linux/net/tipc/crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/**
   3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
   4 *
   5 * Copyright (c) 2019, Ericsson AB
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions are met:
  10 *
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the names of the copyright holders nor the names of its
  17 *    contributors may be used to endorse or promote products derived from
  18 *    this software without specific prior written permission.
  19 *
  20 * Alternatively, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") version 2 as published by the Free
  22 * Software Foundation.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  34 * POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#include <crypto/aead.h>
  38#include <crypto/aes.h>
  39#include "crypto.h"
  40
  41#define TIPC_TX_PROBE_LIM       msecs_to_jiffies(1000) /* > 1s */
  42#define TIPC_TX_LASTING_LIM     msecs_to_jiffies(120000) /* 2 mins */
  43#define TIPC_RX_ACTIVE_LIM      msecs_to_jiffies(3000) /* 3s */
  44#define TIPC_RX_PASSIVE_LIM     msecs_to_jiffies(180000) /* 3 mins */
  45#define TIPC_MAX_TFMS_DEF       10
  46#define TIPC_MAX_TFMS_LIM       1000
  47
  48/**
  49 * TIPC Key ids
  50 */
  51enum {
  52        KEY_UNUSED = 0,
  53        KEY_MIN,
  54        KEY_1 = KEY_MIN,
  55        KEY_2,
  56        KEY_3,
  57        KEY_MAX = KEY_3,
  58};
  59
  60/**
  61 * TIPC Crypto statistics
  62 */
  63enum {
  64        STAT_OK,
  65        STAT_NOK,
  66        STAT_ASYNC,
  67        STAT_ASYNC_OK,
  68        STAT_ASYNC_NOK,
  69        STAT_BADKEYS, /* tx only */
  70        STAT_BADMSGS = STAT_BADKEYS, /* rx only */
  71        STAT_NOKEYS,
  72        STAT_SWITCHES,
  73
  74        MAX_STATS,
  75};
  76
  77/* TIPC crypto statistics' header */
  78static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
  79                                        "async_nok", "badmsgs", "nokeys",
  80                                        "switches"};
  81
  82/* Max TFMs number per key */
  83int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
  84
  85/**
  86 * struct tipc_key - TIPC keys' status indicator
  87 *
  88 *         7     6     5     4     3     2     1     0
  89 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  90 * key: | (reserved)|passive idx| active idx|pending idx|
  91 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  92 */
  93struct tipc_key {
  94#define KEY_BITS (2)
  95#define KEY_MASK ((1 << KEY_BITS) - 1)
  96        union {
  97                struct {
  98#if defined(__LITTLE_ENDIAN_BITFIELD)
  99                        u8 pending:2,
 100                           active:2,
 101                           passive:2, /* rx only */
 102                           reserved:2;
 103#elif defined(__BIG_ENDIAN_BITFIELD)
 104                        u8 reserved:2,
 105                           passive:2, /* rx only */
 106                           active:2,
 107                           pending:2;
 108#else
 109#error  "Please fix <asm/byteorder.h>"
 110#endif
 111                } __packed;
 112                u8 keys;
 113        };
 114};
 115
 116/**
 117 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
 118 */
 119struct tipc_tfm {
 120        struct crypto_aead *tfm;
 121        struct list_head list;
 122};
 123
 124/**
 125 * struct tipc_aead - TIPC AEAD key structure
 126 * @tfm_entry: per-cpu pointer to one entry in TFM list
 127 * @crypto: TIPC crypto owns this key
 128 * @cloned: reference to the source key in case cloning
 129 * @users: the number of the key users (TX/RX)
 130 * @salt: the key's SALT value
 131 * @authsize: authentication tag size (max = 16)
 132 * @mode: crypto mode is applied to the key
 133 * @hint[]: a hint for user key
 134 * @rcu: struct rcu_head
 135 * @seqno: the key seqno (cluster scope)
 136 * @refcnt: the key reference counter
 137 */
 138struct tipc_aead {
 139#define TIPC_AEAD_HINT_LEN (5)
 140        struct tipc_tfm * __percpu *tfm_entry;
 141        struct tipc_crypto *crypto;
 142        struct tipc_aead *cloned;
 143        atomic_t users;
 144        u32 salt;
 145        u8 authsize;
 146        u8 mode;
 147        char hint[TIPC_AEAD_HINT_LEN + 1];
 148        struct rcu_head rcu;
 149
 150        atomic64_t seqno ____cacheline_aligned;
 151        refcount_t refcnt ____cacheline_aligned;
 152
 153} ____cacheline_aligned;
 154
 155/**
 156 * struct tipc_crypto_stats - TIPC Crypto statistics
 157 */
 158struct tipc_crypto_stats {
 159        unsigned int stat[MAX_STATS];
 160};
 161
 162/**
 163 * struct tipc_crypto - TIPC TX/RX crypto structure
 164 * @net: struct net
 165 * @node: TIPC node (RX)
 166 * @aead: array of pointers to AEAD keys for encryption/decryption
 167 * @peer_rx_active: replicated peer RX active key index
 168 * @key: the key states
 169 * @working: the crypto is working or not
 170 * @stats: the crypto statistics
 171 * @sndnxt: the per-peer sndnxt (TX)
 172 * @timer1: general timer 1 (jiffies)
 173 * @timer2: general timer 1 (jiffies)
 174 * @lock: tipc_key lock
 175 */
 176struct tipc_crypto {
 177        struct net *net;
 178        struct tipc_node *node;
 179        struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */
 180        atomic_t peer_rx_active;
 181        struct tipc_key key;
 182        u8 working:1;
 183        struct tipc_crypto_stats __percpu *stats;
 184
 185        atomic64_t sndnxt ____cacheline_aligned;
 186        unsigned long timer1;
 187        unsigned long timer2;
 188        spinlock_t lock; /* crypto lock */
 189
 190} ____cacheline_aligned;
 191
 192/* struct tipc_crypto_tx_ctx - TX context for callbacks */
 193struct tipc_crypto_tx_ctx {
 194        struct tipc_aead *aead;
 195        struct tipc_bearer *bearer;
 196        struct tipc_media_addr dst;
 197};
 198
 199/* struct tipc_crypto_rx_ctx - RX context for callbacks */
 200struct tipc_crypto_rx_ctx {
 201        struct tipc_aead *aead;
 202        struct tipc_bearer *bearer;
 203};
 204
 205static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
 206static inline void tipc_aead_put(struct tipc_aead *aead);
 207static void tipc_aead_free(struct rcu_head *rp);
 208static int tipc_aead_users(struct tipc_aead __rcu *aead);
 209static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
 210static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
 211static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
 212static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
 213static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 214                          u8 mode);
 215static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
 216static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 217                                 unsigned int crypto_ctx_size,
 218                                 u8 **iv, struct aead_request **req,
 219                                 struct scatterlist **sg, int nsg);
 220static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 221                             struct tipc_bearer *b,
 222                             struct tipc_media_addr *dst,
 223                             struct tipc_node *__dnode);
 224static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
 225static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 226                             struct sk_buff *skb, struct tipc_bearer *b);
 227static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
 228static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
 229static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 230                           u8 tx_key, struct sk_buff *skb,
 231                           struct tipc_crypto *__rx);
 232static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
 233                                             u8 new_passive,
 234                                             u8 new_active,
 235                                             u8 new_pending);
 236static int tipc_crypto_key_attach(struct tipc_crypto *c,
 237                                  struct tipc_aead *aead, u8 pos);
 238static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
 239static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
 240                                                 struct tipc_crypto *rx,
 241                                                 struct sk_buff *skb);
 242static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
 243                                  struct tipc_msg *hdr);
 244static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
 245static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
 246                                     struct tipc_bearer *b,
 247                                     struct sk_buff **skb, int err);
 248static void tipc_crypto_do_cmd(struct net *net, int cmd);
 249static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
 250#ifdef TIPC_CRYPTO_DEBUG
 251static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
 252                                  char *buf);
 253#endif
 254
 255#define key_next(cur) ((cur) % KEY_MAX + 1)
 256
 257#define tipc_aead_rcu_ptr(rcu_ptr, lock)                                \
 258        rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
 259
 260#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)                       \
 261do {                                                                    \
 262        typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr),    \
 263                                                lockdep_is_held(lock)); \
 264        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 265        tipc_aead_put(__tmp);                                           \
 266} while (0)
 267
 268#define tipc_crypto_key_detach(rcu_ptr, lock)                           \
 269        tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
 270
 271/**
 272 * tipc_aead_key_validate - Validate a AEAD user key
 273 */
 274int tipc_aead_key_validate(struct tipc_aead_key *ukey)
 275{
 276        int keylen;
 277
 278        /* Check if algorithm exists */
 279        if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
 280                pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name);
 281                return -ENODEV;
 282        }
 283
 284        /* Currently, we only support the "gcm(aes)" cipher algorithm */
 285        if (strcmp(ukey->alg_name, "gcm(aes)"))
 286                return -ENOTSUPP;
 287
 288        /* Check if key size is correct */
 289        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 290        if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
 291                     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
 292                     keylen != TIPC_AES_GCM_KEY_SIZE_256))
 293                return -EINVAL;
 294
 295        return 0;
 296}
 297
 298static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
 299{
 300        struct tipc_aead *tmp;
 301
 302        rcu_read_lock();
 303        tmp = rcu_dereference(aead);
 304        if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
 305                tmp = NULL;
 306        rcu_read_unlock();
 307
 308        return tmp;
 309}
 310
 311static inline void tipc_aead_put(struct tipc_aead *aead)
 312{
 313        if (aead && refcount_dec_and_test(&aead->refcnt))
 314                call_rcu(&aead->rcu, tipc_aead_free);
 315}
 316
 317/**
 318 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
 319 * @rp: rcu head pointer
 320 */
 321static void tipc_aead_free(struct rcu_head *rp)
 322{
 323        struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
 324        struct tipc_tfm *tfm_entry, *head, *tmp;
 325
 326        if (aead->cloned) {
 327                tipc_aead_put(aead->cloned);
 328        } else {
 329                head = *this_cpu_ptr(aead->tfm_entry);
 330                list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
 331                        crypto_free_aead(tfm_entry->tfm);
 332                        list_del(&tfm_entry->list);
 333                        kfree(tfm_entry);
 334                }
 335                /* Free the head */
 336                crypto_free_aead(head->tfm);
 337                list_del(&head->list);
 338                kfree(head);
 339        }
 340        free_percpu(aead->tfm_entry);
 341        kfree(aead);
 342}
 343
 344static int tipc_aead_users(struct tipc_aead __rcu *aead)
 345{
 346        struct tipc_aead *tmp;
 347        int users = 0;
 348
 349        rcu_read_lock();
 350        tmp = rcu_dereference(aead);
 351        if (tmp)
 352                users = atomic_read(&tmp->users);
 353        rcu_read_unlock();
 354
 355        return users;
 356}
 357
 358static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
 359{
 360        struct tipc_aead *tmp;
 361
 362        rcu_read_lock();
 363        tmp = rcu_dereference(aead);
 364        if (tmp)
 365                atomic_add_unless(&tmp->users, 1, lim);
 366        rcu_read_unlock();
 367}
 368
 369static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
 370{
 371        struct tipc_aead *tmp;
 372
 373        rcu_read_lock();
 374        tmp = rcu_dereference(aead);
 375        if (tmp)
 376                atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
 377        rcu_read_unlock();
 378}
 379
 380static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
 381{
 382        struct tipc_aead *tmp;
 383        int cur;
 384
 385        rcu_read_lock();
 386        tmp = rcu_dereference(aead);
 387        if (tmp) {
 388                do {
 389                        cur = atomic_read(&tmp->users);
 390                        if (cur == val)
 391                                break;
 392                } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
 393        }
 394        rcu_read_unlock();
 395}
 396
 397/**
 398 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
 399 */
 400static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
 401{
 402        struct tipc_tfm **tfm_entry = this_cpu_ptr(aead->tfm_entry);
 403
 404        *tfm_entry = list_next_entry(*tfm_entry, list);
 405        return (*tfm_entry)->tfm;
 406}
 407
 408/**
 409 * tipc_aead_init - Initiate TIPC AEAD
 410 * @aead: returned new TIPC AEAD key handle pointer
 411 * @ukey: pointer to user key data
 412 * @mode: the key mode
 413 *
 414 * Allocate a (list of) new cipher transformation (TFM) with the specific user
 415 * key data if valid. The number of the allocated TFMs can be set via the sysfs
 416 * "net/tipc/max_tfms" first.
 417 * Also, all the other AEAD data are also initialized.
 418 *
 419 * Return: 0 if the initiation is successful, otherwise: < 0
 420 */
 421static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 422                          u8 mode)
 423{
 424        struct tipc_tfm *tfm_entry, *head;
 425        struct crypto_aead *tfm;
 426        struct tipc_aead *tmp;
 427        int keylen, err, cpu;
 428        int tfm_cnt = 0;
 429
 430        if (unlikely(*aead))
 431                return -EEXIST;
 432
 433        /* Allocate a new AEAD */
 434        tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
 435        if (unlikely(!tmp))
 436                return -ENOMEM;
 437
 438        /* The key consists of two parts: [AES-KEY][SALT] */
 439        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 440
 441        /* Allocate per-cpu TFM entry pointer */
 442        tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
 443        if (!tmp->tfm_entry) {
 444                kzfree(tmp);
 445                return -ENOMEM;
 446        }
 447
 448        /* Make a list of TFMs with the user key data */
 449        do {
 450                tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
 451                if (IS_ERR(tfm)) {
 452                        err = PTR_ERR(tfm);
 453                        break;
 454                }
 455
 456                if (unlikely(!tfm_cnt &&
 457                             crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
 458                        crypto_free_aead(tfm);
 459                        err = -ENOTSUPP;
 460                        break;
 461                }
 462
 463                err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
 464                err |= crypto_aead_setkey(tfm, ukey->key, keylen);
 465                if (unlikely(err)) {
 466                        crypto_free_aead(tfm);
 467                        break;
 468                }
 469
 470                tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
 471                if (unlikely(!tfm_entry)) {
 472                        crypto_free_aead(tfm);
 473                        err = -ENOMEM;
 474                        break;
 475                }
 476                INIT_LIST_HEAD(&tfm_entry->list);
 477                tfm_entry->tfm = tfm;
 478
 479                /* First entry? */
 480                if (!tfm_cnt) {
 481                        head = tfm_entry;
 482                        for_each_possible_cpu(cpu) {
 483                                *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
 484                        }
 485                } else {
 486                        list_add_tail(&tfm_entry->list, &head->list);
 487                }
 488
 489        } while (++tfm_cnt < sysctl_tipc_max_tfms);
 490
 491        /* Not any TFM is allocated? */
 492        if (!tfm_cnt) {
 493                free_percpu(tmp->tfm_entry);
 494                kzfree(tmp);
 495                return err;
 496        }
 497
 498        /* Copy some chars from the user key as a hint */
 499        memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN);
 500        tmp->hint[TIPC_AEAD_HINT_LEN] = '\0';
 501
 502        /* Initialize the other data */
 503        tmp->mode = mode;
 504        tmp->cloned = NULL;
 505        tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
 506        memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
 507        atomic_set(&tmp->users, 0);
 508        atomic64_set(&tmp->seqno, 0);
 509        refcount_set(&tmp->refcnt, 1);
 510
 511        *aead = tmp;
 512        return 0;
 513}
 514
 515/**
 516 * tipc_aead_clone - Clone a TIPC AEAD key
 517 * @dst: dest key for the cloning
 518 * @src: source key to clone from
 519 *
 520 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
 521 * common for the keys.
 522 * A reference to the source is hold in the "cloned" pointer for the later
 523 * freeing purposes.
 524 *
 525 * Note: this must be done in cluster-key mode only!
 526 * Return: 0 in case of success, otherwise < 0
 527 */
 528static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
 529{
 530        struct tipc_aead *aead;
 531        int cpu;
 532
 533        if (!src)
 534                return -ENOKEY;
 535
 536        if (src->mode != CLUSTER_KEY)
 537                return -EINVAL;
 538
 539        if (unlikely(*dst))
 540                return -EEXIST;
 541
 542        aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
 543        if (unlikely(!aead))
 544                return -ENOMEM;
 545
 546        aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
 547        if (unlikely(!aead->tfm_entry)) {
 548                kzfree(aead);
 549                return -ENOMEM;
 550        }
 551
 552        for_each_possible_cpu(cpu) {
 553                *per_cpu_ptr(aead->tfm_entry, cpu) =
 554                                *per_cpu_ptr(src->tfm_entry, cpu);
 555        }
 556
 557        memcpy(aead->hint, src->hint, sizeof(src->hint));
 558        aead->mode = src->mode;
 559        aead->salt = src->salt;
 560        aead->authsize = src->authsize;
 561        atomic_set(&aead->users, 0);
 562        atomic64_set(&aead->seqno, 0);
 563        refcount_set(&aead->refcnt, 1);
 564
 565        WARN_ON(!refcount_inc_not_zero(&src->refcnt));
 566        aead->cloned = src;
 567
 568        *dst = aead;
 569        return 0;
 570}
 571
 572/**
 573 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
 574 * @tfm: cipher handle to be registered with the request
 575 * @crypto_ctx_size: size of crypto context for callback
 576 * @iv: returned pointer to IV data
 577 * @req: returned pointer to AEAD request data
 578 * @sg: returned pointer to SG lists
 579 * @nsg: number of SG lists to be allocated
 580 *
 581 * Allocate memory to store the crypto context data, AEAD request, IV and SG
 582 * lists, the memory layout is as follows:
 583 * crypto_ctx || iv || aead_req || sg[]
 584 *
 585 * Return: the pointer to the memory areas in case of success, otherwise NULL
 586 */
 587static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 588                                 unsigned int crypto_ctx_size,
 589                                 u8 **iv, struct aead_request **req,
 590                                 struct scatterlist **sg, int nsg)
 591{
 592        unsigned int iv_size, req_size;
 593        unsigned int len;
 594        u8 *mem;
 595
 596        iv_size = crypto_aead_ivsize(tfm);
 597        req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
 598
 599        len = crypto_ctx_size;
 600        len += iv_size;
 601        len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
 602        len = ALIGN(len, crypto_tfm_ctx_alignment());
 603        len += req_size;
 604        len = ALIGN(len, __alignof__(struct scatterlist));
 605        len += nsg * sizeof(**sg);
 606
 607        mem = kmalloc(len, GFP_ATOMIC);
 608        if (!mem)
 609                return NULL;
 610
 611        *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
 612                              crypto_aead_alignmask(tfm) + 1);
 613        *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
 614                                                crypto_tfm_ctx_alignment());
 615        *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
 616                                              __alignof__(struct scatterlist));
 617
 618        return (void *)mem;
 619}
 620
 621/**
 622 * tipc_aead_encrypt - Encrypt a message
 623 * @aead: TIPC AEAD key for the message encryption
 624 * @skb: the input/output skb
 625 * @b: TIPC bearer where the message will be delivered after the encryption
 626 * @dst: the destination media address
 627 * @__dnode: TIPC dest node if "known"
 628 *
 629 * Return:
 630 * 0                   : if the encryption has completed
 631 * -EINPROGRESS/-EBUSY : if a callback will be performed
 632 * < 0                 : the encryption has failed
 633 */
 634static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 635                             struct tipc_bearer *b,
 636                             struct tipc_media_addr *dst,
 637                             struct tipc_node *__dnode)
 638{
 639        struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
 640        struct tipc_crypto_tx_ctx *tx_ctx;
 641        struct aead_request *req;
 642        struct sk_buff *trailer;
 643        struct scatterlist *sg;
 644        struct tipc_ehdr *ehdr;
 645        int ehsz, len, tailen, nsg, rc;
 646        void *ctx;
 647        u32 salt;
 648        u8 *iv;
 649
 650        /* Make sure message len at least 4-byte aligned */
 651        len = ALIGN(skb->len, 4);
 652        tailen = len - skb->len + aead->authsize;
 653
 654        /* Expand skb tail for authentication tag:
 655         * As for simplicity, we'd have made sure skb having enough tailroom
 656         * for authentication tag @skb allocation. Even when skb is nonlinear
 657         * but there is no frag_list, it should be still fine!
 658         * Otherwise, we must cow it to be a writable buffer with the tailroom.
 659         */
 660#ifdef TIPC_CRYPTO_DEBUG
 661        SKB_LINEAR_ASSERT(skb);
 662        if (tailen > skb_tailroom(skb)) {
 663                pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n",
 664                        skb_tailroom(skb), tailen);
 665        }
 666#endif
 667
 668        if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
 669                nsg = 1;
 670                trailer = skb;
 671        } else {
 672                /* TODO: We could avoid skb_cow_data() if skb has no frag_list
 673                 * e.g. by skb_fill_page_desc() to add another page to the skb
 674                 * with the wanted tailen... However, page skbs look not often,
 675                 * so take it easy now!
 676                 * Cloned skbs e.g. from link_xmit() seems no choice though :(
 677                 */
 678                nsg = skb_cow_data(skb, tailen, &trailer);
 679                if (unlikely(nsg < 0)) {
 680                        pr_err("TX: skb_cow_data() returned %d\n", nsg);
 681                        return nsg;
 682                }
 683        }
 684
 685        pskb_put(skb, trailer, tailen);
 686
 687        /* Allocate memory for the AEAD operation */
 688        ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
 689        if (unlikely(!ctx))
 690                return -ENOMEM;
 691        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 692
 693        /* Map skb to the sg lists */
 694        sg_init_table(sg, nsg);
 695        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 696        if (unlikely(rc < 0)) {
 697                pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
 698                goto exit;
 699        }
 700
 701        /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
 702         * In case we're in cluster-key mode, SALT is varied by xor-ing with
 703         * the source address (or w0 of id), otherwise with the dest address
 704         * if dest is known.
 705         */
 706        ehdr = (struct tipc_ehdr *)skb->data;
 707        salt = aead->salt;
 708        if (aead->mode == CLUSTER_KEY)
 709                salt ^= ehdr->addr; /* __be32 */
 710        else if (__dnode)
 711                salt ^= tipc_node_get_addr(__dnode);
 712        memcpy(iv, &salt, 4);
 713        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 714
 715        /* Prepare request */
 716        ehsz = tipc_ehdr_size(ehdr);
 717        aead_request_set_tfm(req, tfm);
 718        aead_request_set_ad(req, ehsz);
 719        aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
 720
 721        /* Set callback function & data */
 722        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 723                                  tipc_aead_encrypt_done, skb);
 724        tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
 725        tx_ctx->aead = aead;
 726        tx_ctx->bearer = b;
 727        memcpy(&tx_ctx->dst, dst, sizeof(*dst));
 728
 729        /* Hold bearer */
 730        if (unlikely(!tipc_bearer_hold(b))) {
 731                rc = -ENODEV;
 732                goto exit;
 733        }
 734
 735        /* Now, do encrypt */
 736        rc = crypto_aead_encrypt(req);
 737        if (rc == -EINPROGRESS || rc == -EBUSY)
 738                return rc;
 739
 740        tipc_bearer_put(b);
 741
 742exit:
 743        kfree(ctx);
 744        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 745        return rc;
 746}
 747
 748static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
 749{
 750        struct sk_buff *skb = base->data;
 751        struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 752        struct tipc_bearer *b = tx_ctx->bearer;
 753        struct tipc_aead *aead = tx_ctx->aead;
 754        struct tipc_crypto *tx = aead->crypto;
 755        struct net *net = tx->net;
 756
 757        switch (err) {
 758        case 0:
 759                this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
 760                if (likely(test_bit(0, &b->up)))
 761                        b->media->send_msg(net, skb, b, &tx_ctx->dst);
 762                else
 763                        kfree_skb(skb);
 764                break;
 765        case -EINPROGRESS:
 766                return;
 767        default:
 768                this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
 769                kfree_skb(skb);
 770                break;
 771        }
 772
 773        kfree(tx_ctx);
 774        tipc_bearer_put(b);
 775        tipc_aead_put(aead);
 776}
 777
 778/**
 779 * tipc_aead_decrypt - Decrypt an encrypted message
 780 * @net: struct net
 781 * @aead: TIPC AEAD for the message decryption
 782 * @skb: the input/output skb
 783 * @b: TIPC bearer where the message has been received
 784 *
 785 * Return:
 786 * 0                   : if the decryption has completed
 787 * -EINPROGRESS/-EBUSY : if a callback will be performed
 788 * < 0                 : the decryption has failed
 789 */
 790static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 791                             struct sk_buff *skb, struct tipc_bearer *b)
 792{
 793        struct tipc_crypto_rx_ctx *rx_ctx;
 794        struct aead_request *req;
 795        struct crypto_aead *tfm;
 796        struct sk_buff *unused;
 797        struct scatterlist *sg;
 798        struct tipc_ehdr *ehdr;
 799        int ehsz, nsg, rc;
 800        void *ctx;
 801        u32 salt;
 802        u8 *iv;
 803
 804        if (unlikely(!aead))
 805                return -ENOKEY;
 806
 807        /* Cow skb data if needed */
 808        if (likely(!skb_cloned(skb) &&
 809                   (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
 810                nsg = 1 + skb_shinfo(skb)->nr_frags;
 811        } else {
 812                nsg = skb_cow_data(skb, 0, &unused);
 813                if (unlikely(nsg < 0)) {
 814                        pr_err("RX: skb_cow_data() returned %d\n", nsg);
 815                        return nsg;
 816                }
 817        }
 818
 819        /* Allocate memory for the AEAD operation */
 820        tfm = tipc_aead_tfm_next(aead);
 821        ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
 822        if (unlikely(!ctx))
 823                return -ENOMEM;
 824        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 825
 826        /* Map skb to the sg lists */
 827        sg_init_table(sg, nsg);
 828        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 829        if (unlikely(rc < 0)) {
 830                pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
 831                goto exit;
 832        }
 833
 834        /* Reconstruct IV: */
 835        ehdr = (struct tipc_ehdr *)skb->data;
 836        salt = aead->salt;
 837        if (aead->mode == CLUSTER_KEY)
 838                salt ^= ehdr->addr; /* __be32 */
 839        else if (ehdr->destined)
 840                salt ^= tipc_own_addr(net);
 841        memcpy(iv, &salt, 4);
 842        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 843
 844        /* Prepare request */
 845        ehsz = tipc_ehdr_size(ehdr);
 846        aead_request_set_tfm(req, tfm);
 847        aead_request_set_ad(req, ehsz);
 848        aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
 849
 850        /* Set callback function & data */
 851        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 852                                  tipc_aead_decrypt_done, skb);
 853        rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
 854        rx_ctx->aead = aead;
 855        rx_ctx->bearer = b;
 856
 857        /* Hold bearer */
 858        if (unlikely(!tipc_bearer_hold(b))) {
 859                rc = -ENODEV;
 860                goto exit;
 861        }
 862
 863        /* Now, do decrypt */
 864        rc = crypto_aead_decrypt(req);
 865        if (rc == -EINPROGRESS || rc == -EBUSY)
 866                return rc;
 867
 868        tipc_bearer_put(b);
 869
 870exit:
 871        kfree(ctx);
 872        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 873        return rc;
 874}
 875
 876static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
 877{
 878        struct sk_buff *skb = base->data;
 879        struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 880        struct tipc_bearer *b = rx_ctx->bearer;
 881        struct tipc_aead *aead = rx_ctx->aead;
 882        struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
 883        struct net *net = aead->crypto->net;
 884
 885        switch (err) {
 886        case 0:
 887                this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
 888                break;
 889        case -EINPROGRESS:
 890                return;
 891        default:
 892                this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
 893                break;
 894        }
 895
 896        kfree(rx_ctx);
 897        tipc_crypto_rcv_complete(net, aead, b, &skb, err);
 898        if (likely(skb)) {
 899                if (likely(test_bit(0, &b->up)))
 900                        tipc_rcv(net, skb, b);
 901                else
 902                        kfree_skb(skb);
 903        }
 904
 905        tipc_bearer_put(b);
 906}
 907
 908static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
 909{
 910        return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
 911}
 912
 913/**
 914 * tipc_ehdr_validate - Validate an encryption message
 915 * @skb: the message buffer
 916 *
 917 * Returns "true" if this is a valid encryption message, otherwise "false"
 918 */
 919bool tipc_ehdr_validate(struct sk_buff *skb)
 920{
 921        struct tipc_ehdr *ehdr;
 922        int ehsz;
 923
 924        if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
 925                return false;
 926
 927        ehdr = (struct tipc_ehdr *)skb->data;
 928        if (unlikely(ehdr->version != TIPC_EVERSION))
 929                return false;
 930        ehsz = tipc_ehdr_size(ehdr);
 931        if (unlikely(!pskb_may_pull(skb, ehsz)))
 932                return false;
 933        if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
 934                return false;
 935        if (unlikely(!ehdr->tx_key))
 936                return false;
 937
 938        return true;
 939}
 940
 941/**
 942 * tipc_ehdr_build - Build TIPC encryption message header
 943 * @net: struct net
 944 * @aead: TX AEAD key to be used for the message encryption
 945 * @tx_key: key id used for the message encryption
 946 * @skb: input/output message skb
 947 * @__rx: RX crypto handle if dest is "known"
 948 *
 949 * Return: the header size if the building is successful, otherwise < 0
 950 */
 951static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 952                           u8 tx_key, struct sk_buff *skb,
 953                           struct tipc_crypto *__rx)
 954{
 955        struct tipc_msg *hdr = buf_msg(skb);
 956        struct tipc_ehdr *ehdr;
 957        u32 user = msg_user(hdr);
 958        u64 seqno;
 959        int ehsz;
 960
 961        /* Make room for encryption header */
 962        ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
 963        WARN_ON(skb_headroom(skb) < ehsz);
 964        ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
 965
 966        /* Obtain a seqno first:
 967         * Use the key seqno (= cluster wise) if dest is unknown or we're in
 968         * cluster key mode, otherwise it's better for a per-peer seqno!
 969         */
 970        if (!__rx || aead->mode == CLUSTER_KEY)
 971                seqno = atomic64_inc_return(&aead->seqno);
 972        else
 973                seqno = atomic64_inc_return(&__rx->sndnxt);
 974
 975        /* Revoke the key if seqno is wrapped around */
 976        if (unlikely(!seqno))
 977                return tipc_crypto_key_revoke(net, tx_key);
 978
 979        /* Word 1-2 */
 980        ehdr->seqno = cpu_to_be64(seqno);
 981
 982        /* Words 0, 3- */
 983        ehdr->version = TIPC_EVERSION;
 984        ehdr->user = 0;
 985        ehdr->keepalive = 0;
 986        ehdr->tx_key = tx_key;
 987        ehdr->destined = (__rx) ? 1 : 0;
 988        ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
 989        ehdr->reserved_1 = 0;
 990        ehdr->reserved_2 = 0;
 991
 992        switch (user) {
 993        case LINK_CONFIG:
 994                ehdr->user = LINK_CONFIG;
 995                memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
 996                break;
 997        default:
 998                if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
 999                        ehdr->user = LINK_PROTOCOL;
1000                        ehdr->keepalive = msg_is_keepalive(hdr);
1001                }
1002                ehdr->addr = hdr->hdr[3];
1003                break;
1004        }
1005
1006        return ehsz;
1007}
1008
1009static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1010                                             u8 new_passive,
1011                                             u8 new_active,
1012                                             u8 new_pending)
1013{
1014#ifdef TIPC_CRYPTO_DEBUG
1015        struct tipc_key old = c->key;
1016        char buf[32];
1017#endif
1018
1019        c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1020                      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1021                      ((new_pending & KEY_MASK));
1022
1023#ifdef TIPC_CRYPTO_DEBUG
1024        pr_info("%s(%s): key changing %s ::%pS\n",
1025                (c->node) ? "RX" : "TX",
1026                (c->node) ? tipc_node_get_id_str(c->node) :
1027                            tipc_own_id_string(c->net),
1028                tipc_key_change_dump(old, c->key, buf),
1029                __builtin_return_address(0));
1030#endif
1031}
1032
1033/**
1034 * tipc_crypto_key_init - Initiate a new user / AEAD key
1035 * @c: TIPC crypto to which new key is attached
1036 * @ukey: the user key
1037 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1038 *
1039 * A new TIPC AEAD key will be allocated and initiated with the specified user
1040 * key, then attached to the TIPC crypto.
1041 *
1042 * Return: new key id in case of success, otherwise: < 0
1043 */
1044int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1045                         u8 mode)
1046{
1047        struct tipc_aead *aead = NULL;
1048        int rc = 0;
1049
1050        /* Initiate with the new user key */
1051        rc = tipc_aead_init(&aead, ukey, mode);
1052
1053        /* Attach it to the crypto */
1054        if (likely(!rc)) {
1055                rc = tipc_crypto_key_attach(c, aead, 0);
1056                if (rc < 0)
1057                        tipc_aead_free(&aead->rcu);
1058        }
1059
1060        pr_info("%s(%s): key initiating, rc %d!\n",
1061                (c->node) ? "RX" : "TX",
1062                (c->node) ? tipc_node_get_id_str(c->node) :
1063                            tipc_own_id_string(c->net),
1064                rc);
1065
1066        return rc;
1067}
1068
1069/**
1070 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1071 * @c: TIPC crypto to which the new AEAD key is attached
1072 * @aead: the new AEAD key pointer
1073 * @pos: desired slot in the crypto key array, = 0 if any!
1074 *
1075 * Return: new key id in case of success, otherwise: -EBUSY
1076 */
1077static int tipc_crypto_key_attach(struct tipc_crypto *c,
1078                                  struct tipc_aead *aead, u8 pos)
1079{
1080        u8 new_pending, new_passive, new_key;
1081        struct tipc_key key;
1082        int rc = -EBUSY;
1083
1084        spin_lock_bh(&c->lock);
1085        key = c->key;
1086        if (key.active && key.passive)
1087                goto exit;
1088        if (key.passive && !tipc_aead_users(c->aead[key.passive]))
1089                goto exit;
1090        if (key.pending) {
1091                if (pos)
1092                        goto exit;
1093                if (tipc_aead_users(c->aead[key.pending]) > 0)
1094                        goto exit;
1095                /* Replace it */
1096                new_pending = key.pending;
1097                new_passive = key.passive;
1098                new_key = new_pending;
1099        } else {
1100                if (pos) {
1101                        if (key.active && pos != key_next(key.active)) {
1102                                new_pending = key.pending;
1103                                new_passive = pos;
1104                                new_key = new_passive;
1105                                goto attach;
1106                        } else if (!key.active && !key.passive) {
1107                                new_pending = pos;
1108                                new_passive = key.passive;
1109                                new_key = new_pending;
1110                                goto attach;
1111                        }
1112                }
1113                new_pending = key_next(key.active ?: key.passive);
1114                new_passive = key.passive;
1115                new_key = new_pending;
1116        }
1117
1118attach:
1119        aead->crypto = c;
1120        tipc_crypto_key_set_state(c, new_passive, key.active, new_pending);
1121        tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1122
1123        c->working = 1;
1124        c->timer1 = jiffies;
1125        c->timer2 = jiffies;
1126        rc = new_key;
1127
1128exit:
1129        spin_unlock_bh(&c->lock);
1130        return rc;
1131}
1132
1133void tipc_crypto_key_flush(struct tipc_crypto *c)
1134{
1135        int k;
1136
1137        spin_lock_bh(&c->lock);
1138        c->working = 0;
1139        tipc_crypto_key_set_state(c, 0, 0, 0);
1140        for (k = KEY_MIN; k <= KEY_MAX; k++)
1141                tipc_crypto_key_detach(c->aead[k], &c->lock);
1142        atomic_set(&c->peer_rx_active, 0);
1143        atomic64_set(&c->sndnxt, 0);
1144        spin_unlock_bh(&c->lock);
1145}
1146
1147/**
1148 * tipc_crypto_key_try_align - Align RX keys if possible
1149 * @rx: RX crypto handle
1150 * @new_pending: new pending slot if aligned (= TX key from peer)
1151 *
1152 * Peer has used an unknown key slot, this only happens when peer has left and
1153 * rejoned, or we are newcomer.
1154 * That means, there must be no active key but a pending key at unaligned slot.
1155 * If so, we try to move the pending key to the new slot.
1156 * Note: A potential passive key can exist, it will be shifted correspondingly!
1157 *
1158 * Return: "true" if key is successfully aligned, otherwise "false"
1159 */
1160static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1161{
1162        struct tipc_aead *tmp1, *tmp2 = NULL;
1163        struct tipc_key key;
1164        bool aligned = false;
1165        u8 new_passive = 0;
1166        int x;
1167
1168        spin_lock(&rx->lock);
1169        key = rx->key;
1170        if (key.pending == new_pending) {
1171                aligned = true;
1172                goto exit;
1173        }
1174        if (key.active)
1175                goto exit;
1176        if (!key.pending)
1177                goto exit;
1178        if (tipc_aead_users(rx->aead[key.pending]) > 0)
1179                goto exit;
1180
1181        /* Try to "isolate" this pending key first */
1182        tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1183        if (!refcount_dec_if_one(&tmp1->refcnt))
1184                goto exit;
1185        rcu_assign_pointer(rx->aead[key.pending], NULL);
1186
1187        /* Move passive key if any */
1188        if (key.passive) {
1189                tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1190                x = (key.passive - key.pending + new_pending) % KEY_MAX;
1191                new_passive = (x <= 0) ? x + KEY_MAX : x;
1192        }
1193
1194        /* Re-allocate the key(s) */
1195        tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1196        rcu_assign_pointer(rx->aead[new_pending], tmp1);
1197        if (new_passive)
1198                rcu_assign_pointer(rx->aead[new_passive], tmp2);
1199        refcount_set(&tmp1->refcnt, 1);
1200        aligned = true;
1201        pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node));
1202
1203exit:
1204        spin_unlock(&rx->lock);
1205        return aligned;
1206}
1207
1208/**
1209 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1210 * @tx: TX crypto handle
1211 * @rx: RX crypto handle (can be NULL)
1212 * @skb: the message skb which will be decrypted later
1213 *
1214 * This function looks up the existing TX keys and pick one which is suitable
1215 * for the message decryption, that must be a cluster key and not used before
1216 * on the same message (i.e. recursive).
1217 *
1218 * Return: the TX AEAD key handle in case of success, otherwise NULL
1219 */
1220static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1221                                                 struct tipc_crypto *rx,
1222                                                 struct sk_buff *skb)
1223{
1224        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1225        struct tipc_aead *aead = NULL;
1226        struct tipc_key key = tx->key;
1227        u8 k, i = 0;
1228
1229        /* Initialize data if not yet */
1230        if (!skb_cb->tx_clone_deferred) {
1231                skb_cb->tx_clone_deferred = 1;
1232                memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1233        }
1234
1235        skb_cb->tx_clone_ctx.rx = rx;
1236        if (++skb_cb->tx_clone_ctx.recurs > 2)
1237                return NULL;
1238
1239        /* Pick one TX key */
1240        spin_lock(&tx->lock);
1241        do {
1242                k = (i == 0) ? key.pending :
1243                        ((i == 1) ? key.active : key.passive);
1244                if (!k)
1245                        continue;
1246                aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1247                if (!aead)
1248                        continue;
1249                if (aead->mode != CLUSTER_KEY ||
1250                    aead == skb_cb->tx_clone_ctx.last) {
1251                        aead = NULL;
1252                        continue;
1253                }
1254                /* Ok, found one cluster key */
1255                skb_cb->tx_clone_ctx.last = aead;
1256                WARN_ON(skb->next);
1257                skb->next = skb_clone(skb, GFP_ATOMIC);
1258                if (unlikely(!skb->next))
1259                        pr_warn("Failed to clone skb for next round if any\n");
1260                WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1261                break;
1262        } while (++i < 3);
1263        spin_unlock(&tx->lock);
1264
1265        return aead;
1266}
1267
1268/**
1269 * tipc_crypto_key_synch: Synch own key data according to peer key status
1270 * @rx: RX crypto handle
1271 * @new_rx_active: latest RX active key from peer
1272 * @hdr: TIPCv2 message
1273 *
1274 * This function updates the peer node related data as the peer RX active key
1275 * has changed, so the number of TX keys' users on this node are increased and
1276 * decreased correspondingly.
1277 *
1278 * The "per-peer" sndnxt is also reset when the peer key has switched.
1279 */
1280static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
1281                                  struct tipc_msg *hdr)
1282{
1283        struct net *net = rx->net;
1284        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1285        u8 cur_rx_active;
1286
1287        /* TX might be even not ready yet */
1288        if (unlikely(!tx->key.active && !tx->key.pending))
1289                return;
1290
1291        cur_rx_active = atomic_read(&rx->peer_rx_active);
1292        if (likely(cur_rx_active == new_rx_active))
1293                return;
1294
1295        /* Make sure this message destined for this node */
1296        if (unlikely(msg_short(hdr) ||
1297                     msg_destnode(hdr) != tipc_own_addr(net)))
1298                return;
1299
1300        /* Peer RX active key has changed, try to update owns' & TX users */
1301        if (atomic_cmpxchg(&rx->peer_rx_active,
1302                           cur_rx_active,
1303                           new_rx_active) == cur_rx_active) {
1304                if (new_rx_active)
1305                        tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX);
1306                if (cur_rx_active)
1307                        tipc_aead_users_dec(tx->aead[cur_rx_active], 0);
1308
1309                atomic64_set(&rx->sndnxt, 0);
1310                /* Mark the point TX key users changed */
1311                tx->timer1 = jiffies;
1312
1313#ifdef TIPC_CRYPTO_DEBUG
1314                pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n",
1315                        tipc_own_id_string(net), cur_rx_active,
1316                        new_rx_active, tipc_node_get_id_str(rx->node));
1317#endif
1318        }
1319}
1320
1321static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1322{
1323        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1324        struct tipc_key key;
1325
1326        spin_lock(&tx->lock);
1327        key = tx->key;
1328        WARN_ON(!key.active || tx_key != key.active);
1329
1330        /* Free the active key */
1331        tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1332        tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1333        spin_unlock(&tx->lock);
1334
1335        pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net));
1336        return -EKEYREVOKED;
1337}
1338
1339int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1340                      struct tipc_node *node)
1341{
1342        struct tipc_crypto *c;
1343
1344        if (*crypto)
1345                return -EEXIST;
1346
1347        /* Allocate crypto */
1348        c = kzalloc(sizeof(*c), GFP_ATOMIC);
1349        if (!c)
1350                return -ENOMEM;
1351
1352        /* Allocate statistic structure */
1353        c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1354        if (!c->stats) {
1355                kzfree(c);
1356                return -ENOMEM;
1357        }
1358
1359        c->working = 0;
1360        c->net = net;
1361        c->node = node;
1362        tipc_crypto_key_set_state(c, 0, 0, 0);
1363        atomic_set(&c->peer_rx_active, 0);
1364        atomic64_set(&c->sndnxt, 0);
1365        c->timer1 = jiffies;
1366        c->timer2 = jiffies;
1367        spin_lock_init(&c->lock);
1368        *crypto = c;
1369
1370        return 0;
1371}
1372
1373void tipc_crypto_stop(struct tipc_crypto **crypto)
1374{
1375        struct tipc_crypto *c, *tx, *rx;
1376        bool is_rx;
1377        u8 k;
1378
1379        if (!*crypto)
1380                return;
1381
1382        rcu_read_lock();
1383        /* RX stopping? => decrease TX key users if any */
1384        is_rx = !!((*crypto)->node);
1385        if (is_rx) {
1386                rx = *crypto;
1387                tx = tipc_net(rx->net)->crypto_tx;
1388                k = atomic_read(&rx->peer_rx_active);
1389                if (k) {
1390                        tipc_aead_users_dec(tx->aead[k], 0);
1391                        /* Mark the point TX key users changed */
1392                        tx->timer1 = jiffies;
1393                }
1394        }
1395
1396        /* Release AEAD keys */
1397        c = *crypto;
1398        for (k = KEY_MIN; k <= KEY_MAX; k++)
1399                tipc_aead_put(rcu_dereference(c->aead[k]));
1400        rcu_read_unlock();
1401
1402        pr_warn("%s(%s) has been purged, node left!\n",
1403                (is_rx) ? "RX" : "TX",
1404                (is_rx) ? tipc_node_get_id_str((*crypto)->node) :
1405                          tipc_own_id_string((*crypto)->net));
1406
1407        /* Free this crypto statistics */
1408        free_percpu(c->stats);
1409
1410        *crypto = NULL;
1411        kzfree(c);
1412}
1413
1414void tipc_crypto_timeout(struct tipc_crypto *rx)
1415{
1416        struct tipc_net *tn = tipc_net(rx->net);
1417        struct tipc_crypto *tx = tn->crypto_tx;
1418        struct tipc_key key;
1419        u8 new_pending, new_passive;
1420        int cmd;
1421
1422        /* TX key activating:
1423         * The pending key (users > 0) -> active
1424         * The active key if any (users == 0) -> free
1425         */
1426        spin_lock(&tx->lock);
1427        key = tx->key;
1428        if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1429                goto s1;
1430        if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1431                goto s1;
1432        if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM))
1433                goto s1;
1434
1435        tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1436        if (key.active)
1437                tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1438        this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1439        pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net),
1440                key.pending);
1441
1442s1:
1443        spin_unlock(&tx->lock);
1444
1445        /* RX key activating:
1446         * The pending key (users > 0) -> active
1447         * The active key if any -> passive, freed later
1448         */
1449        spin_lock(&rx->lock);
1450        key = rx->key;
1451        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1452                goto s2;
1453
1454        new_pending = (key.passive &&
1455                       !tipc_aead_users(rx->aead[key.passive])) ?
1456                                       key.passive : 0;
1457        new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive);
1458        tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending);
1459        this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1460        pr_info("RX(%s): key %d is activated!\n",
1461                tipc_node_get_id_str(rx->node), key.pending);
1462        goto s5;
1463
1464s2:
1465        /* RX key "faulty" switching:
1466         * The faulty pending key (users < -30) -> passive
1467         * The passive key (users = 0) -> pending
1468         * Note: This only happens after RX deactivated - s3!
1469         */
1470        key = rx->key;
1471        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30)
1472                goto s3;
1473        if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0)
1474                goto s3;
1475
1476        new_pending = key.passive;
1477        new_passive = key.pending;
1478        tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending);
1479        goto s5;
1480
1481s3:
1482        /* RX key deactivating:
1483         * The passive key if any -> pending
1484         * The active key -> passive (users = 0) / pending
1485         * The pending key if any -> passive (users = 0)
1486         */
1487        key = rx->key;
1488        if (!key.active)
1489                goto s4;
1490        if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM))
1491                goto s4;
1492
1493        new_pending = (key.passive) ?: key.active;
1494        new_passive = (key.passive) ? key.active : key.pending;
1495        tipc_aead_users_set(rx->aead[new_pending], 0);
1496        if (new_passive)
1497                tipc_aead_users_set(rx->aead[new_passive], 0);
1498        tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1499        pr_info("RX(%s): key %d is deactivated!\n",
1500                tipc_node_get_id_str(rx->node), key.active);
1501        goto s5;
1502
1503s4:
1504        /* RX key passive -> freed: */
1505        key = rx->key;
1506        if (!key.passive || !tipc_aead_users(rx->aead[key.passive]))
1507                goto s5;
1508        if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM))
1509                goto s5;
1510
1511        tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1512        tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1513        pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node),
1514                key.passive);
1515
1516s5:
1517        spin_unlock(&rx->lock);
1518
1519        /* Limit max_tfms & do debug commands if needed */
1520        if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1521                return;
1522
1523        cmd = sysctl_tipc_max_tfms;
1524        sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1525        tipc_crypto_do_cmd(rx->net, cmd);
1526}
1527
1528/**
1529 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1530 * @net: struct net
1531 * @skb: input/output message skb pointer
1532 * @b: bearer used for xmit later
1533 * @dst: destination media address
1534 * @__dnode: destination node for reference if any
1535 *
1536 * First, build an encryption message header on the top of the message, then
1537 * encrypt the original TIPC message by using the active or pending TX key.
1538 * If the encryption is successful, the encrypted skb is returned directly or
1539 * via the callback.
1540 * Otherwise, the skb is freed!
1541 *
1542 * Return:
1543 * 0                   : the encryption has succeeded (or no encryption)
1544 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1545 * -ENOKEK             : the encryption has failed due to no key
1546 * -EKEYREVOKED        : the encryption has failed due to key revoked
1547 * -ENOMEM             : the encryption has failed due to no memory
1548 * < 0                 : the encryption has failed due to other reasons
1549 */
1550int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1551                     struct tipc_bearer *b, struct tipc_media_addr *dst,
1552                     struct tipc_node *__dnode)
1553{
1554        struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1555        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1556        struct tipc_crypto_stats __percpu *stats = tx->stats;
1557        struct tipc_key key = tx->key;
1558        struct tipc_aead *aead = NULL;
1559        struct sk_buff *probe;
1560        int rc = -ENOKEY;
1561        u8 tx_key;
1562
1563        /* No encryption? */
1564        if (!tx->working)
1565                return 0;
1566
1567        /* Try with the pending key if available and:
1568         * 1) This is the only choice (i.e. no active key) or;
1569         * 2) Peer has switched to this key (unicast only) or;
1570         * 3) It is time to do a pending key probe;
1571         */
1572        if (unlikely(key.pending)) {
1573                tx_key = key.pending;
1574                if (!key.active)
1575                        goto encrypt;
1576                if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1577                        goto encrypt;
1578                if (TIPC_SKB_CB(*skb)->probe)
1579                        goto encrypt;
1580                if (!__rx &&
1581                    time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) {
1582                        tx->timer2 = jiffies;
1583                        probe = skb_clone(*skb, GFP_ATOMIC);
1584                        if (probe) {
1585                                TIPC_SKB_CB(probe)->probe = 1;
1586                                tipc_crypto_xmit(net, &probe, b, dst, __dnode);
1587                                if (probe)
1588                                        b->media->send_msg(net, probe, b, dst);
1589                        }
1590                }
1591        }
1592        /* Else, use the active key if any */
1593        if (likely(key.active)) {
1594                tx_key = key.active;
1595                goto encrypt;
1596        }
1597        goto exit;
1598
1599encrypt:
1600        aead = tipc_aead_get(tx->aead[tx_key]);
1601        if (unlikely(!aead))
1602                goto exit;
1603        rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1604        if (likely(rc > 0))
1605                rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1606
1607exit:
1608        switch (rc) {
1609        case 0:
1610                this_cpu_inc(stats->stat[STAT_OK]);
1611                break;
1612        case -EINPROGRESS:
1613        case -EBUSY:
1614                this_cpu_inc(stats->stat[STAT_ASYNC]);
1615                *skb = NULL;
1616                return rc;
1617        default:
1618                this_cpu_inc(stats->stat[STAT_NOK]);
1619                if (rc == -ENOKEY)
1620                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1621                else if (rc == -EKEYREVOKED)
1622                        this_cpu_inc(stats->stat[STAT_BADKEYS]);
1623                kfree_skb(*skb);
1624                *skb = NULL;
1625                break;
1626        }
1627
1628        tipc_aead_put(aead);
1629        return rc;
1630}
1631
1632/**
1633 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1634 * @net: struct net
1635 * @rx: RX crypto handle
1636 * @skb: input/output message skb pointer
1637 * @b: bearer where the message has been received
1638 *
1639 * If the decryption is successful, the decrypted skb is returned directly or
1640 * as the callback, the encryption header and auth tag will be trimed out
1641 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1642 * Otherwise, the skb will be freed!
1643 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1644 * cluster key(s) can be taken for decryption (- recursive).
1645 *
1646 * Return:
1647 * 0                   : the decryption has successfully completed
1648 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1649 * -ENOKEY             : the decryption has failed due to no key
1650 * -EBADMSG            : the decryption has failed due to bad message
1651 * -ENOMEM             : the decryption has failed due to no memory
1652 * < 0                 : the decryption has failed due to other reasons
1653 */
1654int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1655                    struct sk_buff **skb, struct tipc_bearer *b)
1656{
1657        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1658        struct tipc_crypto_stats __percpu *stats;
1659        struct tipc_aead *aead = NULL;
1660        struct tipc_key key;
1661        int rc = -ENOKEY;
1662        u8 tx_key = 0;
1663
1664        /* New peer?
1665         * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1666         */
1667        if (unlikely(!rx))
1668                goto pick_tx;
1669
1670        /* Pick RX key according to TX key, three cases are possible:
1671         * 1) The current active key (likely) or;
1672         * 2) The pending (new or deactivated) key (if any) or;
1673         * 3) The passive or old active key (i.e. users > 0);
1674         */
1675        tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1676        key = rx->key;
1677        if (likely(tx_key == key.active))
1678                goto decrypt;
1679        if (tx_key == key.pending)
1680                goto decrypt;
1681        if (tx_key == key.passive) {
1682                rx->timer2 = jiffies;
1683                if (tipc_aead_users(rx->aead[key.passive]) > 0)
1684                        goto decrypt;
1685        }
1686
1687        /* Unknown key, let's try to align RX key(s) */
1688        if (tipc_crypto_key_try_align(rx, tx_key))
1689                goto decrypt;
1690
1691pick_tx:
1692        /* No key suitable? Try to pick one from TX... */
1693        aead = tipc_crypto_key_pick_tx(tx, rx, *skb);
1694        if (aead)
1695                goto decrypt;
1696        goto exit;
1697
1698decrypt:
1699        rcu_read_lock();
1700        if (!aead)
1701                aead = tipc_aead_get(rx->aead[tx_key]);
1702        rc = tipc_aead_decrypt(net, aead, *skb, b);
1703        rcu_read_unlock();
1704
1705exit:
1706        stats = ((rx) ?: tx)->stats;
1707        switch (rc) {
1708        case 0:
1709                this_cpu_inc(stats->stat[STAT_OK]);
1710                break;
1711        case -EINPROGRESS:
1712        case -EBUSY:
1713                this_cpu_inc(stats->stat[STAT_ASYNC]);
1714                *skb = NULL;
1715                return rc;
1716        default:
1717                this_cpu_inc(stats->stat[STAT_NOK]);
1718                if (rc == -ENOKEY) {
1719                        kfree_skb(*skb);
1720                        *skb = NULL;
1721                        if (rx)
1722                                tipc_node_put(rx->node);
1723                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1724                        return rc;
1725                } else if (rc == -EBADMSG) {
1726                        this_cpu_inc(stats->stat[STAT_BADMSGS]);
1727                }
1728                break;
1729        }
1730
1731        tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1732        return rc;
1733}
1734
1735static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1736                                     struct tipc_bearer *b,
1737                                     struct sk_buff **skb, int err)
1738{
1739        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1740        struct tipc_crypto *rx = aead->crypto;
1741        struct tipc_aead *tmp = NULL;
1742        struct tipc_ehdr *ehdr;
1743        struct tipc_node *n;
1744        u8 rx_key_active;
1745        bool destined;
1746
1747        /* Is this completed by TX? */
1748        if (unlikely(!rx->node)) {
1749                rx = skb_cb->tx_clone_ctx.rx;
1750#ifdef TIPC_CRYPTO_DEBUG
1751                pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1752                        (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1753                        (*skb)->next, skb_cb->flags);
1754                pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1755                        skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1756                        aead->crypto->aead[1], aead->crypto->aead[2],
1757                        aead->crypto->aead[3]);
1758#endif
1759                if (unlikely(err)) {
1760                        if (err == -EBADMSG && (*skb)->next)
1761                                tipc_rcv(net, (*skb)->next, b);
1762                        goto free_skb;
1763                }
1764
1765                if (likely((*skb)->next)) {
1766                        kfree_skb((*skb)->next);
1767                        (*skb)->next = NULL;
1768                }
1769                ehdr = (struct tipc_ehdr *)(*skb)->data;
1770                if (!rx) {
1771                        WARN_ON(ehdr->user != LINK_CONFIG);
1772                        n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1773                                             true);
1774                        rx = tipc_node_crypto_rx(n);
1775                        if (unlikely(!rx))
1776                                goto free_skb;
1777                }
1778
1779                /* Skip cloning this time as we had a RX pending key */
1780                if (rx->key.pending)
1781                        goto rcv;
1782                if (tipc_aead_clone(&tmp, aead) < 0)
1783                        goto rcv;
1784                if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) {
1785                        tipc_aead_free(&tmp->rcu);
1786                        goto rcv;
1787                }
1788                tipc_aead_put(aead);
1789                aead = tipc_aead_get(tmp);
1790        }
1791
1792        if (unlikely(err)) {
1793                tipc_aead_users_dec(aead, INT_MIN);
1794                goto free_skb;
1795        }
1796
1797        /* Set the RX key's user */
1798        tipc_aead_users_set(aead, 1);
1799
1800rcv:
1801        /* Mark this point, RX works */
1802        rx->timer1 = jiffies;
1803
1804        /* Remove ehdr & auth. tag prior to tipc_rcv() */
1805        ehdr = (struct tipc_ehdr *)(*skb)->data;
1806        destined = ehdr->destined;
1807        rx_key_active = ehdr->rx_key_active;
1808        skb_pull(*skb, tipc_ehdr_size(ehdr));
1809        pskb_trim(*skb, (*skb)->len - aead->authsize);
1810
1811        /* Validate TIPCv2 message */
1812        if (unlikely(!tipc_msg_validate(skb))) {
1813                pr_err_ratelimited("Packet dropped after decryption!\n");
1814                goto free_skb;
1815        }
1816
1817        /* Update peer RX active key & TX users */
1818        if (destined)
1819                tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb));
1820
1821        /* Mark skb decrypted */
1822        skb_cb->decrypted = 1;
1823
1824        /* Clear clone cxt if any */
1825        if (likely(!skb_cb->tx_clone_deferred))
1826                goto exit;
1827        skb_cb->tx_clone_deferred = 0;
1828        memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1829        goto exit;
1830
1831free_skb:
1832        kfree_skb(*skb);
1833        *skb = NULL;
1834
1835exit:
1836        tipc_aead_put(aead);
1837        if (rx)
1838                tipc_node_put(rx->node);
1839}
1840
1841static void tipc_crypto_do_cmd(struct net *net, int cmd)
1842{
1843        struct tipc_net *tn = tipc_net(net);
1844        struct tipc_crypto *tx = tn->crypto_tx, *rx;
1845        struct list_head *p;
1846        unsigned int stat;
1847        int i, j, cpu;
1848        char buf[200];
1849
1850        /* Currently only one command is supported */
1851        switch (cmd) {
1852        case 0xfff1:
1853                goto print_stats;
1854        default:
1855                return;
1856        }
1857
1858print_stats:
1859        /* Print a header */
1860        pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
1861
1862        /* Print key status */
1863        pr_info("Key status:\n");
1864        pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
1865                tipc_crypto_key_dump(tx, buf));
1866
1867        rcu_read_lock();
1868        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1869                rx = tipc_node_crypto_rx_by_list(p);
1870                pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
1871                        tipc_crypto_key_dump(rx, buf));
1872        }
1873        rcu_read_unlock();
1874
1875        /* Print crypto statistics */
1876        for (i = 0, j = 0; i < MAX_STATS; i++)
1877                j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
1878        pr_info("\nCounter     %s", buf);
1879
1880        memset(buf, '-', 115);
1881        buf[115] = '\0';
1882        pr_info("%s\n", buf);
1883
1884        j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
1885        for_each_possible_cpu(cpu) {
1886                for (i = 0; i < MAX_STATS; i++) {
1887                        stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
1888                        j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
1889                }
1890                pr_info("%s", buf);
1891                j = scnprintf(buf, 200, "%12s", " ");
1892        }
1893
1894        rcu_read_lock();
1895        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1896                rx = tipc_node_crypto_rx_by_list(p);
1897                j = scnprintf(buf, 200, "RX(%7.7s) ",
1898                              tipc_node_get_id_str(rx->node));
1899                for_each_possible_cpu(cpu) {
1900                        for (i = 0; i < MAX_STATS; i++) {
1901                                stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
1902                                j += scnprintf(buf + j, 200 - j, "|%11d ",
1903                                               stat);
1904                        }
1905                        pr_info("%s", buf);
1906                        j = scnprintf(buf, 200, "%12s", " ");
1907                }
1908        }
1909        rcu_read_unlock();
1910
1911        pr_info("\n======================== Done ========================\n");
1912}
1913
1914static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
1915{
1916        struct tipc_key key = c->key;
1917        struct tipc_aead *aead;
1918        int k, i = 0;
1919        char *s;
1920
1921        for (k = KEY_MIN; k <= KEY_MAX; k++) {
1922                if (k == key.passive)
1923                        s = "PAS";
1924                else if (k == key.active)
1925                        s = "ACT";
1926                else if (k == key.pending)
1927                        s = "PEN";
1928                else
1929                        s = "-";
1930                i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
1931
1932                rcu_read_lock();
1933                aead = rcu_dereference(c->aead[k]);
1934                if (aead)
1935                        i += scnprintf(buf + i, 200 - i,
1936                                       "{\"%s...\", \"%s\"}/%d:%d",
1937                                       aead->hint,
1938                                       (aead->mode == CLUSTER_KEY) ? "c" : "p",
1939                                       atomic_read(&aead->users),
1940                                       refcount_read(&aead->refcnt));
1941                rcu_read_unlock();
1942                i += scnprintf(buf + i, 200 - i, "\n");
1943        }
1944
1945        if (c->node)
1946                i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
1947                               atomic_read(&c->peer_rx_active));
1948
1949        return buf;
1950}
1951
1952#ifdef TIPC_CRYPTO_DEBUG
1953static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
1954                                  char *buf)
1955{
1956        struct tipc_key *key = &old;
1957        int k, i = 0;
1958        char *s;
1959
1960        /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
1961again:
1962        i += scnprintf(buf + i, 32 - i, "[");
1963        for (k = KEY_MIN; k <= KEY_MAX; k++) {
1964                if (k == key->passive)
1965                        s = "pas";
1966                else if (k == key->active)
1967                        s = "act";
1968                else if (k == key->pending)
1969                        s = "pen";
1970                else
1971                        s = "-";
1972                i += scnprintf(buf + i, 32 - i,
1973                               (k != KEY_MAX) ? "%s " : "%s", s);
1974        }
1975        if (key != &new) {
1976                i += scnprintf(buf + i, 32 - i, "] -> ");
1977                key = &new;
1978                goto again;
1979        }
1980        i += scnprintf(buf + i, 32 - i, "]");
1981        return buf;
1982}
1983#endif
1984