linux/arch/powerpc/kernel/setup_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * 
   4 * Common boot and setup code.
   5 *
   6 * Copyright (C) 2001 PPC64 Team, IBM Corp
   7 */
   8
   9#include <linux/export.h>
  10#include <linux/string.h>
  11#include <linux/sched.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/reboot.h>
  15#include <linux/delay.h>
  16#include <linux/initrd.h>
  17#include <linux/seq_file.h>
  18#include <linux/ioport.h>
  19#include <linux/console.h>
  20#include <linux/utsname.h>
  21#include <linux/tty.h>
  22#include <linux/root_dev.h>
  23#include <linux/notifier.h>
  24#include <linux/cpu.h>
  25#include <linux/unistd.h>
  26#include <linux/serial.h>
  27#include <linux/serial_8250.h>
  28#include <linux/memblock.h>
  29#include <linux/pci.h>
  30#include <linux/lockdep.h>
  31#include <linux/memory.h>
  32#include <linux/nmi.h>
  33#include <linux/pgtable.h>
  34
  35#include <asm/debugfs.h>
  36#include <asm/io.h>
  37#include <asm/kdump.h>
  38#include <asm/prom.h>
  39#include <asm/processor.h>
  40#include <asm/smp.h>
  41#include <asm/elf.h>
  42#include <asm/machdep.h>
  43#include <asm/paca.h>
  44#include <asm/time.h>
  45#include <asm/cputable.h>
  46#include <asm/dt_cpu_ftrs.h>
  47#include <asm/sections.h>
  48#include <asm/btext.h>
  49#include <asm/nvram.h>
  50#include <asm/setup.h>
  51#include <asm/rtas.h>
  52#include <asm/iommu.h>
  53#include <asm/serial.h>
  54#include <asm/cache.h>
  55#include <asm/page.h>
  56#include <asm/mmu.h>
  57#include <asm/firmware.h>
  58#include <asm/xmon.h>
  59#include <asm/udbg.h>
  60#include <asm/kexec.h>
  61#include <asm/code-patching.h>
  62#include <asm/livepatch.h>
  63#include <asm/opal.h>
  64#include <asm/cputhreads.h>
  65#include <asm/hw_irq.h>
  66#include <asm/feature-fixups.h>
  67#include <asm/kup.h>
  68#include <asm/early_ioremap.h>
  69
  70#include "setup.h"
  71
  72int spinning_secondaries;
  73u64 ppc64_pft_size;
  74
  75struct ppc64_caches ppc64_caches = {
  76        .l1d = {
  77                .block_size = 0x40,
  78                .log_block_size = 6,
  79        },
  80        .l1i = {
  81                .block_size = 0x40,
  82                .log_block_size = 6
  83        },
  84};
  85EXPORT_SYMBOL_GPL(ppc64_caches);
  86
  87#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
  88void __init setup_tlb_core_data(void)
  89{
  90        int cpu;
  91
  92        BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
  93
  94        for_each_possible_cpu(cpu) {
  95                int first = cpu_first_thread_sibling(cpu);
  96
  97                /*
  98                 * If we boot via kdump on a non-primary thread,
  99                 * make sure we point at the thread that actually
 100                 * set up this TLB.
 101                 */
 102                if (cpu_first_thread_sibling(boot_cpuid) == first)
 103                        first = boot_cpuid;
 104
 105                paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
 106
 107                /*
 108                 * If we have threads, we need either tlbsrx.
 109                 * or e6500 tablewalk mode, or else TLB handlers
 110                 * will be racy and could produce duplicate entries.
 111                 * Should we panic instead?
 112                 */
 113                WARN_ONCE(smt_enabled_at_boot >= 2 &&
 114                          !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
 115                          book3e_htw_mode != PPC_HTW_E6500,
 116                          "%s: unsupported MMU configuration\n", __func__);
 117        }
 118}
 119#endif
 120
 121#ifdef CONFIG_SMP
 122
 123static char *smt_enabled_cmdline;
 124
 125/* Look for ibm,smt-enabled OF option */
 126void __init check_smt_enabled(void)
 127{
 128        struct device_node *dn;
 129        const char *smt_option;
 130
 131        /* Default to enabling all threads */
 132        smt_enabled_at_boot = threads_per_core;
 133
 134        /* Allow the command line to overrule the OF option */
 135        if (smt_enabled_cmdline) {
 136                if (!strcmp(smt_enabled_cmdline, "on"))
 137                        smt_enabled_at_boot = threads_per_core;
 138                else if (!strcmp(smt_enabled_cmdline, "off"))
 139                        smt_enabled_at_boot = 0;
 140                else {
 141                        int smt;
 142                        int rc;
 143
 144                        rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
 145                        if (!rc)
 146                                smt_enabled_at_boot =
 147                                        min(threads_per_core, smt);
 148                }
 149        } else {
 150                dn = of_find_node_by_path("/options");
 151                if (dn) {
 152                        smt_option = of_get_property(dn, "ibm,smt-enabled",
 153                                                     NULL);
 154
 155                        if (smt_option) {
 156                                if (!strcmp(smt_option, "on"))
 157                                        smt_enabled_at_boot = threads_per_core;
 158                                else if (!strcmp(smt_option, "off"))
 159                                        smt_enabled_at_boot = 0;
 160                        }
 161
 162                        of_node_put(dn);
 163                }
 164        }
 165}
 166
 167/* Look for smt-enabled= cmdline option */
 168static int __init early_smt_enabled(char *p)
 169{
 170        smt_enabled_cmdline = p;
 171        return 0;
 172}
 173early_param("smt-enabled", early_smt_enabled);
 174
 175#endif /* CONFIG_SMP */
 176
 177/** Fix up paca fields required for the boot cpu */
 178static void __init fixup_boot_paca(void)
 179{
 180        /* The boot cpu is started */
 181        get_paca()->cpu_start = 1;
 182        /* Allow percpu accesses to work until we setup percpu data */
 183        get_paca()->data_offset = 0;
 184        /* Mark interrupts disabled in PACA */
 185        irq_soft_mask_set(IRQS_DISABLED);
 186}
 187
 188static void __init configure_exceptions(void)
 189{
 190        /*
 191         * Setup the trampolines from the lowmem exception vectors
 192         * to the kdump kernel when not using a relocatable kernel.
 193         */
 194        setup_kdump_trampoline();
 195
 196        /* Under a PAPR hypervisor, we need hypercalls */
 197        if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
 198                /* Enable AIL if possible */
 199                if (!pseries_enable_reloc_on_exc()) {
 200                        init_task.thread.fscr &= ~FSCR_SCV;
 201                        cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
 202                }
 203
 204                /*
 205                 * Tell the hypervisor that we want our exceptions to
 206                 * be taken in little endian mode.
 207                 *
 208                 * We don't call this for big endian as our calling convention
 209                 * makes us always enter in BE, and the call may fail under
 210                 * some circumstances with kdump.
 211                 */
 212#ifdef __LITTLE_ENDIAN__
 213                pseries_little_endian_exceptions();
 214#endif
 215        } else {
 216                /* Set endian mode using OPAL */
 217                if (firmware_has_feature(FW_FEATURE_OPAL))
 218                        opal_configure_cores();
 219
 220                /* AIL on native is done in cpu_ready_for_interrupts() */
 221        }
 222}
 223
 224static void cpu_ready_for_interrupts(void)
 225{
 226        /*
 227         * Enable AIL if supported, and we are in hypervisor mode. This
 228         * is called once for every processor.
 229         *
 230         * If we are not in hypervisor mode the job is done once for
 231         * the whole partition in configure_exceptions().
 232         */
 233        if (cpu_has_feature(CPU_FTR_HVMODE) &&
 234            cpu_has_feature(CPU_FTR_ARCH_207S)) {
 235                unsigned long lpcr = mfspr(SPRN_LPCR);
 236                mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
 237        }
 238
 239        /*
 240         * Set HFSCR:TM based on CPU features:
 241         * In the special case of TM no suspend (P9N DD2.1), Linux is
 242         * told TM is off via the dt-ftrs but told to (partially) use
 243         * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
 244         * will be off from dt-ftrs but we need to turn it on for the
 245         * no suspend case.
 246         */
 247        if (cpu_has_feature(CPU_FTR_HVMODE)) {
 248                if (cpu_has_feature(CPU_FTR_TM_COMP))
 249                        mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
 250                else
 251                        mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
 252        }
 253
 254        /* Set IR and DR in PACA MSR */
 255        get_paca()->kernel_msr = MSR_KERNEL;
 256}
 257
 258unsigned long spr_default_dscr = 0;
 259
 260void __init record_spr_defaults(void)
 261{
 262        if (early_cpu_has_feature(CPU_FTR_DSCR))
 263                spr_default_dscr = mfspr(SPRN_DSCR);
 264}
 265
 266/*
 267 * Early initialization entry point. This is called by head.S
 268 * with MMU translation disabled. We rely on the "feature" of
 269 * the CPU that ignores the top 2 bits of the address in real
 270 * mode so we can access kernel globals normally provided we
 271 * only toy with things in the RMO region. From here, we do
 272 * some early parsing of the device-tree to setup out MEMBLOCK
 273 * data structures, and allocate & initialize the hash table
 274 * and segment tables so we can start running with translation
 275 * enabled.
 276 *
 277 * It is this function which will call the probe() callback of
 278 * the various platform types and copy the matching one to the
 279 * global ppc_md structure. Your platform can eventually do
 280 * some very early initializations from the probe() routine, but
 281 * this is not recommended, be very careful as, for example, the
 282 * device-tree is not accessible via normal means at this point.
 283 */
 284
 285void __init __nostackprotector early_setup(unsigned long dt_ptr)
 286{
 287        static __initdata struct paca_struct boot_paca;
 288
 289        /* -------- printk is _NOT_ safe to use here ! ------- */
 290
 291        /*
 292         * Assume we're on cpu 0 for now.
 293         *
 294         * We need to load a PACA very early for a few reasons.
 295         *
 296         * The stack protector canary is stored in the paca, so as soon as we
 297         * call any stack protected code we need r13 pointing somewhere valid.
 298         *
 299         * If we are using kcov it will call in_task() in its instrumentation,
 300         * which relies on the current task from the PACA.
 301         *
 302         * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
 303         * printk(), which can trigger both stack protector and kcov.
 304         *
 305         * percpu variables and spin locks also use the paca.
 306         *
 307         * So set up a temporary paca. It will be replaced below once we know
 308         * what CPU we are on.
 309         */
 310        initialise_paca(&boot_paca, 0);
 311        setup_paca(&boot_paca);
 312        fixup_boot_paca();
 313
 314        /* -------- printk is now safe to use ------- */
 315
 316        /* Try new device tree based feature discovery ... */
 317        if (!dt_cpu_ftrs_init(__va(dt_ptr)))
 318                /* Otherwise use the old style CPU table */
 319                identify_cpu(0, mfspr(SPRN_PVR));
 320
 321        /* Enable early debugging if any specified (see udbg.h) */
 322        udbg_early_init();
 323
 324        udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
 325
 326        /*
 327         * Do early initialization using the flattened device
 328         * tree, such as retrieving the physical memory map or
 329         * calculating/retrieving the hash table size.
 330         */
 331        early_init_devtree(__va(dt_ptr));
 332
 333        /* Now we know the logical id of our boot cpu, setup the paca. */
 334        if (boot_cpuid != 0) {
 335                /* Poison paca_ptrs[0] again if it's not the boot cpu */
 336                memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
 337        }
 338        setup_paca(paca_ptrs[boot_cpuid]);
 339        fixup_boot_paca();
 340
 341        /*
 342         * Configure exception handlers. This include setting up trampolines
 343         * if needed, setting exception endian mode, etc...
 344         */
 345        configure_exceptions();
 346
 347        /*
 348         * Configure Kernel Userspace Protection. This needs to happen before
 349         * feature fixups for platforms that implement this using features.
 350         */
 351        setup_kup();
 352
 353        /* Apply all the dynamic patching */
 354        apply_feature_fixups();
 355        setup_feature_keys();
 356
 357        early_ioremap_setup();
 358
 359        /* Initialize the hash table or TLB handling */
 360        early_init_mmu();
 361
 362        /*
 363         * After firmware and early platform setup code has set things up,
 364         * we note the SPR values for configurable control/performance
 365         * registers, and use those as initial defaults.
 366         */
 367        record_spr_defaults();
 368
 369        /*
 370         * At this point, we can let interrupts switch to virtual mode
 371         * (the MMU has been setup), so adjust the MSR in the PACA to
 372         * have IR and DR set and enable AIL if it exists
 373         */
 374        cpu_ready_for_interrupts();
 375
 376        /*
 377         * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
 378         * will only actually get enabled on the boot cpu much later once
 379         * ftrace itself has been initialized.
 380         */
 381        this_cpu_enable_ftrace();
 382
 383        udbg_printf(" <- %s()\n", __func__);
 384
 385#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
 386        /*
 387         * This needs to be done *last* (after the above udbg_printf() even)
 388         *
 389         * Right after we return from this function, we turn on the MMU
 390         * which means the real-mode access trick that btext does will
 391         * no longer work, it needs to switch to using a real MMU
 392         * mapping. This call will ensure that it does
 393         */
 394        btext_map();
 395#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
 396}
 397
 398#ifdef CONFIG_SMP
 399void early_setup_secondary(void)
 400{
 401        /* Mark interrupts disabled in PACA */
 402        irq_soft_mask_set(IRQS_DISABLED);
 403
 404        /* Initialize the hash table or TLB handling */
 405        early_init_mmu_secondary();
 406
 407        /* Perform any KUP setup that is per-cpu */
 408        setup_kup();
 409
 410        /*
 411         * At this point, we can let interrupts switch to virtual mode
 412         * (the MMU has been setup), so adjust the MSR in the PACA to
 413         * have IR and DR set.
 414         */
 415        cpu_ready_for_interrupts();
 416}
 417
 418#endif /* CONFIG_SMP */
 419
 420void panic_smp_self_stop(void)
 421{
 422        hard_irq_disable();
 423        spin_begin();
 424        while (1)
 425                spin_cpu_relax();
 426}
 427
 428#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
 429static bool use_spinloop(void)
 430{
 431        if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
 432                /*
 433                 * See comments in head_64.S -- not all platforms insert
 434                 * secondaries at __secondary_hold and wait at the spin
 435                 * loop.
 436                 */
 437                if (firmware_has_feature(FW_FEATURE_OPAL))
 438                        return false;
 439                return true;
 440        }
 441
 442        /*
 443         * When book3e boots from kexec, the ePAPR spin table does
 444         * not get used.
 445         */
 446        return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
 447}
 448
 449void smp_release_cpus(void)
 450{
 451        unsigned long *ptr;
 452        int i;
 453
 454        if (!use_spinloop())
 455                return;
 456
 457        /* All secondary cpus are spinning on a common spinloop, release them
 458         * all now so they can start to spin on their individual paca
 459         * spinloops. For non SMP kernels, the secondary cpus never get out
 460         * of the common spinloop.
 461         */
 462
 463        ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
 464                        - PHYSICAL_START);
 465        *ptr = ppc_function_entry(generic_secondary_smp_init);
 466
 467        /* And wait a bit for them to catch up */
 468        for (i = 0; i < 100000; i++) {
 469                mb();
 470                HMT_low();
 471                if (spinning_secondaries == 0)
 472                        break;
 473                udelay(1);
 474        }
 475        pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
 476}
 477#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
 478
 479/*
 480 * Initialize some remaining members of the ppc64_caches and systemcfg
 481 * structures
 482 * (at least until we get rid of them completely). This is mostly some
 483 * cache informations about the CPU that will be used by cache flush
 484 * routines and/or provided to userland
 485 */
 486
 487static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
 488                            u32 bsize, u32 sets)
 489{
 490        info->size = size;
 491        info->sets = sets;
 492        info->line_size = lsize;
 493        info->block_size = bsize;
 494        info->log_block_size = __ilog2(bsize);
 495        if (bsize)
 496                info->blocks_per_page = PAGE_SIZE / bsize;
 497        else
 498                info->blocks_per_page = 0;
 499
 500        if (sets == 0)
 501                info->assoc = 0xffff;
 502        else
 503                info->assoc = size / (sets * lsize);
 504}
 505
 506static bool __init parse_cache_info(struct device_node *np,
 507                                    bool icache,
 508                                    struct ppc_cache_info *info)
 509{
 510        static const char *ipropnames[] __initdata = {
 511                "i-cache-size",
 512                "i-cache-sets",
 513                "i-cache-block-size",
 514                "i-cache-line-size",
 515        };
 516        static const char *dpropnames[] __initdata = {
 517                "d-cache-size",
 518                "d-cache-sets",
 519                "d-cache-block-size",
 520                "d-cache-line-size",
 521        };
 522        const char **propnames = icache ? ipropnames : dpropnames;
 523        const __be32 *sizep, *lsizep, *bsizep, *setsp;
 524        u32 size, lsize, bsize, sets;
 525        bool success = true;
 526
 527        size = 0;
 528        sets = -1u;
 529        lsize = bsize = cur_cpu_spec->dcache_bsize;
 530        sizep = of_get_property(np, propnames[0], NULL);
 531        if (sizep != NULL)
 532                size = be32_to_cpu(*sizep);
 533        setsp = of_get_property(np, propnames[1], NULL);
 534        if (setsp != NULL)
 535                sets = be32_to_cpu(*setsp);
 536        bsizep = of_get_property(np, propnames[2], NULL);
 537        lsizep = of_get_property(np, propnames[3], NULL);
 538        if (bsizep == NULL)
 539                bsizep = lsizep;
 540        if (lsizep == NULL)
 541                lsizep = bsizep;
 542        if (lsizep != NULL)
 543                lsize = be32_to_cpu(*lsizep);
 544        if (bsizep != NULL)
 545                bsize = be32_to_cpu(*bsizep);
 546        if (sizep == NULL || bsizep == NULL || lsizep == NULL)
 547                success = false;
 548
 549        /*
 550         * OF is weird .. it represents fully associative caches
 551         * as "1 way" which doesn't make much sense and doesn't
 552         * leave room for direct mapped. We'll assume that 0
 553         * in OF means direct mapped for that reason.
 554         */
 555        if (sets == 1)
 556                sets = 0;
 557        else if (sets == 0)
 558                sets = 1;
 559
 560        init_cache_info(info, size, lsize, bsize, sets);
 561
 562        return success;
 563}
 564
 565void __init initialize_cache_info(void)
 566{
 567        struct device_node *cpu = NULL, *l2, *l3 = NULL;
 568        u32 pvr;
 569
 570        /*
 571         * All shipping POWER8 machines have a firmware bug that
 572         * puts incorrect information in the device-tree. This will
 573         * be (hopefully) fixed for future chips but for now hard
 574         * code the values if we are running on one of these
 575         */
 576        pvr = PVR_VER(mfspr(SPRN_PVR));
 577        if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
 578            pvr == PVR_POWER8NVL) {
 579                                                /* size    lsize   blk  sets */
 580                init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
 581                init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
 582                init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
 583                init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
 584        } else
 585                cpu = of_find_node_by_type(NULL, "cpu");
 586
 587        /*
 588         * We're assuming *all* of the CPUs have the same
 589         * d-cache and i-cache sizes... -Peter
 590         */
 591        if (cpu) {
 592                if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
 593                        pr_warn("Argh, can't find dcache properties !\n");
 594
 595                if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
 596                        pr_warn("Argh, can't find icache properties !\n");
 597
 598                /*
 599                 * Try to find the L2 and L3 if any. Assume they are
 600                 * unified and use the D-side properties.
 601                 */
 602                l2 = of_find_next_cache_node(cpu);
 603                of_node_put(cpu);
 604                if (l2) {
 605                        parse_cache_info(l2, false, &ppc64_caches.l2);
 606                        l3 = of_find_next_cache_node(l2);
 607                        of_node_put(l2);
 608                }
 609                if (l3) {
 610                        parse_cache_info(l3, false, &ppc64_caches.l3);
 611                        of_node_put(l3);
 612                }
 613        }
 614
 615        /* For use by binfmt_elf */
 616        dcache_bsize = ppc64_caches.l1d.block_size;
 617        icache_bsize = ppc64_caches.l1i.block_size;
 618
 619        cur_cpu_spec->dcache_bsize = dcache_bsize;
 620        cur_cpu_spec->icache_bsize = icache_bsize;
 621}
 622
 623/*
 624 * This returns the limit below which memory accesses to the linear
 625 * mapping are guarnateed not to cause an architectural exception (e.g.,
 626 * TLB or SLB miss fault).
 627 *
 628 * This is used to allocate PACAs and various interrupt stacks that
 629 * that are accessed early in interrupt handlers that must not cause
 630 * re-entrant interrupts.
 631 */
 632__init u64 ppc64_bolted_size(void)
 633{
 634#ifdef CONFIG_PPC_BOOK3E
 635        /* Freescale BookE bolts the entire linear mapping */
 636        /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
 637        if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
 638                return linear_map_top;
 639        /* Other BookE, we assume the first GB is bolted */
 640        return 1ul << 30;
 641#else
 642        /* BookS radix, does not take faults on linear mapping */
 643        if (early_radix_enabled())
 644                return ULONG_MAX;
 645
 646        /* BookS hash, the first segment is bolted */
 647        if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
 648                return 1UL << SID_SHIFT_1T;
 649        return 1UL << SID_SHIFT;
 650#endif
 651}
 652
 653static void *__init alloc_stack(unsigned long limit, int cpu)
 654{
 655        void *ptr;
 656
 657        BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
 658
 659        ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
 660                                     MEMBLOCK_LOW_LIMIT, limit,
 661                                     early_cpu_to_node(cpu));
 662        if (!ptr)
 663                panic("cannot allocate stacks");
 664
 665        return ptr;
 666}
 667
 668void __init irqstack_early_init(void)
 669{
 670        u64 limit = ppc64_bolted_size();
 671        unsigned int i;
 672
 673        /*
 674         * Interrupt stacks must be in the first segment since we
 675         * cannot afford to take SLB misses on them. They are not
 676         * accessed in realmode.
 677         */
 678        for_each_possible_cpu(i) {
 679                softirq_ctx[i] = alloc_stack(limit, i);
 680                hardirq_ctx[i] = alloc_stack(limit, i);
 681        }
 682}
 683
 684#ifdef CONFIG_PPC_BOOK3E
 685void __init exc_lvl_early_init(void)
 686{
 687        unsigned int i;
 688
 689        for_each_possible_cpu(i) {
 690                void *sp;
 691
 692                sp = alloc_stack(ULONG_MAX, i);
 693                critirq_ctx[i] = sp;
 694                paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
 695
 696                sp = alloc_stack(ULONG_MAX, i);
 697                dbgirq_ctx[i] = sp;
 698                paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
 699
 700                sp = alloc_stack(ULONG_MAX, i);
 701                mcheckirq_ctx[i] = sp;
 702                paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
 703        }
 704
 705        if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
 706                patch_exception(0x040, exc_debug_debug_book3e);
 707}
 708#endif
 709
 710/*
 711 * Stack space used when we detect a bad kernel stack pointer, and
 712 * early in SMP boots before relocation is enabled. Exclusive emergency
 713 * stack for machine checks.
 714 */
 715void __init emergency_stack_init(void)
 716{
 717        u64 limit, mce_limit;
 718        unsigned int i;
 719
 720        /*
 721         * Emergency stacks must be under 256MB, we cannot afford to take
 722         * SLB misses on them. The ABI also requires them to be 128-byte
 723         * aligned.
 724         *
 725         * Since we use these as temporary stacks during secondary CPU
 726         * bringup, machine check, system reset, and HMI, we need to get
 727         * at them in real mode. This means they must also be within the RMO
 728         * region.
 729         *
 730         * The IRQ stacks allocated elsewhere in this file are zeroed and
 731         * initialized in kernel/irq.c. These are initialized here in order
 732         * to have emergency stacks available as early as possible.
 733         */
 734        limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
 735
 736        /*
 737         * Machine check on pseries calls rtas, but can't use the static
 738         * rtas_args due to a machine check hitting while the lock is held.
 739         * rtas args have to be under 4GB, so the machine check stack is
 740         * limited to 4GB so args can be put on stack.
 741         */
 742        if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
 743                mce_limit = SZ_4G;
 744
 745        for_each_possible_cpu(i) {
 746                paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
 747
 748#ifdef CONFIG_PPC_BOOK3S_64
 749                /* emergency stack for NMI exception handling. */
 750                paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
 751
 752                /* emergency stack for machine check exception handling. */
 753                paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
 754#endif
 755        }
 756}
 757
 758#ifdef CONFIG_SMP
 759#define PCPU_DYN_SIZE           ()
 760
 761static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
 762{
 763        return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
 764                                      MEMBLOCK_ALLOC_ACCESSIBLE,
 765                                      early_cpu_to_node(cpu));
 766
 767}
 768
 769static void __init pcpu_fc_free(void *ptr, size_t size)
 770{
 771        memblock_free(__pa(ptr), size);
 772}
 773
 774static int pcpu_cpu_distance(unsigned int from, unsigned int to)
 775{
 776        if (early_cpu_to_node(from) == early_cpu_to_node(to))
 777                return LOCAL_DISTANCE;
 778        else
 779                return REMOTE_DISTANCE;
 780}
 781
 782unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
 783EXPORT_SYMBOL(__per_cpu_offset);
 784
 785void __init setup_per_cpu_areas(void)
 786{
 787        const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
 788        size_t atom_size;
 789        unsigned long delta;
 790        unsigned int cpu;
 791        int rc;
 792
 793        /*
 794         * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
 795         * to group units.  For larger mappings, use 1M atom which
 796         * should be large enough to contain a number of units.
 797         */
 798        if (mmu_linear_psize == MMU_PAGE_4K)
 799                atom_size = PAGE_SIZE;
 800        else
 801                atom_size = 1 << 20;
 802
 803        rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
 804                                    pcpu_fc_alloc, pcpu_fc_free);
 805        if (rc < 0)
 806                panic("cannot initialize percpu area (err=%d)", rc);
 807
 808        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
 809        for_each_possible_cpu(cpu) {
 810                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
 811                paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
 812        }
 813}
 814#endif
 815
 816#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 817unsigned long memory_block_size_bytes(void)
 818{
 819        if (ppc_md.memory_block_size)
 820                return ppc_md.memory_block_size();
 821
 822        return MIN_MEMORY_BLOCK_SIZE;
 823}
 824#endif
 825
 826#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
 827struct ppc_pci_io ppc_pci_io;
 828EXPORT_SYMBOL(ppc_pci_io);
 829#endif
 830
 831#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
 832u64 hw_nmi_get_sample_period(int watchdog_thresh)
 833{
 834        return ppc_proc_freq * watchdog_thresh;
 835}
 836#endif
 837
 838/*
 839 * The perf based hardlockup detector breaks PMU event based branches, so
 840 * disable it by default. Book3S has a soft-nmi hardlockup detector based
 841 * on the decrementer interrupt, so it does not suffer from this problem.
 842 *
 843 * It is likely to get false positives in VM guests, so disable it there
 844 * by default too.
 845 */
 846static int __init disable_hardlockup_detector(void)
 847{
 848#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
 849        hardlockup_detector_disable();
 850#else
 851        if (firmware_has_feature(FW_FEATURE_LPAR))
 852                hardlockup_detector_disable();
 853#endif
 854
 855        return 0;
 856}
 857early_initcall(disable_hardlockup_detector);
 858
 859#ifdef CONFIG_PPC_BOOK3S_64
 860static enum l1d_flush_type enabled_flush_types;
 861static void *l1d_flush_fallback_area;
 862static bool no_rfi_flush;
 863bool rfi_flush;
 864
 865static int __init handle_no_rfi_flush(char *p)
 866{
 867        pr_info("rfi-flush: disabled on command line.");
 868        no_rfi_flush = true;
 869        return 0;
 870}
 871early_param("no_rfi_flush", handle_no_rfi_flush);
 872
 873/*
 874 * The RFI flush is not KPTI, but because users will see doco that says to use
 875 * nopti we hijack that option here to also disable the RFI flush.
 876 */
 877static int __init handle_no_pti(char *p)
 878{
 879        pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
 880        handle_no_rfi_flush(NULL);
 881        return 0;
 882}
 883early_param("nopti", handle_no_pti);
 884
 885static void do_nothing(void *unused)
 886{
 887        /*
 888         * We don't need to do the flush explicitly, just enter+exit kernel is
 889         * sufficient, the RFI exit handlers will do the right thing.
 890         */
 891}
 892
 893void rfi_flush_enable(bool enable)
 894{
 895        if (enable) {
 896                do_rfi_flush_fixups(enabled_flush_types);
 897                on_each_cpu(do_nothing, NULL, 1);
 898        } else
 899                do_rfi_flush_fixups(L1D_FLUSH_NONE);
 900
 901        rfi_flush = enable;
 902}
 903
 904static void __ref init_fallback_flush(void)
 905{
 906        u64 l1d_size, limit;
 907        int cpu;
 908
 909        /* Only allocate the fallback flush area once (at boot time). */
 910        if (l1d_flush_fallback_area)
 911                return;
 912
 913        l1d_size = ppc64_caches.l1d.size;
 914
 915        /*
 916         * If there is no d-cache-size property in the device tree, l1d_size
 917         * could be zero. That leads to the loop in the asm wrapping around to
 918         * 2^64-1, and then walking off the end of the fallback area and
 919         * eventually causing a page fault which is fatal. Just default to
 920         * something vaguely sane.
 921         */
 922        if (!l1d_size)
 923                l1d_size = (64 * 1024);
 924
 925        limit = min(ppc64_bolted_size(), ppc64_rma_size);
 926
 927        /*
 928         * Align to L1d size, and size it at 2x L1d size, to catch possible
 929         * hardware prefetch runoff. We don't have a recipe for load patterns to
 930         * reliably avoid the prefetcher.
 931         */
 932        l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
 933                                                l1d_size, MEMBLOCK_LOW_LIMIT,
 934                                                limit, NUMA_NO_NODE);
 935        if (!l1d_flush_fallback_area)
 936                panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
 937                      __func__, l1d_size * 2, l1d_size, &limit);
 938
 939
 940        for_each_possible_cpu(cpu) {
 941                struct paca_struct *paca = paca_ptrs[cpu];
 942                paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
 943                paca->l1d_flush_size = l1d_size;
 944        }
 945}
 946
 947void setup_rfi_flush(enum l1d_flush_type types, bool enable)
 948{
 949        if (types & L1D_FLUSH_FALLBACK) {
 950                pr_info("rfi-flush: fallback displacement flush available\n");
 951                init_fallback_flush();
 952        }
 953
 954        if (types & L1D_FLUSH_ORI)
 955                pr_info("rfi-flush: ori type flush available\n");
 956
 957        if (types & L1D_FLUSH_MTTRIG)
 958                pr_info("rfi-flush: mttrig type flush available\n");
 959
 960        enabled_flush_types = types;
 961
 962        if (!no_rfi_flush && !cpu_mitigations_off())
 963                rfi_flush_enable(enable);
 964}
 965
 966#ifdef CONFIG_DEBUG_FS
 967static int rfi_flush_set(void *data, u64 val)
 968{
 969        bool enable;
 970
 971        if (val == 1)
 972                enable = true;
 973        else if (val == 0)
 974                enable = false;
 975        else
 976                return -EINVAL;
 977
 978        /* Only do anything if we're changing state */
 979        if (enable != rfi_flush)
 980                rfi_flush_enable(enable);
 981
 982        return 0;
 983}
 984
 985static int rfi_flush_get(void *data, u64 *val)
 986{
 987        *val = rfi_flush ? 1 : 0;
 988        return 0;
 989}
 990
 991DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
 992
 993static __init int rfi_flush_debugfs_init(void)
 994{
 995        debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
 996        return 0;
 997}
 998device_initcall(rfi_flush_debugfs_init);
 999#endif
1000#endif /* CONFIG_PPC_BOOK3S_64 */
1001