linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Common time routines among all ppc machines.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   6 * Paul Mackerras' version and mine for PReP and Pmac.
   7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   9 *
  10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  11 * to make clock more stable (2.4.0-test5). The only thing
  12 * that this code assumes is that the timebases have been synchronized
  13 * by firmware on SMP and are never stopped (never do sleep
  14 * on SMP then, nap and doze are OK).
  15 * 
  16 * Speeded up do_gettimeofday by getting rid of references to
  17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  18 *
  19 * TODO (not necessarily in this file):
  20 * - improve precision and reproducibility of timebase frequency
  21 * measurement at boot time.
  22 * - for astronomical applications: add a new function to get
  23 * non ambiguous timestamps even around leap seconds. This needs
  24 * a new timestamp format and a good name.
  25 *
  26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  28 */
  29
  30#include <linux/errno.h>
  31#include <linux/export.h>
  32#include <linux/sched.h>
  33#include <linux/sched/clock.h>
  34#include <linux/kernel.h>
  35#include <linux/param.h>
  36#include <linux/string.h>
  37#include <linux/mm.h>
  38#include <linux/interrupt.h>
  39#include <linux/timex.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/time.h>
  42#include <linux/init.h>
  43#include <linux/profile.h>
  44#include <linux/cpu.h>
  45#include <linux/security.h>
  46#include <linux/percpu.h>
  47#include <linux/rtc.h>
  48#include <linux/jiffies.h>
  49#include <linux/posix-timers.h>
  50#include <linux/irq.h>
  51#include <linux/delay.h>
  52#include <linux/irq_work.h>
  53#include <linux/of_clk.h>
  54#include <linux/suspend.h>
  55#include <linux/sched/cputime.h>
  56#include <linux/processor.h>
  57#include <asm/trace.h>
  58
  59#include <asm/io.h>
  60#include <asm/nvram.h>
  61#include <asm/cache.h>
  62#include <asm/machdep.h>
  63#include <linux/uaccess.h>
  64#include <asm/time.h>
  65#include <asm/prom.h>
  66#include <asm/irq.h>
  67#include <asm/div64.h>
  68#include <asm/smp.h>
  69#include <asm/vdso_datapage.h>
  70#include <asm/firmware.h>
  71#include <asm/asm-prototypes.h>
  72
  73/* powerpc clocksource/clockevent code */
  74
  75#include <linux/clockchips.h>
  76#include <linux/timekeeper_internal.h>
  77
  78static u64 rtc_read(struct clocksource *);
  79static struct clocksource clocksource_rtc = {
  80        .name         = "rtc",
  81        .rating       = 400,
  82        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  83        .mask         = CLOCKSOURCE_MASK(64),
  84        .read         = rtc_read,
  85};
  86
  87static u64 timebase_read(struct clocksource *);
  88static struct clocksource clocksource_timebase = {
  89        .name         = "timebase",
  90        .rating       = 400,
  91        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  92        .mask         = CLOCKSOURCE_MASK(64),
  93        .read         = timebase_read,
  94};
  95
  96#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  97u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  98
  99static int decrementer_set_next_event(unsigned long evt,
 100                                      struct clock_event_device *dev);
 101static int decrementer_shutdown(struct clock_event_device *evt);
 102
 103struct clock_event_device decrementer_clockevent = {
 104        .name                   = "decrementer",
 105        .rating                 = 200,
 106        .irq                    = 0,
 107        .set_next_event         = decrementer_set_next_event,
 108        .set_state_oneshot_stopped = decrementer_shutdown,
 109        .set_state_shutdown     = decrementer_shutdown,
 110        .tick_resume            = decrementer_shutdown,
 111        .features               = CLOCK_EVT_FEAT_ONESHOT |
 112                                  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 149bool tb_invalid;
 150
 151#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 152/*
 153 * Factor for converting from cputime_t (timebase ticks) to
 154 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 155 */
 156u64 __cputime_usec_factor;
 157EXPORT_SYMBOL(__cputime_usec_factor);
 158
 159#ifdef CONFIG_PPC_SPLPAR
 160void (*dtl_consumer)(struct dtl_entry *, u64);
 161#endif
 162
 163static void calc_cputime_factors(void)
 164{
 165        struct div_result res;
 166
 167        div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 168        __cputime_usec_factor = res.result_low;
 169}
 170
 171/*
 172 * Read the SPURR on systems that have it, otherwise the PURR,
 173 * or if that doesn't exist return the timebase value passed in.
 174 */
 175static inline unsigned long read_spurr(unsigned long tb)
 176{
 177        if (cpu_has_feature(CPU_FTR_SPURR))
 178                return mfspr(SPRN_SPURR);
 179        if (cpu_has_feature(CPU_FTR_PURR))
 180                return mfspr(SPRN_PURR);
 181        return tb;
 182}
 183
 184#ifdef CONFIG_PPC_SPLPAR
 185
 186#include <asm/dtl.h>
 187
 188/*
 189 * Scan the dispatch trace log and count up the stolen time.
 190 * Should be called with interrupts disabled.
 191 */
 192static u64 scan_dispatch_log(u64 stop_tb)
 193{
 194        u64 i = local_paca->dtl_ridx;
 195        struct dtl_entry *dtl = local_paca->dtl_curr;
 196        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 197        struct lppaca *vpa = local_paca->lppaca_ptr;
 198        u64 tb_delta;
 199        u64 stolen = 0;
 200        u64 dtb;
 201
 202        if (!dtl)
 203                return 0;
 204
 205        if (i == be64_to_cpu(vpa->dtl_idx))
 206                return 0;
 207        while (i < be64_to_cpu(vpa->dtl_idx)) {
 208                dtb = be64_to_cpu(dtl->timebase);
 209                tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 210                        be32_to_cpu(dtl->ready_to_enqueue_time);
 211                barrier();
 212                if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 213                        /* buffer has overflowed */
 214                        i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 215                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 216                        continue;
 217                }
 218                if (dtb > stop_tb)
 219                        break;
 220                if (dtl_consumer)
 221                        dtl_consumer(dtl, i);
 222                stolen += tb_delta;
 223                ++i;
 224                ++dtl;
 225                if (dtl == dtl_end)
 226                        dtl = local_paca->dispatch_log;
 227        }
 228        local_paca->dtl_ridx = i;
 229        local_paca->dtl_curr = dtl;
 230        return stolen;
 231}
 232
 233/*
 234 * Accumulate stolen time by scanning the dispatch trace log.
 235 * Called on entry from user mode.
 236 */
 237void notrace accumulate_stolen_time(void)
 238{
 239        u64 sst, ust;
 240        unsigned long save_irq_soft_mask = irq_soft_mask_return();
 241        struct cpu_accounting_data *acct = &local_paca->accounting;
 242
 243        /* We are called early in the exception entry, before
 244         * soft/hard_enabled are sync'ed to the expected state
 245         * for the exception. We are hard disabled but the PACA
 246         * needs to reflect that so various debug stuff doesn't
 247         * complain
 248         */
 249        irq_soft_mask_set(IRQS_DISABLED);
 250
 251        sst = scan_dispatch_log(acct->starttime_user);
 252        ust = scan_dispatch_log(acct->starttime);
 253        acct->stime -= sst;
 254        acct->utime -= ust;
 255        acct->steal_time += ust + sst;
 256
 257        irq_soft_mask_set(save_irq_soft_mask);
 258}
 259
 260static inline u64 calculate_stolen_time(u64 stop_tb)
 261{
 262        if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 263                return 0;
 264
 265        if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 266                return scan_dispatch_log(stop_tb);
 267
 268        return 0;
 269}
 270
 271#else /* CONFIG_PPC_SPLPAR */
 272static inline u64 calculate_stolen_time(u64 stop_tb)
 273{
 274        return 0;
 275}
 276
 277#endif /* CONFIG_PPC_SPLPAR */
 278
 279/*
 280 * Account time for a transition between system, hard irq
 281 * or soft irq state.
 282 */
 283static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
 284                                        unsigned long now, unsigned long stime)
 285{
 286        unsigned long stime_scaled = 0;
 287#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 288        unsigned long nowscaled, deltascaled;
 289        unsigned long utime, utime_scaled;
 290
 291        nowscaled = read_spurr(now);
 292        deltascaled = nowscaled - acct->startspurr;
 293        acct->startspurr = nowscaled;
 294        utime = acct->utime - acct->utime_sspurr;
 295        acct->utime_sspurr = acct->utime;
 296
 297        /*
 298         * Because we don't read the SPURR on every kernel entry/exit,
 299         * deltascaled includes both user and system SPURR ticks.
 300         * Apportion these ticks to system SPURR ticks and user
 301         * SPURR ticks in the same ratio as the system time (delta)
 302         * and user time (udelta) values obtained from the timebase
 303         * over the same interval.  The system ticks get accounted here;
 304         * the user ticks get saved up in paca->user_time_scaled to be
 305         * used by account_process_tick.
 306         */
 307        stime_scaled = stime;
 308        utime_scaled = utime;
 309        if (deltascaled != stime + utime) {
 310                if (utime) {
 311                        stime_scaled = deltascaled * stime / (stime + utime);
 312                        utime_scaled = deltascaled - stime_scaled;
 313                } else {
 314                        stime_scaled = deltascaled;
 315                }
 316        }
 317        acct->utime_scaled += utime_scaled;
 318#endif
 319
 320        return stime_scaled;
 321}
 322
 323static unsigned long vtime_delta(struct task_struct *tsk,
 324                                 unsigned long *stime_scaled,
 325                                 unsigned long *steal_time)
 326{
 327        unsigned long now, stime;
 328        struct cpu_accounting_data *acct = get_accounting(tsk);
 329
 330        WARN_ON_ONCE(!irqs_disabled());
 331
 332        now = mftb();
 333        stime = now - acct->starttime;
 334        acct->starttime = now;
 335
 336        *stime_scaled = vtime_delta_scaled(acct, now, stime);
 337
 338        *steal_time = calculate_stolen_time(now);
 339
 340        return stime;
 341}
 342
 343void vtime_account_kernel(struct task_struct *tsk)
 344{
 345        unsigned long stime, stime_scaled, steal_time;
 346        struct cpu_accounting_data *acct = get_accounting(tsk);
 347
 348        stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 349
 350        stime -= min(stime, steal_time);
 351        acct->steal_time += steal_time;
 352
 353        if ((tsk->flags & PF_VCPU) && !irq_count()) {
 354                acct->gtime += stime;
 355#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 356                acct->utime_scaled += stime_scaled;
 357#endif
 358        } else {
 359                if (hardirq_count())
 360                        acct->hardirq_time += stime;
 361                else if (in_serving_softirq())
 362                        acct->softirq_time += stime;
 363                else
 364                        acct->stime += stime;
 365
 366#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 367                acct->stime_scaled += stime_scaled;
 368#endif
 369        }
 370}
 371EXPORT_SYMBOL_GPL(vtime_account_kernel);
 372
 373void vtime_account_idle(struct task_struct *tsk)
 374{
 375        unsigned long stime, stime_scaled, steal_time;
 376        struct cpu_accounting_data *acct = get_accounting(tsk);
 377
 378        stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 379        acct->idle_time += stime + steal_time;
 380}
 381
 382static void vtime_flush_scaled(struct task_struct *tsk,
 383                               struct cpu_accounting_data *acct)
 384{
 385#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 386        if (acct->utime_scaled)
 387                tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 388        if (acct->stime_scaled)
 389                tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 390
 391        acct->utime_scaled = 0;
 392        acct->utime_sspurr = 0;
 393        acct->stime_scaled = 0;
 394#endif
 395}
 396
 397/*
 398 * Account the whole cputime accumulated in the paca
 399 * Must be called with interrupts disabled.
 400 * Assumes that vtime_account_kernel/idle() has been called
 401 * recently (i.e. since the last entry from usermode) so that
 402 * get_paca()->user_time_scaled is up to date.
 403 */
 404void vtime_flush(struct task_struct *tsk)
 405{
 406        struct cpu_accounting_data *acct = get_accounting(tsk);
 407
 408        if (acct->utime)
 409                account_user_time(tsk, cputime_to_nsecs(acct->utime));
 410
 411        if (acct->gtime)
 412                account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 413
 414        if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
 415                account_steal_time(cputime_to_nsecs(acct->steal_time));
 416                acct->steal_time = 0;
 417        }
 418
 419        if (acct->idle_time)
 420                account_idle_time(cputime_to_nsecs(acct->idle_time));
 421
 422        if (acct->stime)
 423                account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 424                                          CPUTIME_SYSTEM);
 425
 426        if (acct->hardirq_time)
 427                account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 428                                          CPUTIME_IRQ);
 429        if (acct->softirq_time)
 430                account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 431                                          CPUTIME_SOFTIRQ);
 432
 433        vtime_flush_scaled(tsk, acct);
 434
 435        acct->utime = 0;
 436        acct->gtime = 0;
 437        acct->idle_time = 0;
 438        acct->stime = 0;
 439        acct->hardirq_time = 0;
 440        acct->softirq_time = 0;
 441}
 442
 443#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 444#define calc_cputime_factors()
 445#endif
 446
 447void __delay(unsigned long loops)
 448{
 449        unsigned long start;
 450        int diff;
 451
 452        spin_begin();
 453        if (__USE_RTC()) {
 454                start = get_rtcl();
 455                do {
 456                        /* the RTCL register wraps at 1000000000 */
 457                        diff = get_rtcl() - start;
 458                        if (diff < 0)
 459                                diff += 1000000000;
 460                        spin_cpu_relax();
 461                } while (diff < loops);
 462        } else if (tb_invalid) {
 463                /*
 464                 * TB is in error state and isn't ticking anymore.
 465                 * HMI handler was unable to recover from TB error.
 466                 * Return immediately, so that kernel won't get stuck here.
 467                 */
 468                spin_cpu_relax();
 469        } else {
 470                start = get_tbl();
 471                while (get_tbl() - start < loops)
 472                        spin_cpu_relax();
 473        }
 474        spin_end();
 475}
 476EXPORT_SYMBOL(__delay);
 477
 478void udelay(unsigned long usecs)
 479{
 480        __delay(tb_ticks_per_usec * usecs);
 481}
 482EXPORT_SYMBOL(udelay);
 483
 484#ifdef CONFIG_SMP
 485unsigned long profile_pc(struct pt_regs *regs)
 486{
 487        unsigned long pc = instruction_pointer(regs);
 488
 489        if (in_lock_functions(pc))
 490                return regs->link;
 491
 492        return pc;
 493}
 494EXPORT_SYMBOL(profile_pc);
 495#endif
 496
 497#ifdef CONFIG_IRQ_WORK
 498
 499/*
 500 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 501 */
 502#ifdef CONFIG_PPC64
 503static inline unsigned long test_irq_work_pending(void)
 504{
 505        unsigned long x;
 506
 507        asm volatile("lbz %0,%1(13)"
 508                : "=r" (x)
 509                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 510        return x;
 511}
 512
 513static inline void set_irq_work_pending_flag(void)
 514{
 515        asm volatile("stb %0,%1(13)" : :
 516                "r" (1),
 517                "i" (offsetof(struct paca_struct, irq_work_pending)));
 518}
 519
 520static inline void clear_irq_work_pending(void)
 521{
 522        asm volatile("stb %0,%1(13)" : :
 523                "r" (0),
 524                "i" (offsetof(struct paca_struct, irq_work_pending)));
 525}
 526
 527#else /* 32-bit */
 528
 529DEFINE_PER_CPU(u8, irq_work_pending);
 530
 531#define set_irq_work_pending_flag()     __this_cpu_write(irq_work_pending, 1)
 532#define test_irq_work_pending()         __this_cpu_read(irq_work_pending)
 533#define clear_irq_work_pending()        __this_cpu_write(irq_work_pending, 0)
 534
 535#endif /* 32 vs 64 bit */
 536
 537void arch_irq_work_raise(void)
 538{
 539        /*
 540         * 64-bit code that uses irq soft-mask can just cause an immediate
 541         * interrupt here that gets soft masked, if this is called under
 542         * local_irq_disable(). It might be possible to prevent that happening
 543         * by noticing interrupts are disabled and setting decrementer pending
 544         * to be replayed when irqs are enabled. The problem there is that
 545         * tracing can call irq_work_raise, including in code that does low
 546         * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
 547         * which could get tangled up if we're messing with the same state
 548         * here.
 549         */
 550        preempt_disable();
 551        set_irq_work_pending_flag();
 552        set_dec(1);
 553        preempt_enable();
 554}
 555
 556#else  /* CONFIG_IRQ_WORK */
 557
 558#define test_irq_work_pending() 0
 559#define clear_irq_work_pending()
 560
 561#endif /* CONFIG_IRQ_WORK */
 562
 563/*
 564 * timer_interrupt - gets called when the decrementer overflows,
 565 * with interrupts disabled.
 566 */
 567void timer_interrupt(struct pt_regs *regs)
 568{
 569        struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 570        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 571        struct pt_regs *old_regs;
 572        u64 now;
 573
 574        /* Some implementations of hotplug will get timer interrupts while
 575         * offline, just ignore these and we also need to set
 576         * decrementers_next_tb as MAX to make sure __check_irq_replay
 577         * don't replay timer interrupt when return, otherwise we'll trap
 578         * here infinitely :(
 579         */
 580        if (unlikely(!cpu_online(smp_processor_id()))) {
 581                *next_tb = ~(u64)0;
 582                set_dec(decrementer_max);
 583                return;
 584        }
 585
 586        /* Ensure a positive value is written to the decrementer, or else
 587         * some CPUs will continue to take decrementer exceptions. When the
 588         * PPC_WATCHDOG (decrementer based) is configured, keep this at most
 589         * 31 bits, which is about 4 seconds on most systems, which gives
 590         * the watchdog a chance of catching timer interrupt hard lockups.
 591         */
 592        if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
 593                set_dec(0x7fffffff);
 594        else
 595                set_dec(decrementer_max);
 596
 597        /* Conditionally hard-enable interrupts now that the DEC has been
 598         * bumped to its maximum value
 599         */
 600        may_hard_irq_enable();
 601
 602
 603#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 604        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 605                do_IRQ(regs);
 606#endif
 607
 608        old_regs = set_irq_regs(regs);
 609        irq_enter();
 610        trace_timer_interrupt_entry(regs);
 611
 612        if (test_irq_work_pending()) {
 613                clear_irq_work_pending();
 614                irq_work_run();
 615        }
 616
 617        now = get_tb_or_rtc();
 618        if (now >= *next_tb) {
 619                *next_tb = ~(u64)0;
 620                if (evt->event_handler)
 621                        evt->event_handler(evt);
 622                __this_cpu_inc(irq_stat.timer_irqs_event);
 623        } else {
 624                now = *next_tb - now;
 625                if (now <= decrementer_max)
 626                        set_dec(now);
 627                /* We may have raced with new irq work */
 628                if (test_irq_work_pending())
 629                        set_dec(1);
 630                __this_cpu_inc(irq_stat.timer_irqs_others);
 631        }
 632
 633        trace_timer_interrupt_exit(regs);
 634        irq_exit();
 635        set_irq_regs(old_regs);
 636}
 637EXPORT_SYMBOL(timer_interrupt);
 638
 639#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 640void timer_broadcast_interrupt(void)
 641{
 642        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 643
 644        *next_tb = ~(u64)0;
 645        tick_receive_broadcast();
 646        __this_cpu_inc(irq_stat.broadcast_irqs_event);
 647}
 648#endif
 649
 650#ifdef CONFIG_SUSPEND
 651static void generic_suspend_disable_irqs(void)
 652{
 653        /* Disable the decrementer, so that it doesn't interfere
 654         * with suspending.
 655         */
 656
 657        set_dec(decrementer_max);
 658        local_irq_disable();
 659        set_dec(decrementer_max);
 660}
 661
 662static void generic_suspend_enable_irqs(void)
 663{
 664        local_irq_enable();
 665}
 666
 667/* Overrides the weak version in kernel/power/main.c */
 668void arch_suspend_disable_irqs(void)
 669{
 670        if (ppc_md.suspend_disable_irqs)
 671                ppc_md.suspend_disable_irqs();
 672        generic_suspend_disable_irqs();
 673}
 674
 675/* Overrides the weak version in kernel/power/main.c */
 676void arch_suspend_enable_irqs(void)
 677{
 678        generic_suspend_enable_irqs();
 679        if (ppc_md.suspend_enable_irqs)
 680                ppc_md.suspend_enable_irqs();
 681}
 682#endif
 683
 684unsigned long long tb_to_ns(unsigned long long ticks)
 685{
 686        return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 687}
 688EXPORT_SYMBOL_GPL(tb_to_ns);
 689
 690/*
 691 * Scheduler clock - returns current time in nanosec units.
 692 *
 693 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 694 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 695 * are 64-bit unsigned numbers.
 696 */
 697notrace unsigned long long sched_clock(void)
 698{
 699        if (__USE_RTC())
 700                return get_rtc();
 701        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 702}
 703
 704
 705#ifdef CONFIG_PPC_PSERIES
 706
 707/*
 708 * Running clock - attempts to give a view of time passing for a virtualised
 709 * kernels.
 710 * Uses the VTB register if available otherwise a next best guess.
 711 */
 712unsigned long long running_clock(void)
 713{
 714        /*
 715         * Don't read the VTB as a host since KVM does not switch in host
 716         * timebase into the VTB when it takes a guest off the CPU, reading the
 717         * VTB would result in reading 'last switched out' guest VTB.
 718         *
 719         * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 720         * would be unsafe to rely only on the #ifdef above.
 721         */
 722        if (firmware_has_feature(FW_FEATURE_LPAR) &&
 723            cpu_has_feature(CPU_FTR_ARCH_207S))
 724                return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 725
 726        /*
 727         * This is a next best approximation without a VTB.
 728         * On a host which is running bare metal there should never be any stolen
 729         * time and on a host which doesn't do any virtualisation TB *should* equal
 730         * VTB so it makes no difference anyway.
 731         */
 732        return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 733}
 734#endif
 735
 736static int __init get_freq(char *name, int cells, unsigned long *val)
 737{
 738        struct device_node *cpu;
 739        const __be32 *fp;
 740        int found = 0;
 741
 742        /* The cpu node should have timebase and clock frequency properties */
 743        cpu = of_find_node_by_type(NULL, "cpu");
 744
 745        if (cpu) {
 746                fp = of_get_property(cpu, name, NULL);
 747                if (fp) {
 748                        found = 1;
 749                        *val = of_read_ulong(fp, cells);
 750                }
 751
 752                of_node_put(cpu);
 753        }
 754
 755        return found;
 756}
 757
 758static void start_cpu_decrementer(void)
 759{
 760#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 761        unsigned int tcr;
 762
 763        /* Clear any pending timer interrupts */
 764        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 765
 766        tcr = mfspr(SPRN_TCR);
 767        /*
 768         * The watchdog may have already been enabled by u-boot. So leave
 769         * TRC[WP] (Watchdog Period) alone.
 770         */
 771        tcr &= TCR_WP_MASK;     /* Clear all bits except for TCR[WP] */
 772        tcr |= TCR_DIE;         /* Enable decrementer */
 773        mtspr(SPRN_TCR, tcr);
 774#endif
 775}
 776
 777void __init generic_calibrate_decr(void)
 778{
 779        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 780
 781        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 782            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 783
 784                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 785                                "(not found)\n");
 786        }
 787
 788        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 789
 790        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 791            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 792
 793                printk(KERN_ERR "WARNING: Estimating processor frequency "
 794                                "(not found)\n");
 795        }
 796}
 797
 798int update_persistent_clock64(struct timespec64 now)
 799{
 800        struct rtc_time tm;
 801
 802        if (!ppc_md.set_rtc_time)
 803                return -ENODEV;
 804
 805        rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 806
 807        return ppc_md.set_rtc_time(&tm);
 808}
 809
 810static void __read_persistent_clock(struct timespec64 *ts)
 811{
 812        struct rtc_time tm;
 813        static int first = 1;
 814
 815        ts->tv_nsec = 0;
 816        /* XXX this is a litle fragile but will work okay in the short term */
 817        if (first) {
 818                first = 0;
 819                if (ppc_md.time_init)
 820                        timezone_offset = ppc_md.time_init();
 821
 822                /* get_boot_time() isn't guaranteed to be safe to call late */
 823                if (ppc_md.get_boot_time) {
 824                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 825                        return;
 826                }
 827        }
 828        if (!ppc_md.get_rtc_time) {
 829                ts->tv_sec = 0;
 830                return;
 831        }
 832        ppc_md.get_rtc_time(&tm);
 833
 834        ts->tv_sec = rtc_tm_to_time64(&tm);
 835}
 836
 837void read_persistent_clock64(struct timespec64 *ts)
 838{
 839        __read_persistent_clock(ts);
 840
 841        /* Sanitize it in case real time clock is set below EPOCH */
 842        if (ts->tv_sec < 0) {
 843                ts->tv_sec = 0;
 844                ts->tv_nsec = 0;
 845        }
 846                
 847}
 848
 849/* clocksource code */
 850static notrace u64 rtc_read(struct clocksource *cs)
 851{
 852        return (u64)get_rtc();
 853}
 854
 855static notrace u64 timebase_read(struct clocksource *cs)
 856{
 857        return (u64)get_tb();
 858}
 859
 860
 861void update_vsyscall(struct timekeeper *tk)
 862{
 863        struct timespec64 xt;
 864        struct clocksource *clock = tk->tkr_mono.clock;
 865        u32 mult = tk->tkr_mono.mult;
 866        u32 shift = tk->tkr_mono.shift;
 867        u64 cycle_last = tk->tkr_mono.cycle_last;
 868        u64 new_tb_to_xs, new_stamp_xsec;
 869        u64 frac_sec;
 870
 871        if (clock != &clocksource_timebase)
 872                return;
 873
 874        xt.tv_sec = tk->xtime_sec;
 875        xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 876
 877        /* Make userspace gettimeofday spin until we're done. */
 878        ++vdso_data->tb_update_count;
 879        smp_mb();
 880
 881        /*
 882         * This computes ((2^20 / 1e9) * mult) >> shift as a
 883         * 0.64 fixed-point fraction.
 884         * The computation in the else clause below won't overflow
 885         * (as long as the timebase frequency is >= 1.049 MHz)
 886         * but loses precision because we lose the low bits of the constant
 887         * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 888         * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 889         * over a second.  (Shift values are usually 22, 23 or 24.)
 890         * For high frequency clocks such as the 512MHz timebase clock
 891         * on POWER[6789], the mult value is small (e.g. 32768000)
 892         * and so we can shift the constant by 16 initially
 893         * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 894         * remaining shifts after the multiplication, which gives a
 895         * more accurate result (e.g. with mult = 32768000, shift = 24,
 896         * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 897         */
 898        if (mult <= 62500000 && clock->shift >= 16)
 899                new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 900        else
 901                new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 902
 903        /*
 904         * Compute the fractional second in units of 2^-32 seconds.
 905         * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 906         * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 907         * it in units of 2^-32 seconds.
 908         * We assume shift <= 32 because clocks_calc_mult_shift()
 909         * generates shift values in the range 0 - 32.
 910         */
 911        frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 912        do_div(frac_sec, NSEC_PER_SEC);
 913
 914        /*
 915         * Work out new stamp_xsec value for any legacy users of systemcfg.
 916         * stamp_xsec is in units of 2^-20 seconds.
 917         */
 918        new_stamp_xsec = frac_sec >> 12;
 919        new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 920
 921        /*
 922         * tb_update_count is used to allow the userspace gettimeofday code
 923         * to assure itself that it sees a consistent view of the tb_to_xs and
 924         * stamp_xsec variables.  It reads the tb_update_count, then reads
 925         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 926         * the two values of tb_update_count match and are even then the
 927         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 928         * loops back and reads them again until this criteria is met.
 929         */
 930        vdso_data->tb_orig_stamp = cycle_last;
 931        vdso_data->stamp_xsec = new_stamp_xsec;
 932        vdso_data->tb_to_xs = new_tb_to_xs;
 933        vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 934        vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 935        vdso_data->stamp_xtime_sec = xt.tv_sec;
 936        vdso_data->stamp_xtime_nsec = xt.tv_nsec;
 937        vdso_data->stamp_sec_fraction = frac_sec;
 938        vdso_data->hrtimer_res = hrtimer_resolution;
 939        smp_wmb();
 940        ++(vdso_data->tb_update_count);
 941}
 942
 943void update_vsyscall_tz(void)
 944{
 945        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 946        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 947}
 948
 949static void __init clocksource_init(void)
 950{
 951        struct clocksource *clock;
 952
 953        if (__USE_RTC())
 954                clock = &clocksource_rtc;
 955        else
 956                clock = &clocksource_timebase;
 957
 958        if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 959                printk(KERN_ERR "clocksource: %s is already registered\n",
 960                       clock->name);
 961                return;
 962        }
 963
 964        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 965               clock->name, clock->mult, clock->shift);
 966}
 967
 968static int decrementer_set_next_event(unsigned long evt,
 969                                      struct clock_event_device *dev)
 970{
 971        __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 972        set_dec(evt);
 973
 974        /* We may have raced with new irq work */
 975        if (test_irq_work_pending())
 976                set_dec(1);
 977
 978        return 0;
 979}
 980
 981static int decrementer_shutdown(struct clock_event_device *dev)
 982{
 983        decrementer_set_next_event(decrementer_max, dev);
 984        return 0;
 985}
 986
 987static void register_decrementer_clockevent(int cpu)
 988{
 989        struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 990
 991        *dec = decrementer_clockevent;
 992        dec->cpumask = cpumask_of(cpu);
 993
 994        clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
 995
 996        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 997                    dec->name, dec->mult, dec->shift, cpu);
 998
 999        /* Set values for KVM, see kvm_emulate_dec() */
1000        decrementer_clockevent.mult = dec->mult;
1001        decrementer_clockevent.shift = dec->shift;
1002}
1003
1004static void enable_large_decrementer(void)
1005{
1006        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1007                return;
1008
1009        if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1010                return;
1011
1012        /*
1013         * If we're running as the hypervisor we need to enable the LD manually
1014         * otherwise firmware should have done it for us.
1015         */
1016        if (cpu_has_feature(CPU_FTR_HVMODE))
1017                mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1018}
1019
1020static void __init set_decrementer_max(void)
1021{
1022        struct device_node *cpu;
1023        u32 bits = 32;
1024
1025        /* Prior to ISAv3 the decrementer is always 32 bit */
1026        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1027                return;
1028
1029        cpu = of_find_node_by_type(NULL, "cpu");
1030
1031        if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1032                if (bits > 64 || bits < 32) {
1033                        pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1034                        bits = 32;
1035                }
1036
1037                /* calculate the signed maximum given this many bits */
1038                decrementer_max = (1ul << (bits - 1)) - 1;
1039        }
1040
1041        of_node_put(cpu);
1042
1043        pr_info("time_init: %u bit decrementer (max: %llx)\n",
1044                bits, decrementer_max);
1045}
1046
1047static void __init init_decrementer_clockevent(void)
1048{
1049        register_decrementer_clockevent(smp_processor_id());
1050}
1051
1052void secondary_cpu_time_init(void)
1053{
1054        /* Enable and test the large decrementer for this cpu */
1055        enable_large_decrementer();
1056
1057        /* Start the decrementer on CPUs that have manual control
1058         * such as BookE
1059         */
1060        start_cpu_decrementer();
1061
1062        /* FIME: Should make unrelatred change to move snapshot_timebase
1063         * call here ! */
1064        register_decrementer_clockevent(smp_processor_id());
1065}
1066
1067/* This function is only called on the boot processor */
1068void __init time_init(void)
1069{
1070        struct div_result res;
1071        u64 scale;
1072        unsigned shift;
1073
1074        if (__USE_RTC()) {
1075                /* 601 processor: dec counts down by 128 every 128ns */
1076                ppc_tb_freq = 1000000000;
1077        } else {
1078                /* Normal PowerPC with timebase register */
1079                ppc_md.calibrate_decr();
1080                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1081                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1082                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1083                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1084        }
1085
1086        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1087        tb_ticks_per_sec = ppc_tb_freq;
1088        tb_ticks_per_usec = ppc_tb_freq / 1000000;
1089        calc_cputime_factors();
1090
1091        /*
1092         * Compute scale factor for sched_clock.
1093         * The calibrate_decr() function has set tb_ticks_per_sec,
1094         * which is the timebase frequency.
1095         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1096         * the 128-bit result as a 64.64 fixed-point number.
1097         * We then shift that number right until it is less than 1.0,
1098         * giving us the scale factor and shift count to use in
1099         * sched_clock().
1100         */
1101        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1102        scale = res.result_low;
1103        for (shift = 0; res.result_high != 0; ++shift) {
1104                scale = (scale >> 1) | (res.result_high << 63);
1105                res.result_high >>= 1;
1106        }
1107        tb_to_ns_scale = scale;
1108        tb_to_ns_shift = shift;
1109        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1110        boot_tb = get_tb_or_rtc();
1111
1112        /* If platform provided a timezone (pmac), we correct the time */
1113        if (timezone_offset) {
1114                sys_tz.tz_minuteswest = -timezone_offset / 60;
1115                sys_tz.tz_dsttime = 0;
1116        }
1117
1118        vdso_data->tb_update_count = 0;
1119        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1120
1121        /* initialise and enable the large decrementer (if we have one) */
1122        set_decrementer_max();
1123        enable_large_decrementer();
1124
1125        /* Start the decrementer on CPUs that have manual control
1126         * such as BookE
1127         */
1128        start_cpu_decrementer();
1129
1130        /* Register the clocksource */
1131        clocksource_init();
1132
1133        init_decrementer_clockevent();
1134        tick_setup_hrtimer_broadcast();
1135
1136        of_clk_init(NULL);
1137}
1138
1139/*
1140 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1141 * result.
1142 */
1143void div128_by_32(u64 dividend_high, u64 dividend_low,
1144                  unsigned divisor, struct div_result *dr)
1145{
1146        unsigned long a, b, c, d;
1147        unsigned long w, x, y, z;
1148        u64 ra, rb, rc;
1149
1150        a = dividend_high >> 32;
1151        b = dividend_high & 0xffffffff;
1152        c = dividend_low >> 32;
1153        d = dividend_low & 0xffffffff;
1154
1155        w = a / divisor;
1156        ra = ((u64)(a - (w * divisor)) << 32) + b;
1157
1158        rb = ((u64) do_div(ra, divisor) << 32) + c;
1159        x = ra;
1160
1161        rc = ((u64) do_div(rb, divisor) << 32) + d;
1162        y = rb;
1163
1164        do_div(rc, divisor);
1165        z = rc;
1166
1167        dr->result_high = ((u64)w << 32) + x;
1168        dr->result_low  = ((u64)y << 32) + z;
1169
1170}
1171
1172/* We don't need to calibrate delay, we use the CPU timebase for that */
1173void calibrate_delay(void)
1174{
1175        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1176         * as the number of __delay(1) in a jiffy, so make it so
1177         */
1178        loops_per_jiffy = tb_ticks_per_jiffy;
1179}
1180
1181#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1182static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1183{
1184        ppc_md.get_rtc_time(tm);
1185        return 0;
1186}
1187
1188static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1189{
1190        if (!ppc_md.set_rtc_time)
1191                return -EOPNOTSUPP;
1192
1193        if (ppc_md.set_rtc_time(tm) < 0)
1194                return -EOPNOTSUPP;
1195
1196        return 0;
1197}
1198
1199static const struct rtc_class_ops rtc_generic_ops = {
1200        .read_time = rtc_generic_get_time,
1201        .set_time = rtc_generic_set_time,
1202};
1203
1204static int __init rtc_init(void)
1205{
1206        struct platform_device *pdev;
1207
1208        if (!ppc_md.get_rtc_time)
1209                return -ENODEV;
1210
1211        pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1212                                             &rtc_generic_ops,
1213                                             sizeof(rtc_generic_ops));
1214
1215        return PTR_ERR_OR_ZERO(pdev);
1216}
1217
1218device_initcall(rtc_init);
1219#endif
1220