linux/arch/m68k/fpsp040/decbin.S
<<
>>
Prefs
   1|
   2|       decbin.sa 3.3 12/19/90
   3|
   4|       Description: Converts normalized packed bcd value pointed to by
   5|       register A6 to extended-precision value in FP0.
   6|
   7|       Input: Normalized packed bcd value in ETEMP(a6).
   8|
   9|       Output: Exact floating-point representation of the packed bcd value.
  10|
  11|       Saves and Modifies: D2-D5
  12|
  13|       Speed: The program decbin takes ??? cycles to execute.
  14|
  15|       Object Size:
  16|
  17|       External Reference(s): None.
  18|
  19|       Algorithm:
  20|       Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
  21|       and NaN operands are dispatched without entering this routine)
  22|       value in 68881/882 format at location ETEMP(A6).
  23|
  24|       A1.     Convert the bcd exponent to binary by successive adds and muls.
  25|       Set the sign according to SE. Subtract 16 to compensate
  26|       for the mantissa which is to be interpreted as 17 integer
  27|       digits, rather than 1 integer and 16 fraction digits.
  28|       Note: this operation can never overflow.
  29|
  30|       A2. Convert the bcd mantissa to binary by successive
  31|       adds and muls in FP0. Set the sign according to SM.
  32|       The mantissa digits will be converted with the decimal point
  33|       assumed following the least-significant digit.
  34|       Note: this operation can never overflow.
  35|
  36|       A3. Count the number of leading/trailing zeros in the
  37|       bcd string.  If SE is positive, count the leading zeros;
  38|       if negative, count the trailing zeros.  Set the adjusted
  39|       exponent equal to the exponent from A1 and the zero count
  40|       added if SM = 1 and subtracted if SM = 0.  Scale the
  41|       mantissa the equivalent of forcing in the bcd value:
  42|
  43|       SM = 0  a non-zero digit in the integer position
  44|       SM = 1  a non-zero digit in Mant0, lsd of the fraction
  45|
  46|       this will insure that any value, regardless of its
  47|       representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
  48|       consistently.
  49|
  50|       A4. Calculate the factor 10^exp in FP1 using a table of
  51|       10^(2^n) values.  To reduce the error in forming factors
  52|       greater than 10^27, a directed rounding scheme is used with
  53|       tables rounded to RN, RM, and RP, according to the table
  54|       in the comments of the pwrten section.
  55|
  56|       A5. Form the final binary number by scaling the mantissa by
  57|       the exponent factor.  This is done by multiplying the
  58|       mantissa in FP0 by the factor in FP1 if the adjusted
  59|       exponent sign is positive, and dividing FP0 by FP1 if
  60|       it is negative.
  61|
  62|       Clean up and return.  Check if the final mul or div resulted
  63|       in an inex2 exception.  If so, set inex1 in the fpsr and
  64|       check if the inex1 exception is enabled.  If so, set d7 upper
  65|       word to $0100.  This will signal unimp.sa that an enabled inex1
  66|       exception occurred.  Unimp will fix the stack.
  67|
  68
  69|               Copyright (C) Motorola, Inc. 1990
  70|                       All Rights Reserved
  71|
  72|       For details on the license for this file, please see the
  73|       file, README, in this same directory.
  74
  75|DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
  76
  77        |section        8
  78
  79#include "fpsp.h"
  80
  81|
  82|       PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
  83|       to nearest, minus, and plus, respectively.  The tables include
  84|       10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
  85|       is required until the power is greater than 27, however, all
  86|       tables include the first 5 for ease of indexing.
  87|
  88        |xref   PTENRN
  89        |xref   PTENRM
  90        |xref   PTENRP
  91
  92RTABLE: .byte   0,0,0,0
  93        .byte   2,3,2,3
  94        .byte   2,3,3,2
  95        .byte   3,2,2,3
  96
  97        .global decbin
  98        .global calc_e
  99        .global pwrten
 100        .global calc_m
 101        .global norm
 102        .global ap_st_z
 103        .global ap_st_n
 104|
 105        .set    FNIBS,7
 106        .set    FSTRT,0
 107|
 108        .set    ESTRT,4
 109        .set    EDIGITS,2       |
 110|
 111| Constants in single precision
 112FZERO:  .long   0x00000000
 113FONE:   .long   0x3F800000
 114FTEN:   .long   0x41200000
 115
 116        .set    TEN,10
 117
 118|
 119decbin:
 120        | fmovel        #0,FPCR         ;clr real fpcr
 121        moveml  %d2-%d5,-(%a7)
 122|
 123| Calculate exponent:
 124|  1. Copy bcd value in memory for use as a working copy.
 125|  2. Calculate absolute value of exponent in d1 by mul and add.
 126|  3. Correct for exponent sign.
 127|  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
 128|     (i.e., all digits assumed left of the decimal point.)
 129|
 130| Register usage:
 131|
 132|  calc_e:
 133|       (*)  d0: temp digit storage
 134|       (*)  d1: accumulator for binary exponent
 135|       (*)  d2: digit count
 136|       (*)  d3: offset pointer
 137|       ( )  d4: first word of bcd
 138|       ( )  a0: pointer to working bcd value
 139|       ( )  a6: pointer to original bcd value
 140|       (*)  FP_SCR1: working copy of original bcd value
 141|       (*)  L_SCR1: copy of original exponent word
 142|
 143calc_e:
 144        movel   #EDIGITS,%d2    |# of nibbles (digits) in fraction part
 145        moveql  #ESTRT,%d3      |counter to pick up digits
 146        leal    FP_SCR1(%a6),%a0        |load tmp bcd storage address
 147        movel   ETEMP(%a6),(%a0)        |save input bcd value
 148        movel   ETEMP_HI(%a6),4(%a0) |save words 2 and 3
 149        movel   ETEMP_LO(%a6),8(%a0) |and work with these
 150        movel   (%a0),%d4       |get first word of bcd
 151        clrl    %d1             |zero d1 for accumulator
 152e_gd:
 153        mulul   #TEN,%d1        |mul partial product by one digit place
 154        bfextu  %d4{%d3:#4},%d0 |get the digit and zero extend into d0
 155        addl    %d0,%d1         |d1 = d1 + d0
 156        addqb   #4,%d3          |advance d3 to the next digit
 157        dbf     %d2,e_gd        |if we have used all 3 digits, exit loop
 158        btst    #30,%d4         |get SE
 159        beqs    e_pos           |don't negate if pos
 160        negl    %d1             |negate before subtracting
 161e_pos:
 162        subl    #16,%d1         |sub to compensate for shift of mant
 163        bges    e_save          |if still pos, do not neg
 164        negl    %d1             |now negative, make pos and set SE
 165        orl     #0x40000000,%d4 |set SE in d4,
 166        orl     #0x40000000,(%a0)       |and in working bcd
 167e_save:
 168        movel   %d1,L_SCR1(%a6) |save exp in memory
 169|
 170|
 171| Calculate mantissa:
 172|  1. Calculate absolute value of mantissa in fp0 by mul and add.
 173|  2. Correct for mantissa sign.
 174|     (i.e., all digits assumed left of the decimal point.)
 175|
 176| Register usage:
 177|
 178|  calc_m:
 179|       (*)  d0: temp digit storage
 180|       (*)  d1: lword counter
 181|       (*)  d2: digit count
 182|       (*)  d3: offset pointer
 183|       ( )  d4: words 2 and 3 of bcd
 184|       ( )  a0: pointer to working bcd value
 185|       ( )  a6: pointer to original bcd value
 186|       (*) fp0: mantissa accumulator
 187|       ( )  FP_SCR1: working copy of original bcd value
 188|       ( )  L_SCR1: copy of original exponent word
 189|
 190calc_m:
 191        moveql  #1,%d1          |word counter, init to 1
 192        fmoves  FZERO,%fp0      |accumulator
 193|
 194|
 195|  Since the packed number has a long word between the first & second parts,
 196|  get the integer digit then skip down & get the rest of the
 197|  mantissa.  We will unroll the loop once.
 198|
 199        bfextu  (%a0){#28:#4},%d0       |integer part is ls digit in long word
 200        faddb   %d0,%fp0                |add digit to sum in fp0
 201|
 202|
 203|  Get the rest of the mantissa.
 204|
 205loadlw:
 206        movel   (%a0,%d1.L*4),%d4       |load mantissa longword into d4
 207        moveql  #FSTRT,%d3      |counter to pick up digits
 208        moveql  #FNIBS,%d2      |reset number of digits per a0 ptr
 209md2b:
 210        fmuls   FTEN,%fp0       |fp0 = fp0 * 10
 211        bfextu  %d4{%d3:#4},%d0 |get the digit and zero extend
 212        faddb   %d0,%fp0        |fp0 = fp0 + digit
 213|
 214|
 215|  If all the digits (8) in that long word have been converted (d2=0),
 216|  then inc d1 (=2) to point to the next long word and reset d3 to 0
 217|  to initialize the digit offset, and set d2 to 7 for the digit count;
 218|  else continue with this long word.
 219|
 220        addqb   #4,%d3          |advance d3 to the next digit
 221        dbf     %d2,md2b                |check for last digit in this lw
 222nextlw:
 223        addql   #1,%d1          |inc lw pointer in mantissa
 224        cmpl    #2,%d1          |test for last lw
 225        ble     loadlw          |if not, get last one
 226
 227|
 228|  Check the sign of the mant and make the value in fp0 the same sign.
 229|
 230m_sign:
 231        btst    #31,(%a0)       |test sign of the mantissa
 232        beq     ap_st_z         |if clear, go to append/strip zeros
 233        fnegx   %fp0            |if set, negate fp0
 234
 235|
 236| Append/strip zeros:
 237|
 238|  For adjusted exponents which have an absolute value greater than 27*,
 239|  this routine calculates the amount needed to normalize the mantissa
 240|  for the adjusted exponent.  That number is subtracted from the exp
 241|  if the exp was positive, and added if it was negative.  The purpose
 242|  of this is to reduce the value of the exponent and the possibility
 243|  of error in calculation of pwrten.
 244|
 245|  1. Branch on the sign of the adjusted exponent.
 246|  2p.(positive exp)
 247|   2. Check M16 and the digits in lwords 2 and 3 in descending order.
 248|   3. Add one for each zero encountered until a non-zero digit.
 249|   4. Subtract the count from the exp.
 250|   5. Check if the exp has crossed zero in #3 above; make the exp abs
 251|          and set SE.
 252|       6. Multiply the mantissa by 10**count.
 253|  2n.(negative exp)
 254|   2. Check the digits in lwords 3 and 2 in descending order.
 255|   3. Add one for each zero encountered until a non-zero digit.
 256|   4. Add the count to the exp.
 257|   5. Check if the exp has crossed zero in #3 above; clear SE.
 258|   6. Divide the mantissa by 10**count.
 259|
 260|  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
 261|   any adjustment due to append/strip zeros will drive the resultant
 262|   exponent towards zero.  Since all pwrten constants with a power
 263|   of 27 or less are exact, there is no need to use this routine to
 264|   attempt to lessen the resultant exponent.
 265|
 266| Register usage:
 267|
 268|  ap_st_z:
 269|       (*)  d0: temp digit storage
 270|       (*)  d1: zero count
 271|       (*)  d2: digit count
 272|       (*)  d3: offset pointer
 273|       ( )  d4: first word of bcd
 274|       (*)  d5: lword counter
 275|       ( )  a0: pointer to working bcd value
 276|       ( )  FP_SCR1: working copy of original bcd value
 277|       ( )  L_SCR1: copy of original exponent word
 278|
 279|
 280| First check the absolute value of the exponent to see if this
 281| routine is necessary.  If so, then check the sign of the exponent
 282| and do append (+) or strip (-) zeros accordingly.
 283| This section handles a positive adjusted exponent.
 284|
 285ap_st_z:
 286        movel   L_SCR1(%a6),%d1 |load expA for range test
 287        cmpl    #27,%d1         |test is with 27
 288        ble     pwrten          |if abs(expA) <28, skip ap/st zeros
 289        btst    #30,(%a0)       |check sign of exp
 290        bne     ap_st_n         |if neg, go to neg side
 291        clrl    %d1             |zero count reg
 292        movel   (%a0),%d4               |load lword 1 to d4
 293        bfextu  %d4{#28:#4},%d0 |get M16 in d0
 294        bnes    ap_p_fx         |if M16 is non-zero, go fix exp
 295        addql   #1,%d1          |inc zero count
 296        moveql  #1,%d5          |init lword counter
 297        movel   (%a0,%d5.L*4),%d4       |get lword 2 to d4
 298        bnes    ap_p_cl         |if lw 2 is zero, skip it
 299        addql   #8,%d1          |and inc count by 8
 300        addql   #1,%d5          |inc lword counter
 301        movel   (%a0,%d5.L*4),%d4       |get lword 3 to d4
 302ap_p_cl:
 303        clrl    %d3             |init offset reg
 304        moveql  #7,%d2          |init digit counter
 305ap_p_gd:
 306        bfextu  %d4{%d3:#4},%d0 |get digit
 307        bnes    ap_p_fx         |if non-zero, go to fix exp
 308        addql   #4,%d3          |point to next digit
 309        addql   #1,%d1          |inc digit counter
 310        dbf     %d2,ap_p_gd     |get next digit
 311ap_p_fx:
 312        movel   %d1,%d0         |copy counter to d2
 313        movel   L_SCR1(%a6),%d1 |get adjusted exp from memory
 314        subl    %d0,%d1         |subtract count from exp
 315        bges    ap_p_fm         |if still pos, go to pwrten
 316        negl    %d1             |now its neg; get abs
 317        movel   (%a0),%d4               |load lword 1 to d4
 318        orl     #0x40000000,%d4 | and set SE in d4
 319        orl     #0x40000000,(%a0)       | and in memory
 320|
 321| Calculate the mantissa multiplier to compensate for the striping of
 322| zeros from the mantissa.
 323|
 324ap_p_fm:
 325        movel   #PTENRN,%a1     |get address of power-of-ten table
 326        clrl    %d3             |init table index
 327        fmoves  FONE,%fp1       |init fp1 to 1
 328        moveql  #3,%d2          |init d2 to count bits in counter
 329ap_p_el:
 330        asrl    #1,%d0          |shift lsb into carry
 331        bccs    ap_p_en         |if 1, mul fp1 by pwrten factor
 332        fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
 333ap_p_en:
 334        addl    #12,%d3         |inc d3 to next rtable entry
 335        tstl    %d0             |check if d0 is zero
 336        bnes    ap_p_el         |if not, get next bit
 337        fmulx   %fp1,%fp0               |mul mantissa by 10**(no_bits_shifted)
 338        bra     pwrten          |go calc pwrten
 339|
 340| This section handles a negative adjusted exponent.
 341|
 342ap_st_n:
 343        clrl    %d1             |clr counter
 344        moveql  #2,%d5          |set up d5 to point to lword 3
 345        movel   (%a0,%d5.L*4),%d4       |get lword 3
 346        bnes    ap_n_cl         |if not zero, check digits
 347        subl    #1,%d5          |dec d5 to point to lword 2
 348        addql   #8,%d1          |inc counter by 8
 349        movel   (%a0,%d5.L*4),%d4       |get lword 2
 350ap_n_cl:
 351        movel   #28,%d3         |point to last digit
 352        moveql  #7,%d2          |init digit counter
 353ap_n_gd:
 354        bfextu  %d4{%d3:#4},%d0 |get digit
 355        bnes    ap_n_fx         |if non-zero, go to exp fix
 356        subql   #4,%d3          |point to previous digit
 357        addql   #1,%d1          |inc digit counter
 358        dbf     %d2,ap_n_gd     |get next digit
 359ap_n_fx:
 360        movel   %d1,%d0         |copy counter to d0
 361        movel   L_SCR1(%a6),%d1 |get adjusted exp from memory
 362        subl    %d0,%d1         |subtract count from exp
 363        bgts    ap_n_fm         |if still pos, go fix mantissa
 364        negl    %d1             |take abs of exp and clr SE
 365        movel   (%a0),%d4               |load lword 1 to d4
 366        andl    #0xbfffffff,%d4 | and clr SE in d4
 367        andl    #0xbfffffff,(%a0)       | and in memory
 368|
 369| Calculate the mantissa multiplier to compensate for the appending of
 370| zeros to the mantissa.
 371|
 372ap_n_fm:
 373        movel   #PTENRN,%a1     |get address of power-of-ten table
 374        clrl    %d3             |init table index
 375        fmoves  FONE,%fp1       |init fp1 to 1
 376        moveql  #3,%d2          |init d2 to count bits in counter
 377ap_n_el:
 378        asrl    #1,%d0          |shift lsb into carry
 379        bccs    ap_n_en         |if 1, mul fp1 by pwrten factor
 380        fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
 381ap_n_en:
 382        addl    #12,%d3         |inc d3 to next rtable entry
 383        tstl    %d0             |check if d0 is zero
 384        bnes    ap_n_el         |if not, get next bit
 385        fdivx   %fp1,%fp0               |div mantissa by 10**(no_bits_shifted)
 386|
 387|
 388| Calculate power-of-ten factor from adjusted and shifted exponent.
 389|
 390| Register usage:
 391|
 392|  pwrten:
 393|       (*)  d0: temp
 394|       ( )  d1: exponent
 395|       (*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
 396|       (*)  d3: FPCR work copy
 397|       ( )  d4: first word of bcd
 398|       (*)  a1: RTABLE pointer
 399|  calc_p:
 400|       (*)  d0: temp
 401|       ( )  d1: exponent
 402|       (*)  d3: PWRTxx table index
 403|       ( )  a0: pointer to working copy of bcd
 404|       (*)  a1: PWRTxx pointer
 405|       (*) fp1: power-of-ten accumulator
 406|
 407| Pwrten calculates the exponent factor in the selected rounding mode
 408| according to the following table:
 409|
 410|       Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
 411|
 412|       ANY       ANY   RN      RN
 413|
 414|        +         +    RP      RP
 415|        -         +    RP      RM
 416|        +         -    RP      RM
 417|        -         -    RP      RP
 418|
 419|        +         +    RM      RM
 420|        -         +    RM      RP
 421|        +         -    RM      RP
 422|        -         -    RM      RM
 423|
 424|        +         +    RZ      RM
 425|        -         +    RZ      RM
 426|        +         -    RZ      RP
 427|        -         -    RZ      RP
 428|
 429|
 430pwrten:
 431        movel   USER_FPCR(%a6),%d3 |get user's FPCR
 432        bfextu  %d3{#26:#2},%d2 |isolate rounding mode bits
 433        movel   (%a0),%d4               |reload 1st bcd word to d4
 434        asll    #2,%d2          |format d2 to be
 435        bfextu  %d4{#0:#2},%d0  | {FPCR[6],FPCR[5],SM,SE}
 436        addl    %d0,%d2         |in d2 as index into RTABLE
 437        leal    RTABLE,%a1      |load rtable base
 438        moveb   (%a1,%d2),%d0   |load new rounding bits from table
 439        clrl    %d3                     |clear d3 to force no exc and extended
 440        bfins   %d0,%d3{#26:#2} |stuff new rounding bits in FPCR
 441        fmovel  %d3,%FPCR               |write new FPCR
 442        asrl    #1,%d0          |write correct PTENxx table
 443        bccs    not_rp          |to a1
 444        leal    PTENRP,%a1      |it is RP
 445        bras    calc_p          |go to init section
 446not_rp:
 447        asrl    #1,%d0          |keep checking
 448        bccs    not_rm
 449        leal    PTENRM,%a1      |it is RM
 450        bras    calc_p          |go to init section
 451not_rm:
 452        leal    PTENRN,%a1      |it is RN
 453calc_p:
 454        movel   %d1,%d0         |copy exp to d0;use d0
 455        bpls    no_neg          |if exp is negative,
 456        negl    %d0             |invert it
 457        orl     #0x40000000,(%a0)       |and set SE bit
 458no_neg:
 459        clrl    %d3             |table index
 460        fmoves  FONE,%fp1       |init fp1 to 1
 461e_loop:
 462        asrl    #1,%d0          |shift next bit into carry
 463        bccs    e_next          |if zero, skip the mul
 464        fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
 465e_next:
 466        addl    #12,%d3         |inc d3 to next rtable entry
 467        tstl    %d0             |check if d0 is zero
 468        bnes    e_loop          |not zero, continue shifting
 469|
 470|
 471|  Check the sign of the adjusted exp and make the value in fp0 the
 472|  same sign. If the exp was pos then multiply fp1*fp0;
 473|  else divide fp0/fp1.
 474|
 475| Register Usage:
 476|  norm:
 477|       ( )  a0: pointer to working bcd value
 478|       (*) fp0: mantissa accumulator
 479|       ( ) fp1: scaling factor - 10**(abs(exp))
 480|
 481norm:
 482        btst    #30,(%a0)       |test the sign of the exponent
 483        beqs    mul             |if clear, go to multiply
 484div:
 485        fdivx   %fp1,%fp0               |exp is negative, so divide mant by exp
 486        bras    end_dec
 487mul:
 488        fmulx   %fp1,%fp0               |exp is positive, so multiply by exp
 489|
 490|
 491| Clean up and return with result in fp0.
 492|
 493| If the final mul/div in decbin incurred an inex exception,
 494| it will be inex2, but will be reported as inex1 by get_op.
 495|
 496end_dec:
 497        fmovel  %FPSR,%d0               |get status register
 498        bclrl   #inex2_bit+8,%d0        |test for inex2 and clear it
 499        fmovel  %d0,%FPSR               |return status reg w/o inex2
 500        beqs    no_exc          |skip this if no exc
 501        orl     #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
 502no_exc:
 503        moveml  (%a7)+,%d2-%d5
 504        rts
 505        |end
 506