linux/tools/perf/bench/numa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
  12#include <subcmd/parse-options.h>
  13#include "../util/cloexec.h"
  14
  15#include "bench.h"
  16
  17#include <errno.h>
  18#include <sched.h>
  19#include <stdio.h>
  20#include <assert.h>
  21#include <malloc.h>
  22#include <signal.h>
  23#include <stdlib.h>
  24#include <string.h>
  25#include <unistd.h>
  26#include <sys/mman.h>
  27#include <sys/time.h>
  28#include <sys/resource.h>
  29#include <sys/wait.h>
  30#include <sys/prctl.h>
  31#include <sys/types.h>
  32#include <linux/kernel.h>
  33#include <linux/time64.h>
  34#include <linux/numa.h>
  35#include <linux/zalloc.h>
  36
  37#include <numa.h>
  38#include <numaif.h>
  39
  40#ifndef RUSAGE_THREAD
  41# define RUSAGE_THREAD 1
  42#endif
  43
  44/*
  45 * Regular printout to the terminal, supressed if -q is specified:
  46 */
  47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  48
  49/*
  50 * Debug printf:
  51 */
  52#undef dprintf
  53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  54
  55struct thread_data {
  56        int                     curr_cpu;
  57        cpu_set_t               bind_cpumask;
  58        int                     bind_node;
  59        u8                      *process_data;
  60        int                     process_nr;
  61        int                     thread_nr;
  62        int                     task_nr;
  63        unsigned int            loops_done;
  64        u64                     val;
  65        u64                     runtime_ns;
  66        u64                     system_time_ns;
  67        u64                     user_time_ns;
  68        double                  speed_gbs;
  69        pthread_mutex_t         *process_lock;
  70};
  71
  72/* Parameters set by options: */
  73
  74struct params {
  75        /* Startup synchronization: */
  76        bool                    serialize_startup;
  77
  78        /* Task hierarchy: */
  79        int                     nr_proc;
  80        int                     nr_threads;
  81
  82        /* Working set sizes: */
  83        const char              *mb_global_str;
  84        const char              *mb_proc_str;
  85        const char              *mb_proc_locked_str;
  86        const char              *mb_thread_str;
  87
  88        double                  mb_global;
  89        double                  mb_proc;
  90        double                  mb_proc_locked;
  91        double                  mb_thread;
  92
  93        /* Access patterns to the working set: */
  94        bool                    data_reads;
  95        bool                    data_writes;
  96        bool                    data_backwards;
  97        bool                    data_zero_memset;
  98        bool                    data_rand_walk;
  99        u32                     nr_loops;
 100        u32                     nr_secs;
 101        u32                     sleep_usecs;
 102
 103        /* Working set initialization: */
 104        bool                    init_zero;
 105        bool                    init_random;
 106        bool                    init_cpu0;
 107
 108        /* Misc options: */
 109        int                     show_details;
 110        int                     run_all;
 111        int                     thp;
 112
 113        long                    bytes_global;
 114        long                    bytes_process;
 115        long                    bytes_process_locked;
 116        long                    bytes_thread;
 117
 118        int                     nr_tasks;
 119        bool                    show_quiet;
 120
 121        bool                    show_convergence;
 122        bool                    measure_convergence;
 123
 124        int                     perturb_secs;
 125        int                     nr_cpus;
 126        int                     nr_nodes;
 127
 128        /* Affinity options -C and -N: */
 129        char                    *cpu_list_str;
 130        char                    *node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137        u8                      *data;
 138
 139        pthread_mutex_t         startup_mutex;
 140        int                     nr_tasks_started;
 141
 142        pthread_mutex_t         startup_done_mutex;
 143
 144        pthread_mutex_t         start_work_mutex;
 145        int                     nr_tasks_working;
 146
 147        pthread_mutex_t         stop_work_mutex;
 148        u64                     bytes_done;
 149
 150        struct thread_data      *threads;
 151
 152        /* Convergence latency measurement: */
 153        bool                    all_converged;
 154        bool                    stop_work;
 155
 156        int                     print_once;
 157
 158        struct params           p;
 159};
 160
 161static struct global_info       *g = NULL;
 162
 163static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 164static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 165
 166struct params p0;
 167
 168static const struct option options[] = {
 169        OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
 170        OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
 171
 172        OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
 173        OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
 174        OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 175        OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
 176
 177        OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
 178        OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
 179        OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
 180
 181        OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
 182        OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
 183        OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
 184        OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 185        OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
 186
 187
 188        OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
 189        OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
 190        OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
 191        OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
 192
 193        OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
 194        OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
 195        OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 196        OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 197                    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 198        OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
 199        OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
 200        OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 201
 202        /* Special option string parsing callbacks: */
 203        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 204                        "bind the first N tasks to these specific cpus (the rest is unbound)",
 205                        parse_cpus_opt),
 206        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 207                        "bind the first N tasks to these specific memory nodes (the rest is unbound)",
 208                        parse_nodes_opt),
 209        OPT_END()
 210};
 211
 212static const char * const bench_numa_usage[] = {
 213        "perf bench numa <options>",
 214        NULL
 215};
 216
 217static const char * const numa_usage[] = {
 218        "perf bench numa mem [<options>]",
 219        NULL
 220};
 221
 222/*
 223 * To get number of numa nodes present.
 224 */
 225static int nr_numa_nodes(void)
 226{
 227        int i, nr_nodes = 0;
 228
 229        for (i = 0; i < g->p.nr_nodes; i++) {
 230                if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 231                        nr_nodes++;
 232        }
 233
 234        return nr_nodes;
 235}
 236
 237/*
 238 * To check if given numa node is present.
 239 */
 240static int is_node_present(int node)
 241{
 242        return numa_bitmask_isbitset(numa_nodes_ptr, node);
 243}
 244
 245/*
 246 * To check given numa node has cpus.
 247 */
 248static bool node_has_cpus(int node)
 249{
 250        struct bitmask *cpu = numa_allocate_cpumask();
 251        unsigned int i;
 252
 253        if (cpu && !numa_node_to_cpus(node, cpu)) {
 254                for (i = 0; i < cpu->size; i++) {
 255                        if (numa_bitmask_isbitset(cpu, i))
 256                                return true;
 257                }
 258        }
 259
 260        return false; /* lets fall back to nocpus safely */
 261}
 262
 263static cpu_set_t bind_to_cpu(int target_cpu)
 264{
 265        cpu_set_t orig_mask, mask;
 266        int ret;
 267
 268        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 269        BUG_ON(ret);
 270
 271        CPU_ZERO(&mask);
 272
 273        if (target_cpu == -1) {
 274                int cpu;
 275
 276                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 277                        CPU_SET(cpu, &mask);
 278        } else {
 279                BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 280                CPU_SET(target_cpu, &mask);
 281        }
 282
 283        ret = sched_setaffinity(0, sizeof(mask), &mask);
 284        BUG_ON(ret);
 285
 286        return orig_mask;
 287}
 288
 289static cpu_set_t bind_to_node(int target_node)
 290{
 291        int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
 292        cpu_set_t orig_mask, mask;
 293        int cpu;
 294        int ret;
 295
 296        BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
 297        BUG_ON(!cpus_per_node);
 298
 299        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 300        BUG_ON(ret);
 301
 302        CPU_ZERO(&mask);
 303
 304        if (target_node == NUMA_NO_NODE) {
 305                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 306                        CPU_SET(cpu, &mask);
 307        } else {
 308                int cpu_start = (target_node + 0) * cpus_per_node;
 309                int cpu_stop  = (target_node + 1) * cpus_per_node;
 310
 311                BUG_ON(cpu_stop > g->p.nr_cpus);
 312
 313                for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 314                        CPU_SET(cpu, &mask);
 315        }
 316
 317        ret = sched_setaffinity(0, sizeof(mask), &mask);
 318        BUG_ON(ret);
 319
 320        return orig_mask;
 321}
 322
 323static void bind_to_cpumask(cpu_set_t mask)
 324{
 325        int ret;
 326
 327        ret = sched_setaffinity(0, sizeof(mask), &mask);
 328        BUG_ON(ret);
 329}
 330
 331static void mempol_restore(void)
 332{
 333        int ret;
 334
 335        ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 336
 337        BUG_ON(ret);
 338}
 339
 340static void bind_to_memnode(int node)
 341{
 342        unsigned long nodemask;
 343        int ret;
 344
 345        if (node == NUMA_NO_NODE)
 346                return;
 347
 348        BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 349        nodemask = 1L << node;
 350
 351        ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 352        dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 353
 354        BUG_ON(ret);
 355}
 356
 357#define HPSIZE (2*1024*1024)
 358
 359#define set_taskname(fmt...)                            \
 360do {                                                    \
 361        char name[20];                                  \
 362                                                        \
 363        snprintf(name, 20, fmt);                        \
 364        prctl(PR_SET_NAME, name);                       \
 365} while (0)
 366
 367static u8 *alloc_data(ssize_t bytes0, int map_flags,
 368                      int init_zero, int init_cpu0, int thp, int init_random)
 369{
 370        cpu_set_t orig_mask;
 371        ssize_t bytes;
 372        u8 *buf;
 373        int ret;
 374
 375        if (!bytes0)
 376                return NULL;
 377
 378        /* Allocate and initialize all memory on CPU#0: */
 379        if (init_cpu0) {
 380                int node = numa_node_of_cpu(0);
 381
 382                orig_mask = bind_to_node(node);
 383                bind_to_memnode(node);
 384        }
 385
 386        bytes = bytes0 + HPSIZE;
 387
 388        buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 389        BUG_ON(buf == (void *)-1);
 390
 391        if (map_flags == MAP_PRIVATE) {
 392                if (thp > 0) {
 393                        ret = madvise(buf, bytes, MADV_HUGEPAGE);
 394                        if (ret && !g->print_once) {
 395                                g->print_once = 1;
 396                                printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 397                        }
 398                }
 399                if (thp < 0) {
 400                        ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 401                        if (ret && !g->print_once) {
 402                                g->print_once = 1;
 403                                printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 404                        }
 405                }
 406        }
 407
 408        if (init_zero) {
 409                bzero(buf, bytes);
 410        } else {
 411                /* Initialize random contents, different in each word: */
 412                if (init_random) {
 413                        u64 *wbuf = (void *)buf;
 414                        long off = rand();
 415                        long i;
 416
 417                        for (i = 0; i < bytes/8; i++)
 418                                wbuf[i] = i + off;
 419                }
 420        }
 421
 422        /* Align to 2MB boundary: */
 423        buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 424
 425        /* Restore affinity: */
 426        if (init_cpu0) {
 427                bind_to_cpumask(orig_mask);
 428                mempol_restore();
 429        }
 430
 431        return buf;
 432}
 433
 434static void free_data(void *data, ssize_t bytes)
 435{
 436        int ret;
 437
 438        if (!data)
 439                return;
 440
 441        ret = munmap(data, bytes);
 442        BUG_ON(ret);
 443}
 444
 445/*
 446 * Create a shared memory buffer that can be shared between processes, zeroed:
 447 */
 448static void * zalloc_shared_data(ssize_t bytes)
 449{
 450        return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 451}
 452
 453/*
 454 * Create a shared memory buffer that can be shared between processes:
 455 */
 456static void * setup_shared_data(ssize_t bytes)
 457{
 458        return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 459}
 460
 461/*
 462 * Allocate process-local memory - this will either be shared between
 463 * threads of this process, or only be accessed by this thread:
 464 */
 465static void * setup_private_data(ssize_t bytes)
 466{
 467        return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 468}
 469
 470/*
 471 * Return a process-shared (global) mutex:
 472 */
 473static void init_global_mutex(pthread_mutex_t *mutex)
 474{
 475        pthread_mutexattr_t attr;
 476
 477        pthread_mutexattr_init(&attr);
 478        pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 479        pthread_mutex_init(mutex, &attr);
 480}
 481
 482static int parse_cpu_list(const char *arg)
 483{
 484        p0.cpu_list_str = strdup(arg);
 485
 486        dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 487
 488        return 0;
 489}
 490
 491static int parse_setup_cpu_list(void)
 492{
 493        struct thread_data *td;
 494        char *str0, *str;
 495        int t;
 496
 497        if (!g->p.cpu_list_str)
 498                return 0;
 499
 500        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 501
 502        str0 = str = strdup(g->p.cpu_list_str);
 503        t = 0;
 504
 505        BUG_ON(!str);
 506
 507        tprintf("# binding tasks to CPUs:\n");
 508        tprintf("#  ");
 509
 510        while (true) {
 511                int bind_cpu, bind_cpu_0, bind_cpu_1;
 512                char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 513                int bind_len;
 514                int step;
 515                int mul;
 516
 517                tok = strsep(&str, ",");
 518                if (!tok)
 519                        break;
 520
 521                tok_end = strstr(tok, "-");
 522
 523                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 524                if (!tok_end) {
 525                        /* Single CPU specified: */
 526                        bind_cpu_0 = bind_cpu_1 = atol(tok);
 527                } else {
 528                        /* CPU range specified (for example: "5-11"): */
 529                        bind_cpu_0 = atol(tok);
 530                        bind_cpu_1 = atol(tok_end + 1);
 531                }
 532
 533                step = 1;
 534                tok_step = strstr(tok, "#");
 535                if (tok_step) {
 536                        step = atol(tok_step + 1);
 537                        BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 538                }
 539
 540                /*
 541                 * Mask length.
 542                 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 543                 * where the _4 means the next 4 CPUs are allowed.
 544                 */
 545                bind_len = 1;
 546                tok_len = strstr(tok, "_");
 547                if (tok_len) {
 548                        bind_len = atol(tok_len + 1);
 549                        BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 550                }
 551
 552                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 553                mul = 1;
 554                tok_mul = strstr(tok, "x");
 555                if (tok_mul) {
 556                        mul = atol(tok_mul + 1);
 557                        BUG_ON(mul <= 0);
 558                }
 559
 560                dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 561
 562                if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 563                        printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 564                        return -1;
 565                }
 566
 567                BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 568                BUG_ON(bind_cpu_0 > bind_cpu_1);
 569
 570                for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 571                        int i;
 572
 573                        for (i = 0; i < mul; i++) {
 574                                int cpu;
 575
 576                                if (t >= g->p.nr_tasks) {
 577                                        printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 578                                        goto out;
 579                                }
 580                                td = g->threads + t;
 581
 582                                if (t)
 583                                        tprintf(",");
 584                                if (bind_len > 1) {
 585                                        tprintf("%2d/%d", bind_cpu, bind_len);
 586                                } else {
 587                                        tprintf("%2d", bind_cpu);
 588                                }
 589
 590                                CPU_ZERO(&td->bind_cpumask);
 591                                for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 592                                        BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 593                                        CPU_SET(cpu, &td->bind_cpumask);
 594                                }
 595                                t++;
 596                        }
 597                }
 598        }
 599out:
 600
 601        tprintf("\n");
 602
 603        if (t < g->p.nr_tasks)
 604                printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 605
 606        free(str0);
 607        return 0;
 608}
 609
 610static int parse_cpus_opt(const struct option *opt __maybe_unused,
 611                          const char *arg, int unset __maybe_unused)
 612{
 613        if (!arg)
 614                return -1;
 615
 616        return parse_cpu_list(arg);
 617}
 618
 619static int parse_node_list(const char *arg)
 620{
 621        p0.node_list_str = strdup(arg);
 622
 623        dprintf("got NODE list: {%s}\n", p0.node_list_str);
 624
 625        return 0;
 626}
 627
 628static int parse_setup_node_list(void)
 629{
 630        struct thread_data *td;
 631        char *str0, *str;
 632        int t;
 633
 634        if (!g->p.node_list_str)
 635                return 0;
 636
 637        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 638
 639        str0 = str = strdup(g->p.node_list_str);
 640        t = 0;
 641
 642        BUG_ON(!str);
 643
 644        tprintf("# binding tasks to NODEs:\n");
 645        tprintf("# ");
 646
 647        while (true) {
 648                int bind_node, bind_node_0, bind_node_1;
 649                char *tok, *tok_end, *tok_step, *tok_mul;
 650                int step;
 651                int mul;
 652
 653                tok = strsep(&str, ",");
 654                if (!tok)
 655                        break;
 656
 657                tok_end = strstr(tok, "-");
 658
 659                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 660                if (!tok_end) {
 661                        /* Single NODE specified: */
 662                        bind_node_0 = bind_node_1 = atol(tok);
 663                } else {
 664                        /* NODE range specified (for example: "5-11"): */
 665                        bind_node_0 = atol(tok);
 666                        bind_node_1 = atol(tok_end + 1);
 667                }
 668
 669                step = 1;
 670                tok_step = strstr(tok, "#");
 671                if (tok_step) {
 672                        step = atol(tok_step + 1);
 673                        BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 674                }
 675
 676                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 677                mul = 1;
 678                tok_mul = strstr(tok, "x");
 679                if (tok_mul) {
 680                        mul = atol(tok_mul + 1);
 681                        BUG_ON(mul <= 0);
 682                }
 683
 684                dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 685
 686                if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 687                        printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 688                        return -1;
 689                }
 690
 691                BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 692                BUG_ON(bind_node_0 > bind_node_1);
 693
 694                for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 695                        int i;
 696
 697                        for (i = 0; i < mul; i++) {
 698                                if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 699                                        printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 700                                        goto out;
 701                                }
 702                                td = g->threads + t;
 703
 704                                if (!t)
 705                                        tprintf(" %2d", bind_node);
 706                                else
 707                                        tprintf(",%2d", bind_node);
 708
 709                                td->bind_node = bind_node;
 710                                t++;
 711                        }
 712                }
 713        }
 714out:
 715
 716        tprintf("\n");
 717
 718        if (t < g->p.nr_tasks)
 719                printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 720
 721        free(str0);
 722        return 0;
 723}
 724
 725static int parse_nodes_opt(const struct option *opt __maybe_unused,
 726                          const char *arg, int unset __maybe_unused)
 727{
 728        if (!arg)
 729                return -1;
 730
 731        return parse_node_list(arg);
 732
 733        return 0;
 734}
 735
 736#define BIT(x) (1ul << x)
 737
 738static inline uint32_t lfsr_32(uint32_t lfsr)
 739{
 740        const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 741        return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 742}
 743
 744/*
 745 * Make sure there's real data dependency to RAM (when read
 746 * accesses are enabled), so the compiler, the CPU and the
 747 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 748 * accesses:
 749 */
 750static inline u64 access_data(u64 *data, u64 val)
 751{
 752        if (g->p.data_reads)
 753                val += *data;
 754        if (g->p.data_writes)
 755                *data = val + 1;
 756        return val;
 757}
 758
 759/*
 760 * The worker process does two types of work, a forwards going
 761 * loop and a backwards going loop.
 762 *
 763 * We do this so that on multiprocessor systems we do not create
 764 * a 'train' of processing, with highly synchronized processes,
 765 * skewing the whole benchmark.
 766 */
 767static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 768{
 769        long words = bytes/sizeof(u64);
 770        u64 *data = (void *)__data;
 771        long chunk_0, chunk_1;
 772        u64 *d0, *d, *d1;
 773        long off;
 774        long i;
 775
 776        BUG_ON(!data && words);
 777        BUG_ON(data && !words);
 778
 779        if (!data)
 780                return val;
 781
 782        /* Very simple memset() work variant: */
 783        if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 784                bzero(data, bytes);
 785                return val;
 786        }
 787
 788        /* Spread out by PID/TID nr and by loop nr: */
 789        chunk_0 = words/nr_max;
 790        chunk_1 = words/g->p.nr_loops;
 791        off = nr*chunk_0 + loop*chunk_1;
 792
 793        while (off >= words)
 794                off -= words;
 795
 796        if (g->p.data_rand_walk) {
 797                u32 lfsr = nr + loop + val;
 798                int j;
 799
 800                for (i = 0; i < words/1024; i++) {
 801                        long start, end;
 802
 803                        lfsr = lfsr_32(lfsr);
 804
 805                        start = lfsr % words;
 806                        end = min(start + 1024, words-1);
 807
 808                        if (g->p.data_zero_memset) {
 809                                bzero(data + start, (end-start) * sizeof(u64));
 810                        } else {
 811                                for (j = start; j < end; j++)
 812                                        val = access_data(data + j, val);
 813                        }
 814                }
 815        } else if (!g->p.data_backwards || (nr + loop) & 1) {
 816
 817                d0 = data + off;
 818                d  = data + off + 1;
 819                d1 = data + words;
 820
 821                /* Process data forwards: */
 822                for (;;) {
 823                        if (unlikely(d >= d1))
 824                                d = data;
 825                        if (unlikely(d == d0))
 826                                break;
 827
 828                        val = access_data(d, val);
 829
 830                        d++;
 831                }
 832        } else {
 833                /* Process data backwards: */
 834
 835                d0 = data + off;
 836                d  = data + off - 1;
 837                d1 = data + words;
 838
 839                /* Process data forwards: */
 840                for (;;) {
 841                        if (unlikely(d < data))
 842                                d = data + words-1;
 843                        if (unlikely(d == d0))
 844                                break;
 845
 846                        val = access_data(d, val);
 847
 848                        d--;
 849                }
 850        }
 851
 852        return val;
 853}
 854
 855static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 856{
 857        unsigned int cpu;
 858
 859        cpu = sched_getcpu();
 860
 861        g->threads[task_nr].curr_cpu = cpu;
 862        prctl(0, bytes_worked);
 863}
 864
 865#define MAX_NR_NODES    64
 866
 867/*
 868 * Count the number of nodes a process's threads
 869 * are spread out on.
 870 *
 871 * A count of 1 means that the process is compressed
 872 * to a single node. A count of g->p.nr_nodes means it's
 873 * spread out on the whole system.
 874 */
 875static int count_process_nodes(int process_nr)
 876{
 877        char node_present[MAX_NR_NODES] = { 0, };
 878        int nodes;
 879        int n, t;
 880
 881        for (t = 0; t < g->p.nr_threads; t++) {
 882                struct thread_data *td;
 883                int task_nr;
 884                int node;
 885
 886                task_nr = process_nr*g->p.nr_threads + t;
 887                td = g->threads + task_nr;
 888
 889                node = numa_node_of_cpu(td->curr_cpu);
 890                if (node < 0) /* curr_cpu was likely still -1 */
 891                        return 0;
 892
 893                node_present[node] = 1;
 894        }
 895
 896        nodes = 0;
 897
 898        for (n = 0; n < MAX_NR_NODES; n++)
 899                nodes += node_present[n];
 900
 901        return nodes;
 902}
 903
 904/*
 905 * Count the number of distinct process-threads a node contains.
 906 *
 907 * A count of 1 means that the node contains only a single
 908 * process. If all nodes on the system contain at most one
 909 * process then we are well-converged.
 910 */
 911static int count_node_processes(int node)
 912{
 913        int processes = 0;
 914        int t, p;
 915
 916        for (p = 0; p < g->p.nr_proc; p++) {
 917                for (t = 0; t < g->p.nr_threads; t++) {
 918                        struct thread_data *td;
 919                        int task_nr;
 920                        int n;
 921
 922                        task_nr = p*g->p.nr_threads + t;
 923                        td = g->threads + task_nr;
 924
 925                        n = numa_node_of_cpu(td->curr_cpu);
 926                        if (n == node) {
 927                                processes++;
 928                                break;
 929                        }
 930                }
 931        }
 932
 933        return processes;
 934}
 935
 936static void calc_convergence_compression(int *strong)
 937{
 938        unsigned int nodes_min, nodes_max;
 939        int p;
 940
 941        nodes_min = -1;
 942        nodes_max =  0;
 943
 944        for (p = 0; p < g->p.nr_proc; p++) {
 945                unsigned int nodes = count_process_nodes(p);
 946
 947                if (!nodes) {
 948                        *strong = 0;
 949                        return;
 950                }
 951
 952                nodes_min = min(nodes, nodes_min);
 953                nodes_max = max(nodes, nodes_max);
 954        }
 955
 956        /* Strong convergence: all threads compress on a single node: */
 957        if (nodes_min == 1 && nodes_max == 1) {
 958                *strong = 1;
 959        } else {
 960                *strong = 0;
 961                tprintf(" {%d-%d}", nodes_min, nodes_max);
 962        }
 963}
 964
 965static void calc_convergence(double runtime_ns_max, double *convergence)
 966{
 967        unsigned int loops_done_min, loops_done_max;
 968        int process_groups;
 969        int nodes[MAX_NR_NODES];
 970        int distance;
 971        int nr_min;
 972        int nr_max;
 973        int strong;
 974        int sum;
 975        int nr;
 976        int node;
 977        int cpu;
 978        int t;
 979
 980        if (!g->p.show_convergence && !g->p.measure_convergence)
 981                return;
 982
 983        for (node = 0; node < g->p.nr_nodes; node++)
 984                nodes[node] = 0;
 985
 986        loops_done_min = -1;
 987        loops_done_max = 0;
 988
 989        for (t = 0; t < g->p.nr_tasks; t++) {
 990                struct thread_data *td = g->threads + t;
 991                unsigned int loops_done;
 992
 993                cpu = td->curr_cpu;
 994
 995                /* Not all threads have written it yet: */
 996                if (cpu < 0)
 997                        continue;
 998
 999                node = numa_node_of_cpu(cpu);
1000
1001                nodes[node]++;
1002
1003                loops_done = td->loops_done;
1004                loops_done_min = min(loops_done, loops_done_min);
1005                loops_done_max = max(loops_done, loops_done_max);
1006        }
1007
1008        nr_max = 0;
1009        nr_min = g->p.nr_tasks;
1010        sum = 0;
1011
1012        for (node = 0; node < g->p.nr_nodes; node++) {
1013                if (!is_node_present(node))
1014                        continue;
1015                nr = nodes[node];
1016                nr_min = min(nr, nr_min);
1017                nr_max = max(nr, nr_max);
1018                sum += nr;
1019        }
1020        BUG_ON(nr_min > nr_max);
1021
1022        BUG_ON(sum > g->p.nr_tasks);
1023
1024        if (0 && (sum < g->p.nr_tasks))
1025                return;
1026
1027        /*
1028         * Count the number of distinct process groups present
1029         * on nodes - when we are converged this will decrease
1030         * to g->p.nr_proc:
1031         */
1032        process_groups = 0;
1033
1034        for (node = 0; node < g->p.nr_nodes; node++) {
1035                int processes;
1036
1037                if (!is_node_present(node))
1038                        continue;
1039                processes = count_node_processes(node);
1040                nr = nodes[node];
1041                tprintf(" %2d/%-2d", nr, processes);
1042
1043                process_groups += processes;
1044        }
1045
1046        distance = nr_max - nr_min;
1047
1048        tprintf(" [%2d/%-2d]", distance, process_groups);
1049
1050        tprintf(" l:%3d-%-3d (%3d)",
1051                loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1052
1053        if (loops_done_min && loops_done_max) {
1054                double skew = 1.0 - (double)loops_done_min/loops_done_max;
1055
1056                tprintf(" [%4.1f%%]", skew * 100.0);
1057        }
1058
1059        calc_convergence_compression(&strong);
1060
1061        if (strong && process_groups == g->p.nr_proc) {
1062                if (!*convergence) {
1063                        *convergence = runtime_ns_max;
1064                        tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1065                        if (g->p.measure_convergence) {
1066                                g->all_converged = true;
1067                                g->stop_work = true;
1068                        }
1069                }
1070        } else {
1071                if (*convergence) {
1072                        tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1073                        *convergence = 0;
1074                }
1075                tprintf("\n");
1076        }
1077}
1078
1079static void show_summary(double runtime_ns_max, int l, double *convergence)
1080{
1081        tprintf("\r #  %5.1f%%  [%.1f mins]",
1082                (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1083
1084        calc_convergence(runtime_ns_max, convergence);
1085
1086        if (g->p.show_details >= 0)
1087                fflush(stdout);
1088}
1089
1090static void *worker_thread(void *__tdata)
1091{
1092        struct thread_data *td = __tdata;
1093        struct timeval start0, start, stop, diff;
1094        int process_nr = td->process_nr;
1095        int thread_nr = td->thread_nr;
1096        unsigned long last_perturbance;
1097        int task_nr = td->task_nr;
1098        int details = g->p.show_details;
1099        int first_task, last_task;
1100        double convergence = 0;
1101        u64 val = td->val;
1102        double runtime_ns_max;
1103        u8 *global_data;
1104        u8 *process_data;
1105        u8 *thread_data;
1106        u64 bytes_done, secs;
1107        long work_done;
1108        u32 l;
1109        struct rusage rusage;
1110
1111        bind_to_cpumask(td->bind_cpumask);
1112        bind_to_memnode(td->bind_node);
1113
1114        set_taskname("thread %d/%d", process_nr, thread_nr);
1115
1116        global_data = g->data;
1117        process_data = td->process_data;
1118        thread_data = setup_private_data(g->p.bytes_thread);
1119
1120        bytes_done = 0;
1121
1122        last_task = 0;
1123        if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1124                last_task = 1;
1125
1126        first_task = 0;
1127        if (process_nr == 0 && thread_nr == 0)
1128                first_task = 1;
1129
1130        if (details >= 2) {
1131                printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1132                        process_nr, thread_nr, global_data, process_data, thread_data);
1133        }
1134
1135        if (g->p.serialize_startup) {
1136                pthread_mutex_lock(&g->startup_mutex);
1137                g->nr_tasks_started++;
1138                pthread_mutex_unlock(&g->startup_mutex);
1139
1140                /* Here we will wait for the main process to start us all at once: */
1141                pthread_mutex_lock(&g->start_work_mutex);
1142                g->nr_tasks_working++;
1143
1144                /* Last one wake the main process: */
1145                if (g->nr_tasks_working == g->p.nr_tasks)
1146                        pthread_mutex_unlock(&g->startup_done_mutex);
1147
1148                pthread_mutex_unlock(&g->start_work_mutex);
1149        }
1150
1151        gettimeofday(&start0, NULL);
1152
1153        start = stop = start0;
1154        last_perturbance = start.tv_sec;
1155
1156        for (l = 0; l < g->p.nr_loops; l++) {
1157                start = stop;
1158
1159                if (g->stop_work)
1160                        break;
1161
1162                val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1163                val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1164                val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1165
1166                if (g->p.sleep_usecs) {
1167                        pthread_mutex_lock(td->process_lock);
1168                        usleep(g->p.sleep_usecs);
1169                        pthread_mutex_unlock(td->process_lock);
1170                }
1171                /*
1172                 * Amount of work to be done under a process-global lock:
1173                 */
1174                if (g->p.bytes_process_locked) {
1175                        pthread_mutex_lock(td->process_lock);
1176                        val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1177                        pthread_mutex_unlock(td->process_lock);
1178                }
1179
1180                work_done = g->p.bytes_global + g->p.bytes_process +
1181                            g->p.bytes_process_locked + g->p.bytes_thread;
1182
1183                update_curr_cpu(task_nr, work_done);
1184                bytes_done += work_done;
1185
1186                if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1187                        continue;
1188
1189                td->loops_done = l;
1190
1191                gettimeofday(&stop, NULL);
1192
1193                /* Check whether our max runtime timed out: */
1194                if (g->p.nr_secs) {
1195                        timersub(&stop, &start0, &diff);
1196                        if ((u32)diff.tv_sec >= g->p.nr_secs) {
1197                                g->stop_work = true;
1198                                break;
1199                        }
1200                }
1201
1202                /* Update the summary at most once per second: */
1203                if (start.tv_sec == stop.tv_sec)
1204                        continue;
1205
1206                /*
1207                 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1208                 * by migrating to CPU#0:
1209                 */
1210                if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1211                        cpu_set_t orig_mask;
1212                        int target_cpu;
1213                        int this_cpu;
1214
1215                        last_perturbance = stop.tv_sec;
1216
1217                        /*
1218                         * Depending on where we are running, move into
1219                         * the other half of the system, to create some
1220                         * real disturbance:
1221                         */
1222                        this_cpu = g->threads[task_nr].curr_cpu;
1223                        if (this_cpu < g->p.nr_cpus/2)
1224                                target_cpu = g->p.nr_cpus-1;
1225                        else
1226                                target_cpu = 0;
1227
1228                        orig_mask = bind_to_cpu(target_cpu);
1229
1230                        /* Here we are running on the target CPU already */
1231                        if (details >= 1)
1232                                printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1233
1234                        bind_to_cpumask(orig_mask);
1235                }
1236
1237                if (details >= 3) {
1238                        timersub(&stop, &start, &diff);
1239                        runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1240                        runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1241
1242                        if (details >= 0) {
1243                                printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1244                                        process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1245                        }
1246                        fflush(stdout);
1247                }
1248                if (!last_task)
1249                        continue;
1250
1251                timersub(&stop, &start0, &diff);
1252                runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1253                runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1254
1255                show_summary(runtime_ns_max, l, &convergence);
1256        }
1257
1258        gettimeofday(&stop, NULL);
1259        timersub(&stop, &start0, &diff);
1260        td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1261        td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1262        secs = td->runtime_ns / NSEC_PER_SEC;
1263        td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1264
1265        getrusage(RUSAGE_THREAD, &rusage);
1266        td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1267        td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1268        td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1269        td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1270
1271        free_data(thread_data, g->p.bytes_thread);
1272
1273        pthread_mutex_lock(&g->stop_work_mutex);
1274        g->bytes_done += bytes_done;
1275        pthread_mutex_unlock(&g->stop_work_mutex);
1276
1277        return NULL;
1278}
1279
1280/*
1281 * A worker process starts a couple of threads:
1282 */
1283static void worker_process(int process_nr)
1284{
1285        pthread_mutex_t process_lock;
1286        struct thread_data *td;
1287        pthread_t *pthreads;
1288        u8 *process_data;
1289        int task_nr;
1290        int ret;
1291        int t;
1292
1293        pthread_mutex_init(&process_lock, NULL);
1294        set_taskname("process %d", process_nr);
1295
1296        /*
1297         * Pick up the memory policy and the CPU binding of our first thread,
1298         * so that we initialize memory accordingly:
1299         */
1300        task_nr = process_nr*g->p.nr_threads;
1301        td = g->threads + task_nr;
1302
1303        bind_to_memnode(td->bind_node);
1304        bind_to_cpumask(td->bind_cpumask);
1305
1306        pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1307        process_data = setup_private_data(g->p.bytes_process);
1308
1309        if (g->p.show_details >= 3) {
1310                printf(" # process %2d global mem: %p, process mem: %p\n",
1311                        process_nr, g->data, process_data);
1312        }
1313
1314        for (t = 0; t < g->p.nr_threads; t++) {
1315                task_nr = process_nr*g->p.nr_threads + t;
1316                td = g->threads + task_nr;
1317
1318                td->process_data = process_data;
1319                td->process_nr   = process_nr;
1320                td->thread_nr    = t;
1321                td->task_nr      = task_nr;
1322                td->val          = rand();
1323                td->curr_cpu     = -1;
1324                td->process_lock = &process_lock;
1325
1326                ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1327                BUG_ON(ret);
1328        }
1329
1330        for (t = 0; t < g->p.nr_threads; t++) {
1331                ret = pthread_join(pthreads[t], NULL);
1332                BUG_ON(ret);
1333        }
1334
1335        free_data(process_data, g->p.bytes_process);
1336        free(pthreads);
1337}
1338
1339static void print_summary(void)
1340{
1341        if (g->p.show_details < 0)
1342                return;
1343
1344        printf("\n ###\n");
1345        printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1346                g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1347        printf(" #      %5dx %5ldMB global  shared mem operations\n",
1348                        g->p.nr_loops, g->p.bytes_global/1024/1024);
1349        printf(" #      %5dx %5ldMB process shared mem operations\n",
1350                        g->p.nr_loops, g->p.bytes_process/1024/1024);
1351        printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1352                        g->p.nr_loops, g->p.bytes_thread/1024/1024);
1353
1354        printf(" ###\n");
1355
1356        printf("\n ###\n"); fflush(stdout);
1357}
1358
1359static void init_thread_data(void)
1360{
1361        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1362        int t;
1363
1364        g->threads = zalloc_shared_data(size);
1365
1366        for (t = 0; t < g->p.nr_tasks; t++) {
1367                struct thread_data *td = g->threads + t;
1368                int cpu;
1369
1370                /* Allow all nodes by default: */
1371                td->bind_node = NUMA_NO_NODE;
1372
1373                /* Allow all CPUs by default: */
1374                CPU_ZERO(&td->bind_cpumask);
1375                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1376                        CPU_SET(cpu, &td->bind_cpumask);
1377        }
1378}
1379
1380static void deinit_thread_data(void)
1381{
1382        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1383
1384        free_data(g->threads, size);
1385}
1386
1387static int init(void)
1388{
1389        g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1390
1391        /* Copy over options: */
1392        g->p = p0;
1393
1394        g->p.nr_cpus = numa_num_configured_cpus();
1395
1396        g->p.nr_nodes = numa_max_node() + 1;
1397
1398        /* char array in count_process_nodes(): */
1399        BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1400
1401        if (g->p.show_quiet && !g->p.show_details)
1402                g->p.show_details = -1;
1403
1404        /* Some memory should be specified: */
1405        if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1406                return -1;
1407
1408        if (g->p.mb_global_str) {
1409                g->p.mb_global = atof(g->p.mb_global_str);
1410                BUG_ON(g->p.mb_global < 0);
1411        }
1412
1413        if (g->p.mb_proc_str) {
1414                g->p.mb_proc = atof(g->p.mb_proc_str);
1415                BUG_ON(g->p.mb_proc < 0);
1416        }
1417
1418        if (g->p.mb_proc_locked_str) {
1419                g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1420                BUG_ON(g->p.mb_proc_locked < 0);
1421                BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1422        }
1423
1424        if (g->p.mb_thread_str) {
1425                g->p.mb_thread = atof(g->p.mb_thread_str);
1426                BUG_ON(g->p.mb_thread < 0);
1427        }
1428
1429        BUG_ON(g->p.nr_threads <= 0);
1430        BUG_ON(g->p.nr_proc <= 0);
1431
1432        g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1433
1434        g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1435        g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1436        g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1437        g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1438
1439        g->data = setup_shared_data(g->p.bytes_global);
1440
1441        /* Startup serialization: */
1442        init_global_mutex(&g->start_work_mutex);
1443        init_global_mutex(&g->startup_mutex);
1444        init_global_mutex(&g->startup_done_mutex);
1445        init_global_mutex(&g->stop_work_mutex);
1446
1447        init_thread_data();
1448
1449        tprintf("#\n");
1450        if (parse_setup_cpu_list() || parse_setup_node_list())
1451                return -1;
1452        tprintf("#\n");
1453
1454        print_summary();
1455
1456        return 0;
1457}
1458
1459static void deinit(void)
1460{
1461        free_data(g->data, g->p.bytes_global);
1462        g->data = NULL;
1463
1464        deinit_thread_data();
1465
1466        free_data(g, sizeof(*g));
1467        g = NULL;
1468}
1469
1470/*
1471 * Print a short or long result, depending on the verbosity setting:
1472 */
1473static void print_res(const char *name, double val,
1474                      const char *txt_unit, const char *txt_short, const char *txt_long)
1475{
1476        if (!name)
1477                name = "main,";
1478
1479        if (!g->p.show_quiet)
1480                printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1481        else
1482                printf(" %14.3f %s\n", val, txt_long);
1483}
1484
1485static int __bench_numa(const char *name)
1486{
1487        struct timeval start, stop, diff;
1488        u64 runtime_ns_min, runtime_ns_sum;
1489        pid_t *pids, pid, wpid;
1490        double delta_runtime;
1491        double runtime_avg;
1492        double runtime_sec_max;
1493        double runtime_sec_min;
1494        int wait_stat;
1495        double bytes;
1496        int i, t, p;
1497
1498        if (init())
1499                return -1;
1500
1501        pids = zalloc(g->p.nr_proc * sizeof(*pids));
1502        pid = -1;
1503
1504        /* All threads try to acquire it, this way we can wait for them to start up: */
1505        pthread_mutex_lock(&g->start_work_mutex);
1506
1507        if (g->p.serialize_startup) {
1508                tprintf(" #\n");
1509                tprintf(" # Startup synchronization: ..."); fflush(stdout);
1510        }
1511
1512        gettimeofday(&start, NULL);
1513
1514        for (i = 0; i < g->p.nr_proc; i++) {
1515                pid = fork();
1516                dprintf(" # process %2d: PID %d\n", i, pid);
1517
1518                BUG_ON(pid < 0);
1519                if (!pid) {
1520                        /* Child process: */
1521                        worker_process(i);
1522
1523                        exit(0);
1524                }
1525                pids[i] = pid;
1526
1527        }
1528        /* Wait for all the threads to start up: */
1529        while (g->nr_tasks_started != g->p.nr_tasks)
1530                usleep(USEC_PER_MSEC);
1531
1532        BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1533
1534        if (g->p.serialize_startup) {
1535                double startup_sec;
1536
1537                pthread_mutex_lock(&g->startup_done_mutex);
1538
1539                /* This will start all threads: */
1540                pthread_mutex_unlock(&g->start_work_mutex);
1541
1542                /* This mutex is locked - the last started thread will wake us: */
1543                pthread_mutex_lock(&g->startup_done_mutex);
1544
1545                gettimeofday(&stop, NULL);
1546
1547                timersub(&stop, &start, &diff);
1548
1549                startup_sec = diff.tv_sec * NSEC_PER_SEC;
1550                startup_sec += diff.tv_usec * NSEC_PER_USEC;
1551                startup_sec /= NSEC_PER_SEC;
1552
1553                tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1554                tprintf(" #\n");
1555
1556                start = stop;
1557                pthread_mutex_unlock(&g->startup_done_mutex);
1558        } else {
1559                gettimeofday(&start, NULL);
1560        }
1561
1562        /* Parent process: */
1563
1564
1565        for (i = 0; i < g->p.nr_proc; i++) {
1566                wpid = waitpid(pids[i], &wait_stat, 0);
1567                BUG_ON(wpid < 0);
1568                BUG_ON(!WIFEXITED(wait_stat));
1569
1570        }
1571
1572        runtime_ns_sum = 0;
1573        runtime_ns_min = -1LL;
1574
1575        for (t = 0; t < g->p.nr_tasks; t++) {
1576                u64 thread_runtime_ns = g->threads[t].runtime_ns;
1577
1578                runtime_ns_sum += thread_runtime_ns;
1579                runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1580        }
1581
1582        gettimeofday(&stop, NULL);
1583        timersub(&stop, &start, &diff);
1584
1585        BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1586
1587        tprintf("\n ###\n");
1588        tprintf("\n");
1589
1590        runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1591        runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1592        runtime_sec_max /= NSEC_PER_SEC;
1593
1594        runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1595
1596        bytes = g->bytes_done;
1597        runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1598
1599        if (g->p.measure_convergence) {
1600                print_res(name, runtime_sec_max,
1601                        "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1602        }
1603
1604        print_res(name, runtime_sec_max,
1605                "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1606
1607        print_res(name, runtime_sec_min,
1608                "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1609
1610        print_res(name, runtime_avg,
1611                "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1612
1613        delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1614        print_res(name, delta_runtime / runtime_sec_max * 100.0,
1615                "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1616
1617        print_res(name, bytes / g->p.nr_tasks / 1e9,
1618                "GB,", "data/thread",           "GB data processed, per thread");
1619
1620        print_res(name, bytes / 1e9,
1621                "GB,", "data-total",            "GB data processed, total");
1622
1623        print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1624                "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1625
1626        print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1627                "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1628
1629        print_res(name, bytes / runtime_sec_max / 1e9,
1630                "GB/sec,", "total-speed",       "GB/sec total speed");
1631
1632        if (g->p.show_details >= 2) {
1633                char tname[14 + 2 * 10 + 1];
1634                struct thread_data *td;
1635                for (p = 0; p < g->p.nr_proc; p++) {
1636                        for (t = 0; t < g->p.nr_threads; t++) {
1637                                memset(tname, 0, sizeof(tname));
1638                                td = g->threads + p*g->p.nr_threads + t;
1639                                snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1640                                print_res(tname, td->speed_gbs,
1641                                        "GB/sec",       "thread-speed", "GB/sec/thread speed");
1642                                print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1643                                        "secs", "thread-system-time", "system CPU time/thread");
1644                                print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1645                                        "secs", "thread-user-time", "user CPU time/thread");
1646                        }
1647                }
1648        }
1649
1650        free(pids);
1651
1652        deinit();
1653
1654        return 0;
1655}
1656
1657#define MAX_ARGS 50
1658
1659static int command_size(const char **argv)
1660{
1661        int size = 0;
1662
1663        while (*argv) {
1664                size++;
1665                argv++;
1666        }
1667
1668        BUG_ON(size >= MAX_ARGS);
1669
1670        return size;
1671}
1672
1673static void init_params(struct params *p, const char *name, int argc, const char **argv)
1674{
1675        int i;
1676
1677        printf("\n # Running %s \"perf bench numa", name);
1678
1679        for (i = 0; i < argc; i++)
1680                printf(" %s", argv[i]);
1681
1682        printf("\"\n");
1683
1684        memset(p, 0, sizeof(*p));
1685
1686        /* Initialize nonzero defaults: */
1687
1688        p->serialize_startup            = 1;
1689        p->data_reads                   = true;
1690        p->data_writes                  = true;
1691        p->data_backwards               = true;
1692        p->data_rand_walk               = true;
1693        p->nr_loops                     = -1;
1694        p->init_random                  = true;
1695        p->mb_global_str                = "1";
1696        p->nr_proc                      = 1;
1697        p->nr_threads                   = 1;
1698        p->nr_secs                      = 5;
1699        p->run_all                      = argc == 1;
1700}
1701
1702static int run_bench_numa(const char *name, const char **argv)
1703{
1704        int argc = command_size(argv);
1705
1706        init_params(&p0, name, argc, argv);
1707        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1708        if (argc)
1709                goto err;
1710
1711        if (__bench_numa(name))
1712                goto err;
1713
1714        return 0;
1715
1716err:
1717        return -1;
1718}
1719
1720#define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1721#define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1722
1723#define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1724#define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1725
1726#define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1727#define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1728
1729/*
1730 * The built-in test-suite executed by "perf bench numa -a".
1731 *
1732 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1733 */
1734static const char *tests[][MAX_ARGS] = {
1735   /* Basic single-stream NUMA bandwidth measurements: */
1736   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1737                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1738   { "RAM-bw-local-NOTHP,",
1739                          "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1740                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1741   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1742                          "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1743
1744   /* 2-stream NUMA bandwidth measurements: */
1745   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1746                           "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1747   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1748                           "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1749
1750   /* Cross-stream NUMA bandwidth measurement: */
1751   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1752                           "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1753
1754   /* Convergence latency measurements: */
1755   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1756   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1757   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1758   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1759   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1760   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1761   { " 4x4-convergence-NOTHP,",
1762                          "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1763   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1764   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1765   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1766   { " 8x4-convergence-NOTHP,",
1767                          "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1768   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1769   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1770   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1771   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1772   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1773
1774   /* Various NUMA process/thread layout bandwidth measurements: */
1775   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1776   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1777   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1778   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1779   { " 8x1-bw-process-NOTHP,",
1780                          "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1781   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1782
1783   { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1784   { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1785   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1786   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1787
1788   { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1789   { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1790   { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1791   { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1792   { " 4x8-bw-thread-NOTHP,",
1793                          "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1794   { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1795   { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1796
1797   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1798   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1799
1800   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1801   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1802   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1803   { "numa01-bw-thread-NOTHP,",
1804                          "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1805};
1806
1807static int bench_all(void)
1808{
1809        int nr = ARRAY_SIZE(tests);
1810        int ret;
1811        int i;
1812
1813        ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1814        BUG_ON(ret < 0);
1815
1816        for (i = 0; i < nr; i++) {
1817                run_bench_numa(tests[i][0], tests[i] + 1);
1818        }
1819
1820        printf("\n");
1821
1822        return 0;
1823}
1824
1825int bench_numa(int argc, const char **argv)
1826{
1827        init_params(&p0, "main,", argc, argv);
1828        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1829        if (argc)
1830                goto err;
1831
1832        if (p0.run_all)
1833                return bench_all();
1834
1835        if (__bench_numa(NULL))
1836                goto err;
1837
1838        return 0;
1839
1840err:
1841        usage_with_options(numa_usage, options);
1842        return -1;
1843}
1844