linux/arch/microblaze/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
   4 * Copyright (C) 2008-2009 PetaLogix
   5 * Copyright (C) 2006 Atmark Techno, Inc.
   6 */
   7
   8#ifndef _ASM_MICROBLAZE_PGTABLE_H
   9#define _ASM_MICROBLAZE_PGTABLE_H
  10
  11#include <asm/setup.h>
  12
  13#ifndef __ASSEMBLY__
  14extern int mem_init_done;
  15#endif
  16
  17#ifndef CONFIG_MMU
  18
  19#define pgd_present(pgd)        (1) /* pages are always present on non MMU */
  20#define pgd_none(pgd)           (0)
  21#define pgd_bad(pgd)            (0)
  22#define pgd_clear(pgdp)
  23#define kern_addr_valid(addr)   (1)
  24
  25#define PAGE_NONE               __pgprot(0) /* these mean nothing to non MMU */
  26#define PAGE_SHARED             __pgprot(0) /* these mean nothing to non MMU */
  27#define PAGE_COPY               __pgprot(0) /* these mean nothing to non MMU */
  28#define PAGE_READONLY           __pgprot(0) /* these mean nothing to non MMU */
  29#define PAGE_KERNEL             __pgprot(0) /* these mean nothing to non MMU */
  30
  31#define pgprot_noncached(x)     (x)
  32#define pgprot_writecombine     pgprot_noncached
  33#define pgprot_device           pgprot_noncached
  34
  35#define __swp_type(x)           (0)
  36#define __swp_offset(x)         (0)
  37#define __swp_entry(typ, off)   ((swp_entry_t) { ((typ) | ((off) << 7)) })
  38#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  39#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
  40
  41#define ZERO_PAGE(vaddr)        ({ BUG(); NULL; })
  42
  43#define swapper_pg_dir ((pgd_t *) NULL)
  44
  45#define arch_enter_lazy_cpu_mode()      do {} while (0)
  46
  47#define pgprot_noncached_wc(prot)       prot
  48
  49/*
  50 * All 32bit addresses are effectively valid for vmalloc...
  51 * Sort of meaningless for non-VM targets.
  52 */
  53#define VMALLOC_START   0
  54#define VMALLOC_END     0xffffffff
  55
  56#else /* CONFIG_MMU */
  57
  58#include <asm-generic/pgtable-nopmd.h>
  59
  60#ifdef __KERNEL__
  61#ifndef __ASSEMBLY__
  62
  63#include <linux/sched.h>
  64#include <linux/threads.h>
  65#include <asm/processor.h>              /* For TASK_SIZE */
  66#include <asm/mmu.h>
  67#include <asm/page.h>
  68
  69#define FIRST_USER_ADDRESS      0UL
  70
  71extern unsigned long va_to_phys(unsigned long address);
  72extern pte_t *va_to_pte(unsigned long address);
  73
  74/*
  75 * The following only work if pte_present() is true.
  76 * Undefined behaviour if not..
  77 */
  78
  79/* Start and end of the vmalloc area. */
  80/* Make sure to map the vmalloc area above the pinned kernel memory area
  81   of 32Mb.  */
  82#define VMALLOC_START   (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
  83#define VMALLOC_END     ioremap_bot
  84
  85#endif /* __ASSEMBLY__ */
  86
  87/*
  88 * Macro to mark a page protection value as "uncacheable".
  89 */
  90
  91#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \
  92                                                        _PAGE_WRITETHRU)
  93
  94#define pgprot_noncached(prot) \
  95                        (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
  96                                        _PAGE_NO_CACHE | _PAGE_GUARDED))
  97
  98#define pgprot_noncached_wc(prot) \
  99                         (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 100                                                        _PAGE_NO_CACHE))
 101
 102/*
 103 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
 104 * table containing PTEs, together with a set of 16 segment registers, to
 105 * define the virtual to physical address mapping.
 106 *
 107 * We use the hash table as an extended TLB, i.e. a cache of currently
 108 * active mappings.  We maintain a two-level page table tree, much
 109 * like that used by the i386, for the sake of the Linux memory
 110 * management code.  Low-level assembler code in hashtable.S
 111 * (procedure hash_page) is responsible for extracting ptes from the
 112 * tree and putting them into the hash table when necessary, and
 113 * updating the accessed and modified bits in the page table tree.
 114 */
 115
 116/*
 117 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
 118 * instruction and data sides share a unified, 64-entry, semi-associative
 119 * TLB which is maintained totally under software control. In addition, the
 120 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
 121 * TLB which serves as a first level to the shared TLB. These two TLBs are
 122 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
 123 */
 124
 125/*
 126 * The normal case is that PTEs are 32-bits and we have a 1-page
 127 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
 128 *
 129 */
 130
 131/* PGDIR_SHIFT determines what a top-level page table entry can map */
 132#define PGDIR_SHIFT     (PAGE_SHIFT + PTE_SHIFT)
 133#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 134#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 135
 136/*
 137 * entries per page directory level: our page-table tree is two-level, so
 138 * we don't really have any PMD directory.
 139 */
 140#define PTRS_PER_PTE    (1 << PTE_SHIFT)
 141#define PTRS_PER_PMD    1
 142#define PTRS_PER_PGD    (1 << (32 - PGDIR_SHIFT))
 143
 144#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
 145#define FIRST_USER_PGD_NR       0
 146
 147#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
 148#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
 149
 150#define pte_ERROR(e) \
 151        printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
 152                __FILE__, __LINE__, pte_val(e))
 153#define pgd_ERROR(e) \
 154        printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
 155                __FILE__, __LINE__, pgd_val(e))
 156
 157/*
 158 * Bits in a linux-style PTE.  These match the bits in the
 159 * (hardware-defined) PTE as closely as possible.
 160 */
 161
 162/* There are several potential gotchas here.  The hardware TLBLO
 163 * field looks like this:
 164 *
 165 * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 166 * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
 167 *
 168 * Where possible we make the Linux PTE bits match up with this
 169 *
 170 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
 171 * support down to 1k pages), this is done in the TLBMiss exception
 172 * handler.
 173 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
 174 * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
 175 * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
 176 * zone.
 177 * - PRESENT *must* be in the bottom two bits because swap cache
 178 * entries use the top 30 bits.  Because 4xx doesn't support SMP
 179 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
 180 * is cleared in the TLB miss handler before the TLB entry is loaded.
 181 * - All other bits of the PTE are loaded into TLBLO without
 182 *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
 183 * software PTE bits.  We actually use bits 21, 24, 25, and
 184 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
 185 * PRESENT.
 186 */
 187
 188/* Definitions for MicroBlaze. */
 189#define _PAGE_GUARDED   0x001   /* G: page is guarded from prefetch */
 190#define _PAGE_PRESENT   0x002   /* software: PTE contains a translation */
 191#define _PAGE_NO_CACHE  0x004   /* I: caching is inhibited */
 192#define _PAGE_WRITETHRU 0x008   /* W: caching is write-through */
 193#define _PAGE_USER      0x010   /* matches one of the zone permission bits */
 194#define _PAGE_RW        0x040   /* software: Writes permitted */
 195#define _PAGE_DIRTY     0x080   /* software: dirty page */
 196#define _PAGE_HWWRITE   0x100   /* hardware: Dirty & RW, set in exception */
 197#define _PAGE_HWEXEC    0x200   /* hardware: EX permission */
 198#define _PAGE_ACCESSED  0x400   /* software: R: page referenced */
 199#define _PMD_PRESENT    PAGE_MASK
 200
 201/*
 202 * Some bits are unused...
 203 */
 204#ifndef _PAGE_HASHPTE
 205#define _PAGE_HASHPTE   0
 206#endif
 207#ifndef _PTE_NONE_MASK
 208#define _PTE_NONE_MASK  0
 209#endif
 210#ifndef _PAGE_SHARED
 211#define _PAGE_SHARED    0
 212#endif
 213#ifndef _PAGE_EXEC
 214#define _PAGE_EXEC      0
 215#endif
 216
 217#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 218
 219/*
 220 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
 221 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
 222 * to have it in the Linux PTE, and in fact the bit could be reused for
 223 * another purpose.  -- paulus.
 224 */
 225#define _PAGE_BASE      (_PAGE_PRESENT | _PAGE_ACCESSED)
 226#define _PAGE_WRENABLE  (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
 227
 228#define _PAGE_KERNEL \
 229        (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
 230
 231#define _PAGE_IO        (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
 232
 233#define PAGE_NONE       __pgprot(_PAGE_BASE)
 234#define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_USER)
 235#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
 236#define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
 237#define PAGE_SHARED_X \
 238                __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
 239#define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_USER)
 240#define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
 241
 242#define PAGE_KERNEL     __pgprot(_PAGE_KERNEL)
 243#define PAGE_KERNEL_RO  __pgprot(_PAGE_BASE | _PAGE_SHARED)
 244#define PAGE_KERNEL_CI  __pgprot(_PAGE_IO)
 245
 246/*
 247 * We consider execute permission the same as read.
 248 * Also, write permissions imply read permissions.
 249 */
 250#define __P000  PAGE_NONE
 251#define __P001  PAGE_READONLY_X
 252#define __P010  PAGE_COPY
 253#define __P011  PAGE_COPY_X
 254#define __P100  PAGE_READONLY
 255#define __P101  PAGE_READONLY_X
 256#define __P110  PAGE_COPY
 257#define __P111  PAGE_COPY_X
 258
 259#define __S000  PAGE_NONE
 260#define __S001  PAGE_READONLY_X
 261#define __S010  PAGE_SHARED
 262#define __S011  PAGE_SHARED_X
 263#define __S100  PAGE_READONLY
 264#define __S101  PAGE_READONLY_X
 265#define __S110  PAGE_SHARED
 266#define __S111  PAGE_SHARED_X
 267
 268#ifndef __ASSEMBLY__
 269/*
 270 * ZERO_PAGE is a global shared page that is always zero: used
 271 * for zero-mapped memory areas etc..
 272 */
 273extern unsigned long empty_zero_page[1024];
 274#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 275
 276#endif /* __ASSEMBLY__ */
 277
 278#define pte_none(pte)           ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
 279#define pte_present(pte)        (pte_val(pte) & _PAGE_PRESENT)
 280#define pte_clear(mm, addr, ptep) \
 281        do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
 282
 283#define pmd_none(pmd)           (!pmd_val(pmd))
 284#define pmd_bad(pmd)            ((pmd_val(pmd) & _PMD_PRESENT) == 0)
 285#define pmd_present(pmd)        ((pmd_val(pmd) & _PMD_PRESENT) != 0)
 286#define pmd_clear(pmdp)         do { pmd_val(*(pmdp)) = 0; } while (0)
 287
 288#define pte_page(x)             (mem_map + (unsigned long) \
 289                                ((pte_val(x) - memory_start) >> PAGE_SHIFT))
 290#define PFN_SHIFT_OFFSET        (PAGE_SHIFT)
 291
 292#define pte_pfn(x)              (pte_val(x) >> PFN_SHIFT_OFFSET)
 293
 294#define pfn_pte(pfn, prot) \
 295        __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
 296
 297#ifndef __ASSEMBLY__
 298/*
 299 * The following only work if pte_present() is true.
 300 * Undefined behaviour if not..
 301 */
 302static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
 303static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
 304static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
 305static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
 306static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
 307
 308static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
 309static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
 310
 311static inline pte_t pte_rdprotect(pte_t pte) \
 312                { pte_val(pte) &= ~_PAGE_USER; return pte; }
 313static inline pte_t pte_wrprotect(pte_t pte) \
 314        { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
 315static inline pte_t pte_exprotect(pte_t pte) \
 316        { pte_val(pte) &= ~_PAGE_EXEC; return pte; }
 317static inline pte_t pte_mkclean(pte_t pte) \
 318        { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
 319static inline pte_t pte_mkold(pte_t pte) \
 320        { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 321
 322static inline pte_t pte_mkread(pte_t pte) \
 323        { pte_val(pte) |= _PAGE_USER; return pte; }
 324static inline pte_t pte_mkexec(pte_t pte) \
 325        { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
 326static inline pte_t pte_mkwrite(pte_t pte) \
 327        { pte_val(pte) |= _PAGE_RW; return pte; }
 328static inline pte_t pte_mkdirty(pte_t pte) \
 329        { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 330static inline pte_t pte_mkyoung(pte_t pte) \
 331        { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 332
 333/*
 334 * Conversion functions: convert a page and protection to a page entry,
 335 * and a page entry and page directory to the page they refer to.
 336 */
 337
 338static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
 339{
 340        pte_t pte;
 341        pte_val(pte) = physpage | pgprot_val(pgprot);
 342        return pte;
 343}
 344
 345#define mk_pte(page, pgprot) \
 346({                                                                         \
 347        pte_t pte;                                                         \
 348        pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) |  \
 349                        pgprot_val(pgprot);                                \
 350        pte;                                                               \
 351})
 352
 353static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 354{
 355        pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
 356        return pte;
 357}
 358
 359/*
 360 * Atomic PTE updates.
 361 *
 362 * pte_update clears and sets bit atomically, and returns
 363 * the old pte value.
 364 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
 365 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
 366 */
 367static inline unsigned long pte_update(pte_t *p, unsigned long clr,
 368                                unsigned long set)
 369{
 370        unsigned long flags, old, tmp;
 371
 372        raw_local_irq_save(flags);
 373
 374        __asm__ __volatile__(   "lw     %0, %2, r0      \n"
 375                                "andn   %1, %0, %3      \n"
 376                                "or     %1, %1, %4      \n"
 377                                "sw     %1, %2, r0      \n"
 378                        : "=&r" (old), "=&r" (tmp)
 379                        : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
 380                        : "cc");
 381
 382        raw_local_irq_restore(flags);
 383
 384        return old;
 385}
 386
 387/*
 388 * set_pte stores a linux PTE into the linux page table.
 389 */
 390static inline void set_pte(struct mm_struct *mm, unsigned long addr,
 391                pte_t *ptep, pte_t pte)
 392{
 393        *ptep = pte;
 394}
 395
 396static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 397                pte_t *ptep, pte_t pte)
 398{
 399        *ptep = pte;
 400}
 401
 402#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 403static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 404                unsigned long address, pte_t *ptep)
 405{
 406        return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
 407}
 408
 409static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
 410                unsigned long addr, pte_t *ptep)
 411{
 412        return (pte_update(ptep, \
 413                (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
 414}
 415
 416#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 417static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 418                unsigned long addr, pte_t *ptep)
 419{
 420        return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
 421}
 422
 423/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
 424                unsigned long addr, pte_t *ptep)
 425{
 426        pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
 427}*/
 428
 429static inline void ptep_mkdirty(struct mm_struct *mm,
 430                unsigned long addr, pte_t *ptep)
 431{
 432        pte_update(ptep, 0, _PAGE_DIRTY);
 433}
 434
 435/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
 436
 437/* Convert pmd entry to page */
 438/* our pmd entry is an effective address of pte table*/
 439/* returns effective address of the pmd entry*/
 440static inline unsigned long pmd_page_vaddr(pmd_t pmd)
 441{
 442        return ((unsigned long) (pmd_val(pmd) & PAGE_MASK));
 443}
 444
 445/* returns struct *page of the pmd entry*/
 446#define pmd_page(pmd)   (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
 447
 448/* Find an entry in the third-level page table.. */
 449
 450extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 451
 452/*
 453 * Encode and decode a swap entry.
 454 * Note that the bits we use in a PTE for representing a swap entry
 455 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
 456 * (if used).  -- paulus
 457 */
 458#define __swp_type(entry)               ((entry).val & 0x3f)
 459#define __swp_offset(entry)     ((entry).val >> 6)
 460#define __swp_entry(type, offset) \
 461                ((swp_entry_t) { (type) | ((offset) << 6) })
 462#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
 463#define __swp_entry_to_pte(x)   ((pte_t) { (x).val << 2 })
 464
 465extern unsigned long iopa(unsigned long addr);
 466
 467/* Values for nocacheflag and cmode */
 468/* These are not used by the APUS kernel_map, but prevents
 469 * compilation errors.
 470 */
 471#define IOMAP_FULL_CACHING      0
 472#define IOMAP_NOCACHE_SER       1
 473#define IOMAP_NOCACHE_NONSER    2
 474#define IOMAP_NO_COPYBACK       3
 475
 476/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
 477#define kern_addr_valid(addr)   (1)
 478
 479void do_page_fault(struct pt_regs *regs, unsigned long address,
 480                   unsigned long error_code);
 481
 482void mapin_ram(void);
 483int map_page(unsigned long va, phys_addr_t pa, int flags);
 484
 485extern int mem_init_done;
 486
 487asmlinkage void __init mmu_init(void);
 488
 489void __init *early_get_page(void);
 490
 491#endif /* __ASSEMBLY__ */
 492#endif /* __KERNEL__ */
 493
 494#endif /* CONFIG_MMU */
 495
 496#ifndef __ASSEMBLY__
 497extern unsigned long ioremap_bot, ioremap_base;
 498
 499void setup_memory(void);
 500#endif /* __ASSEMBLY__ */
 501
 502#endif /* _ASM_MICROBLAZE_PGTABLE_H */
 503