opt.rcv_wscale &&
 287            sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 288                new_win = min(new_win, MAX_TCP_WINDOW);
 289        else
 290                new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 291
 292        /* RFC1323 scaling applied */
 293        new_win >>= tp->rx_opt.rcv_wscale;
 294
 295        /* If we advertise zero window, disable fast path. */
 296        if (new_win == 0) {
 297                tp->pred_flags = 0;
 298                if (old_win)
 299                        NET_INC_STATS(sock_net(sk),
 300                                      LINUX_MIB_TCPTOZEROWINDOWADV);
 301        } else if (old_win == 0) {
 302                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 303        }
 304
 305        return new_win;
 306}
 307
 308/* Packet ECN state for a SYN-ACK */
 309static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 310{
 311        const struct tcp_sock *tp = tcp_sk(sk);
 312
 313        TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 314        if (!(tp->ecn_flags & TCP_ECN_OK))
 315                TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 316        else if (tcp_ca_needs_ecn(sk) ||
 317                 tcp_bpf_ca_needs_ecn(sk))
 318                INET_ECN_xmit(sk);
 319}
 320
 321/* Packet ECN state for a SYN.  */
 322static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 323{
 324        struct tcp_sock *tp = tcp_sk(sk);
 325        bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 326        bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 327                tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 328
 329        if (!use_ecn) {
 330                const struct dst_entry *dst = __sk_dst_get(sk);
 331
 332                if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 333                        use_ecn = true;
 334        }
 335
 336        tp->ecn_flags = 0;
 337
 338        if (use_ecn) {
 339                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 340                tp->ecn_flags = TCP_ECN_OK;
 341                if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 342                        INET_ECN_xmit(sk);
 343        }
 344}
 345
 346static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 347{
 348        if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 349                /* tp->ecn_flags are cleared at a later point in time when
 350                 * SYN ACK is ultimatively being received.
 351                 */
 352                TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 353}
 354
 355static void
 356tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 357{
 358        if (inet_rsk(req)->ecn_ok)
 359                th->ece = 1;
 360}
 361
 362/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 363 * be sent.
 364 */
 365static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 366                         struct tcphdr *th, int tcp_header_len)
 367{
 368        struct tcp_sock *tp = tcp_sk(sk);
 369
 370        if (tp->ecn_flags & TCP_ECN_OK) {
 371                /* Not-retransmitted data segment: set ECT and inject CWR. */
 372                if (skb->len != tcp_header_len &&
 373                    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 374                        INET_ECN_xmit(sk);
 375                        if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 376                                tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 377                                th->cwr = 1;
 378                                skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 379                        }
 380                } else if (!tcp_ca_needs_ecn(sk)) {
 381                        /* ACK or retransmitted segment: clear ECT|CE */
 382                        INET_ECN_dontxmit(sk);
 383                }
 384                if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 385                        th->ece = 1;
 386        }
 387}
 388
 389/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 390 * auto increment end seqno.
 391 */
 392static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 393{
 394        skb->ip_summed = CHECKSUM_PARTIAL;
 395
 396        TCP_SKB_CB(skb)->tcp_flags = flags;
 397        TCP_SKB_CB(skb)->sacked = 0;
 398
 399        tcp_skb_pcount_set(skb, 1);
 400
 401        TCP_SKB_CB(skb)->seq = seq;
 402        if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 403                seq++;
 404        TCP_SKB_CB(skb)->end_seq = seq;
 405}
 406
 407static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 408{
 409        return tp->snd_una != tp->snd_up;
 410}
 411
 412#define OPTION_SACK_ADVERTISE   (1 << 0)
 413#define OPTION_TS               (1 << 1)
 414#define OPTION_MD5              (1 << 2)
 415#define OPTION_WSCALE           (1 << 3)
 416#define OPTION_FAST_OPEN_COOKIE (1 << 8)
 417#define OPTION_SMC              (1 << 9)
 418#define OPTION_MPTCP            (1 << 10)
 419
 420static void smc_options_write(__be32 *ptr, u16 *options)
 421{
 422#if IS_ENABLED(CONFIG_SMC)
 423        if (static_branch_unlikely(&tcp_have_smc)) {
 424                if (unlikely(OPTION_SMC & *options)) {
 425                        *ptr++ = htonl((TCPOPT_NOP  << 24) |
 426                                       (TCPOPT_NOP  << 16) |
 427                                       (TCPOPT_EXP <<  8) |
 428                                       (TCPOLEN_EXP_SMC_BASE));
 429                        *ptr++ = htonl(TCPOPT_SMC_MAGIC);
 430                }
 431        }
 432#endif
 433}
 434
 435struct tcp_out_options {
 436        u16 options;            /* bit field of OPTION_* */
 437        u16 mss;                /* 0 to disable */
 438        u8 ws;                  /* window scale, 0 to disable */
 439        u8 num_sack_blocks;     /* number of SACK blocks to include */
 440        u8 hash_size;           /* bytes in hash_location */
 441        __u8 *hash_location;    /* temporary pointer, overloaded */
 442        __u32 tsval, tsecr;     /* need to include OPTION_TS */
 443        struct tcp_fastopen_cookie *fastopen_cookie;    /* Fast open cookie */
 444        struct mptcp_out_options mptcp;
 445};
 446
 447static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
 448{
 449#if IS_ENABLED(CONFIG_MPTCP)
 450        if (unlikely(OPTION_MPTCP & opts->options))
 451                mptcp_write_options(ptr, &opts->mptcp);
 452#endif
 453}
 454
 455/* Write previously computed TCP options to the packet.
 456 *
 457 * Beware: Something in the Internet is very sensitive to the ordering of
 458 * TCP options, we learned this through the hard way, so be careful here.
 459 * Luckily we can at least blame others for their non-compliance but from
 460 * inter-operability perspective it seems that we're somewhat stuck with
 461 * the ordering which we have been using if we want to keep working with
 462 * those broken things (not that it currently hurts anybody as there isn't
 463 * particular reason why the ordering would need to be changed).
 464 *
 465 * At least SACK_PERM as the first option is known to lead to a disaster
 466 * (but it may well be that other scenarios fail similarly).
 467 */
 468static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 469                              struct tcp_out_options *opts)
 470{
 471        u16 options = opts->options;    /* mungable copy */
 472
 473        if (unlikely(OPTION_MD5 & options)) {
 474                *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 475                               (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 476                /* overload cookie hash location */
 477                opts->hash_location = (__u8 *)ptr;
 478                ptr += 4;
 479        }
 480
 481        if (unlikely(opts->mss)) {
 482                *ptr++ = htonl((TCPOPT_MSS << 24) |
 483                               (TCPOLEN_MSS << 16) |
 484                               opts->mss);
 485        }
 486
 487        if (likely(OPTION_TS & options)) {
 488                if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 489                        *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 490                                       (TCPOLEN_SACK_PERM << 16) |
 491                                       (TCPOPT_TIMESTAMP << 8) |
 492                                       TCPOLEN_TIMESTAMP);
 493                        options &= ~OPTION_SACK_ADVERTISE;
 494                } else {
 495                        *ptr++ = htonl((TCPOPT_NOP << 24) |
 496                                       (TCPOPT_NOP << 16) |
 497                                       (TCPOPT_TIMESTAMP << 8) |
 498                                       TCPOLEN_TIMESTAMP);
 499                }
 500                *ptr++ = htonl(opts->tsval);
 501                *ptr++ = htonl(opts->tsecr);
 502        }
 503
 504        if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 505                *ptr++ = htonl((TCPOPT_NOP << 24) |
 506                               (TCPOPT_NOP << 16) |
 507                               (TCPOPT_SACK_PERM << 8) |
 508                               TCPOLEN_SACK_PERM);
 509        }
 510
 511        if (unlikely(OPTION_WSCALE & options)) {
 512                *ptr++ = htonl((TCPOPT_NOP << 24) |
 513                               (TCPOPT_WINDOW << 16) |
 514                               (TCPOLEN_WINDOW << 8) |
 515                               opts->ws);
 516        }
 517
 518        if (unlikely(opts->num_sack_blocks)) {
 519                struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 520                        tp->duplicate_sack : tp->selective_acks;
 521                int this_sack;
 522
 523                *ptr++ = htonl((TCPOPT_NOP  << 24) |
 524                               (TCPOPT_NOP  << 16) |
 525                               (TCPOPT_SACK <<  8) |
 526                               (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 527                                                     TCPOLEN_SACK_PERBLOCK)));
 528
 529                for (this_sack = 0; this_sack < opts->num_sack_blocks;
 530                     ++this_sack) {
 531                        *ptr++ = htonl(sp[this_sack].start_seq);
 532                        *ptr++ = htonl(sp[this_sack].end_seq);
 533                }
 534
 535                tp->rx_opt.dsack = 0;
 536        }
 537
 538        if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 539                struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 540                u8 *p = (u8 *)ptr;
 541                u32 len; /* Fast Open option length */
 542
 543                if (foc->exp) {
 544                        len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 545                        *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 546                                     TCPOPT_FASTOPEN_MAGIC);
 547                        p += TCPOLEN_EXP_FASTOPEN_BASE;
 548                } else {
 549                        len = TCPOLEN_FASTOPEN_BASE + foc->len;
 550                        *p++ = TCPOPT_FASTOPEN;
 551                        *p++ = len;
 552                }
 553
 554                memcpy(p, foc->val, foc->len);
 555                if ((len & 3) == 2) {
 556                        p[foc->len] = TCPOPT_NOP;
 557                        p[foc->len + 1] = TCPOPT_NOP;
 558                }
 559                ptr += (len + 3) >> 2;
 560        }
 561
 562        smc_options_write(ptr, &options);
 563
 564        mptcp_options_write(ptr, opts);
 565}
 566
 567static void smc_set_option(const struct tcp_sock *tp,
 568                           struct tcp_out_options *opts,
 569                           unsigned int *remaining)
 570{
 571#if IS_ENABLED(CONFIG_SMC)
 572        if (static_branch_unlikely(&tcp_have_smc)) {
 573                if (tp->syn_smc) {
 574                        if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 575                                opts->options |= OPTION_SMC;
 576                                *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 577                        }
 578                }
 579        }
 580#endif
 581}
 582
 583static void smc_set_option_cond(const struct tcp_sock *tp,
 584                                const struct inet_request_sock *ireq,
 585                                struct tcp_out_options *opts,
 586                                unsigned int *remaining)
 587{
 588#if IS_ENABLED(CONFIG_SMC)
 589        if (static_branch_unlikely(&tcp_have_smc)) {
 590                if (tp->syn_smc && ireq->smc_ok) {
 591                        if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 592                                opts->options |= OPTION_SMC;
 593                                *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 594                        }
 595                }
 596        }
 597#endif
 598}
 599
 600static void mptcp_set_option_cond(const struct request_sock *req,
 601                                  struct tcp_out_options *opts,
 602                                  unsigned int *remaining)
 603{
 604        if (rsk_is_mptcp(req)) {
 605                unsigned int size;
 606
 607                if (mptcp_synack_options(req, &size, &opts->mptcp)) {
 608                        if (*remaining >= size) {
 609                                opts->options |= OPTION_MPTCP;
 610                                *remaining -= size;
 611                        }
 612                }
 613        }
 614}
 615
 616/* Compute TCP options for SYN packets. This is not the final
 617 * network wire format yet.
 618 */
 619static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 620                                struct tcp_out_options *opts,
 621                                struct tcp_md5sig_key **md5)
 622{
 623        struct tcp_sock *tp = tcp_sk(sk);
 624        unsigned int remaining = MAX_TCP_OPTION_SPACE;
 625        struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 626
 627        *md5 = NULL;
 628#ifdef CONFIG_TCP_MD5SIG
 629        if (static_branch_unlikely(&tcp_md5_needed) &&
 630            rcu_access_pointer(tp->md5sig_info)) {
 631                *md5 = tp->af_specific->md5_lookup(sk, sk);
 632                if (*md5) {
 633                        opts->options |= OPTION_MD5;
 634                        remaining -= TCPOLEN_MD5SIG_ALIGNED;
 635                }
 636        }
 637#endif
 638
 639        /* We always get an MSS option.  The option bytes which will be seen in
 640         * normal data packets should timestamps be used, must be in the MSS
 641         * advertised.  But we subtract them from tp->mss_cache so that
 642         * calculations in tcp_sendmsg are simpler etc.  So account for this
 643         * fact here if necessary.  If we don't do this correctly, as a
 644         * receiver we won't recognize data packets as being full sized when we
 645         * should, and thus we won't abide by the delayed ACK rules correctly.
 646         * SACKs don't matter, we never delay an ACK when we have any of those
 647         * going out.  */
 648        opts->mss = tcp_advertise_mss(sk);
 649        remaining -= TCPOLEN_MSS_ALIGNED;
 650
 651        if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
 652                opts->options |= OPTION_TS;
 653                opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 654                opts->tsecr = tp->rx_opt.ts_recent;
 655                remaining -= TCPOLEN_TSTAMP_ALIGNED;
 656        }
 657        if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
 658                opts->ws = tp->rx_opt.rcv_wscale;
 659                opts->options |= OPTION_WSCALE;
 660                remaining -= TCPOLEN_WSCALE_ALIGNED;
 661        }
 662        if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
 663                opts->options |= OPTION_SACK_ADVERTISE;
 664                if (unlikely(!(OPTION_TS & opts->options)))
 665                        remaining -= TCPOLEN_SACKPERM_ALIGNED;
 666        }
 667
 668        if (fastopen && fastopen->cookie.len >= 0) {
 669                u32 need = fastopen->cookie.len;
 670
 671                need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 672                                               TCPOLEN_FASTOPEN_BASE;
 673                need = (need + 3) & ~3U;  /* Align to 32 bits */
 674                if (remaining >= need) {
 675                        opts->options |= OPTION_FAST_OPEN_COOKIE;
 676                        opts->fastopen_cookie = &fastopen->cookie;
 677                        remaining -= need;
 678                        tp->syn_fastopen = 1;
 679                        tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 680                }
 681        }
 682
 683        smc_set_option(tp, opts, &remaining);
 684
 685        if (sk_is_mptcp(sk)) {
 686                unsigned int size;
 687
 688                if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
 689                        opts->options |= OPTION_MPTCP;
 690                        remaining -= size;
 691                }
 692        }
 693
 694        return MAX_TCP_OPTION_SPACE - remaining;
 695}
 696
 697/* Set up TCP options for SYN-ACKs. */
 698static unsigned int tcp_synack_options(const struct sock *sk,
 699                                       struct request_sock *req,
 700                                       unsigned int mss, struct sk_buff *skb,
 701                                       struct tcp_out_options *opts,
 702                                       const struct tcp_md5sig_key *md5,
 703                                       struct tcp_fastopen_cookie *foc,
 704                                       enum tcp_synack_type synack_type)
 705{
 706        struct inet_request_sock *ireq = inet_rsk(req);
 707        unsigned int remaining = MAX_TCP_OPTION_SPACE;
 708
 709#ifdef CONFIG_TCP_MD5SIG
 710        if (md5) {
 711                opts->options |= OPTION_MD5;
 712                remaining -= TCPOLEN_MD5SIG_ALIGNED;
 713
 714                /* We can't fit any SACK blocks in a packet with MD5 + TS
 715                 * options. There was discussion about disabling SACK
 716                 * rather than TS in order to fit in better with old,
 717                 * buggy kernels, but that was deemed to be unnecessary.
 718                 */
 719                if (synack_type != TCP_SYNACK_COOKIE)
 720                        ireq->tstamp_ok &= !ireq->sack_ok;
 721        }
 722#endif
 723
 724        /* We always send an MSS option. */
 725        opts->mss = mss;
 726        remaining -= TCPOLEN_MSS_ALIGNED;
 727
 728        if (likely(ireq->wscale_ok)) {
 729                opts->ws = ireq->rcv_wscale;
 730                opts->options |= OPTION_WSCALE;
 731                remaining -= TCPOLEN_WSCALE_ALIGNED;
 732        }
 733        if (likely(ireq->tstamp_ok)) {
 734                opts->options |= OPTION_TS;
 735                opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
 736                opts->tsecr = req->ts_recent;
 737                remaining -= TCPOLEN_TSTAMP_ALIGNED;
 738        }
 739        if (likely(ireq->sack_ok)) {
 740                opts->options |= OPTION_SACK_ADVERTISE;
 741                if (unlikely(!ireq->tstamp_ok))
 742                        remaining -= TCPOLEN_SACKPERM_ALIGNED;
 743        }
 744        if (foc != NULL && foc->len >= 0) {
 745                u32 need = foc->len;
 746
 747                need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 748                                   TCPOLEN_FASTOPEN_BASE;
 749                need = (need + 3) & ~3U;  /* Align to 32 bits */
 750                if (remaining >= need) {
 751                        opts->options |= OPTION_FAST_OPEN_COOKIE;
 752                        opts->fastopen_cookie = foc;
 753                        remaining -= need;
 754                }
 755        }
 756
 757        mptcp_set_option_cond(req, opts, &remaining);
 758
 759        smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 760
 761        return MAX_TCP_OPTION_SPACE - remaining;
 762}
 763
 764/* Compute TCP options for ESTABLISHED sockets. This is not the
 765 * final wire format yet.
 766 */
 767static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 768                                        struct tcp_out_options *opts,
 769                                        struct tcp_md5sig_key **md5)
 770{
 771        struct tcp_sock *tp = tcp_sk(sk);
 772        unsigned int size = 0;
 773        unsigned int eff_sacks;
 774
 775        opts->options = 0;
 776
 777        *md5 = NULL;
 778#ifdef CONFIG_TCP_MD5SIG
 779        if (static_branch_unlikely(&tcp_md5_needed) &&
 780            rcu_access_pointer(tp->md5sig_info)) {
 781                *md5 = tp->af_specific->md5_lookup(sk, sk);
 782                if (*md5) {
 783                        opts->options |= OPTION_MD5;
 784                        size += TCPOLEN_MD5SIG_ALIGNED;
 785                }
 786        }
 787#endif
 788
 789        if (likely(tp->rx_opt.tstamp_ok)) {
 790                opts->options |= OPTION_TS;
 791                opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 792                opts->tsecr = tp->rx_opt.ts_recent;
 793                size += TCPOLEN_TSTAMP_ALIGNED;
 794        }
 795
 796        /* MPTCP options have precedence over SACK for the limited TCP
 797         * option space because a MPTCP connection would be forced to
 798         * fall back to regular TCP if a required multipath option is
 799         * missing. SACK still gets a chance to use whatever space is
 800         * left.
 801         */
 802        if (sk_is_mptcp(sk)) {
 803                unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 804                unsigned int opt_size = 0;
 805
 806                if (mptcp_established_options(sk, skb, &opt_size, remaining,
 807                                              &opts->mptcp)) {
 808                        opts->options |= OPTION_MPTCP;
 809                        size += opt_size;
 810                }
 811        }
 812
 813        eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 814        if (unlikely(eff_sacks)) {
 815                const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 816                if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
 817                                         TCPOLEN_SACK_PERBLOCK))
 818                        return size;
 819
 820                opts->num_sack_blocks =
 821                        min_t(unsigned int, eff_sacks,
 822                              (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 823                              TCPOLEN_SACK_PERBLOCK);
 824
 825                size += TCPOLEN_SACK_BASE_ALIGNED +
 826                        opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 827        }
 828
 829        return size;
 830}
 831
 832
 833/* TCP SMALL QUEUES (TSQ)
 834 *
 835 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 836 * to reduce RTT and bufferbloat.
 837 * We do this using a special skb destructor (tcp_wfree).
 838 *
 839 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 840 * needs to be reallocated in a driver.
 841 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 842 *
 843 * Since transmit from skb destructor is forbidden, we use a tasklet
 844 * to process all sockets that eventually need to send more skbs.
 845 * We use one tasklet per cpu, with its own queue of sockets.
 846 */
 847struct tsq_tasklet {
 848        struct tasklet_struct   tasklet;
 849        struct list_head        head; /* queue of tcp sockets */
 850};
 851static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 852
 853static void tcp_tsq_write(struct sock *sk)
 854{
 855        if ((1 << sk->sk_state) &
 856            (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 857             TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
 858                struct tcp_sock *tp = tcp_sk(sk);
 859
 860                if (tp->lost_out > tp->retrans_out &&
 861                    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
 862                        tcp_mstamp_refresh(tp);
 863                        tcp_xmit_retransmit_queue(sk);
 864                }
 865
 866                tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
 867                               0, GFP_ATOMIC);
 868        }
 869}
 870
 871static void tcp_tsq_handler(struct sock *sk)
 872{
 873        bh_lock_sock(sk);
 874        if (!sock_owned_by_user(sk))
 875                tcp_tsq_write(sk);
 876        else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
 877                sock_hold(sk);
 878        bh_unlock_sock(sk);
 879}
 880/*
 881 * One tasklet per cpu tries to send more skbs.
 882 * We run in tasklet context but need to disable irqs when
 883 * transferring tsq->head because tcp_wfree() might
 884 * interrupt us (non NAPI drivers)
 885 */
 886static void tcp_tasklet_func(unsigned long data)
 887{
 888        struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 889        LIST_HEAD(list);
 890        unsigned long flags;
 891        struct list_head *q, *n;
 892        struct tcp_sock *tp;
 893        struct sock *sk;
 894
 895        local_irq_save(flags);
 896        list_splice_init(&tsq->head, &list);
 897        local_irq_restore(flags);
 898
 899        list_for_each_safe(q, n, &list) {
 900                tp = list_entry(q, struct tcp_sock, tsq_node);
 901                list_del(&tp->tsq_node);
 902
 903                sk = (struct sock *)tp;
 904                smp_mb__before_atomic();
 905                clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
 906
 907                tcp_tsq_handler(sk);
 908                sk_free(sk);
 909        }
 910}
 911
 912#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |           \
 913                          TCPF_WRITE_TIMER_DEFERRED |   \
 914                          TCPF_DELACK_TIMER_DEFERRED |  \
 915                          TCPF_MTU_REDUCED_DEFERRED)
 916/**
 917 * tcp_release_cb - tcp release_sock() callback
 918 * @sk: socket
 919 *
 920 * called from release_sock() to perform protocol dependent
 921 * actions before socket release.
 922 */
 923void tcp_release_cb(struct sock *sk)
 924{
 925        unsigned long flags, nflags;
 926
 927        /* perform an atomic operation only if at least one flag is set */
 928        do {
 929                flags = sk->sk_tsq_flags;
 930                if (!(flags & TCP_DEFERRED_ALL))
 931                        return;
 932                nflags = flags & ~TCP_DEFERRED_ALL;
 933        } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
 934
 935        if (flags & TCPF_TSQ_DEFERRED) {
 936                tcp_tsq_write(sk);
 937                __sock_put(sk);
 938        }
 939        /* Here begins the tricky part :
 940         * We are called from release_sock() with :
 941         * 1) BH disabled
 942         * 2) sk_lock.slock spinlock held
 943         * 3) socket owned by us (sk->sk_lock.owned == 1)
 944         *
 945         * But following code is meant to be called from BH handlers,
 946         * so we should keep BH disabled, but early release socket ownership
 947         */
 948        sock_release_ownership(sk);
 949
 950        if (flags & TCPF_WRITE_TIMER_DEFERRED) {
 951                tcp_write_timer_handler(sk);
 952                __sock_put(sk);
 953        }
 954        if (flags & TCPF_DELACK_TIMER_DEFERRED) {
 955                tcp_delack_timer_handler(sk);
 956                __sock_put(sk);
 957        }
 958        if (flags & TCPF_MTU_REDUCED_DEFERRED) {
 959                inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 960                __sock_put(sk);
 961        }
 962}
 963EXPORT_SYMBOL(tcp_release_cb);
 964
 965void __init tcp_tasklet_init(void)
 966{
 967        int i;
 968
 969        for_each_possible_cpu(i) {
 970                struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 971
 972                INIT_LIST_HEAD(&tsq->head);
 973                tasklet_init(&tsq->tasklet,
 974                             tcp_tasklet_func,
 975                             (unsigned long)tsq);
 976        }
 977}
 978
 979/*
 980 * Write buffer destructor automatically called from kfree_skb.
 981 * We can't xmit new skbs from this context, as we might already
 982 * hold qdisc lock.
 983 */
 984void tcp_wfree(struct sk_buff *skb)
 985{
 986        struct sock *sk = skb->sk;
 987        struct tcp_sock *tp = tcp_sk(sk);
 988        unsigned long flags, nval, oval;
 989
 990        /* Keep one reference on sk_wmem_alloc.
 991         * Will be released by sk_free() from here or tcp_tasklet_func()
 992         */
 993        WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
 994
 995        /* If this softirq is serviced by ksoftirqd, we are likely under stress.
 996         * Wait until our queues (qdisc + devices) are drained.
 997         * This gives :
 998         * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 999         * - chance for incoming ACK (processed by another cpu maybe)
1000         *   to migrate this flow (skb->ooo_okay will be eventually set)
1001         */
1002        if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1003                goto out;
1004
1005        for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1006                struct tsq_tasklet *tsq;
1007                bool empty;
1008
1009                if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1010                        goto out;
1011
1012                nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1013                nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1014                if (nval != oval)
1015                        continue;
1016
1017                /* queue this socket to tasklet queue */
1018                local_irq_save(flags);
1019                tsq = this_cpu_ptr(&tsq_tasklet);
1020                empty = list_empty(&tsq->head);
1021                list_add(&tp->tsq_node, &tsq->head);
1022                if (empty)
1023                        tasklet_schedule(&tsq->tasklet);
1024                local_irq_restore(flags);
1025                return;
1026        }
1027out:
1028        sk_free(sk);
1029}
1030
1031/* Note: Called under soft irq.
1032 * We can call TCP stack right away, unless socket is owned by user.
1033 */
1034enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1035{
1036        struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1037        struct sock *sk = (struct sock *)tp;
1038
1039        tcp_tsq_handler(sk);
1040        sock_put(sk);
1041
1042        return HRTIMER_NORESTART;
1043}
1044
1045static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1046                                      u64 prior_wstamp)
1047{
1048        struct tcp_sock *tp = tcp_sk(sk);
1049
1050        if (sk->sk_pacing_status != SK_PACING_NONE) {
1051                unsigned long rate = sk->sk_pacing_rate;
1052
1053                /* Original sch_fq does not pace first 10 MSS
1054                 * Note that tp->data_segs_out overflows after 2^32 packets,
1055                 * this is a minor annoyance.
1056                 */
1057                if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1058                        u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1059                        u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1060
1061                        /* take into account OS jitter */
1062                        len_ns -= min_t(u64, len_ns / 2, credit);
1063                        tp->tcp_wstamp_ns += len_ns;
1064                }
1065        }
1066        list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1067}
1068
1069/* This routine actually transmits TCP packets queued in by
1070 * tcp_do_sendmsg().  This is used by both the initial
1071 * transmission and possible later retransmissions.
1072 * All SKB's seen here are completely headerless.  It is our
1073 * job to build the TCP header, and pass the packet down to
1074 * IP so it can do the same plus pass the packet off to the
1075 * device.
1076 *
1077 * We are working here with either a clone of the original
1078 * SKB, or a fresh unique copy made by the retransmit engine.
1079 */
1080static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1081                              int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1082{
1083        const struct inet_connection_sock *icsk = inet_csk(sk);
1084        struct inet_sock *inet;
1085        struct tcp_sock *tp;
1086        struct tcp_skb_cb *tcb;
1087        struct tcp_out_options opts;
1088        unsigned int tcp_options_size, tcp_header_size;
1089        struct sk_buff *oskb = NULL;
1090        struct tcp_md5sig_key *md5;
1091        struct tcphdr *th;
1092        u64 prior_wstamp;
1093        int err;
1094
1095        BUG_ON(!skb || !tcp_skb_pcount(skb));
1096        tp = tcp_sk(sk);
1097        prior_wstamp = tp->tcp_wstamp_ns;
1098        tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1099        skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1100        if (clone_it) {
1101                TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1102                        - tp->snd_una;
1103                oskb = skb;
1104
1105                tcp_skb_tsorted_save(oskb) {
1106                        if (unlikely(skb_cloned(oskb)))
1107                                skb = pskb_copy(oskb, gfp_mask);
1108                        else
1109                                skb = skb_clone(oskb, gfp_mask);
1110                } tcp_skb_tsorted_restore(oskb);
1111
1112                if (unlikely(!skb))
1113                        return -ENOBUFS;
1114                /* retransmit skbs might have a non zero value in skb->dev
1115                 * because skb->dev is aliased with skb->rbnode.rb_left
1116                 */
1117                skb->dev = NULL;
1118        }
1119
1120        inet = inet_sk(sk);
1121        tcb = TCP_SKB_CB(skb);
1122        memset(&opts, 0, sizeof(opts));
1123
1124        if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1125                tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1126        } else {
1127                tcp_options_size = tcp_established_options(sk, skb, &opts,
1128                                                           &md5);
1129                /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1130                 * at receiver : This slightly improve GRO performance.
1131                 * Note that we do not force the PSH flag for non GSO packets,
1132                 * because they might be sent under high congestion events,
1133                 * and in this case it is better to delay the delivery of 1-MSS
1134                 * packets and thus the corresponding ACK packet that would
1135                 * release the following packet.
1136                 */
1137                if (tcp_skb_pcount(skb) > 1)
1138                        tcb->tcp_flags |= TCPHDR_PSH;
1139        }
1140        tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1141
1142        /* if no packet is in qdisc/device queue, then allow XPS to select
1143         * another queue. We can be called from tcp_tsq_handler()
1144         * which holds one reference to sk.
1145         *
1146         * TODO: Ideally, in-flight pure ACK packets should not matter here.
1147         * One way to get this would be to set skb->truesize = 2 on them.
1148         */
1149        skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1150
1151        /* If we had to use memory reserve to allocate this skb,
1152         * this might cause drops if packet is looped back :
1153         * Other socket might not have SOCK_MEMALLOC.
1154         * Packets not looped back do not care about pfmemalloc.
1155         */
1156        skb->pfmemalloc = 0;
1157
1158        skb_push(skb, tcp_header_size);
1159        skb_reset_transport_header(skb);
1160
1161        skb_orphan(skb);
1162        skb->sk = sk;
1163        skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1164        skb_set_hash_from_sk(skb, sk);
1165        refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1166
1167        skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1168
1169        /* Build TCP header and checksum it. */
1170        th = (struct tcphdr *)skb->data;
1171        th->source              = inet->inet_sport;
1172        th->dest                = inet->inet_dport;
1173        th->seq                 = htonl(tcb->seq);
1174        th->ack_seq             = htonl(rcv_nxt);
1175        *(((__be16 *)th) + 6)   = htons(((tcp_header_size >> 2) << 12) |
1176                                        tcb->tcp_flags);
1177
1178        th->check               = 0;
1179        th->urg_ptr             = 0;
1180
1181        /* The urg_mode check is necessary during a below snd_una win probe */
1182        if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1183                if (before(tp->snd_up, tcb->seq + 0x10000)) {
1184                        th->urg_ptr = htons(tp->snd_up - tcb->seq);
1185                        th->urg = 1;
1186                } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1187                        th->urg_ptr = htons(0xFFFF);
1188                        th->urg = 1;
1189                }
1190        }
1191
1192        tcp_options_write((__be32 *)(th + 1), tp, &opts);
1193        skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1194        if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1195                th->window      = htons(tcp_select_window(sk));
1196                tcp_ecn_send(sk, skb, th, tcp_header_size);
1197        } else {
1198                /* RFC1323: The window in SYN & SYN/ACK segments
1199                 * is never scaled.
1200                 */
1201                th->window      = htons(min(tp->rcv_wnd, 65535U));
1202        }
1203#ifdef CONFIG_TCP_MD5SIG
1204        /* Calculate the MD5 hash, as we have all we need now */
1205        if (md5) {
1206                sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1207                tp->af_specific->calc_md5_hash(opts.hash_location,
1208                                               md5, sk, skb);
1209        }
1210#endif
1211
1212        icsk->icsk_af_ops->send_check(sk, skb);
1213
1214        if (likely(tcb->tcp_flags & TCPHDR_ACK))
1215                tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1216
1217        if (skb->len != tcp_header_size) {
1218                tcp_event_data_sent(tp, sk);
1219                tp->data_segs_out += tcp_skb_pcount(skb);
1220                tp->bytes_sent += skb->len - tcp_header_size;
1221        }
1222
1223        if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1224                TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1225                              tcp_skb_pcount(skb));
1226
1227        tp->segs_out += tcp_skb_pcount(skb);
1228        /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1229        skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1230        skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1231
1232        /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1233
1234        /* Cleanup our debris for IP stacks */
1235        memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1236                               sizeof(struct inet6_skb_parm)));
1237
1238        tcp_add_tx_delay(skb, tp);
1239
1240        err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1241
1242        if (unlikely(err > 0)) {
1243                tcp_enter_cwr(sk);
1244                err = net_xmit_eval(err);
1245        }
1246        if (!err && oskb) {
1247                tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1248                tcp_rate_skb_sent(sk, oskb);
1249        }
1250        return err;
1251}
1252
1253static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1254                            gfp_t gfp_mask)
1255{
1256        return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1257                                  tcp_sk(sk)->rcv_nxt);
1258}
1259
1260/* This routine just queues the buffer for sending.
1261 *
1262 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1263 * otherwise socket can stall.
1264 */
1265static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1266{
1267        struct tcp_sock *tp = tcp_sk(sk);
1268
1269        /* Advance write_seq and place onto the write_queue. */
1270        WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1271        __skb_header_release(skb);
1272        tcp_add_write_queue_tail(sk, skb);
1273        sk_wmem_queued_add(sk, skb->truesize);
1274        sk_mem_charge(sk, skb->truesize);
1275}
1276
1277/* Initialize TSO segments for a packet. */
1278static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1279{
1280        if (skb->len <= mss_now) {
1281                /* Avoid the costly divide in the normal
1282                 * non-TSO case.
1283                 */
1284                tcp_skb_pcount_set(skb, 1);
1285                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286        } else {
1287                tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1288                TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1289        }
1290}
1291
1292/* Pcount in the middle of the write queue got changed, we need to do various
1293 * tweaks to fix counters
1294 */
1295static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1296{
1297        struct tcp_sock *tp = tcp_sk(sk);
1298
1299        tp->packets_out -= decr;
1300
1301        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1302                tp->sacked_out -= decr;
1303        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1304                tp->retrans_out -= decr;
1305        if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1306                tp->lost_out -= decr;
1307
1308        /* Reno case is special. Sigh... */
1309        if (tcp_is_reno(tp) && decr > 0)
1310                tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1311
1312        if (tp->lost_skb_hint &&
1313            before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1314            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1315                tp->lost_cnt_hint -= decr;
1316
1317        tcp_verify_left_out(tp);
1318}
1319
1320static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1321{
1322        return TCP_SKB_CB(skb)->txstamp_ack ||
1323                (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1324}
1325
1326static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1327{
1328        struct skb_shared_info *shinfo = skb_shinfo(skb);
1329
1330        if (unlikely(tcp_has_tx_tstamp(skb)) &&
1331            !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1332                struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1333                u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1334
1335                shinfo->tx_flags &= ~tsflags;
1336                shinfo2->tx_flags |= tsflags;
1337                swap(shinfo->tskey, shinfo2->tskey);
1338                TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1339                TCP_SKB_CB(skb)->txstamp_ack = 0;
1340        }
1341}
1342
1343static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1344{
1345        TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1346        TCP_SKB_CB(skb)->eor = 0;
1347}
1348
1349/* Insert buff after skb on the write or rtx queue of sk.  */
1350static void tcp_insert_write_queue_after(struct sk_buff *skb,
1351                                         struct sk_buff *buff,
1352                                         struct sock *sk,
1353                                         enum tcp_queue tcp_queue)
1354{
1355        if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1356                __skb_queue_after(&sk->sk_write_queue, skb, buff);
1357        else
1358                tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1359}
1360
1361/* Function to create two new TCP segments.  Shrinks the given segment
1362 * to the specified size and appends a new segment with the rest of the
1363 * packet to the list.  This won't be called frequently, I hope.
1364 * Remember, these are still headerless SKBs at this point.
1365 */
1366int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1367                 struct sk_buff *skb, u32 len,
1368                 unsigned int mss_now, gfp_t gfp)
1369{
1370        struct tcp_sock *tp = tcp_sk(sk);
1371        struct sk_buff *buff;
1372        int nsize, old_factor;
1373        long limit;
1374        int nlen;
1375        u8 flags;
1376
1377        if (WARN_ON(len > skb->len))
1378                return -EINVAL;
1379
1380        nsize = skb_headlen(skb) - len;
1381        if (nsize < 0)
1382                nsize = 0;
1383
1384        /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1385         * We need some allowance to not penalize applications setting small
1386         * SO_SNDBUF values.
1387         * Also allow first and last skb in retransmit queue to be split.
1388         */
1389        limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1390        if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1391                     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1392                     skb != tcp_rtx_queue_head(sk) &&
1393                     skb != tcp_rtx_queue_tail(sk))) {
1394                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1395                return -ENOMEM;
1396        }
1397
1398        if (skb_unclone(skb, gfp))
1399                return -ENOMEM;
1400
1401        /* Get a new skb... force flag on. */
1402        buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1403        if (!buff)
1404                return -ENOMEM; /* We'll just try again later. */
1405        skb_copy_decrypted(buff, skb);
1406
1407        sk_wmem_queued_add(sk, buff->truesize);
1408        sk_mem_charge(sk, buff->truesize);
1409        nlen = skb->len - len - nsize;
1410        buff->truesize += nlen;
1411        skb->truesize -= nlen;
1412
1413        /* Correct the sequence numbers. */
1414        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1415        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1416        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1417
1418        /* PSH and FIN should only be set in the second packet. */
1419        flags = TCP_SKB_CB(skb)->tcp_flags;
1420        TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1421        TCP_SKB_CB(buff)->tcp_flags = flags;
1422        TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1423        tcp_skb_fragment_eor(skb, buff);
1424
1425        skb_split(skb, buff, len);
1426
1427        buff->ip_summed = CHECKSUM_PARTIAL;
1428
1429        buff->tstamp = skb->tstamp;
1430        tcp_fragment_tstamp(skb, buff);
1431
1432        old_factor = tcp_skb_pcount(skb);
1433
1434        /* Fix up tso_factor for both original and new SKB.  */
1435        tcp_set_skb_tso_segs(skb, mss_now);
1436        tcp_set_skb_tso_segs(buff, mss_now);
1437
1438        /* Update delivered info for the new segment */
1439        TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1440
1441        /* If this packet has been sent out already, we must
1442         * adjust the various packet counters.
1443         */
1444        if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1445                int diff = old_factor - tcp_skb_pcount(skb) -
1446                        tcp_skb_pcount(buff);
1447
1448                if (diff)
1449                        tcp_adjust_pcount(sk, skb, diff);
1450        }
1451
1452        /* Link BUFF into the send queue. */
1453        __skb_header_release(buff);
1454        tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1455        if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1456                list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1457
1458        return 0;
1459}
1460
1461/* This is similar to __pskb_pull_tail(). The difference is that pulled
1462 * data is not copied, but immediately discarded.
1463 */
1464static int __pskb_trim_head(struct sk_buff *skb, int len)
1465{
1466        struct skb_shared_info *shinfo;
1467        int i, k, eat;
1468
1469        eat = min_t(int, len, skb_headlen(skb));
1470        if (eat) {
1471                __skb_pull(skb, eat);
1472                len -= eat;
1473                if (!len)
1474                        return 0;
1475        }
1476        eat = len;
1477        k = 0;
1478        shinfo = skb_shinfo(skb);
1479        for (i = 0; i < shinfo->nr_frags; i++) {
1480                int size = skb_frag_size(&shinfo->frags[i]);
1481
1482                if (size <= eat) {
1483                        skb_frag_unref(skb, i);
1484                        eat -= size;
1485                } else {
1486                        shinfo->frags[k] = shinfo->frags[i];
1487                        if (eat) {
1488                                skb_frag_off_add(&shinfo->frags[k], eat);
1489                                skb_frag_size_sub(&shinfo->frags[k], eat);
1490                                eat = 0;
1491                        }
1492                        k++;
1493                }
1494        }
1495        shinfo->nr_frags = k;
1496
1497        skb->data_len -= len;
1498        skb->len = skb->data_len;
1499        return len;
1500}
1501
1502/* Remove acked data from a packet in the transmit queue. */
1503int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1504{
1505        u32 delta_truesize;
1506
1507        if (skb_unclone(skb, GFP_ATOMIC))
1508                return -ENOMEM;
1509
1510        delta_truesize = __pskb_trim_head(skb, len);
1511
1512        TCP_SKB_CB(skb)->seq += len;
1513        skb->ip_summed = CHECKSUM_PARTIAL;
1514
1515        if (delta_truesize) {
1516                skb->truesize      -= delta_truesize;
1517                sk_wmem_queued_add(sk, -delta_truesize);
1518                sk_mem_uncharge(sk, delta_truesize);
1519                sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1520        }
1521
1522        /* Any change of skb->len requires recalculation of tso factor. */
1523        if (tcp_skb_pcount(skb) > 1)
1524                tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1525
1526        return 0;
1527}
1528
1529/* Calculate MSS not accounting any TCP options.  */
1530static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1531{
1532        const struct tcp_sock *tp = tcp_sk(sk);
1533        const struct inet_connection_sock *icsk = inet_csk(sk);
1534        int mss_now;
1535
1536        /* Calculate base mss without TCP options:
1537           It is MMS_S - sizeof(tcphdr) of rfc1122
1538         */
1539        mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1540
1541        /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1542        if (icsk->icsk_af_ops->net_frag_header_len) {
1543                const struct dst_entry *dst = __sk_dst_get(sk);
1544
1545                if (dst && dst_allfrag(dst))
1546                        mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1547        }
1548
1549        /* Clamp it (mss_clamp does not include tcp options) */
1550        if (mss_now > tp->rx_opt.mss_clamp)
1551                mss_now = tp->rx_opt.mss_clamp;
1552
1553        /* Now subtract optional transport overhead */
1554        mss_now -= icsk->icsk_ext_hdr_len;
1555
1556        /* Then reserve room for full set of TCP options and 8 bytes of data */
1557        mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1558        return mss_now;
1559}
1560
1561/* Calculate MSS. Not accounting for SACKs here.  */
1562int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1563{
1564        /* Subtract TCP options size, not including SACKs */
1565        return __tcp_mtu_to_mss(sk, pmtu) -
1566               (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1567}
1568
1569/* Inverse of above */
1570int tcp_mss_to_mtu(struct sock *sk, int mss)
1571{
1572        const struct tcp_sock *tp = tcp_sk(sk);
1573        const struct inet_connection_sock *icsk = inet_csk(sk);
1574        int mtu;
1575
1576        mtu = mss +
1577              tp->tcp_header_len +
1578              icsk->icsk_ext_hdr_len +
1579              icsk->icsk_af_ops->net_header_len;
1580
1581        /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1582        if (icsk->icsk_af_ops->net_frag_header_len) {
1583                const struct dst_entry *dst = __sk_dst_get(sk);
1584
1585                if (dst && dst_allfrag(dst))
1586                        mtu += icsk->icsk_af_ops->net_frag_header_len;
1587        }
1588        return mtu;
1589}
1590EXPORT_SYMBOL(tcp_mss_to_mtu);
1591
1592/* MTU probing init per socket */
1593void tcp_mtup_init(struct sock *sk)
1594{
1595        struct tcp_sock *tp = tcp_sk(sk);
1596        struct inet_connection_sock *icsk = inet_csk(sk);
1597        struct net *net = sock_net(sk);
1598
1599        icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1600        icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1601                               icsk->icsk_af_ops->net_header_len;
1602        icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1603        icsk->icsk_mtup.probe_size = 0;
1604        if (icsk->icsk_mtup.enabled)
1605                icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1606}
1607EXPORT_SYMBOL(tcp_mtup_init);
1608
1609/* This function synchronize snd mss to current pmtu/exthdr set.
1610
1611   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1612   for TCP options, but includes only bare TCP header.
1613
1614   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1615   It is minimum of user_mss and mss received with SYN.
1616   It also does not include TCP options.
1617
1618   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1619
1620   tp->mss_cache is current effective sending mss, including
1621   all tcp options except for SACKs. It is evaluated,
1622   taking into account current pmtu, but never exceeds
1623   tp->rx_opt.mss_clamp.
1624
1625   NOTE1. rfc1122 clearly states that advertised MSS
1626   DOES NOT include either tcp or ip options.
1627
1628   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1629   are READ ONLY outside this function.         --ANK (980731)
1630 */
1631unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1632{
1633        struct tcp_sock *tp = tcp_sk(sk);
1634        struct inet_connection_sock *icsk = inet_csk(sk);
1635        int mss_now;
1636
1637        if (icsk->icsk_mtup.search_high > pmtu)
1638                icsk->icsk_mtup.search_high = pmtu;
1639
1640        mss_now = tcp_mtu_to_mss(sk, pmtu);
1641        mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1642
1643        /* And store cached results */
1644        icsk->icsk_pmtu_cookie = pmtu;
1645        if (icsk->icsk_mtup.enabled)
1646                mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1647        tp->mss_cache = mss_now;
1648
1649        return mss_now;
1650}
1651EXPORT_SYMBOL(tcp_sync_mss);
1652
1653/* Compute the current effective MSS, taking SACKs and IP options,
1654 * and even PMTU discovery events into account.
1655 */
1656unsigned int tcp_current_mss(struct sock *sk)
1657{
1658        const struct tcp_sock *tp = tcp_sk(sk);
1659        const struct dst_entry *dst = __sk_dst_get(sk);
1660        u32 mss_now;
1661        unsigned int header_len;
1662        struct tcp_out_options opts;
1663        struct tcp_md5sig_key *md5;
1664
1665        mss_now = tp->mss_cache;
1666
1667        if (dst) {
1668                u32 mtu = dst_mtu(dst);
1669                if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1670                        mss_now = tcp_sync_mss(sk, mtu);
1671        }
1672
1673        header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1674                     sizeof(struct tcphdr);
1675        /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1676         * some common options. If this is an odd packet (because we have SACK
1677         * blocks etc) then our calculated header_len will be different, and
1678         * we have to adjust mss_now correspondingly */
1679        if (header_len != tp->tcp_header_len) {
1680                int delta = (int) header_len - tp->tcp_header_len;
1681                mss_now -= delta;
1682        }
1683
1684        return mss_now;
1685}
1686
1687/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1688 * As additional protections, we do not touch cwnd in retransmission phases,
1689 * and if application hit its sndbuf limit recently.
1690 */
1691static void tcp_cwnd_application_limited(struct sock *sk)
1692{
1693        struct tcp_sock *tp = tcp_sk(sk);
1694
1695        if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1696            sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1697                /* Limited by application or receiver window. */
1698                u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1699                u32 win_used = max(tp->snd_cwnd_used, init_win);
1700                if (win_used < tp->snd_cwnd) {
1701                        tp->snd_ssthresh = tcp_current_ssthresh(sk);
1702                        tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1703                }
1704                tp->snd_cwnd_used = 0;
1705        }
1706        tp->snd_cwnd_stamp = tcp_jiffies32;
1707}
1708
1709static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1710{
1711        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1712        struct tcp_sock *tp = tcp_sk(sk);
1713
1714        /* Track the maximum number of outstanding packets in each
1715         * window, and remember whether we were cwnd-limited then.
1716         */
1717        if (!before(tp->snd_una, tp->max_packets_seq) ||
1718            tp->packets_out > tp->max_packets_out) {
1719                tp->max_packets_out = tp->packets_out;
1720                tp->max_packets_seq = tp->snd_nxt;
1721                tp->is_cwnd_limited = is_cwnd_limited;
1722        }
1723
1724        if (tcp_is_cwnd_limited(sk)) {
1725                /* Network is feed fully. */
1726                tp->snd_cwnd_used = 0;
1727                tp->snd_cwnd_stamp = tcp_jiffies32;
1728        } else {
1729                /* Network starves. */
1730                if (tp->packets_out > tp->snd_cwnd_used)
1731                        tp->snd_cwnd_used = tp->packets_out;
1732
1733                if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1734                    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1735                    !ca_ops->cong_control)
1736                        tcp_cwnd_application_limited(sk);
1737
1738                /* The following conditions together indicate the starvation
1739                 * is caused by insufficient sender buffer:
1740                 * 1) just sent some data (see tcp_write_xmit)
1741                 * 2) not cwnd limited (this else condition)
1742                 * 3) no more data to send (tcp_write_queue_empty())
1743                 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1744                 */
1745                if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1746                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1747                    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1748                        tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1749        }
1750}
1751
1752/* Minshall's variant of the Nagle send check. */
1753static bool tcp_minshall_check(const struct tcp_sock *tp)
1754{
1755        return after(tp->snd_sml, tp->snd_una) &&
1756                !after(tp->snd_sml, tp->snd_nxt);
1757}
1758
1759/* Update snd_sml if this skb is under mss
1760 * Note that a TSO packet might end with a sub-mss segment
1761 * The test is really :
1762 * if ((skb->len % mss) != 0)
1763 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1764 * But we can avoid doing the divide again given we already have
1765 *  skb_pcount = skb->len / mss_now
1766 */
1767static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1768                                const struct sk_buff *skb)
1769{
1770        if (skb->len < tcp_skb_pcount(skb) * mss_now)
1771                tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1772}
1773
1774/* Return false, if packet can be sent now without violation Nagle's rules:
1775 * 1. It is full sized. (provided by caller in %partial bool)
1776 * 2. Or it contains FIN. (already checked by caller)
1777 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1778 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1779 *    With Minshall's modification: all sent small packets are ACKed.
1780 */
1781static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1782                            int nonagle)
1783{
1784        return partial &&
1785                ((nonagle & TCP_NAGLE_CORK) ||
1786                 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1787}
1788
1789/* Return how many segs we'd like on a TSO packet,
1790 * to send one TSO packet per ms
1791 */
1792static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1793                            int min_tso_segs)
1794{
1795        u32 bytes, segs;
1796
1797        bytes = min_t(unsigned long,
1798                      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1799                      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1800
1801        /* Goal is to send at least one packet per ms,
1802         * not one big TSO packet every 100 ms.
1803         * This preserves ACK clocking and is consistent
1804         * with tcp_tso_should_defer() heuristic.
1805         */
1806        segs = max_t(u32, bytes / mss_now, min_tso_segs);
1807
1808        return segs;
1809}
1810
1811/* Return the number of segments we want in the skb we are transmitting.
1812 * See if congestion control module wants to decide; otherwise, autosize.
1813 */
1814static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1815{
1816        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1817        u32 min_tso, tso_segs;
1818
1819        min_tso = ca_ops->min_tso_segs ?
1820                        ca_ops->min_tso_segs(sk) :
1821                        sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1822
1823        tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1824        return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1825}
1826
1827/* Returns the portion of skb which can be sent right away */
1828static unsigned int tcp_mss_split_point(const struct sock *sk,
1829                                        const struct sk_buff *skb,
1830                                        unsigned int mss_now,
1831                                        unsigned int max_segs,
1832                                        int nonagle)
1833{
1834        const struct tcp_sock *tp = tcp_sk(sk);
1835        u32 partial, needed, window, max_len;
1836
1837        window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1838        max_len = mss_now * max_segs;
1839
1840        if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1841                return max_len;
1842
1843        needed = min(skb->len, window);
1844
1845        if (max_len <= needed)
1846                return max_len;
1847
1848        partial = needed % mss_now;
1849        /* If last segment is not a full MSS, check if Nagle rules allow us
1850         * to include this last segment in this skb.
1851         * Otherwise, we'll split the skb at last MSS boundary
1852         */
1853        if (tcp_nagle_check(partial != 0, tp, nonagle))
1854                return needed - partial;
1855
1856        return needed;
1857}
1858
1859/* Can at least one segment of SKB be sent right now, according to the
1860 * congestion window rules?  If so, return how many segments are allowed.
1861 */
1862static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1863                                         const struct sk_buff *skb)
1864{
1865        u32 in_flight, cwnd, halfcwnd;
1866
1867        /* Don't be strict about the congestion window for the final FIN.  */
1868        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1869            tcp_skb_pcount(skb) == 1)
1870                return 1;
1871
1872        in_flight = tcp_packets_in_flight(tp);
1873        cwnd = tp->snd_cwnd;
1874        if (in_flight >= cwnd)
1875                return 0;
1876
1877        /* For better scheduling, ensure we have at least
1878         * 2 GSO packets in flight.
1879         */
1880        halfcwnd = max(cwnd >> 1, 1U);
1881        return min(halfcwnd, cwnd - in_flight);
1882}
1883
1884/* Initialize TSO state of a skb.
1885 * This must be invoked the first time we consider transmitting
1886 * SKB onto the wire.
1887 */
1888static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1889{
1890        int tso_segs = tcp_skb_pcount(skb);
1891
1892        if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1893                tcp_set_skb_tso_segs(skb, mss_now);
1894                tso_segs = tcp_skb_pcount(skb);
1895        }
1896        return tso_segs;
1897}
1898
1899
1900/* Return true if the Nagle test allows this packet to be
1901 * sent now.
1902 */
1903static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1904                                  unsigned int cur_mss, int nonagle)
1905{
1906        /* Nagle rule does not apply to frames, which sit in the middle of the
1907         * write_queue (they have no chances to get new data).
1908         *
1909         * This is implemented in the callers, where they modify the 'nonagle'
1910         * argument based upon the location of SKB in the send queue.
1911         */
1912        if (nonagle & TCP_NAGLE_PUSH)
1913                return true;
1914
1915        /* Don't use the nagle rule for urgent data (or for the final FIN). */
1916        if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1917                return true;
1918
1919        if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1920                return true;
1921
1922        return false;
1923}
1924
1925/* Does at least the first segment of SKB fit into the send window? */
1926static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1927                             const struct sk_buff *skb,
1928                             unsigned int cur_mss)
1929{
1930        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1931
1932        if (skb->len > cur_mss)
1933                end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1934
1935        return !after(end_seq, tcp_wnd_end(tp));
1936}
1937
1938/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1939 * which is put after SKB on the list.  It is very much like
1940 * tcp_fragment() except that it may make several kinds of assumptions
1941 * in order to speed up the splitting operation.  In particular, we
1942 * know that all the data is in scatter-gather pages, and that the
1943 * packet has never been sent out before (and thus is not cloned).
1944 */
1945static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1946                        unsigned int mss_now, gfp_t gfp)
1947{
1948        int nlen = skb->len - len;
1949        struct sk_buff *buff;
1950        u8 flags;
1951
1952        /* All of a TSO frame must be composed of paged data.  */
1953        if (skb->len != skb->data_len)
1954                return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1955                                    skb, len, mss_now, gfp);
1956
1957        buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1958        if (unlikely(!buff))
1959                return -ENOMEM;
1960        skb_copy_decrypted(buff, skb);
1961
1962        sk_wmem_queued_add(sk, buff->truesize);
1963        sk_mem_charge(sk, buff->truesize);
1964        buff->truesize += nlen;
1965        skb->truesize -= nlen;
1966
1967        /* Correct the sequence numbers. */
1968        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1969        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1970        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1971
1972        /* PSH and FIN should only be set in the second packet. */
1973        flags = TCP_SKB_CB(skb)->tcp_flags;
1974        TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1975        TCP_SKB_CB(buff)->tcp_flags = flags;
1976
1977        /* This packet was never sent out yet, so no SACK bits. */
1978        TCP_SKB_CB(buff)->sacked = 0;
1979
1980        tcp_skb_fragment_eor(skb, buff);
1981
1982        buff->ip_summed = CHECKSUM_PARTIAL;
1983        skb_split(skb, buff, len);
1984        tcp_fragment_tstamp(skb, buff);
1985
1986        /* Fix up tso_factor for both original and new SKB.  */
1987        tcp_set_skb_tso_segs(skb, mss_now);
1988        tcp_set_skb_tso_segs(buff, mss_now);
1989
1990        /* Link BUFF into the send queue. */
1991        __skb_header_release(buff);
1992        tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1993
1994        return 0;
1995}
1996
1997/* Try to defer sending, if possible, in order to minimize the amount
1998 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1999 *
2000 * This algorithm is from John Heffner.
2001 */
2002static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2003                                 bool *is_cwnd_limited,
2004                                 bool *is_rwnd_limited,
2005                                 u32 max_segs)
2006{
2007        const struct inet_connection_sock *icsk = inet_csk(sk);
2008        u32 send_win, cong_win, limit, in_flight;
2009        struct tcp_sock *tp = tcp_sk(sk);
2010        struct sk_buff *head;
2011        int win_divisor;
2012        s64 delta;
2013
2014        if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2015                goto send_now;
2016
2017        /* Avoid bursty behavior by allowing defer
2018         * only if the last write was recent (1 ms).
2019         * Note that tp->tcp_wstamp_ns can be in the future if we have
2020         * packets waiting in a qdisc or device for EDT delivery.
2021         */
2022        delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2023        if (delta > 0)
2024                goto send_now;
2025
2026        in_flight = tcp_packets_in_flight(tp);
2027
2028        BUG_ON(tcp_skb_pcount(skb) <= 1);
2029        BUG_ON(tp->snd_cwnd <= in_flight);
2030
2031        send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2032
2033        /* From in_flight test above, we know that cwnd > in_flight.  */
2034        cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2035
2036        limit = min(send_win, cong_win);
2037
2038        /* If a full-sized TSO skb can be sent, do it. */
2039        if (limit >= max_segs * tp->mss_cache)
2040                goto send_now;
2041
2042        /* Middle in queue won't get any more data, full sendable already? */
2043        if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2044                goto send_now;
2045
2046        win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2047        if (win_divisor) {
2048                u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2049
2050                /* If at least some fraction of a window is available,
2051                 * just use it.
2052                 */
2053                chunk /= win_divisor;
2054                if (limit >= chunk)
2055                        goto send_now;
2056        } else {
2057                /* Different approach, try not to defer past a single
2058                 * ACK.  Receiver should ACK every other full sized
2059                 * frame, so if we have space for more than 3 frames
2060                 * then send now.
2061                 */
2062                if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2063                        goto send_now;
2064        }
2065
2066        /* TODO : use tsorted_sent_queue ? */
2067        head = tcp_rtx_queue_head(sk);
2068        if (!head)
2069                goto send_now;
2070        delta = tp->tcp_clock_cache - head->tstamp;
2071        /* If next ACK is likely to come too late (half srtt), do not defer */
2072        if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2073                goto send_now;
2074
2075        /* Ok, it looks like it is advisable to defer.
2076         * Three cases are tracked :
2077         * 1) We are cwnd-limited
2078         * 2) We are rwnd-limited
2079         * 3) We are application limited.
2080         */
2081        if (cong_win < send_win) {
2082                if (cong_win <= skb->len) {
2083                        *is_cwnd_limited = true;
2084                        return true;
2085                }
2086        } else {
2087                if (send_win <= skb->len) {
2088                        *is_rwnd_limited = true;
2089                        return true;
2090                }
2091        }
2092
2093        /* If this packet won't get more data, do not wait. */
2094        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2095            TCP_SKB_CB(skb)->eor)
2096                goto send_now;
2097
2098        return true;
2099
2100send_now:
2101        return false;
2102}
2103
2104static inline void tcp_mtu_check_reprobe(struct sock *sk)
2105{
2106        struct inet_connection_sock *icsk = inet_csk(sk);
2107        struct tcp_sock *tp = tcp_sk(sk);
2108        struct net *net = sock_net(sk);
2109        u32 interval;
2110        s32 delta;
2111
2112        interval = net->ipv4.sysctl_tcp_probe_interval;
2113        delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2114        if (unlikely(delta >= interval * HZ)) {
2115                int mss = tcp_current_mss(sk);
2116
2117                /* Update current search range */
2118                icsk->icsk_mtup.probe_size = 0;
2119                icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2120                        sizeof(struct tcphdr) +
2121                        icsk->icsk_af_ops->net_header_len;
2122                icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2123
2124                /* Update probe time stamp */
2125                icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2126        }
2127}
2128
2129static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2130{
2131        struct sk_buff *skb, *next;
2132
2133        skb = tcp_send_head(sk);
2134        tcp_for_write_queue_from_safe(skb, next, sk) {
2135                if (len <= skb->len)
2136                        break;
2137
2138                if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2139                        return false;
2140
2141                len -= skb->len;
2142        }
2143
2144        return true;
2145}
2146
2147/* Create a new MTU probe if we are ready.
2148 * MTU probe is regularly attempting to increase the path MTU by
2149 * deliberately sending larger packets.  This discovers routing
2150 * changes resulting in larger path MTUs.
2151 *
2152 * Returns 0 if we should wait to probe (no cwnd available),
2153 *         1 if a probe was sent,
2154 *         -1 otherwise
2155 */
2156static int tcp_mtu_probe(struct sock *sk)
2157{
2158        struct inet_connection_sock *icsk = inet_csk(sk);
2159        struct tcp_sock *tp = tcp_sk(sk);
2160        struct sk_buff *skb, *nskb, *next;
2161        struct net *net = sock_net(sk);
2162        int probe_size;
2163        int size_needed;
2164        int copy, len;
2165        int mss_now;
2166        int interval;
2167
2168        /* Not currently probing/verifying,
2169         * not in recovery,
2170         * have enough cwnd, and
2171         * not SACKing (the variable headers throw things off)
2172         */
2173        if (likely(!icsk->icsk_mtup.enabled ||
2174                   icsk->icsk_mtup.probe_size ||
2175                   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2176                   tp->snd_cwnd < 11 ||
2177                   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2178                return -1;
2179
2180        /* Use binary search for probe_size between tcp_mss_base,
2181         * and current mss_clamp. if (search_high - search_low)
2182         * smaller than a threshold, backoff from probing.
2183         */
2184        mss_now = tcp_current_mss(sk);
2185        probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2186                                    icsk->icsk_mtup.search_low) >> 1);
2187        size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2188        interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2189        /* When misfortune happens, we are reprobing actively,
2190         * and then reprobe timer has expired. We stick with current
2191         * probing process by not resetting search range to its orignal.
2192         */
2193        if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2194                interval < net->ipv4.sysctl_tcp_probe_threshold) {
2195                /* Check whether enough time has elaplased for
2196                 * another round of probing.
2197                 */
2198                tcp_mtu_check_reprobe(sk);
2199                return -1;
2200        }
2201
2202        /* Have enough data in the send queue to probe? */
2203        if (tp->write_seq - tp->snd_nxt < size_needed)
2204                return -1;
2205
2206        if (tp->snd_wnd < size_needed)
2207                return -1;
2208        if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2209                return 0;
2210
2211        /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2212        if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2213                if (!tcp_packets_in_flight(tp))
2214                        return -1;
2215                else
2216                        return 0;
2217        }
2218
2219        if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2220                return -1;
2221
2222        /* We're allowed to probe.  Build it now. */
2223        nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2224        if (!nskb)
2225                return -1;
2226        sk_wmem_queued_add(sk, nskb->truesize);
2227        sk_mem_charge(sk, nskb->truesize);
2228
2229        skb = tcp_send_head(sk);
2230        skb_copy_decrypted(nskb, skb);
2231
2232        TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2233        TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2234        TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2235        TCP_SKB_CB(nskb)->sacked = 0;
2236        nskb->csum = 0;
2237        nskb->ip_summed = CHECKSUM_PARTIAL;
2238
2239        tcp_insert_write_queue_before(nskb, skb, sk);
2240        tcp_highest_sack_replace(sk, skb, nskb);
2241
2242        len = 0;
2243        tcp_for_write_queue_from_safe(skb, next, sk) {
2244                copy = min_t(int, skb->len, probe_size - len);
2245                skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2246
2247                if (skb->len <= copy) {
2248                        /* We've eaten all the data from this skb.
2249                         * Throw it away. */
2250                        TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2251                        /* If this is the last SKB we copy and eor is set
2252                         * we need to propagate it to the new skb.
2253                         */
2254                        TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2255                        tcp_skb_collapse_tstamp(nskb, skb);
2256                        tcp_unlink_write_queue(skb, sk);
2257                        sk_wmem_free_skb(sk, skb);
2258                } else {
2259                        TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2260                                                   ~(TCPHDR_FIN|TCPHDR_PSH);
2261                        if (!skb_shinfo(skb)->nr_frags) {
2262                                skb_pull(skb, copy);
2263                        } else {
2264                                __pskb_trim_head(skb, copy);
2265                                tcp_set_skb_tso_segs(skb, mss_now);
2266                        }
2267                        TCP_SKB_CB(skb)->seq += copy;
2268                }
2269
2270                len += copy;
2271
2272                if (len >= probe_size)
2273                        break;
2274        }
2275        tcp_init_tso_segs(nskb, nskb->len);
2276
2277        /* We're ready to send.  If this fails, the probe will
2278         * be resegmented into mss-sized pieces by tcp_write_xmit().
2279         */
2280        if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2281                /* Decrement cwnd here because we are sending
2282                 * effectively two packets. */
2283                tp->snd_cwnd--;
2284                tcp_event_new_data_sent(sk, nskb);
2285
2286                icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2287                tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2288                tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2289
2290                return 1;
2291        }
2292
2293        return -1;
2294}
2295
2296static bool tcp_pacing_check(struct sock *sk)
2297{
2298        struct tcp_sock *tp = tcp_sk(sk);
2299
2300        if (!tcp_needs_internal_pacing(sk))
2301                return false;
2302
2303        if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2304                return false;
2305
2306        if (!hrtimer_is_queued(&tp->pacing_timer)) {
2307                hrtimer_start(&tp->pacing_timer,
2308                              ns_to_ktime(tp->tcp_wstamp_ns),
2309                              HRTIMER_MODE_ABS_PINNED_SOFT);
2310                sock_hold(sk);
2311        }
2312        return true;
2313}
2314
2315/* TCP Small Queues :
2316 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2317 * (These limits are doubled for retransmits)
2318 * This allows for :
2319 *  - better RTT estimation and ACK scheduling
2320 *  - faster recovery
2321 *  - high rates
2322 * Alas, some drivers / subsystems require a fair amount
2323 * of queued bytes to ensure line rate.
2324 * One example is wifi aggregation (802.11 AMPDU)
2325 */
2326static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2327                                  unsigned int factor)
2328{
2329        unsigned long limit;
2330
2331        limit = max_t(unsigned long,
2332                      2 * skb->truesize,
2333                      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2334        if (sk->sk_pacing_status == SK_PACING_NONE)
2335                limit = min_t(unsigned long, limit,
2336                              sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2337        limit <<= factor;
2338
2339        if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2340            tcp_sk(sk)->tcp_tx_delay) {
2341                u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2342
2343                /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2344                 * approximate our needs assuming an ~100% skb->truesize overhead.
2345                 * USEC_PER_SEC is approximated by 2^20.
2346                 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2347                 */
2348                extra_bytes >>= (20 - 1);
2349                limit += extra_bytes;
2350        }
2351        if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2352                /* Always send skb if rtx queue is empty.
2353                 * No need to wait for TX completion to call us back,
2354                 * after softirq/tasklet schedule.
2355                 * This helps when TX completions are delayed too much.
2356                 */
2357                if (tcp_rtx_queue_empty(sk))
2358                        return false;
2359
2360                set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2361                /* It is possible TX completion already happened
2362                 * before we set TSQ_THROTTLED, so we must
2363                 * test again the condition.
2364                 */
2365                smp_mb__after_atomic();
2366                if (refcount_read(&sk->sk_wmem_alloc) > limit)
2367                        return true;
2368        }
2369        return false;
2370}
2371
2372static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2373{
2374        const u32 now = tcp_jiffies32;
2375        enum tcp_chrono old = tp->chrono_type;
2376
2377        if (old > TCP_CHRONO_UNSPEC)
2378                tp->chrono_stat[old - 1] += now - tp->chrono_start;
2379        tp->chrono_start = now;
2380        tp->chrono_type = new;
2381}
2382
2383void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2384{
2385        struct tcp_sock *tp = tcp_sk(sk);
2386
2387        /* If there are multiple conditions worthy of tracking in a
2388         * chronograph then the highest priority enum takes precedence
2389         * over the other conditions. So that if something "more interesting"
2390         * starts happening, stop the previous chrono and start a new one.
2391         */
2392        if (type > tp->chrono_type)
2393                tcp_chrono_set(tp, type);
2394}
2395
2396void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2397{
2398        struct tcp_sock *tp = tcp_sk(sk);
2399
2400
2401        /* There are multiple conditions worthy of tracking in a
2402         * chronograph, so that the highest priority enum takes
2403         * precedence over the other conditions (see tcp_chrono_start).
2404         * If a condition stops, we only stop chrono tracking if
2405         * it's the "most interesting" or current chrono we are
2406         * tracking and starts busy chrono if we have pending data.
2407         */
2408        if (tcp_rtx_and_write_queues_empty(sk))
2409                tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2410        else if (type == tp->chrono_type)
2411                tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2412}
2413
2414/* This routine writes packets to the network.  It advances the
2415 * send_head.  This happens as incoming acks open up the remote
2416 * window for us.
2417 *
2418 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2419 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2420 * account rare use of URG, this is not a big flaw.
2421 *
2422 * Send at most one packet when push_one > 0. Temporarily ignore
2423 * cwnd limit to force at most one packet out when push_one == 2.
2424
2425 * Returns true, if no segments are in flight and we have queued segments,
2426 * but cannot send anything now because of SWS or another problem.
2427 */
2428static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2429                           int push_one, gfp_t gfp)
2430{
2431        struct tcp_sock *tp = tcp_sk(sk);
2432        struct sk_buff *skb;
2433        unsigned int tso_segs, sent_pkts;
2434        int cwnd_quota;
2435        int result;
2436        bool is_cwnd_limited = false, is_rwnd_limited = false;
2437        u32 max_segs;
2438
2439        sent_pkts = 0;
2440
2441        tcp_mstamp_refresh(tp);
2442        if (!push_one) {
2443                /* Do MTU probing. */
2444                result = tcp_mtu_probe(sk);
2445                if (!result) {
2446                        return false;
2447                } else if (result > 0) {
2448                        sent_pkts = 1;
2449                }
2450        }
2451
2452        max_segs = tcp_tso_segs(sk, mss_now);
2453        while ((skb = tcp_send_head(sk))) {
2454                unsigned int limit;
2455
2456                if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2457                        /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2458                        skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2459                        list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2460                        tcp_init_tso_segs(skb, mss_now);
2461                        goto repair; /* Skip network transmission */
2462                }
2463
2464                if (tcp_pacing_check(sk))
2465                        break;
2466
2467                tso_segs = tcp_init_tso_segs(skb, mss_now);
2468                BUG_ON(!tso_segs);
2469
2470                cwnd_quota = tcp_cwnd_test(tp, skb);
2471                if (!cwnd_quota) {
2472                        if (push_one == 2)
2473                                /* Force out a loss probe pkt. */
2474                                cwnd_quota = 1;
2475                        else
2476                                break;
2477                }
2478
2479                if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2480                        is_rwnd_limited = true;
2481                        break;
2482                }
2483
2484                if (tso_segs == 1) {
2485                        if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2486                                                     (tcp_skb_is_last(sk, skb) ?
2487                                                      nonagle : TCP_NAGLE_PUSH))))
2488                                break;
2489                } else {
2490                        if (!push_one &&
2491                            tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2492                                                 &is_rwnd_limited, max_segs))
2493                                break;
2494                }
2495
2496                limit = mss_now;
2497                if (tso_segs > 1 && !tcp_urg_mode(tp))
2498                        limit = tcp_mss_split_point(sk, skb, mss_now,
2499                                                    min_t(unsigned int,
2500                                                          cwnd_quota,
2501                                                          max_segs),
2502                                                    nonagle);
2503
2504                if (skb->len > limit &&
2505                    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2506                        break;
2507
2508                if (tcp_small_queue_check(sk, skb, 0))
2509                        break;
2510
2511                /* Argh, we hit an empty skb(), presumably a thread
2512                 * is sleeping in sendmsg()/sk_stream_wait_memory().
2513                 * We do not want to send a pure-ack packet and have
2514                 * a strange looking rtx queue with empty packet(s).
2515                 */
2516                if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2517                        break;
2518
2519                if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2520                        break;
2521
2522repair:
2523                /* Advance the send_head.  This one is sent out.
2524                 * This call will increment packets_out.
2525                 */
2526                tcp_event_new_data_sent(sk, skb);
2527
2528                tcp_minshall_update(tp, mss_now, skb);
2529                sent_pkts += tcp_skb_pcount(skb);
2530
2531                if (push_one)
2532                        break;
2533        }
2534
2535        if (is_rwnd_limited)
2536                tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2537        else
2538                tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2539
2540        if (likely(sent_pkts)) {
2541                if (tcp_in_cwnd_reduction(sk))
2542                        tp->prr_out += sent_pkts;
2543
2544                /* Send one loss probe per tail loss episode. */
2545                if (push_one != 2)
2546                        tcp_schedule_loss_probe(sk, false);
2547                is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2548                tcp_cwnd_validate(sk, is_cwnd_limited);
2549                return false;
2550        }
2551        return !tp->packets_out && !tcp_write_queue_empty(sk);
2552}
2553
2554bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2555{
2556        struct inet_connection_sock *icsk = inet_csk(sk);
2557        struct tcp_sock *tp = tcp_sk(sk);
2558        u32 timeout, rto_delta_us;
2559        int early_retrans;
2560
2561        /* Don't do any loss probe on a Fast Open connection before 3WHS
2562         * finishes.
2563         */
2564        if (rcu_access_pointer(tp->fastopen_rsk))
2565                return false;
2566
2567        early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2568        /* Schedule a loss probe in 2*RTT for SACK capable connections
2569         * not in loss recovery, that are either limited by cwnd or application.
2570         */
2571        if ((early_retrans != 3 && early_retrans != 4) ||
2572            !tp->packets_out || !tcp_is_sack(tp) ||
2573            (icsk->icsk_ca_state != TCP_CA_Open &&
2574             icsk->icsk_ca_state != TCP_CA_CWR))
2575                return false;
2576
2577        /* Probe timeout is 2*rtt. Add minimum RTO to account
2578         * for delayed ack when there's one outstanding packet. If no RTT
2579         * sample is available then probe after TCP_TIMEOUT_INIT.
2580         */
2581        if (tp->srtt_us) {
2582                timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2583                if (tp->packets_out == 1)
2584                        timeout += TCP_RTO_MIN;
2585                else
2586                        timeout += TCP_TIMEOUT_MIN;
2587        } else {
2588                timeout = TCP_TIMEOUT_INIT;
2589        }
2590
2591        /* If the RTO formula yields an earlier time, then use that time. */
2592        rto_delta_us = advancing_rto ?
2593                        jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2594                        tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2595        if (rto_delta_us > 0)
2596                timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2597
2598        tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2599        return true;
2600}
2601
2602/* Thanks to skb fast clones, we can detect if a prior transmit of
2603 * a packet is still in a qdisc or driver queue.
2604 * In this case, there is very little point doing a retransmit !
2605 */
2606static bool skb_still_in_host_queue(const struct sock *sk,
2607                                    const struct sk_buff *skb)
2608{
2609        if (unlikely(skb_fclone_busy(sk, skb))) {
2610                NET_INC_STATS(sock_net(sk),
2611                              LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2612                return true;
2613        }
2614        return false;
2615}
2616
2617/* When probe timeout (PTO) fires, try send a new segment if possible, else
2618 * retransmit the last segment.
2619 */
2620void tcp_send_loss_probe(struct sock *sk)
2621{
2622        struct tcp_sock *tp = tcp_sk(sk);
2623        struct sk_buff *skb;
2624        int pcount;
2625        int mss = tcp_current_mss(sk);
2626
2627        /* At most one outstanding TLP */
2628        if (tp->tlp_high_seq)
2629                goto rearm_timer;
2630
2631        tp->tlp_retrans = 0;
2632        skb = tcp_send_head(sk);
2633        if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2634                pcount = tp->packets_out;
2635                tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2636                if (tp->packets_out > pcount)
2637                        goto probe_sent;
2638                goto rearm_timer;
2639        }
2640        skb = skb_rb_last(&sk->tcp_rtx_queue);
2641        if (unlikely(!skb)) {
2642                WARN_ONCE(tp->packets_out,
2643                          "invalid inflight: %u state %u cwnd %u mss %d\n",
2644                          tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2645                inet_csk(sk)->icsk_pending = 0;
2646                return;
2647        }
2648
2649        if (skb_still_in_host_queue(sk, skb))
2650                goto rearm_timer;
2651
2652        pcount = tcp_skb_pcount(skb);
2653        if (WARN_ON(!pcount))
2654                goto rearm_timer;
2655
2656        if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2657                if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2658                                          (pcount - 1) * mss, mss,
2659                                          GFP_ATOMIC)))
2660                        goto rearm_timer;
2661                skb = skb_rb_next(skb);
2662        }
2663
2664        if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2665                goto rearm_timer;
2666
2667        if (__tcp_retransmit_skb(sk, skb, 1))
2668                goto rearm_timer;
2669
2670        tp->tlp_retrans = 1;
2671
2672probe_sent:
2673        /* Record snd_nxt for loss detection. */
2674        tp->tlp_high_seq = tp->snd_nxt;
2675
2676        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2677        /* Reset s.t. tcp_rearm_rto will restart timer from now */
2678        inet_csk(sk)->icsk_pending = 0;
2679rearm_timer:
2680        tcp_rearm_rto(sk);
2681}
2682
2683/* Push out any pending frames which were held back due to
2684 * TCP_CORK or attempt at coalescing tiny packets.
2685 * The socket must be locked by the caller.
2686 */
2687void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2688                               int nonagle)
2689{
2690        /* If we are closed, the bytes will have to remain here.
2691         * In time closedown will finish, we empty the write queue and
2692         * all will be happy.
2693         */
2694        if (unlikely(sk->sk_state == TCP_CLOSE))
2695                return;
2696
2697        if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2698                           sk_gfp_mask(sk, GFP_ATOMIC)))
2699                tcp_check_probe_timer(sk);
2700}
2701
2702/* Send _single_ skb sitting at the send head. This function requires
2703 * true push pending frames to setup probe timer etc.
2704 */
2705void tcp_push_one(struct sock *sk, unsigned int mss_now)
2706{
2707        struct sk_buff *skb = tcp_send_head(sk);
2708
2709        BUG_ON(!skb || skb->len < mss_now);
2710
2711        tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2712}
2713
2714/* This function returns the amount that we can raise the
2715 * usable window based on the following constraints
2716 *
2717 * 1. The window can never be shrunk once it is offered (RFC 793)
2718 * 2. We limit memory per socket
2719 *
2720 * RFC 1122:
2721 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2722 *  RECV.NEXT + RCV.WIN fixed until:
2723 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2724 *
2725 * i.e. don't raise the right edge of the window until you can raise
2726 * it at least MSS bytes.
2727 *
2728 * Unfortunately, the recommended algorithm breaks header prediction,
2729 * since header prediction assumes th->window stays fixed.
2730 *
2731 * Strictly speaking, keeping th->window fixed violates the receiver
2732 * side SWS prevention criteria. The problem is that under this rule
2733 * a stream of single byte packets will cause the right side of the
2734 * window to always advance by a single byte.
2735 *
2736 * Of course, if the sender implements sender side SWS prevention
2737 * then this will not be a problem.
2738 *
2739 * BSD seems to make the following compromise:
2740 *
2741 *      If the free space is less than the 1/4 of the maximum
2742 *      space available and the free space is less than 1/2 mss,
2743 *      then set the window to 0.
2744 *      [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2745 *      Otherwise, just prevent the window from shrinking
2746 *      and from being larger than the largest representable value.
2747 *
2748 * This prevents incremental opening of the window in the regime
2749 * where TCP is limited by the speed of the reader side taking
2750 * data out of the TCP receive queue. It does nothing about
2751 * those cases where the window is constrained on the sender side
2752 * because the pipeline is full.
2753 *
2754 * BSD also seems to "accidentally" limit itself to windows that are a
2755 * multiple of MSS, at least until the free space gets quite small.
2756 * This would appear to be a side effect of the mbuf implementation.
2757 * Combining these two algorithms results in the observed behavior
2758 * of having a fixed window size at almost all times.
2759 *
2760 * Below we obtain similar behavior by forcing the offered window to
2761 * a multiple of the mss when it is feasible to do so.
2762 *
2763 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2764 * Regular options like TIMESTAMP are taken into account.
2765 */
2766u32 __tcp_select_window(struct sock *sk)
2767{
2768        struct inet_connection_sock *icsk = inet_csk(sk);
2769        struct tcp_sock *tp = tcp_sk(sk);
2770        /* MSS for the peer's data.  Previous versions used mss_clamp
2771         * here.  I don't know if the value based on our guesses
2772         * of peer's MSS is better for the performance.  It's more correct
2773         * but may be worse for the performance because of rcv_mss
2774         * fluctuations.  --SAW  1998/11/1
2775         */
2776        int mss = icsk->icsk_ack.rcv_mss;
2777        int free_space = tcp_space(sk);
2778        int allowed_space = tcp_full_space(sk);
2779        int full_space, window;
2780
2781        if (sk_is_mptcp(sk))
2782                mptcp_space(sk, &free_space, &allowed_space);
2783
2784        full_space = min_t(int, tp->window_clamp, allowed_space);
2785
2786        if (unlikely(mss > full_space)) {
2787                mss = full_space;
2788                if (mss <= 0)
2789                        return 0;
2790        }
2791        if (free_space < (full_space >> 1)) {
2792                icsk->icsk_ack.quick = 0;
2793
2794                if (tcp_under_memory_pressure(sk))
2795                        tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2796                                               4U * tp->advmss);
2797
2798                /* free_space might become our new window, make sure we don't
2799                 * increase it due to wscale.
2800                 */
2801                free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2802
2803                /* if free space is less than mss estimate, or is below 1/16th
2804                 * of the maximum allowed, try to move to zero-window, else
2805                 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2806                 * new incoming data is dropped due to memory limits.
2807                 * With large window, mss test triggers way too late in order
2808                 * to announce zero window in time before rmem limit kicks in.
2809                 */
2810                if (free_space < (allowed_space >> 4) || free_space < mss)
2811                        return 0;
2812        }
2813
2814        if (free_space > tp->rcv_ssthresh)
2815                free_space = tp->rcv_ssthresh;
2816
2817        /* Don't do rounding if we are using window scaling, since the
2818         * scaled window will not line up with the MSS boundary anyway.
2819         */
2820        if (tp->rx_opt.rcv_wscale) {
2821                window = free_space;
2822
2823                /* Advertise enough space so that it won't get scaled away.
2824                 * Import case: prevent zero window announcement if
2825                 * 1<<rcv_wscale > mss.
2826                 */
2827                window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2828        } else {
2829                window = tp->rcv_wnd;
2830                /* Get the largest window that is a nice multiple of mss.
2831                 * Window clamp already applied above.
2832                 * If our current window offering is within 1 mss of the
2833                 * free space we just keep it. This prevents the divide
2834                 * and multiply from happening most of the time.
2835                 * We also don't do any window rounding when the free space
2836                 * is too small.
2837                 */
2838                if (window <= free_space - mss || window > free_space)
2839                        window = rounddown(free_space, mss);
2840                else if (mss == full_space &&
2841                         free_space > window + (full_space >> 1))
2842                        window = free_space;
2843        }
2844
2845        return window;
2846}
2847
2848void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2849                             const struct sk_buff *next_skb)
2850{
2851        if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2852                const struct skb_shared_info *next_shinfo =
2853                        skb_shinfo(next_skb);
2854                struct skb_shared_info *shinfo = skb_shinfo(skb);
2855
2856                shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2857                shinfo->tskey = next_shinfo->tskey;
2858                TCP_SKB_CB(skb)->txstamp_ack |=
2859                        TCP_SKB_CB(next_skb)->txstamp_ack;
2860        }
2861}
2862
2863/* Collapses two adjacent SKB's during retransmission. */
2864static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2865{
2866        struct tcp_sock *tp = tcp_sk(sk);
2867        struct sk_buff *next_skb = skb_rb_next(skb);
2868        int next_skb_size;
2869
2870        next_skb_size = next_skb->len;
2871
2872        BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2873
2874        if (next_skb_size) {
2875                if (next_skb_size <= skb_availroom(skb))
2876                        skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2877                                      next_skb_size);
2878                else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2879                        return false;
2880        }
2881        tcp_highest_sack_replace(sk, next_skb, skb);
2882
2883        /* Update sequence range on original skb. */
2884        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2885
2886        /* Merge over control information. This moves PSH/FIN etc. over */
2887        TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2888
2889        /* All done, get rid of second SKB and account for it so
2890         * packet counting does not break.
2891         */
2892        TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2893        TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2894
2895        /* changed transmit queue under us so clear hints */
2896        tcp_clear_retrans_hints_partial(tp);
2897        if (next_skb == tp->retransmit_skb_hint)
2898                tp->retransmit_skb_hint = skb;
2899
2900        tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2901
2902        tcp_skb_collapse_tstamp(skb, next_skb);
2903
2904        tcp_rtx_queue_unlink_and_free(next_skb, sk);
2905        return true;
2906}
2907
2908/* Check if coalescing SKBs is legal. */
2909static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2910{
2911        if (tcp_skb_pcount(skb) > 1)
2912                return false;
2913        if (skb_cloned(skb))
2914                return false;
2915        /* Some heuristics for collapsing over SACK'd could be invented */
2916        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2917                return false;
2918
2919        return true;
2920}
2921
2922/* Collapse packets in the retransmit queue to make to create
2923 * less packets on the wire. This is only done on retransmission.
2924 */
2925static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2926                                     int space)
2927{
2928        struct tcp_sock *tp = tcp_sk(sk);
2929        struct sk_buff *skb = to, *tmp;
2930        bool first = true;
2931
2932        if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2933                return;
2934        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2935                return;
2936
2937        skb_rbtree_walk_from_safe(skb, tmp) {
2938                if (!tcp_can_collapse(sk, skb))
2939                        break;
2940
2941                if (!tcp_skb_can_collapse(to, skb))
2942                        break;
2943
2944                space -= skb->len;
2945
2946                if (first) {
2947                        first = false;
2948                        continue;
2949                }
2950
2951                if (space < 0)
2952                        break;
2953
2954                if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2955                        break;
2956
2957                if (!tcp_collapse_retrans(sk, to))
2958                        break;
2959        }
2960}
2961
2962/* This retransmits one SKB.  Policy decisions and retransmit queue
2963 * state updates are done by the caller.  Returns non-zero if an
2964 * error occurred which prevented the send.
2965 */
2966int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2967{
2968        struct inet_connection_sock *icsk = inet_csk(sk);
2969        struct tcp_sock *tp = tcp_sk(sk);
2970        unsigned int cur_mss;
2971        int diff, len, err;
2972
2973
2974        /* Inconclusive MTU probe */
2975        if (icsk->icsk_mtup.probe_size)
2976                icsk->icsk_mtup.probe_size = 0;
2977
2978        /* Do not sent more than we queued. 1/4 is reserved for possible
2979         * copying overhead: fragmentation, tunneling, mangling etc.
2980         */
2981        if (refcount_read(&sk->sk_wmem_alloc) >
2982            min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2983                  sk->sk_sndbuf))
2984                return -EAGAIN;
2985
2986        if (skb_still_in_host_queue(sk, skb))
2987                return -EBUSY;
2988
2989        if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2990                if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2991                        WARN_ON_ONCE(1);
2992                        return -EINVAL;
2993                }
2994                if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2995                        return -ENOMEM;
2996        }
2997
2998        if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2999                return -EHOSTUNREACH; /* Routing failure or similar. */
3000
3001        cur_mss = tcp_current_mss(sk);
3002
3003        /* If receiver has shrunk his window, and skb is out of
3004         * new window, do not retransmit it. The exception is the
3005         * case, when window is shrunk to zero. In this case
3006         * our retransmit serves as a zero window probe.
3007         */
3008        if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3009            TCP_SKB_CB(skb)->seq != tp->snd_una)
3010                return -EAGAIN;
3011
3012        len = cur_mss * segs;
3013        if (skb->len > len) {
3014                if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3015                                 cur_mss, GFP_ATOMIC))
3016                        return -ENOMEM; /* We'll try again later. */
3017        } else {
3018                if (skb_unclone(skb, GFP_ATOMIC))
3019                        return -ENOMEM;
3020
3021                diff = tcp_skb_pcount(skb);
3022                tcp_set_skb_tso_segs(skb, cur_mss);
3023                diff -= tcp_skb_pcount(skb);
3024                if (diff)
3025                        tcp_adjust_pcount(sk, skb, diff);
3026                if (skb->len < cur_mss)
3027                        tcp_retrans_try_collapse(sk, skb, cur_mss);
3028        }
3029
3030        /* RFC3168, section 6.1.1.1. ECN fallback */
3031        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3032                tcp_ecn_clear_syn(sk, skb);
3033
3034        /* Update global and local TCP statistics. */
3035        segs = tcp_skb_pcount(skb);
3036        TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3037        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3038                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3039        tp->total_retrans += segs;
3040        tp->bytes_retrans += skb->len;
3041
3042        /* make sure skb->data is aligned on arches that require it
3043         * and check if ack-trimming & collapsing extended the headroom
3044         * beyond what csum_start can cover.
3045         */
3046        if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3047                     skb_headroom(skb) >= 0xFFFF)) {
3048                struct sk_buff *nskb;
3049
3050                tcp_skb_tsorted_save(skb) {
3051                        nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3052                        if (nskb) {
3053                                nskb->dev = NULL;
3054                                err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3055                        } else {
3056                                err = -ENOBUFS;
3057                        }
3058                } tcp_skb_tsorted_restore(skb);
3059
3060                if (!err) {
3061                        tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3062                        tcp_rate_skb_sent(sk, skb);
3063                }
3064        } else {
3065                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3066        }
3067
3068        /* To avoid taking spuriously low RTT samples based on a timestamp
3069         * for a transmit that never happened, always mark EVER_RETRANS
3070         */
3071        TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3072
3073        if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3074                tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3075                                  TCP_SKB_CB(skb)->seq, segs, err);
3076
3077        if (likely(!err)) {
3078                trace_tcp_retransmit_skb(sk, skb);
3079        } else if (err != -EBUSY) {
3080                NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3081        }
3082        return err;
3083}
3084
3085int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3086{
3087        struct tcp_sock *tp = tcp_sk(sk);
3088        int err = __tcp_retransmit_skb(sk, skb, segs);
3089
3090        if (err == 0) {
3091#if FASTRETRANS_DEBUG > 0
3092                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3093                        net_dbg_ratelimited("retrans_out leaked\n");
3094                }
3095#endif
3096                TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3097                tp->retrans_out += tcp_skb_pcount(skb);
3098        }
3099
3100        /* Save stamp of the first (attempted) retransmit. */
3101        if (!tp->retrans_stamp)
3102                tp->retrans_stamp = tcp_skb_timestamp(skb);
3103
3104        if (tp->undo_retrans < 0)
3105                tp->undo_retrans = 0;
3106        tp->undo_retrans += tcp_skb_pcount(skb);
3107        return err;
3108}
3109
3110/* This gets called after a retransmit timeout, and the initially
3111 * retransmitted data is acknowledged.  It tries to continue
3112 * resending the rest of the retransmit queue, until either
3113 * we've sent it all or the congestion window limit is reached.
3114 */
3115void tcp_xmit_retransmit_queue(struct sock *sk)
3116{
3117        const struct inet_connection_sock *icsk = inet_csk(sk);
3118        struct sk_buff *skb, *rtx_head, *hole = NULL;
3119        struct tcp_sock *tp = tcp_sk(sk);
3120        bool rearm_timer = false;
3121        u32 max_segs;
3122        int mib_idx;
3123
3124        if (!tp->packets_out)
3125                return;
3126
3127        rtx_head = tcp_rtx_queue_head(sk);
3128        skb = tp->retransmit_skb_hint ?: rtx_head;
3129        max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3130        skb_rbtree_walk_from(skb) {
3131                __u8 sacked;
3132                int segs;
3133
3134                if (tcp_pacing_check(sk))
3135                        break;
3136
3137                /* we could do better than to assign each time */
3138                if (!hole)
3139                        tp->retransmit_skb_hint = skb;
3140
3141                segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3142                if (segs <= 0)
3143                        break;
3144                sacked = TCP_SKB_CB(skb)->sacked;
3145                /* In case tcp_shift_skb_data() have aggregated large skbs,
3146                 * we need to make sure not sending too bigs TSO packets
3147                 */
3148                segs = min_t(int, segs, max_segs);
3149
3150                if (tp->retrans_out >= tp->lost_out) {
3151                        break;
3152                } else if (!(sacked & TCPCB_LOST)) {
3153                        if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3154                                hole = skb;
3155                        continue;
3156
3157                } else {
3158                        if (icsk->icsk_ca_state != TCP_CA_Loss)
3159                                mib_idx = LINUX_MIB_TCPFASTRETRANS;
3160                        else
3161                                mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3162                }
3163
3164                if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3165                        continue;
3166
3167                if (tcp_small_queue_check(sk, skb, 1))
3168                        break;
3169
3170                if (tcp_retransmit_skb(sk, skb, segs))
3171                        break;
3172
3173                NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3174
3175                if (tcp_in_cwnd_reduction(sk))
3176                        tp->prr_out += tcp_skb_pcount(skb);
3177
3178                if (skb == rtx_head &&
3179                    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3180                        rearm_timer = true;
3181
3182        }
3183        if (rearm_timer)
3184                tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3185                                     inet_csk(sk)->icsk_rto,
3186                                     TCP_RTO_MAX);
3187}
3188
3189/* We allow to exceed memory limits for FIN packets to expedite
3190 * connection tear down and (memory) recovery.
3191 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3192 * or even be forced to close flow without any FIN.
3193 * In general, we want to allow one skb per socket to avoid hangs
3194 * with edge trigger epoll()
3195 */
3196void sk_forced_mem_schedule(struct sock *sk, int size)
3197{
3198        int amt;
3199
3200        if (size <= sk->sk_forward_alloc)
3201                return;
3202        amt = sk_mem_pages(size);
3203        sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3204        sk_memory_allocated_add(sk, amt);
3205
3206        if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3207                mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3208}
3209
3210/* Send a FIN. The caller locks the socket for us.
3211 * We should try to send a FIN packet really hard, but eventually give up.
3212 */
3213void tcp_send_fin(struct sock *sk)
3214{
3215        struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3216        struct tcp_sock *tp = tcp_sk(sk);
3217
3218        /* Optimization, tack on the FIN if we have one skb in write queue and
3219         * this skb was not yet sent, or we are under memory pressure.
3220         * Note: in the latter case, FIN packet will be sent after a timeout,
3221         * as TCP stack thinks it has already been transmitted.
3222         */
3223        tskb = tail;
3224        if (!tskb && tcp_under_memory_pressure(sk))
3225                tskb = skb_rb_last(&sk->tcp_rtx_queue);
3226
3227        if (tskb) {
3228                TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3229                TCP_SKB_CB(tskb)->end_seq++;
3230                tp->write_seq++;
3231                if (!tail) {
3232                        /* This means tskb was already sent.
3233                         * Pretend we included the FIN on previous transmit.
3234                         * We need to set tp->snd_nxt to the value it would have
3235                         * if FIN had been sent. This is because retransmit path
3236                         * does not change tp->snd_nxt.
3237                         */
3238                        WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3239                        return;
3240                }
3241        } else {
3242                skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3243                if (unlikely(!skb))
3244                        return;
3245
3246                INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3247                skb_reserve(skb, MAX_TCP_HEADER);
3248                sk_forced_mem_schedule(sk, skb->truesize);
3249                /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3250                tcp_init_nondata_skb(skb, tp->write_seq,
3251                                     TCPHDR_ACK | TCPHDR_FIN);
3252                tcp_queue_skb(sk, skb);
3253        }
3254        __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3255}
3256
3257/* We get here when a process closes a file descriptor (either due to
3258 * an explicit close() or as a byproduct of exit()'ing) and there
3259 * was unread data in the receive queue.  This behavior is recommended
3260 * by RFC 2525, section 2.17.  -DaveM
3261 */
3262void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3263{
3264        struct sk_buff *skb;
3265
3266        TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3267
3268        /* NOTE: No TCP options attached and we never retransmit this. */
3269        skb = alloc_skb(MAX_TCP_HEADER, priority);
3270        if (!skb) {
3271                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3272                return;
3273        }
3274
3275        /* Reserve space for headers and prepare control bits. */
3276        skb_reserve(skb, MAX_TCP_HEADER);
3277        tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3278                             TCPHDR_ACK | TCPHDR_RST);
3279        tcp_mstamp_refresh(tcp_sk(sk));
3280        /* Send it off. */
3281        if (tcp_transmit_skb(sk, skb, 0, priority))
3282                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3283
3284        /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3285         * skb here is different to the troublesome skb, so use NULL
3286         */
3287        trace_tcp_send_reset(sk, NULL);
3288}
3289
3290/* Send a crossed SYN-ACK during socket establishment.
3291 * WARNING: This routine must only be called when we have already sent
3292 * a SYN packet that crossed the incoming SYN that caused this routine
3293 * to get called. If this assumption fails then the initial rcv_wnd
3294 * and rcv_wscale values will not be correct.
3295 */
3296int tcp_send_synack(struct sock *sk)
3297{
3298        struct sk_buff *skb;
3299
3300        skb = tcp_rtx_queue_head(sk);
3301        if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3302                pr_err("%s: wrong queue state\n", __func__);
3303                return -EFAULT;
3304        }
3305        if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3306                if (skb_cloned(skb)) {
3307                        struct sk_buff *nskb;
3308
3309                        tcp_skb_tsorted_save(skb) {
3310                                nskb = skb_copy(skb, GFP_ATOMIC);
3311                        } tcp_skb_tsorted_restore(skb);
3312                        if (!nskb)
3313                                return -ENOMEM;
3314                        INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3315                        tcp_highest_sack_replace(sk, skb, nskb);
3316                        tcp_rtx_queue_unlink_and_free(skb, sk);
3317                        __skb_header_release(nskb);
3318                        tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3319                        sk_wmem_queued_add(sk, nskb->truesize);
3320                        sk_mem_charge(sk, nskb->truesize);
3321                        skb = nskb;
3322                }
3323
3324                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3325                tcp_ecn_send_synack(sk, skb);
3326        }
3327        return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3328}
3329
3330/**
3331 * tcp_make_synack - Prepare a SYN-ACK.
3332 * sk: listener socket
3333 * dst: dst entry attached to the SYNACK
3334 * req: request_sock pointer
3335 *
3336 * Allocate one skb and build a SYNACK packet.
3337 * @dst is consumed : Caller should not use it again.
3338 */
3339struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3340                                struct request_sock *req,
3341                                struct tcp_fastopen_cookie *foc,
3342                                enum tcp_synack_type synack_type)
3343{
3344        struct inet_request_sock *ireq = inet_rsk(req);
3345        const struct tcp_sock *tp = tcp_sk(sk);
3346        struct tcp_md5sig_key *md5 = NULL;
3347        struct tcp_out_options opts;
3348        struct sk_buff *skb;
3349        int tcp_header_size;
3350        struct tcphdr *th;
3351        int mss;
3352        u64 now;
3353
3354        skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3355        if (unlikely(!skb)) {
3356                dst_release(dst);
3357                return NULL;
3358        }
3359        /* Reserve space for headers. */
3360        skb_reserve(skb, MAX_TCP_HEADER);
3361
3362        switch (synack_type) {
3363        case TCP_SYNACK_NORMAL:
3364                skb_set_owner_w(skb, req_to_sk(req));
3365                break;
3366        case TCP_SYNACK_COOKIE:
3367                /* Under synflood, we do not attach skb to a socket,
3368                 * to avoid false sharing.
3369                 */
3370                break;
3371        case TCP_SYNACK_FASTOPEN:
3372                /* sk is a const pointer, because we want to express multiple
3373                 * cpu might call us concurrently.
3374                 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3375                 */
3376                skb_set_owner_w(skb, (struct sock *)sk);
3377                break;
3378        }
3379        skb_dst_set(skb, dst);
3380
3381        mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3382
3383        memset(&opts, 0, sizeof(opts));
3384        now = tcp_clock_ns();
3385#ifdef CONFIG_SYN_COOKIES
3386        if (unlikely(req->cookie_ts))
3387                skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3388        else
3389#endif
3390        {
3391                skb->skb_mstamp_ns = now;
3392                if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3393                        tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3394        }
3395
3396#ifdef CONFIG_TCP_MD5SIG
3397        rcu_read_lock();
3398        md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3399#endif
3400        skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3401        tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3402                                             foc, synack_type) + sizeof(*th);
3403
3404        skb_push(skb, tcp_header_size);
3405        skb_reset_transport_header(skb);
3406
3407        th = (struct tcphdr *)skb->data;
3408        memset(th, 0, sizeof(struct tcphdr));
3409        th->syn = 1;
3410        th->ack = 1;
3411        tcp_ecn_make_synack(req, th);
3412        th->source = htons(ireq->ir_num);
3413        th->dest = ireq->ir_rmt_port;
3414        skb->mark = ireq->ir_mark;
3415        skb->ip_summed = CHECKSUM_PARTIAL;
3416        th->seq = htonl(tcp_rsk(req)->snt_isn);
3417        /* XXX data is queued and acked as is. No buffer/window check */
3418        th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3419
3420        /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3421        th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3422        tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3423        th->doff = (tcp_header_size >> 2);
3424        __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3425
3426#ifdef CONFIG_TCP_MD5SIG
3427        /* Okay, we have all we need - do the md5 hash if needed */
3428        if (md5)
3429                tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3430                                               md5, req_to_sk(req), skb);
3431        rcu_read_unlock();
3432#endif
3433
3434        skb->skb_mstamp_ns = now;
3435        tcp_add_tx_delay(skb, tp);
3436
3437        return skb;
3438}
3439EXPORT_SYMBOL(tcp_make_synack);
3440
3441static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3442{
3443        struct inet_connection_sock *icsk = inet_csk(sk);
3444        const struct tcp_congestion_ops *ca;
3445        u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3446
3447        if (ca_key == TCP_CA_UNSPEC)
3448                return;
3449
3450        rcu_read_lock();
3451        ca = tcp_ca_find_key(ca_key);
3452        if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3453                bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3454                icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3455                icsk->icsk_ca_ops = ca;
3456        }
3457        rcu_read_unlock();
3458}
3459
3460/* Do all connect socket setups that can be done AF independent. */
3461static void tcp_connect_init(struct sock *sk)
3462{
3463        const struct dst_entry *dst = __sk_dst_get(sk);
3464        struct tcp_sock *tp = tcp_sk(sk);
3465        __u8 rcv_wscale;
3466        u32 rcv_wnd;
3467
3468        /* We'll fix this up when we get a response from the other end.
3469         * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3470         */
3471        tp->tcp_header_len = sizeof(struct tcphdr);
3472        if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3473                tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3474
3475#ifdef CONFIG_TCP_MD5SIG
3476        if (tp->af_specific->md5_lookup(sk, sk))
3477                tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3478#endif
3479
3480        /* If user gave his TCP_MAXSEG, record it to clamp */
3481        if (tp->rx_opt.user_mss)
3482                tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3483        tp->max_window = 0;
3484        tcp_mtup_init(sk);
3485        tcp_sync_mss(sk, dst_mtu(dst));
3486
3487        tcp_ca_dst_init(sk, dst);
3488
3489        if (!tp->window_clamp)
3490                tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3491        tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3492
3493        tcp_initialize_rcv_mss(sk);
3494
3495        /* limit the window selection if the user enforce a smaller rx buffer */
3496        if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3497            (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3498                tp->window_clamp = tcp_full_space(sk);
3499
3500        rcv_wnd = tcp_rwnd_init_bpf(sk);
3501        if (rcv_wnd == 0)
3502                rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3503
3504        tcp_select_initial_window(sk, tcp_full_space(sk),
3505                                  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3506                                  &tp->rcv_wnd,
3507                                  &tp->window_clamp,
3508                                  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3509                                  &rcv_wscale,
3510                                  rcv_wnd);
3511
3512        tp->rx_opt.rcv_wscale = rcv_wscale;
3513        tp->rcv_ssthresh = tp->rcv_wnd;
3514
3515        sk->sk_err = 0;
3516        sock_reset_flag(sk, SOCK_DONE);
3517        tp->snd_wnd = 0;
3518        tcp_init_wl(tp, 0);
3519        tcp_write_queue_purge(sk);
3520        tp->snd_una = tp->write_seq;
3521        tp->snd_sml = tp->write_seq;
3522        tp->snd_up = tp->write_seq;
3523        WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3524
3525        if (likely(!tp->repair))
3526                tp->rcv_nxt = 0;
3527        else
3528                tp->rcv_tstamp = tcp_jiffies32;
3529        tp->rcv_wup = tp->rcv_nxt;
3530        WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3531
3532        inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3533        inet_csk(sk)->icsk_retransmits = 0;
3534        tcp_clear_retrans(tp);
3535}
3536
3537static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3538{
3539        struct tcp_sock *tp = tcp_sk(sk);
3540        struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3541
3542        tcb->end_seq += skb->len;
3543        __skb_header_release(skb);
3544        sk_wmem_queued_add(sk, skb->truesize);
3545        sk_mem_charge(sk, skb->truesize);
3546        WRITE_ONCE(tp->write_seq, tcb->end_seq);
3547        tp->packets_out += tcp_skb_pcount(skb);
3548}
3549
3550/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3551 * queue a data-only packet after the regular SYN, such that regular SYNs
3552 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3553 * only the SYN sequence, the data are retransmitted in the first ACK.
3554 * If cookie is not cached or other error occurs, falls back to send a
3555 * regular SYN with Fast Open cookie request option.
3556 */
3557static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3558{
3559        struct tcp_sock *tp = tcp_sk(sk);
3560        struct tcp_fastopen_request *fo = tp->fastopen_req;
3561        int space, err = 0;
3562        struct sk_buff *syn_data;
3563
3564        tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3565        if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3566                goto fallback;
3567
3568        /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3569         * user-MSS. Reserve maximum option space for middleboxes that add
3570         * private TCP options. The cost is reduced data space in SYN :(
3571         */
3572        tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3573
3574        space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3575                MAX_TCP_OPTION_SPACE;
3576
3577        space = min_t(size_t, space, fo->size);
3578
3579        /* limit to order-0 allocations */
3580        space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3581
3582        syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3583        if (!syn_data)
3584                goto fallback;
3585        syn_data->ip_summed = CHECKSUM_PARTIAL;
3586        memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3587        if (space) {
3588                int copied = copy_from_iter(skb_put(syn_data, space), space,
3589                                            &fo->data->msg_iter);
3590                if (unlikely(!copied)) {
3591                        tcp_skb_tsorted_anchor_cleanup(syn_data);
3592                        kfree_skb(syn_data);
3593                        goto fallback;
3594                }
3595                if (copied != space) {
3596                        skb_trim(syn_data, copied);
3597                        space = copied;
3598                }
3599                skb_zcopy_set(syn_data, fo->uarg, NULL);
3600        }
3601        /* No more data pending in inet_wait_for_connect() */
3602        if (space == fo->size)
3603                fo->data = NULL;
3604        fo->copied = space;
3605
3606        tcp_connect_queue_skb(sk, syn_data);
3607        if (syn_data->len)
3608                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3609
3610        err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3611
3612        syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3613
3614        /* Now full SYN+DATA was cloned and sent (or not),
3615         * remove the SYN from the original skb (syn_data)
3616         * we keep in write queue in case of a retransmit, as we
3617         * also have the SYN packet (with no data) in the same queue.
3618         */
3619        TCP_SKB_CB(syn_data)->seq++;
3620        TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3621        if (!err) {
3622                tp->syn_data = (fo->copied > 0);
3623                tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3624                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3625                goto done;
3626        }
3627
3628        /* data was not sent, put it in write_queue */
3629        __skb_queue_tail(&sk->sk_write_queue, syn_data);
3630        tp->packets_out -= tcp_skb_pcount(syn_data);
3631
3632fallback:
3633        /* Send a regular SYN with Fast Open cookie request option */
3634        if (fo->cookie.len > 0)
3635                fo->cookie.len = 0;
3636        err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3637        if (err)
3638                tp->syn_fastopen = 0;
3639done:
3640        fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3641        return err;
3642}
3643
3644/* Build a SYN and send it off. */
3645int tcp_connect(struct sock *sk)
3646{
3647        struct tcp_sock *tp = tcp_sk(sk);
3648        struct sk_buff *buff;
3649        int err;
3650
3651        tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3652
3653        if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3654                return -EHOSTUNREACH; /* Routing failure or similar. */
3655
3656        tcp_connect_init(sk);
3657
3658        if (unlikely(tp->repair)) {
3659                tcp_finish_connect(sk, NULL);
3660                return 0;
3661        }
3662
3663        buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3664        if (unlikely(!buff))
3665                return -ENOBUFS;
3666
3667        tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3668        tcp_mstamp_refresh(tp);
3669        tp->retrans_stamp = tcp_time_stamp(tp);
3670        tcp_connect_queue_skb(sk, buff);
3671        tcp_ecn_send_syn(sk, buff);
3672        tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3673
3674        /* Send off SYN; include data in Fast Open. */
3675        err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3676              tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3677        if (err == -ECONNREFUSED)
3678                return err;
3679
3680        /* We change tp->snd_nxt after the tcp_transmit_skb() call
3681         * in order to make this packet get counted in tcpOutSegs.
3682         */
3683        WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3684        tp->pushed_seq = tp->write_seq;
3685        buff = tcp_send_head(sk);
3686        if (unlikely(buff)) {
3687                WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3688                tp->pushed_seq  = TCP_SKB_CB(buff)->seq;
3689        }
3690        TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3691
3692        /* Timer for repeating the SYN until an answer. */
3693        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3694                                  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3695        return 0;
3696}
3697EXPORT_SYMBOL(tcp_connect);
3698
3699/* Send out a delayed ack, the caller does the policy checking
3700 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3701 * for details.
3702 */
3703void tcp_send_delayed_ack(struct sock *sk)
3704{
3705        struct inet_connection_sock *icsk = inet_csk(sk);
3706        int ato = icsk->icsk_ack.ato;
3707        unsigned long timeout;
3708
3709        if (ato > TCP_DELACK_MIN) {
3710                const struct tcp_sock *tp = tcp_sk(sk);
3711                int max_ato = HZ / 2;
3712
3713                if (inet_csk_in_pingpong_mode(sk) ||
3714                    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3715                        max_ato = TCP_DELACK_MAX;
3716
3717                /* Slow path, intersegment interval is "high". */
3718
3719                /* If some rtt estimate is known, use it to bound delayed ack.
3720                 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3721                 * directly.
3722                 */
3723                if (tp->srtt_us) {
3724                        int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3725                                        TCP_DELACK_MIN);
3726
3727                        if (rtt < max_ato)
3728                                max_ato = rtt;
3729                }
3730
3731                ato = min(ato, max_ato);
3732        }
3733
3734        /* Stay within the limit we were given */
3735        timeout = jiffies + ato;
3736
3737        /* Use new timeout only if there wasn't a older one earlier. */
3738        if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3739                /* If delack timer was blocked or is about to expire,
3740                 * send ACK now.
3741                 */
3742                if (icsk->icsk_ack.blocked ||
3743                    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3744                        tcp_send_ack(sk);
3745                        return;
3746                }
3747
3748                if (!time_before(timeout, icsk->icsk_ack.timeout))
3749                        timeout = icsk->icsk_ack.timeout;
3750        }
3751        icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3752        icsk->icsk_ack.timeout = timeout;
3753        sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3754}
3755
3756/* This routine sends an ack and also updates the window. */
3757void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3758{
3759        struct sk_buff *buff;
3760
3761        /* If we have been reset, we may not send again. */
3762        if (sk->sk_state == TCP_CLOSE)
3763                return;
3764
3765        /* We are not putting this on the write queue, so
3766         * tcp_transmit_skb() will set the ownership to this
3767         * sock.
3768         */
3769        buff = alloc_skb(MAX_TCP_HEADER,
3770                         sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3771        if (unlikely(!buff)) {
3772                inet_csk_schedule_ack(sk);
3773                inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3774                inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3775                                          TCP_DELACK_MAX, TCP_RTO_MAX);
3776                return;
3777        }
3778
3779        /* Reserve space for headers and prepare control bits. */
3780        skb_reserve(buff, MAX_TCP_HEADER);
3781        tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3782
3783        /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3784         * too much.
3785         * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3786         */
3787        skb_set_tcp_pure_ack(buff);
3788
3789        /* Send it off, this clears delayed acks for us. */
3790        __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3791}
3792EXPORT_SYMBOL_GPL(__tcp_send_ack);
3793
3794void tcp_send_ack(struct sock *sk)
3795{
3796        __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3797}
3798
3799/* This routine sends a packet with an out of date sequence
3800 * number. It assumes the other end will try to ack it.
3801 *
3802 * Question: what should we make while urgent mode?
3803 * 4.4BSD forces sending single byte of data. We cannot send
3804 * out of window data, because we have SND.NXT==SND.MAX...
3805 *
3806 * Current solution: to send TWO zero-length segments in urgent mode:
3807 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3808 * out-of-date with SND.UNA-1 to probe window.
3809 */
3810static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3811{
3812        struct tcp_sock *tp = tcp_sk(sk);
3813        struct sk_buff *skb;
3814
3815        /* We don't queue it, tcp_transmit_skb() sets ownership. */
3816        skb = alloc_skb(MAX_TCP_HEADER,
3817                        sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3818        if (!skb)
3819                return -1;
3820
3821        /* Reserve space for headers and set control bits. */
3822        skb_reserve(skb, MAX_TCP_HEADER);
3823        /* Use a previous sequence.  This should cause the other
3824         * end to send an ack.  Don't queue or clone SKB, just
3825         * send it.
3826         */
3827        tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3828        NET_INC_STATS(sock_net(sk), mib);
3829        return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3830}
3831
3832/* Called from setsockopt( ... TCP_REPAIR ) */
3833void tcp_send_window_probe(struct sock *sk)
3834{
3835        if (sk->sk_state == TCP_ESTABLISHED) {
3836                tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3837                tcp_mstamp_refresh(tcp_sk(sk));
3838                tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3839        }
3840}
3841
3842/* Initiate keepalive or window probe from timer. */
3843int tcp_write_wakeup(struct sock *sk, int mib)
3844{
3845        struct tcp_sock *tp = tcp_sk(sk);
3846        struct sk_buff *skb;
3847
3848        if (sk->sk_state == TCP_CLOSE)
3849                return -1;
3850
3851        skb = tcp_send_head(sk);
3852        if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3853                int err;
3854                unsigned int mss = tcp_current_mss(sk);
3855                unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3856
3857                if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3858                        tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3859
3860                /* We are probing the opening of a window
3861                 * but the window size is != 0
3862                 * must have been a result SWS avoidance ( sender )
3863                 */
3864                if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3865                    skb->len > mss) {
3866                        seg_size = min(seg_size, mss);
3867                        TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3868                        if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3869                                         skb, seg_size, mss, GFP_ATOMIC))
3870                                return -1;
3871                } else if (!tcp_skb_pcount(skb))
3872                        tcp_set_skb_tso_segs(skb, mss);
3873
3874                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3875                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3876                if (!err)
3877                        tcp_event_new_data_sent(sk, skb);
3878                return err;
3879        } else {
3880                if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3881                        tcp_xmit_probe_skb(sk, 1, mib);
3882                return tcp_xmit_probe_skb(sk, 0, mib);
3883        }
3884}
3885
3886/* A window probe timeout has occurred.  If window is not closed send
3887 * a partial packet else a zero probe.
3888 */
3889void tcp_send_probe0(struct sock *sk)
3890{
3891        struct inet_connection_sock *icsk = inet_csk(sk);
3892        struct tcp_sock *tp = tcp_sk(sk);
3893        struct net *net = sock_net(sk);
3894        unsigned long timeout;
3895        int err;
3896
3897        err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3898
3899        if (tp->packets_out || tcp_write_queue_empty(sk)) {
3900                /* Cancel probe timer, if it is not required. */
3901                icsk->icsk_probes_out = 0;
3902                icsk->icsk_backoff = 0;
3903                return;
3904        }
3905
3906        icsk->icsk_probes_out++;
3907        if (err <= 0) {
3908                if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3909                        icsk->icsk_backoff++;
3910                timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3911        } else {
3912                /* If packet was not sent due to local congestion,
3913                 * Let senders fight for local resources conservatively.
3914                 */
3915                timeout = TCP_RESOURCE_PROBE_INTERVAL;
3916        }
3917        tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
3918}
3919
3920int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3921{
3922        const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3923        struct flowi fl;
3924        int res;
3925
3926        tcp_rsk(req)->txhash = net_tx_rndhash();
3927        res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3928        if (!res) {
3929                __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3930                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3931                if (unlikely(tcp_passive_fastopen(sk)))
3932                        tcp_sk(sk)->total_retrans++;
3933                trace_tcp_retransmit_synack(sk, req);
3934        }
3935        return res;
3936}
3937EXPORT_SYMBOL(tcp_rtx_synack);
3938