1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16#include <linux/errno.h>
17#include <linux/sched.h>
18#include <linux/proc_fs.h>
19#include <linux/stat.h>
20#include <linux/ctype.h>
21#include <linux/time.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/seq_file.h>
25#include <linux/bitops.h>
26#include <linux/rtc.h>
27
28#include <linux/uaccess.h>
29#include <asm/processor.h>
30#include <asm/io.h>
31#include <asm/prom.h>
32#include <asm/rtas.h>
33#include <asm/machdep.h>
34#include <asm/time.h>
35
36
37#define KEY_SWITCH 0x0001
38#define ENCLOSURE_SWITCH 0x0002
39#define THERMAL_SENSOR 0x0003
40#define LID_STATUS 0x0004
41#define POWER_SOURCE 0x0005
42#define BATTERY_VOLTAGE 0x0006
43#define BATTERY_REMAINING 0x0007
44#define BATTERY_PERCENTAGE 0x0008
45#define EPOW_SENSOR 0x0009
46#define BATTERY_CYCLESTATE 0x000a
47#define BATTERY_CHARGING 0x000b
48
49
50#define IBM_SURVEILLANCE 0x2328
51#define IBM_FANRPM 0x2329
52#define IBM_VOLTAGE 0x232a
53#define IBM_DRCONNECTOR 0x232b
54#define IBM_POWERSUPPLY 0x232c
55
56
57#define SENSOR_CRITICAL_HIGH 13
58#define SENSOR_WARNING_HIGH 12
59#define SENSOR_NORMAL 11
60#define SENSOR_WARNING_LOW 10
61#define SENSOR_CRITICAL_LOW 9
62#define SENSOR_SUCCESS 0
63#define SENSOR_HW_ERROR -1
64#define SENSOR_BUSY -2
65#define SENSOR_NOT_EXIST -3
66#define SENSOR_DR_ENTITY -9000
67
68
69#define LOC_SCSI_DEV_ADDR 'A'
70#define LOC_SCSI_DEV_LOC 'B'
71#define LOC_CPU 'C'
72#define LOC_DISKETTE 'D'
73#define LOC_ETHERNET 'E'
74#define LOC_FAN 'F'
75#define LOC_GRAPHICS 'G'
76
77#define LOC_IO_ADAPTER 'I'
78
79#define LOC_KEYBOARD 'K'
80#define LOC_LCD 'L'
81#define LOC_MEMORY 'M'
82#define LOC_NV_MEMORY 'N'
83#define LOC_MOUSE 'O'
84#define LOC_PLANAR 'P'
85#define LOC_OTHER_IO 'Q'
86#define LOC_PARALLEL 'R'
87#define LOC_SERIAL 'S'
88#define LOC_DEAD_RING 'T'
89#define LOC_RACKMOUNTED 'U'
90#define LOC_VOLTAGE 'V'
91#define LOC_SWITCH_ADAPTER 'W'
92#define LOC_OTHER 'X'
93#define LOC_FIRMWARE 'Y'
94#define LOC_SCSI 'Z'
95
96
97#define TONE_FREQUENCY 0x0001
98#define TONE_VOLUME 0x0002
99#define SYSTEM_POWER_STATE 0x0003
100#define WARNING_LIGHT 0x0004
101#define DISK_ACTIVITY_LIGHT 0x0005
102#define HEX_DISPLAY_UNIT 0x0006
103#define BATTERY_WARNING_TIME 0x0007
104#define CONDITION_CYCLE_REQUEST 0x0008
105#define SURVEILLANCE_INDICATOR 0x2328
106#define DR_ACTION 0x2329
107#define DR_INDICATOR 0x232a
108
109
110
111
112#define MAX_SENSORS 17
113#define MAX_LINELENGTH 256
114#define SENSOR_PREFIX "ibm,sensor-"
115#define cel_to_fahr(x) ((x*9/5)+32)
116
117struct individual_sensor {
118 unsigned int token;
119 unsigned int quant;
120};
121
122struct rtas_sensors {
123 struct individual_sensor sensor[MAX_SENSORS];
124 unsigned int quant;
125};
126
127
128static struct rtas_sensors sensors;
129static struct device_node *rtas_node = NULL;
130static unsigned long power_on_time = 0;
131static char progress_led[MAX_LINELENGTH];
132
133static unsigned long rtas_tone_frequency = 1000;
134static unsigned long rtas_tone_volume = 0;
135
136
137
138static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140static ssize_t ppc_rtas_clock_write(struct file *file,
141 const char __user *buf, size_t count, loff_t *ppos);
142static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143static ssize_t ppc_rtas_progress_write(struct file *file,
144 const char __user *buf, size_t count, loff_t *ppos);
145static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146static ssize_t ppc_rtas_poweron_write(struct file *file,
147 const char __user *buf, size_t count, loff_t *ppos);
148
149static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150 const char __user *buf, size_t count, loff_t *ppos);
151static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153 const char __user *buf, size_t count, loff_t *ppos);
154static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156
157static int poweron_open(struct inode *inode, struct file *file)
158{
159 return single_open(file, ppc_rtas_poweron_show, NULL);
160}
161
162static const struct proc_ops ppc_rtas_poweron_proc_ops = {
163 .proc_open = poweron_open,
164 .proc_read = seq_read,
165 .proc_lseek = seq_lseek,
166 .proc_write = ppc_rtas_poweron_write,
167 .proc_release = single_release,
168};
169
170static int progress_open(struct inode *inode, struct file *file)
171{
172 return single_open(file, ppc_rtas_progress_show, NULL);
173}
174
175static const struct proc_ops ppc_rtas_progress_proc_ops = {
176 .proc_open = progress_open,
177 .proc_read = seq_read,
178 .proc_lseek = seq_lseek,
179 .proc_write = ppc_rtas_progress_write,
180 .proc_release = single_release,
181};
182
183static int clock_open(struct inode *inode, struct file *file)
184{
185 return single_open(file, ppc_rtas_clock_show, NULL);
186}
187
188static const struct proc_ops ppc_rtas_clock_proc_ops = {
189 .proc_open = clock_open,
190 .proc_read = seq_read,
191 .proc_lseek = seq_lseek,
192 .proc_write = ppc_rtas_clock_write,
193 .proc_release = single_release,
194};
195
196static int tone_freq_open(struct inode *inode, struct file *file)
197{
198 return single_open(file, ppc_rtas_tone_freq_show, NULL);
199}
200
201static const struct proc_ops ppc_rtas_tone_freq_proc_ops = {
202 .proc_open = tone_freq_open,
203 .proc_read = seq_read,
204 .proc_lseek = seq_lseek,
205 .proc_write = ppc_rtas_tone_freq_write,
206 .proc_release = single_release,
207};
208
209static int tone_volume_open(struct inode *inode, struct file *file)
210{
211 return single_open(file, ppc_rtas_tone_volume_show, NULL);
212}
213
214static const struct proc_ops ppc_rtas_tone_volume_proc_ops = {
215 .proc_open = tone_volume_open,
216 .proc_read = seq_read,
217 .proc_lseek = seq_lseek,
218 .proc_write = ppc_rtas_tone_volume_write,
219 .proc_release = single_release,
220};
221
222static int ppc_rtas_find_all_sensors(void);
223static void ppc_rtas_process_sensor(struct seq_file *m,
224 struct individual_sensor *s, int state, int error, const char *loc);
225static char *ppc_rtas_process_error(int error);
226static void get_location_code(struct seq_file *m,
227 struct individual_sensor *s, const char *loc);
228static void check_location_string(struct seq_file *m, const char *c);
229static void check_location(struct seq_file *m, const char *c);
230
231static int __init proc_rtas_init(void)
232{
233 if (!machine_is(pseries))
234 return -ENODEV;
235
236 rtas_node = of_find_node_by_name(NULL, "rtas");
237 if (rtas_node == NULL)
238 return -ENODEV;
239
240 proc_create("powerpc/rtas/progress", 0644, NULL,
241 &ppc_rtas_progress_proc_ops);
242 proc_create("powerpc/rtas/clock", 0644, NULL,
243 &ppc_rtas_clock_proc_ops);
244 proc_create("powerpc/rtas/poweron", 0644, NULL,
245 &ppc_rtas_poweron_proc_ops);
246 proc_create_single("powerpc/rtas/sensors", 0444, NULL,
247 ppc_rtas_sensors_show);
248 proc_create("powerpc/rtas/frequency", 0644, NULL,
249 &ppc_rtas_tone_freq_proc_ops);
250 proc_create("powerpc/rtas/volume", 0644, NULL,
251 &ppc_rtas_tone_volume_proc_ops);
252 proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
253 ppc_rtas_rmo_buf_show);
254 return 0;
255}
256
257__initcall(proc_rtas_init);
258
259static int parse_number(const char __user *p, size_t count, u64 *val)
260{
261 char buf[40];
262 char *end;
263
264 if (count > 39)
265 return -EINVAL;
266
267 if (copy_from_user(buf, p, count))
268 return -EFAULT;
269
270 buf[count] = 0;
271
272 *val = simple_strtoull(buf, &end, 10);
273 if (*end && *end != '\n')
274 return -EINVAL;
275
276 return 0;
277}
278
279
280
281
282static ssize_t ppc_rtas_poweron_write(struct file *file,
283 const char __user *buf, size_t count, loff_t *ppos)
284{
285 struct rtc_time tm;
286 time64_t nowtime;
287 int error = parse_number(buf, count, &nowtime);
288 if (error)
289 return error;
290
291 power_on_time = nowtime;
292
293 rtc_time64_to_tm(nowtime, &tm);
294
295 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
296 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
297 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 );
298 if (error)
299 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
300 ppc_rtas_process_error(error));
301 return count;
302}
303
304static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
305{
306 if (power_on_time == 0)
307 seq_printf(m, "Power on time not set\n");
308 else
309 seq_printf(m, "%lu\n",power_on_time);
310 return 0;
311}
312
313
314
315
316static ssize_t ppc_rtas_progress_write(struct file *file,
317 const char __user *buf, size_t count, loff_t *ppos)
318{
319 unsigned long hex;
320
321 if (count >= MAX_LINELENGTH)
322 count = MAX_LINELENGTH -1;
323 if (copy_from_user(progress_led, buf, count)) {
324 return -EFAULT;
325 }
326 progress_led[count] = 0;
327
328
329 hex = simple_strtoul(progress_led, NULL, 10);
330
331 rtas_progress ((char *)progress_led, hex);
332 return count;
333
334
335
336}
337
338static int ppc_rtas_progress_show(struct seq_file *m, void *v)
339{
340 if (progress_led[0])
341 seq_printf(m, "%s\n", progress_led);
342 return 0;
343}
344
345
346
347
348static ssize_t ppc_rtas_clock_write(struct file *file,
349 const char __user *buf, size_t count, loff_t *ppos)
350{
351 struct rtc_time tm;
352 time64_t nowtime;
353 int error = parse_number(buf, count, &nowtime);
354 if (error)
355 return error;
356
357 rtc_time64_to_tm(nowtime, &tm);
358 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
359 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
360 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
361 if (error)
362 printk(KERN_WARNING "error: setting the clock returned: %s\n",
363 ppc_rtas_process_error(error));
364 return count;
365}
366
367static int ppc_rtas_clock_show(struct seq_file *m, void *v)
368{
369 int ret[8];
370 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
371
372 if (error) {
373 printk(KERN_WARNING "error: reading the clock returned: %s\n",
374 ppc_rtas_process_error(error));
375 seq_printf(m, "0");
376 } else {
377 unsigned int year, mon, day, hour, min, sec;
378 year = ret[0]; mon = ret[1]; day = ret[2];
379 hour = ret[3]; min = ret[4]; sec = ret[5];
380 seq_printf(m, "%lld\n",
381 mktime64(year, mon, day, hour, min, sec));
382 }
383 return 0;
384}
385
386
387
388
389static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
390{
391 int i,j;
392 int state, error;
393 int get_sensor_state = rtas_token("get-sensor-state");
394
395 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
396 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
397 seq_printf(m, "********************************************************\n");
398
399 if (ppc_rtas_find_all_sensors() != 0) {
400 seq_printf(m, "\nNo sensors are available\n");
401 return 0;
402 }
403
404 for (i=0; i<sensors.quant; i++) {
405 struct individual_sensor *p = &sensors.sensor[i];
406 char rstr[64];
407 const char *loc;
408 int llen, offs;
409
410 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
411 loc = of_get_property(rtas_node, rstr, &llen);
412
413
414 for (j = 0, offs = 0; j <= p->quant; j++) {
415 error = rtas_call(get_sensor_state, 2, 2, &state,
416 p->token, j);
417
418 ppc_rtas_process_sensor(m, p, state, error, loc);
419 seq_putc(m, '\n');
420 if (loc) {
421 offs += strlen(loc) + 1;
422 loc += strlen(loc) + 1;
423 if (offs >= llen)
424 loc = NULL;
425 }
426 }
427 }
428 return 0;
429}
430
431
432
433static int ppc_rtas_find_all_sensors(void)
434{
435 const unsigned int *utmp;
436 int len, i;
437
438 utmp = of_get_property(rtas_node, "rtas-sensors", &len);
439 if (utmp == NULL) {
440 printk (KERN_ERR "error: could not get rtas-sensors\n");
441 return 1;
442 }
443
444 sensors.quant = len / 8;
445
446 for (i=0; i<sensors.quant; i++) {
447 sensors.sensor[i].token = *utmp++;
448 sensors.sensor[i].quant = *utmp++;
449 }
450 return 0;
451}
452
453
454
455
456
457static char *ppc_rtas_process_error(int error)
458{
459 switch (error) {
460 case SENSOR_CRITICAL_HIGH:
461 return "(critical high)";
462 case SENSOR_WARNING_HIGH:
463 return "(warning high)";
464 case SENSOR_NORMAL:
465 return "(normal)";
466 case SENSOR_WARNING_LOW:
467 return "(warning low)";
468 case SENSOR_CRITICAL_LOW:
469 return "(critical low)";
470 case SENSOR_SUCCESS:
471 return "(read ok)";
472 case SENSOR_HW_ERROR:
473 return "(hardware error)";
474 case SENSOR_BUSY:
475 return "(busy)";
476 case SENSOR_NOT_EXIST:
477 return "(non existent)";
478 case SENSOR_DR_ENTITY:
479 return "(dr entity removed)";
480 default:
481 return "(UNKNOWN)";
482 }
483}
484
485
486
487
488
489
490static void ppc_rtas_process_sensor(struct seq_file *m,
491 struct individual_sensor *s, int state, int error, const char *loc)
492{
493
494 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
495 "Maintenance" };
496 const char * enclosure_switch[] = { "Closed", "Open" };
497 const char * lid_status[] = { " ", "Open", "Closed" };
498 const char * power_source[] = { "AC\t", "Battery",
499 "AC & Battery" };
500 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
501 const char * epow_sensor[] = {
502 "EPOW Reset", "Cooling warning", "Power warning",
503 "System shutdown", "System halt", "EPOW main enclosure",
504 "EPOW power off" };
505 const char * battery_cyclestate[] = { "None", "In progress",
506 "Requested" };
507 const char * battery_charging[] = { "Charging", "Discharging",
508 "No current flow" };
509 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
510 "Exchange" };
511
512 int have_strings = 0;
513 int num_states = 0;
514 int temperature = 0;
515 int unknown = 0;
516
517
518
519 switch (s->token) {
520 case KEY_SWITCH:
521 seq_printf(m, "Key switch:\t");
522 num_states = sizeof(key_switch) / sizeof(char *);
523 if (state < num_states) {
524 seq_printf(m, "%s\t", key_switch[state]);
525 have_strings = 1;
526 }
527 break;
528 case ENCLOSURE_SWITCH:
529 seq_printf(m, "Enclosure switch:\t");
530 num_states = sizeof(enclosure_switch) / sizeof(char *);
531 if (state < num_states) {
532 seq_printf(m, "%s\t",
533 enclosure_switch[state]);
534 have_strings = 1;
535 }
536 break;
537 case THERMAL_SENSOR:
538 seq_printf(m, "Temp. (C/F):\t");
539 temperature = 1;
540 break;
541 case LID_STATUS:
542 seq_printf(m, "Lid status:\t");
543 num_states = sizeof(lid_status) / sizeof(char *);
544 if (state < num_states) {
545 seq_printf(m, "%s\t", lid_status[state]);
546 have_strings = 1;
547 }
548 break;
549 case POWER_SOURCE:
550 seq_printf(m, "Power source:\t");
551 num_states = sizeof(power_source) / sizeof(char *);
552 if (state < num_states) {
553 seq_printf(m, "%s\t",
554 power_source[state]);
555 have_strings = 1;
556 }
557 break;
558 case BATTERY_VOLTAGE:
559 seq_printf(m, "Battery voltage:\t");
560 break;
561 case BATTERY_REMAINING:
562 seq_printf(m, "Battery remaining:\t");
563 num_states = sizeof(battery_remaining) / sizeof(char *);
564 if (state < num_states)
565 {
566 seq_printf(m, "%s\t",
567 battery_remaining[state]);
568 have_strings = 1;
569 }
570 break;
571 case BATTERY_PERCENTAGE:
572 seq_printf(m, "Battery percentage:\t");
573 break;
574 case EPOW_SENSOR:
575 seq_printf(m, "EPOW Sensor:\t");
576 num_states = sizeof(epow_sensor) / sizeof(char *);
577 if (state < num_states) {
578 seq_printf(m, "%s\t", epow_sensor[state]);
579 have_strings = 1;
580 }
581 break;
582 case BATTERY_CYCLESTATE:
583 seq_printf(m, "Battery cyclestate:\t");
584 num_states = sizeof(battery_cyclestate) /
585 sizeof(char *);
586 if (state < num_states) {
587 seq_printf(m, "%s\t",
588 battery_cyclestate[state]);
589 have_strings = 1;
590 }
591 break;
592 case BATTERY_CHARGING:
593 seq_printf(m, "Battery Charging:\t");
594 num_states = sizeof(battery_charging) / sizeof(char *);
595 if (state < num_states) {
596 seq_printf(m, "%s\t",
597 battery_charging[state]);
598 have_strings = 1;
599 }
600 break;
601 case IBM_SURVEILLANCE:
602 seq_printf(m, "Surveillance:\t");
603 break;
604 case IBM_FANRPM:
605 seq_printf(m, "Fan (rpm):\t");
606 break;
607 case IBM_VOLTAGE:
608 seq_printf(m, "Voltage (mv):\t");
609 break;
610 case IBM_DRCONNECTOR:
611 seq_printf(m, "DR connector:\t");
612 num_states = sizeof(ibm_drconnector) / sizeof(char *);
613 if (state < num_states) {
614 seq_printf(m, "%s\t",
615 ibm_drconnector[state]);
616 have_strings = 1;
617 }
618 break;
619 case IBM_POWERSUPPLY:
620 seq_printf(m, "Powersupply:\t");
621 break;
622 default:
623 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
624 s->token);
625 unknown = 1;
626 have_strings = 1;
627 break;
628 }
629 if (have_strings == 0) {
630 if (temperature) {
631 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
632 } else
633 seq_printf(m, "%10d\t", state);
634 }
635 if (unknown == 0) {
636 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
637 get_location_code(m, s, loc);
638 }
639}
640
641
642
643static void check_location(struct seq_file *m, const char *c)
644{
645 switch (c[0]) {
646 case LOC_PLANAR:
647 seq_printf(m, "Planar #%c", c[1]);
648 break;
649 case LOC_CPU:
650 seq_printf(m, "CPU #%c", c[1]);
651 break;
652 case LOC_FAN:
653 seq_printf(m, "Fan #%c", c[1]);
654 break;
655 case LOC_RACKMOUNTED:
656 seq_printf(m, "Rack #%c", c[1]);
657 break;
658 case LOC_VOLTAGE:
659 seq_printf(m, "Voltage #%c", c[1]);
660 break;
661 case LOC_LCD:
662 seq_printf(m, "LCD #%c", c[1]);
663 break;
664 case '.':
665 seq_printf(m, "- %c", c[1]);
666 break;
667 default:
668 seq_printf(m, "Unknown location");
669 break;
670 }
671}
672
673
674
675
676
677
678
679
680static void check_location_string(struct seq_file *m, const char *c)
681{
682 while (*c) {
683 if (isalpha(*c) || *c == '.')
684 check_location(m, c);
685 else if (*c == '/' || *c == '-')
686 seq_printf(m, " at ");
687 c++;
688 }
689}
690
691
692
693
694static void get_location_code(struct seq_file *m, struct individual_sensor *s,
695 const char *loc)
696{
697 if (!loc || !*loc) {
698 seq_printf(m, "---");
699 } else {
700 check_location_string(m, loc);
701 }
702 seq_putc(m, ' ');
703}
704
705
706
707static ssize_t ppc_rtas_tone_freq_write(struct file *file,
708 const char __user *buf, size_t count, loff_t *ppos)
709{
710 u64 freq;
711 int error = parse_number(buf, count, &freq);
712 if (error)
713 return error;
714
715 rtas_tone_frequency = freq;
716 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
717 TONE_FREQUENCY, 0, freq);
718 if (error)
719 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
720 ppc_rtas_process_error(error));
721 return count;
722}
723
724static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
725{
726 seq_printf(m, "%lu\n", rtas_tone_frequency);
727 return 0;
728}
729
730
731
732static ssize_t ppc_rtas_tone_volume_write(struct file *file,
733 const char __user *buf, size_t count, loff_t *ppos)
734{
735 u64 volume;
736 int error = parse_number(buf, count, &volume);
737 if (error)
738 return error;
739
740 if (volume > 100)
741 volume = 100;
742
743 rtas_tone_volume = volume;
744 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
745 TONE_VOLUME, 0, volume);
746 if (error)
747 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
748 ppc_rtas_process_error(error));
749 return count;
750}
751
752static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
753{
754 seq_printf(m, "%lu\n", rtas_tone_volume);
755 return 0;
756}
757
758#define RMO_READ_BUF_MAX 30
759
760
761static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
762{
763 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
764 return 0;
765}
766