linux/arch/arm64/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Based on arch/arm/mm/fault.c
   4 *
   5 * Copyright (C) 1995  Linus Torvalds
   6 * Copyright (C) 1995-2004 Russell King
   7 * Copyright (C) 2012 ARM Ltd.
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/bitfield.h>
  12#include <linux/extable.h>
  13#include <linux/signal.h>
  14#include <linux/mm.h>
  15#include <linux/hardirq.h>
  16#include <linux/init.h>
  17#include <linux/kprobes.h>
  18#include <linux/uaccess.h>
  19#include <linux/page-flags.h>
  20#include <linux/sched/signal.h>
  21#include <linux/sched/debug.h>
  22#include <linux/highmem.h>
  23#include <linux/perf_event.h>
  24#include <linux/preempt.h>
  25#include <linux/hugetlb.h>
  26
  27#include <asm/acpi.h>
  28#include <asm/bug.h>
  29#include <asm/cmpxchg.h>
  30#include <asm/cpufeature.h>
  31#include <asm/exception.h>
  32#include <asm/daifflags.h>
  33#include <asm/debug-monitors.h>
  34#include <asm/esr.h>
  35#include <asm/kprobes.h>
  36#include <asm/processor.h>
  37#include <asm/sysreg.h>
  38#include <asm/system_misc.h>
  39#include <asm/tlbflush.h>
  40#include <asm/traps.h>
  41
  42struct fault_info {
  43        int     (*fn)(unsigned long addr, unsigned int esr,
  44                      struct pt_regs *regs);
  45        int     sig;
  46        int     code;
  47        const char *name;
  48};
  49
  50static const struct fault_info fault_info[];
  51static struct fault_info debug_fault_info[];
  52
  53static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
  54{
  55        return fault_info + (esr & ESR_ELx_FSC);
  56}
  57
  58static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
  59{
  60        return debug_fault_info + DBG_ESR_EVT(esr);
  61}
  62
  63static void data_abort_decode(unsigned int esr)
  64{
  65        pr_alert("Data abort info:\n");
  66
  67        if (esr & ESR_ELx_ISV) {
  68                pr_alert("  Access size = %u byte(s)\n",
  69                         1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
  70                pr_alert("  SSE = %lu, SRT = %lu\n",
  71                         (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
  72                         (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
  73                pr_alert("  SF = %lu, AR = %lu\n",
  74                         (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
  75                         (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
  76        } else {
  77                pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
  78        }
  79
  80        pr_alert("  CM = %lu, WnR = %lu\n",
  81                 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
  82                 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
  83}
  84
  85static void mem_abort_decode(unsigned int esr)
  86{
  87        pr_alert("Mem abort info:\n");
  88
  89        pr_alert("  ESR = 0x%08x\n", esr);
  90        pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
  91                 ESR_ELx_EC(esr), esr_get_class_string(esr),
  92                 (esr & ESR_ELx_IL) ? 32 : 16);
  93        pr_alert("  SET = %lu, FnV = %lu\n",
  94                 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
  95                 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
  96        pr_alert("  EA = %lu, S1PTW = %lu\n",
  97                 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
  98                 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
  99
 100        if (esr_is_data_abort(esr))
 101                data_abort_decode(esr);
 102}
 103
 104static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
 105{
 106        /* Either init_pg_dir or swapper_pg_dir */
 107        if (mm == &init_mm)
 108                return __pa_symbol(mm->pgd);
 109
 110        return (unsigned long)virt_to_phys(mm->pgd);
 111}
 112
 113/*
 114 * Dump out the page tables associated with 'addr' in the currently active mm.
 115 */
 116static void show_pte(unsigned long addr)
 117{
 118        struct mm_struct *mm;
 119        pgd_t *pgdp;
 120        pgd_t pgd;
 121
 122        if (is_ttbr0_addr(addr)) {
 123                /* TTBR0 */
 124                mm = current->active_mm;
 125                if (mm == &init_mm) {
 126                        pr_alert("[%016lx] user address but active_mm is swapper\n",
 127                                 addr);
 128                        return;
 129                }
 130        } else if (is_ttbr1_addr(addr)) {
 131                /* TTBR1 */
 132                mm = &init_mm;
 133        } else {
 134                pr_alert("[%016lx] address between user and kernel address ranges\n",
 135                         addr);
 136                return;
 137        }
 138
 139        pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
 140                 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
 141                 vabits_actual, mm_to_pgd_phys(mm));
 142        pgdp = pgd_offset(mm, addr);
 143        pgd = READ_ONCE(*pgdp);
 144        pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
 145
 146        do {
 147                p4d_t *p4dp, p4d;
 148                pud_t *pudp, pud;
 149                pmd_t *pmdp, pmd;
 150                pte_t *ptep, pte;
 151
 152                if (pgd_none(pgd) || pgd_bad(pgd))
 153                        break;
 154
 155                p4dp = p4d_offset(pgdp, addr);
 156                p4d = READ_ONCE(*p4dp);
 157                pr_cont(", p4d=%016llx", p4d_val(p4d));
 158                if (p4d_none(p4d) || p4d_bad(p4d))
 159                        break;
 160
 161                pudp = pud_offset(p4dp, addr);
 162                pud = READ_ONCE(*pudp);
 163                pr_cont(", pud=%016llx", pud_val(pud));
 164                if (pud_none(pud) || pud_bad(pud))
 165                        break;
 166
 167                pmdp = pmd_offset(pudp, addr);
 168                pmd = READ_ONCE(*pmdp);
 169                pr_cont(", pmd=%016llx", pmd_val(pmd));
 170                if (pmd_none(pmd) || pmd_bad(pmd))
 171                        break;
 172
 173                ptep = pte_offset_map(pmdp, addr);
 174                pte = READ_ONCE(*ptep);
 175                pr_cont(", pte=%016llx", pte_val(pte));
 176                pte_unmap(ptep);
 177        } while(0);
 178
 179        pr_cont("\n");
 180}
 181
 182/*
 183 * This function sets the access flags (dirty, accessed), as well as write
 184 * permission, and only to a more permissive setting.
 185 *
 186 * It needs to cope with hardware update of the accessed/dirty state by other
 187 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 188 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 189 *
 190 * Returns whether or not the PTE actually changed.
 191 */
 192int ptep_set_access_flags(struct vm_area_struct *vma,
 193                          unsigned long address, pte_t *ptep,
 194                          pte_t entry, int dirty)
 195{
 196        pteval_t old_pteval, pteval;
 197        pte_t pte = READ_ONCE(*ptep);
 198
 199        if (pte_same(pte, entry))
 200                return 0;
 201
 202        /* only preserve the access flags and write permission */
 203        pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
 204
 205        /*
 206         * Setting the flags must be done atomically to avoid racing with the
 207         * hardware update of the access/dirty state. The PTE_RDONLY bit must
 208         * be set to the most permissive (lowest value) of *ptep and entry
 209         * (calculated as: a & b == ~(~a | ~b)).
 210         */
 211        pte_val(entry) ^= PTE_RDONLY;
 212        pteval = pte_val(pte);
 213        do {
 214                old_pteval = pteval;
 215                pteval ^= PTE_RDONLY;
 216                pteval |= pte_val(entry);
 217                pteval ^= PTE_RDONLY;
 218                pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
 219        } while (pteval != old_pteval);
 220
 221        flush_tlb_fix_spurious_fault(vma, address);
 222        return 1;
 223}
 224
 225static bool is_el1_instruction_abort(unsigned int esr)
 226{
 227        return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
 228}
 229
 230static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
 231                                           struct pt_regs *regs)
 232{
 233        unsigned int ec       = ESR_ELx_EC(esr);
 234        unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
 235
 236        if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
 237                return false;
 238
 239        if (fsc_type == ESR_ELx_FSC_PERM)
 240                return true;
 241
 242        if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
 243                return fsc_type == ESR_ELx_FSC_FAULT &&
 244                        (regs->pstate & PSR_PAN_BIT);
 245
 246        return false;
 247}
 248
 249static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
 250                                                        unsigned int esr,
 251                                                        struct pt_regs *regs)
 252{
 253        unsigned long flags;
 254        u64 par, dfsc;
 255
 256        if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
 257            (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
 258                return false;
 259
 260        local_irq_save(flags);
 261        asm volatile("at s1e1r, %0" :: "r" (addr));
 262        isb();
 263        par = read_sysreg(par_el1);
 264        local_irq_restore(flags);
 265
 266        /*
 267         * If we now have a valid translation, treat the translation fault as
 268         * spurious.
 269         */
 270        if (!(par & SYS_PAR_EL1_F))
 271                return true;
 272
 273        /*
 274         * If we got a different type of fault from the AT instruction,
 275         * treat the translation fault as spurious.
 276         */
 277        dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
 278        return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
 279}
 280
 281static void die_kernel_fault(const char *msg, unsigned long addr,
 282                             unsigned int esr, struct pt_regs *regs)
 283{
 284        bust_spinlocks(1);
 285
 286        pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
 287                 addr);
 288
 289        mem_abort_decode(esr);
 290
 291        show_pte(addr);
 292        die("Oops", regs, esr);
 293        bust_spinlocks(0);
 294        do_exit(SIGKILL);
 295}
 296
 297static void __do_kernel_fault(unsigned long addr, unsigned int esr,
 298                              struct pt_regs *regs)
 299{
 300        const char *msg;
 301
 302        /*
 303         * Are we prepared to handle this kernel fault?
 304         * We are almost certainly not prepared to handle instruction faults.
 305         */
 306        if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
 307                return;
 308
 309        if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
 310            "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
 311                return;
 312
 313        if (is_el1_permission_fault(addr, esr, regs)) {
 314                if (esr & ESR_ELx_WNR)
 315                        msg = "write to read-only memory";
 316                else if (is_el1_instruction_abort(esr))
 317                        msg = "execute from non-executable memory";
 318                else
 319                        msg = "read from unreadable memory";
 320        } else if (addr < PAGE_SIZE) {
 321                msg = "NULL pointer dereference";
 322        } else {
 323                msg = "paging request";
 324        }
 325
 326        die_kernel_fault(msg, addr, esr, regs);
 327}
 328
 329static void set_thread_esr(unsigned long address, unsigned int esr)
 330{
 331        current->thread.fault_address = address;
 332
 333        /*
 334         * If the faulting address is in the kernel, we must sanitize the ESR.
 335         * From userspace's point of view, kernel-only mappings don't exist
 336         * at all, so we report them as level 0 translation faults.
 337         * (This is not quite the way that "no mapping there at all" behaves:
 338         * an alignment fault not caused by the memory type would take
 339         * precedence over translation fault for a real access to empty
 340         * space. Unfortunately we can't easily distinguish "alignment fault
 341         * not caused by memory type" from "alignment fault caused by memory
 342         * type", so we ignore this wrinkle and just return the translation
 343         * fault.)
 344         */
 345        if (!is_ttbr0_addr(current->thread.fault_address)) {
 346                switch (ESR_ELx_EC(esr)) {
 347                case ESR_ELx_EC_DABT_LOW:
 348                        /*
 349                         * These bits provide only information about the
 350                         * faulting instruction, which userspace knows already.
 351                         * We explicitly clear bits which are architecturally
 352                         * RES0 in case they are given meanings in future.
 353                         * We always report the ESR as if the fault was taken
 354                         * to EL1 and so ISV and the bits in ISS[23:14] are
 355                         * clear. (In fact it always will be a fault to EL1.)
 356                         */
 357                        esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
 358                                ESR_ELx_CM | ESR_ELx_WNR;
 359                        esr |= ESR_ELx_FSC_FAULT;
 360                        break;
 361                case ESR_ELx_EC_IABT_LOW:
 362                        /*
 363                         * Claim a level 0 translation fault.
 364                         * All other bits are architecturally RES0 for faults
 365                         * reported with that DFSC value, so we clear them.
 366                         */
 367                        esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
 368                        esr |= ESR_ELx_FSC_FAULT;
 369                        break;
 370                default:
 371                        /*
 372                         * This should never happen (entry.S only brings us
 373                         * into this code for insn and data aborts from a lower
 374                         * exception level). Fail safe by not providing an ESR
 375                         * context record at all.
 376                         */
 377                        WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
 378                        esr = 0;
 379                        break;
 380                }
 381        }
 382
 383        current->thread.fault_code = esr;
 384}
 385
 386static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 387{
 388        /*
 389         * If we are in kernel mode at this point, we have no context to
 390         * handle this fault with.
 391         */
 392        if (user_mode(regs)) {
 393                const struct fault_info *inf = esr_to_fault_info(esr);
 394
 395                set_thread_esr(addr, esr);
 396                arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
 397                                      inf->name);
 398        } else {
 399                __do_kernel_fault(addr, esr, regs);
 400        }
 401}
 402
 403#define VM_FAULT_BADMAP         0x010000
 404#define VM_FAULT_BADACCESS      0x020000
 405
 406static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
 407                                  unsigned int mm_flags, unsigned long vm_flags,
 408                                  struct pt_regs *regs)
 409{
 410        struct vm_area_struct *vma = find_vma(mm, addr);
 411
 412        if (unlikely(!vma))
 413                return VM_FAULT_BADMAP;
 414
 415        /*
 416         * Ok, we have a good vm_area for this memory access, so we can handle
 417         * it.
 418         */
 419        if (unlikely(vma->vm_start > addr)) {
 420                if (!(vma->vm_flags & VM_GROWSDOWN))
 421                        return VM_FAULT_BADMAP;
 422                if (expand_stack(vma, addr))
 423                        return VM_FAULT_BADMAP;
 424        }
 425
 426        /*
 427         * Check that the permissions on the VMA allow for the fault which
 428         * occurred.
 429         */
 430        if (!(vma->vm_flags & vm_flags))
 431                return VM_FAULT_BADACCESS;
 432        return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
 433}
 434
 435static bool is_el0_instruction_abort(unsigned int esr)
 436{
 437        return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
 438}
 439
 440/*
 441 * Note: not valid for EL1 DC IVAC, but we never use that such that it
 442 * should fault. EL0 cannot issue DC IVAC (undef).
 443 */
 444static bool is_write_abort(unsigned int esr)
 445{
 446        return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
 447}
 448
 449static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
 450                                   struct pt_regs *regs)
 451{
 452        const struct fault_info *inf;
 453        struct mm_struct *mm = current->mm;
 454        vm_fault_t fault;
 455        unsigned long vm_flags = VM_ACCESS_FLAGS;
 456        unsigned int mm_flags = FAULT_FLAG_DEFAULT;
 457
 458        if (kprobe_page_fault(regs, esr))
 459                return 0;
 460
 461        /*
 462         * If we're in an interrupt or have no user context, we must not take
 463         * the fault.
 464         */
 465        if (faulthandler_disabled() || !mm)
 466                goto no_context;
 467
 468        if (user_mode(regs))
 469                mm_flags |= FAULT_FLAG_USER;
 470
 471        if (is_el0_instruction_abort(esr)) {
 472                vm_flags = VM_EXEC;
 473                mm_flags |= FAULT_FLAG_INSTRUCTION;
 474        } else if (is_write_abort(esr)) {
 475                vm_flags = VM_WRITE;
 476                mm_flags |= FAULT_FLAG_WRITE;
 477        }
 478
 479        if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
 480                /* regs->orig_addr_limit may be 0 if we entered from EL0 */
 481                if (regs->orig_addr_limit == KERNEL_DS)
 482                        die_kernel_fault("access to user memory with fs=KERNEL_DS",
 483                                         addr, esr, regs);
 484
 485                if (is_el1_instruction_abort(esr))
 486                        die_kernel_fault("execution of user memory",
 487                                         addr, esr, regs);
 488
 489                if (!search_exception_tables(regs->pc))
 490                        die_kernel_fault("access to user memory outside uaccess routines",
 491                                         addr, esr, regs);
 492        }
 493
 494        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
 495
 496        /*
 497         * As per x86, we may deadlock here. However, since the kernel only
 498         * validly references user space from well defined areas of the code,
 499         * we can bug out early if this is from code which shouldn't.
 500         */
 501        if (!mmap_read_trylock(mm)) {
 502                if (!user_mode(regs) && !search_exception_tables(regs->pc))
 503                        goto no_context;
 504retry:
 505                mmap_read_lock(mm);
 506        } else {
 507                /*
 508                 * The above down_read_trylock() might have succeeded in which
 509                 * case, we'll have missed the might_sleep() from down_read().
 510                 */
 511                might_sleep();
 512#ifdef CONFIG_DEBUG_VM
 513                if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
 514                        mmap_read_unlock(mm);
 515                        goto no_context;
 516                }
 517#endif
 518        }
 519
 520        fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
 521
 522        /* Quick path to respond to signals */
 523        if (fault_signal_pending(fault, regs)) {
 524                if (!user_mode(regs))
 525                        goto no_context;
 526                return 0;
 527        }
 528
 529        if (fault & VM_FAULT_RETRY) {
 530                if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
 531                        mm_flags |= FAULT_FLAG_TRIED;
 532                        goto retry;
 533                }
 534        }
 535        mmap_read_unlock(mm);
 536
 537        /*
 538         * Handle the "normal" (no error) case first.
 539         */
 540        if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
 541                              VM_FAULT_BADACCESS))))
 542                return 0;
 543
 544        /*
 545         * If we are in kernel mode at this point, we have no context to
 546         * handle this fault with.
 547         */
 548        if (!user_mode(regs))
 549                goto no_context;
 550
 551        if (fault & VM_FAULT_OOM) {
 552                /*
 553                 * We ran out of memory, call the OOM killer, and return to
 554                 * userspace (which will retry the fault, or kill us if we got
 555                 * oom-killed).
 556                 */
 557                pagefault_out_of_memory();
 558                return 0;
 559        }
 560
 561        inf = esr_to_fault_info(esr);
 562        set_thread_esr(addr, esr);
 563        if (fault & VM_FAULT_SIGBUS) {
 564                /*
 565                 * We had some memory, but were unable to successfully fix up
 566                 * this page fault.
 567                 */
 568                arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
 569                                      inf->name);
 570        } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
 571                unsigned int lsb;
 572
 573                lsb = PAGE_SHIFT;
 574                if (fault & VM_FAULT_HWPOISON_LARGE)
 575                        lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 576
 577                arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
 578                                       inf->name);
 579        } else {
 580                /*
 581                 * Something tried to access memory that isn't in our memory
 582                 * map.
 583                 */
 584                arm64_force_sig_fault(SIGSEGV,
 585                                      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
 586                                      (void __user *)addr,
 587                                      inf->name);
 588        }
 589
 590        return 0;
 591
 592no_context:
 593        __do_kernel_fault(addr, esr, regs);
 594        return 0;
 595}
 596
 597static int __kprobes do_translation_fault(unsigned long addr,
 598                                          unsigned int esr,
 599                                          struct pt_regs *regs)
 600{
 601        if (is_ttbr0_addr(addr))
 602                return do_page_fault(addr, esr, regs);
 603
 604        do_bad_area(addr, esr, regs);
 605        return 0;
 606}
 607
 608static int do_alignment_fault(unsigned long addr, unsigned int esr,
 609                              struct pt_regs *regs)
 610{
 611        do_bad_area(addr, esr, regs);
 612        return 0;
 613}
 614
 615static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 616{
 617        return 1; /* "fault" */
 618}
 619
 620static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 621{
 622        const struct fault_info *inf;
 623        void __user *siaddr;
 624
 625        inf = esr_to_fault_info(esr);
 626
 627        if (user_mode(regs) && apei_claim_sea(regs) == 0) {
 628                /*
 629                 * APEI claimed this as a firmware-first notification.
 630                 * Some processing deferred to task_work before ret_to_user().
 631                 */
 632                return 0;
 633        }
 634
 635        if (esr & ESR_ELx_FnV)
 636                siaddr = NULL;
 637        else
 638                siaddr  = (void __user *)addr;
 639        arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
 640
 641        return 0;
 642}
 643
 644static const struct fault_info fault_info[] = {
 645        { do_bad,               SIGKILL, SI_KERNEL,     "ttbr address size fault"       },
 646        { do_bad,               SIGKILL, SI_KERNEL,     "level 1 address size fault"    },
 647        { do_bad,               SIGKILL, SI_KERNEL,     "level 2 address size fault"    },
 648        { do_bad,               SIGKILL, SI_KERNEL,     "level 3 address size fault"    },
 649        { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 0 translation fault"     },
 650        { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 1 translation fault"     },
 651        { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 2 translation fault"     },
 652        { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 3 translation fault"     },
 653        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 8"                     },
 654        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 1 access flag fault"     },
 655        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 2 access flag fault"     },
 656        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 3 access flag fault"     },
 657        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 12"                    },
 658        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 1 permission fault"      },
 659        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 2 permission fault"      },
 660        { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 3 permission fault"      },
 661        { do_sea,               SIGBUS,  BUS_OBJERR,    "synchronous external abort"    },
 662        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 17"                    },
 663        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 18"                    },
 664        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 19"                    },
 665        { do_sea,               SIGKILL, SI_KERNEL,     "level 0 (translation table walk)"      },
 666        { do_sea,               SIGKILL, SI_KERNEL,     "level 1 (translation table walk)"      },
 667        { do_sea,               SIGKILL, SI_KERNEL,     "level 2 (translation table walk)"      },
 668        { do_sea,               SIGKILL, SI_KERNEL,     "level 3 (translation table walk)"      },
 669        { do_sea,               SIGBUS,  BUS_OBJERR,    "synchronous parity or ECC error" },    // Reserved when RAS is implemented
 670        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 25"                    },
 671        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 26"                    },
 672        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 27"                    },
 673        { do_sea,               SIGKILL, SI_KERNEL,     "level 0 synchronous parity error (translation table walk)"     },      // Reserved when RAS is implemented
 674        { do_sea,               SIGKILL, SI_KERNEL,     "level 1 synchronous parity error (translation table walk)"     },      // Reserved when RAS is implemented
 675        { do_sea,               SIGKILL, SI_KERNEL,     "level 2 synchronous parity error (translation table walk)"     },      // Reserved when RAS is implemented
 676        { do_sea,               SIGKILL, SI_KERNEL,     "level 3 synchronous parity error (translation table walk)"     },      // Reserved when RAS is implemented
 677        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 32"                    },
 678        { do_alignment_fault,   SIGBUS,  BUS_ADRALN,    "alignment fault"               },
 679        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 34"                    },
 680        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 35"                    },
 681        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 36"                    },
 682        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 37"                    },
 683        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 38"                    },
 684        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 39"                    },
 685        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 40"                    },
 686        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 41"                    },
 687        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 42"                    },
 688        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 43"                    },
 689        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 44"                    },
 690        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 45"                    },
 691        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 46"                    },
 692        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 47"                    },
 693        { do_bad,               SIGKILL, SI_KERNEL,     "TLB conflict abort"            },
 694        { do_bad,               SIGKILL, SI_KERNEL,     "Unsupported atomic hardware update fault"      },
 695        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 50"                    },
 696        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 51"                    },
 697        { do_bad,               SIGKILL, SI_KERNEL,     "implementation fault (lockdown abort)" },
 698        { do_bad,               SIGBUS,  BUS_OBJERR,    "implementation fault (unsupported exclusive)" },
 699        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 54"                    },
 700        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 55"                    },
 701        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 56"                    },
 702        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 57"                    },
 703        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 58"                    },
 704        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 59"                    },
 705        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 60"                    },
 706        { do_bad,               SIGKILL, SI_KERNEL,     "section domain fault"          },
 707        { do_bad,               SIGKILL, SI_KERNEL,     "page domain fault"             },
 708        { do_bad,               SIGKILL, SI_KERNEL,     "unknown 63"                    },
 709};
 710
 711void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 712{
 713        const struct fault_info *inf = esr_to_fault_info(esr);
 714
 715        if (!inf->fn(addr, esr, regs))
 716                return;
 717
 718        if (!user_mode(regs)) {
 719                pr_alert("Unhandled fault at 0x%016lx\n", addr);
 720                mem_abort_decode(esr);
 721                show_pte(addr);
 722        }
 723
 724        arm64_notify_die(inf->name, regs,
 725                         inf->sig, inf->code, (void __user *)addr, esr);
 726}
 727NOKPROBE_SYMBOL(do_mem_abort);
 728
 729void do_el0_irq_bp_hardening(void)
 730{
 731        /* PC has already been checked in entry.S */
 732        arm64_apply_bp_hardening();
 733}
 734NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
 735
 736void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 737{
 738        arm64_notify_die("SP/PC alignment exception", regs,
 739                         SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
 740}
 741NOKPROBE_SYMBOL(do_sp_pc_abort);
 742
 743int __init early_brk64(unsigned long addr, unsigned int esr,
 744                       struct pt_regs *regs);
 745
 746/*
 747 * __refdata because early_brk64 is __init, but the reference to it is
 748 * clobbered at arch_initcall time.
 749 * See traps.c and debug-monitors.c:debug_traps_init().
 750 */
 751static struct fault_info __refdata debug_fault_info[] = {
 752        { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware breakpoint"   },
 753        { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware single-step"  },
 754        { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware watchpoint"   },
 755        { do_bad,       SIGKILL,        SI_KERNEL,      "unknown 3"             },
 756        { do_bad,       SIGTRAP,        TRAP_BRKPT,     "aarch32 BKPT"          },
 757        { do_bad,       SIGKILL,        SI_KERNEL,      "aarch32 vector catch"  },
 758        { early_brk64,  SIGTRAP,        TRAP_BRKPT,     "aarch64 BRK"           },
 759        { do_bad,       SIGKILL,        SI_KERNEL,      "unknown 7"             },
 760};
 761
 762void __init hook_debug_fault_code(int nr,
 763                                  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 764                                  int sig, int code, const char *name)
 765{
 766        BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
 767
 768        debug_fault_info[nr].fn         = fn;
 769        debug_fault_info[nr].sig        = sig;
 770        debug_fault_info[nr].code       = code;
 771        debug_fault_info[nr].name       = name;
 772}
 773
 774/*
 775 * In debug exception context, we explicitly disable preemption despite
 776 * having interrupts disabled.
 777 * This serves two purposes: it makes it much less likely that we would
 778 * accidentally schedule in exception context and it will force a warning
 779 * if we somehow manage to schedule by accident.
 780 */
 781static void debug_exception_enter(struct pt_regs *regs)
 782{
 783        /*
 784         * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
 785         * already disabled to preserve the last enabled/disabled addresses.
 786         */
 787        if (interrupts_enabled(regs))
 788                trace_hardirqs_off();
 789
 790        if (user_mode(regs)) {
 791                RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 792        } else {
 793                /*
 794                 * We might have interrupted pretty much anything.  In
 795                 * fact, if we're a debug exception, we can even interrupt
 796                 * NMI processing. We don't want this code makes in_nmi()
 797                 * to return true, but we need to notify RCU.
 798                 */
 799                rcu_nmi_enter();
 800        }
 801
 802        preempt_disable();
 803
 804        /* This code is a bit fragile.  Test it. */
 805        RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
 806}
 807NOKPROBE_SYMBOL(debug_exception_enter);
 808
 809static void debug_exception_exit(struct pt_regs *regs)
 810{
 811        preempt_enable_no_resched();
 812
 813        if (!user_mode(regs))
 814                rcu_nmi_exit();
 815
 816        if (interrupts_enabled(regs))
 817                trace_hardirqs_on();
 818}
 819NOKPROBE_SYMBOL(debug_exception_exit);
 820
 821#ifdef CONFIG_ARM64_ERRATUM_1463225
 822DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
 823
 824static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
 825{
 826        if (user_mode(regs))
 827                return 0;
 828
 829        if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
 830                return 0;
 831
 832        /*
 833         * We've taken a dummy step exception from the kernel to ensure
 834         * that interrupts are re-enabled on the syscall path. Return back
 835         * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
 836         * masked so that we can safely restore the mdscr and get on with
 837         * handling the syscall.
 838         */
 839        regs->pstate |= PSR_D_BIT;
 840        return 1;
 841}
 842#else
 843static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
 844{
 845        return 0;
 846}
 847#endif /* CONFIG_ARM64_ERRATUM_1463225 */
 848NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
 849
 850void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
 851                        struct pt_regs *regs)
 852{
 853        const struct fault_info *inf = esr_to_debug_fault_info(esr);
 854        unsigned long pc = instruction_pointer(regs);
 855
 856        if (cortex_a76_erratum_1463225_debug_handler(regs))
 857                return;
 858
 859        debug_exception_enter(regs);
 860
 861        if (user_mode(regs) && !is_ttbr0_addr(pc))
 862                arm64_apply_bp_hardening();
 863
 864        if (inf->fn(addr_if_watchpoint, esr, regs)) {
 865                arm64_notify_die(inf->name, regs,
 866                                 inf->sig, inf->code, (void __user *)pc, esr);
 867        }
 868
 869        debug_exception_exit(regs);
 870}
 871NOKPROBE_SYMBOL(do_debug_exception);
 872