linux/arch/ia64/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/arch/ia64/kernel/time.c
   4 *
   5 * Copyright (C) 1998-2003 Hewlett-Packard Co
   6 *      Stephane Eranian <eranian@hpl.hp.com>
   7 *      David Mosberger <davidm@hpl.hp.com>
   8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
   9 * Copyright (C) 1999-2000 VA Linux Systems
  10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  11 */
  12
  13#include <linux/cpu.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/profile.h>
  18#include <linux/sched.h>
  19#include <linux/time.h>
  20#include <linux/nmi.h>
  21#include <linux/interrupt.h>
  22#include <linux/efi.h>
  23#include <linux/timex.h>
  24#include <linux/timekeeper_internal.h>
  25#include <linux/platform_device.h>
  26#include <linux/sched/cputime.h>
  27
  28#include <asm/delay.h>
  29#include <asm/hw_irq.h>
  30#include <asm/ptrace.h>
  31#include <asm/sal.h>
  32#include <asm/sections.h>
  33
  34#include "fsyscall_gtod_data.h"
  35#include "irq.h"
  36
  37static u64 itc_get_cycles(struct clocksource *cs);
  38
  39struct fsyscall_gtod_data_t fsyscall_gtod_data;
  40
  41struct itc_jitter_data_t itc_jitter_data;
  42
  43volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  44
  45#ifdef CONFIG_IA64_DEBUG_IRQ
  46
  47unsigned long last_cli_ip;
  48EXPORT_SYMBOL(last_cli_ip);
  49
  50#endif
  51
  52static struct clocksource clocksource_itc = {
  53        .name           = "itc",
  54        .rating         = 350,
  55        .read           = itc_get_cycles,
  56        .mask           = CLOCKSOURCE_MASK(64),
  57        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  58};
  59static struct clocksource *itc_clocksource;
  60
  61#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  62
  63#include <linux/kernel_stat.h>
  64
  65extern u64 cycle_to_nsec(u64 cyc);
  66
  67void vtime_flush(struct task_struct *tsk)
  68{
  69        struct thread_info *ti = task_thread_info(tsk);
  70        u64 delta;
  71
  72        if (ti->utime)
  73                account_user_time(tsk, cycle_to_nsec(ti->utime));
  74
  75        if (ti->gtime)
  76                account_guest_time(tsk, cycle_to_nsec(ti->gtime));
  77
  78        if (ti->idle_time)
  79                account_idle_time(cycle_to_nsec(ti->idle_time));
  80
  81        if (ti->stime) {
  82                delta = cycle_to_nsec(ti->stime);
  83                account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
  84        }
  85
  86        if (ti->hardirq_time) {
  87                delta = cycle_to_nsec(ti->hardirq_time);
  88                account_system_index_time(tsk, delta, CPUTIME_IRQ);
  89        }
  90
  91        if (ti->softirq_time) {
  92                delta = cycle_to_nsec(ti->softirq_time);
  93                account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
  94        }
  95
  96        ti->utime = 0;
  97        ti->gtime = 0;
  98        ti->idle_time = 0;
  99        ti->stime = 0;
 100        ti->hardirq_time = 0;
 101        ti->softirq_time = 0;
 102}
 103
 104/*
 105 * Called from the context switch with interrupts disabled, to charge all
 106 * accumulated times to the current process, and to prepare accounting on
 107 * the next process.
 108 */
 109void arch_vtime_task_switch(struct task_struct *prev)
 110{
 111        struct thread_info *pi = task_thread_info(prev);
 112        struct thread_info *ni = task_thread_info(current);
 113
 114        ni->ac_stamp = pi->ac_stamp;
 115        ni->ac_stime = ni->ac_utime = 0;
 116}
 117
 118/*
 119 * Account time for a transition between system, hard irq or soft irq state.
 120 * Note that this function is called with interrupts enabled.
 121 */
 122static __u64 vtime_delta(struct task_struct *tsk)
 123{
 124        struct thread_info *ti = task_thread_info(tsk);
 125        __u64 now, delta_stime;
 126
 127        WARN_ON_ONCE(!irqs_disabled());
 128
 129        now = ia64_get_itc();
 130        delta_stime = now - ti->ac_stamp;
 131        ti->ac_stamp = now;
 132
 133        return delta_stime;
 134}
 135
 136void vtime_account_kernel(struct task_struct *tsk)
 137{
 138        struct thread_info *ti = task_thread_info(tsk);
 139        __u64 stime = vtime_delta(tsk);
 140
 141        if ((tsk->flags & PF_VCPU) && !irq_count())
 142                ti->gtime += stime;
 143        else if (hardirq_count())
 144                ti->hardirq_time += stime;
 145        else if (in_serving_softirq())
 146                ti->softirq_time += stime;
 147        else
 148                ti->stime += stime;
 149}
 150EXPORT_SYMBOL_GPL(vtime_account_kernel);
 151
 152void vtime_account_idle(struct task_struct *tsk)
 153{
 154        struct thread_info *ti = task_thread_info(tsk);
 155
 156        ti->idle_time += vtime_delta(tsk);
 157}
 158
 159#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 160
 161static irqreturn_t
 162timer_interrupt (int irq, void *dev_id)
 163{
 164        unsigned long new_itm;
 165
 166        if (cpu_is_offline(smp_processor_id())) {
 167                return IRQ_HANDLED;
 168        }
 169
 170        new_itm = local_cpu_data->itm_next;
 171
 172        if (!time_after(ia64_get_itc(), new_itm))
 173                printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
 174                       ia64_get_itc(), new_itm);
 175
 176        profile_tick(CPU_PROFILING);
 177
 178        while (1) {
 179                update_process_times(user_mode(get_irq_regs()));
 180
 181                new_itm += local_cpu_data->itm_delta;
 182
 183                if (smp_processor_id() == time_keeper_id)
 184                        xtime_update(1);
 185
 186                local_cpu_data->itm_next = new_itm;
 187
 188                if (time_after(new_itm, ia64_get_itc()))
 189                        break;
 190
 191                /*
 192                 * Allow IPIs to interrupt the timer loop.
 193                 */
 194                local_irq_enable();
 195                local_irq_disable();
 196        }
 197
 198        do {
 199                /*
 200                 * If we're too close to the next clock tick for
 201                 * comfort, we increase the safety margin by
 202                 * intentionally dropping the next tick(s).  We do NOT
 203                 * update itm.next because that would force us to call
 204                 * xtime_update() which in turn would let our clock run
 205                 * too fast (with the potentially devastating effect
 206                 * of losing monotony of time).
 207                 */
 208                while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
 209                        new_itm += local_cpu_data->itm_delta;
 210                ia64_set_itm(new_itm);
 211                /* double check, in case we got hit by a (slow) PMI: */
 212        } while (time_after_eq(ia64_get_itc(), new_itm));
 213        return IRQ_HANDLED;
 214}
 215
 216/*
 217 * Encapsulate access to the itm structure for SMP.
 218 */
 219void
 220ia64_cpu_local_tick (void)
 221{
 222        int cpu = smp_processor_id();
 223        unsigned long shift = 0, delta;
 224
 225        /* arrange for the cycle counter to generate a timer interrupt: */
 226        ia64_set_itv(IA64_TIMER_VECTOR);
 227
 228        delta = local_cpu_data->itm_delta;
 229        /*
 230         * Stagger the timer tick for each CPU so they don't occur all at (almost) the
 231         * same time:
 232         */
 233        if (cpu) {
 234                unsigned long hi = 1UL << ia64_fls(cpu);
 235                shift = (2*(cpu - hi) + 1) * delta/hi/2;
 236        }
 237        local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
 238        ia64_set_itm(local_cpu_data->itm_next);
 239}
 240
 241static int nojitter;
 242
 243static int __init nojitter_setup(char *str)
 244{
 245        nojitter = 1;
 246        printk("Jitter checking for ITC timers disabled\n");
 247        return 1;
 248}
 249
 250__setup("nojitter", nojitter_setup);
 251
 252
 253void ia64_init_itm(void)
 254{
 255        unsigned long platform_base_freq, itc_freq;
 256        struct pal_freq_ratio itc_ratio, proc_ratio;
 257        long status, platform_base_drift, itc_drift;
 258
 259        /*
 260         * According to SAL v2.6, we need to use a SAL call to determine the platform base
 261         * frequency and then a PAL call to determine the frequency ratio between the ITC
 262         * and the base frequency.
 263         */
 264        status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
 265                                    &platform_base_freq, &platform_base_drift);
 266        if (status != 0) {
 267                printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
 268        } else {
 269                status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
 270                if (status != 0)
 271                        printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
 272        }
 273        if (status != 0) {
 274                /* invent "random" values */
 275                printk(KERN_ERR
 276                       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
 277                platform_base_freq = 100000000;
 278                platform_base_drift = -1;       /* no drift info */
 279                itc_ratio.num = 3;
 280                itc_ratio.den = 1;
 281        }
 282        if (platform_base_freq < 40000000) {
 283                printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
 284                       platform_base_freq);
 285                platform_base_freq = 75000000;
 286                platform_base_drift = -1;
 287        }
 288        if (!proc_ratio.den)
 289                proc_ratio.den = 1;     /* avoid division by zero */
 290        if (!itc_ratio.den)
 291                itc_ratio.den = 1;      /* avoid division by zero */
 292
 293        itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
 294
 295        local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
 296        printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
 297               "ITC freq=%lu.%03luMHz", smp_processor_id(),
 298               platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
 299               itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
 300
 301        if (platform_base_drift != -1) {
 302                itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
 303                printk("+/-%ldppm\n", itc_drift);
 304        } else {
 305                itc_drift = -1;
 306                printk("\n");
 307        }
 308
 309        local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
 310        local_cpu_data->itc_freq = itc_freq;
 311        local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
 312        local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
 313                                        + itc_freq/2)/itc_freq;
 314
 315        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 316#ifdef CONFIG_SMP
 317                /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
 318                 * Jitter compensation requires a cmpxchg which may limit
 319                 * the scalability of the syscalls for retrieving time.
 320                 * The ITC synchronization is usually successful to within a few
 321                 * ITC ticks but this is not a sure thing. If you need to improve
 322                 * timer performance in SMP situations then boot the kernel with the
 323                 * "nojitter" option. However, doing so may result in time fluctuating (maybe
 324                 * even going backward) if the ITC offsets between the individual CPUs
 325                 * are too large.
 326                 */
 327                if (!nojitter)
 328                        itc_jitter_data.itc_jitter = 1;
 329#endif
 330        } else
 331                /*
 332                 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
 333                 * ITC values may fluctuate significantly between processors.
 334                 * Clock should not be used for hrtimers. Mark itc as only
 335                 * useful for boot and testing.
 336                 *
 337                 * Note that jitter compensation is off! There is no point of
 338                 * synchronizing ITCs since they may be large differentials
 339                 * that change over time.
 340                 *
 341                 * The only way to fix this would be to repeatedly sync the
 342                 * ITCs. Until that time we have to avoid ITC.
 343                 */
 344                clocksource_itc.rating = 50;
 345
 346        /* avoid softlock up message when cpu is unplug and plugged again. */
 347        touch_softlockup_watchdog();
 348
 349        /* Setup the CPU local timer tick */
 350        ia64_cpu_local_tick();
 351
 352        if (!itc_clocksource) {
 353                clocksource_register_hz(&clocksource_itc,
 354                                                local_cpu_data->itc_freq);
 355                itc_clocksource = &clocksource_itc;
 356        }
 357}
 358
 359static u64 itc_get_cycles(struct clocksource *cs)
 360{
 361        unsigned long lcycle, now, ret;
 362
 363        if (!itc_jitter_data.itc_jitter)
 364                return get_cycles();
 365
 366        lcycle = itc_jitter_data.itc_lastcycle;
 367        now = get_cycles();
 368        if (lcycle && time_after(lcycle, now))
 369                return lcycle;
 370
 371        /*
 372         * Keep track of the last timer value returned.
 373         * In an SMP environment, you could lose out in contention of
 374         * cmpxchg. If so, your cmpxchg returns new value which the
 375         * winner of contention updated to. Use the new value instead.
 376         */
 377        ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
 378        if (unlikely(ret != lcycle))
 379                return ret;
 380
 381        return now;
 382}
 383
 384void read_persistent_clock64(struct timespec64 *ts)
 385{
 386        efi_gettimeofday(ts);
 387}
 388
 389void __init
 390time_init (void)
 391{
 392        register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
 393                            "timer");
 394        ia64_init_itm();
 395}
 396
 397/*
 398 * Generic udelay assumes that if preemption is allowed and the thread
 399 * migrates to another CPU, that the ITC values are synchronized across
 400 * all CPUs.
 401 */
 402static void
 403ia64_itc_udelay (unsigned long usecs)
 404{
 405        unsigned long start = ia64_get_itc();
 406        unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
 407
 408        while (time_before(ia64_get_itc(), end))
 409                cpu_relax();
 410}
 411
 412void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
 413
 414void
 415udelay (unsigned long usecs)
 416{
 417        (*ia64_udelay)(usecs);
 418}
 419EXPORT_SYMBOL(udelay);
 420
 421/* IA64 doesn't cache the timezone */
 422void update_vsyscall_tz(void)
 423{
 424}
 425
 426void update_vsyscall(struct timekeeper *tk)
 427{
 428        write_seqcount_begin(&fsyscall_gtod_data.seq);
 429
 430        /* copy vsyscall data */
 431        fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
 432        fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
 433        fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
 434        fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
 435        fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
 436
 437        fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
 438        fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
 439
 440        fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
 441                                              + tk->wall_to_monotonic.tv_sec;
 442        fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
 443                                                + ((u64)tk->wall_to_monotonic.tv_nsec
 444                                                        << tk->tkr_mono.shift);
 445
 446        /* normalize */
 447        while (fsyscall_gtod_data.monotonic_time.snsec >=
 448                                        (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 449                fsyscall_gtod_data.monotonic_time.snsec -=
 450                                        ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
 451                fsyscall_gtod_data.monotonic_time.sec++;
 452        }
 453
 454        write_seqcount_end(&fsyscall_gtod_data.seq);
 455}
 456
 457