linux/arch/powerpc/kvm/book3s_hv_ras.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/string.h>
   9#include <linux/kvm.h>
  10#include <linux/kvm_host.h>
  11#include <linux/kernel.h>
  12#include <asm/opal.h>
  13#include <asm/mce.h>
  14#include <asm/machdep.h>
  15#include <asm/cputhreads.h>
  16#include <asm/hmi.h>
  17#include <asm/kvm_ppc.h>
  18
  19/* SRR1 bits for machine check on POWER7 */
  20#define SRR1_MC_LDSTERR         (1ul << (63-42))
  21#define SRR1_MC_IFETCH_SH       (63-45)
  22#define SRR1_MC_IFETCH_MASK     0x7
  23#define SRR1_MC_IFETCH_SLBPAR           2       /* SLB parity error */
  24#define SRR1_MC_IFETCH_SLBMULTI         3       /* SLB multi-hit */
  25#define SRR1_MC_IFETCH_SLBPARMULTI      4       /* SLB parity + multi-hit */
  26#define SRR1_MC_IFETCH_TLBMULTI         5       /* I-TLB multi-hit */
  27
  28/* DSISR bits for machine check on POWER7 */
  29#define DSISR_MC_DERAT_MULTI    0x800           /* D-ERAT multi-hit */
  30#define DSISR_MC_TLB_MULTI      0x400           /* D-TLB multi-hit */
  31#define DSISR_MC_SLB_PARITY     0x100           /* SLB parity error */
  32#define DSISR_MC_SLB_MULTI      0x080           /* SLB multi-hit */
  33#define DSISR_MC_SLB_PARMULTI   0x040           /* SLB parity + multi-hit */
  34
  35/* POWER7 SLB flush and reload */
  36static void reload_slb(struct kvm_vcpu *vcpu)
  37{
  38        struct slb_shadow *slb;
  39        unsigned long i, n;
  40
  41        /* First clear out SLB */
  42        asm volatile("slbmte %0,%0; slbia" : : "r" (0));
  43
  44        /* Do they have an SLB shadow buffer registered? */
  45        slb = vcpu->arch.slb_shadow.pinned_addr;
  46        if (!slb)
  47                return;
  48
  49        /* Sanity check */
  50        n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
  51        if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
  52                return;
  53
  54        /* Load up the SLB from that */
  55        for (i = 0; i < n; ++i) {
  56                unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
  57                unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
  58
  59                rb = (rb & ~0xFFFul) | i;       /* insert entry number */
  60                asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
  61        }
  62}
  63
  64/*
  65 * On POWER7, see if we can handle a machine check that occurred inside
  66 * the guest in real mode, without switching to the host partition.
  67 */
  68static void kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
  69{
  70        unsigned long srr1 = vcpu->arch.shregs.msr;
  71        struct machine_check_event mce_evt;
  72        long handled = 1;
  73
  74        if (srr1 & SRR1_MC_LDSTERR) {
  75                /* error on load/store */
  76                unsigned long dsisr = vcpu->arch.shregs.dsisr;
  77
  78                if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  79                             DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
  80                        /* flush and reload SLB; flushes D-ERAT too */
  81                        reload_slb(vcpu);
  82                        dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  83                                   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
  84                }
  85                if (dsisr & DSISR_MC_TLB_MULTI) {
  86                        tlbiel_all_lpid(vcpu->kvm->arch.radix);
  87                        dsisr &= ~DSISR_MC_TLB_MULTI;
  88                }
  89                /* Any other errors we don't understand? */
  90                if (dsisr & 0xffffffffUL)
  91                        handled = 0;
  92        }
  93
  94        switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
  95        case 0:
  96                break;
  97        case SRR1_MC_IFETCH_SLBPAR:
  98        case SRR1_MC_IFETCH_SLBMULTI:
  99        case SRR1_MC_IFETCH_SLBPARMULTI:
 100                reload_slb(vcpu);
 101                break;
 102        case SRR1_MC_IFETCH_TLBMULTI:
 103                tlbiel_all_lpid(vcpu->kvm->arch.radix);
 104                break;
 105        default:
 106                handled = 0;
 107        }
 108
 109        /*
 110         * Now get the event and stash it in the vcpu struct so it can
 111         * be handled by the primary thread in virtual mode.  We can't
 112         * call machine_check_queue_event() here if we are running on
 113         * an offline secondary thread.
 114         */
 115        if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
 116                if (handled && mce_evt.version == MCE_V1)
 117                        mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
 118        } else {
 119                memset(&mce_evt, 0, sizeof(mce_evt));
 120        }
 121
 122        vcpu->arch.mce_evt = mce_evt;
 123}
 124
 125void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
 126{
 127        kvmppc_realmode_mc_power7(vcpu);
 128}
 129
 130/* Check if dynamic split is in force and return subcore size accordingly. */
 131static inline int kvmppc_cur_subcore_size(void)
 132{
 133        if (local_paca->kvm_hstate.kvm_split_mode)
 134                return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
 135
 136        return threads_per_subcore;
 137}
 138
 139void kvmppc_subcore_enter_guest(void)
 140{
 141        int thread_id, subcore_id;
 142
 143        thread_id = cpu_thread_in_core(local_paca->paca_index);
 144        subcore_id = thread_id / kvmppc_cur_subcore_size();
 145
 146        local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
 147}
 148EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
 149
 150void kvmppc_subcore_exit_guest(void)
 151{
 152        int thread_id, subcore_id;
 153
 154        thread_id = cpu_thread_in_core(local_paca->paca_index);
 155        subcore_id = thread_id / kvmppc_cur_subcore_size();
 156
 157        local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
 158}
 159EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
 160
 161static bool kvmppc_tb_resync_required(void)
 162{
 163        if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
 164                                &local_paca->sibling_subcore_state->flags))
 165                return false;
 166
 167        return true;
 168}
 169
 170static void kvmppc_tb_resync_done(void)
 171{
 172        clear_bit(CORE_TB_RESYNC_REQ_BIT,
 173                        &local_paca->sibling_subcore_state->flags);
 174}
 175
 176/*
 177 * kvmppc_realmode_hmi_handler() is called only by primary thread during
 178 * guest exit path.
 179 *
 180 * There are multiple reasons why HMI could occur, one of them is
 181 * Timebase (TB) error. If this HMI is due to TB error, then TB would
 182 * have been in stopped state. The opal hmi handler Will fix it and
 183 * restore the TB value with host timebase value. For HMI caused due
 184 * to non-TB errors, opal hmi handler will not touch/restore TB register
 185 * and hence there won't be any change in TB value.
 186 *
 187 * Since we are not sure about the cause of this HMI, we can't be sure
 188 * about the content of TB register whether it holds guest or host timebase
 189 * value. Hence the idea is to resync the TB on every HMI, so that we
 190 * know about the exact state of the TB value. Resync TB call will
 191 * restore TB to host timebase.
 192 *
 193 * Things to consider:
 194 * - On TB error, HMI interrupt is reported on all the threads of the core
 195 *   that has encountered TB error irrespective of split-core mode.
 196 * - The very first thread on the core that get chance to fix TB error
 197 *   would rsync the TB with local chipTOD value.
 198 * - The resync TB is a core level action i.e. it will sync all the TBs
 199 *   in that core independent of split-core mode. This means if we trigger
 200 *   TB sync from a thread from one subcore, it would affect TB values of
 201 *   sibling subcores of the same core.
 202 *
 203 * All threads need to co-ordinate before making opal hmi handler.
 204 * All threads will use sibling_subcore_state->in_guest[] (shared by all
 205 * threads in the core) in paca which holds information about whether
 206 * sibling subcores are in Guest mode or host mode. The in_guest[] array
 207 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
 208 * subcore status. Only primary threads from each subcore is responsible
 209 * to set/unset its designated array element while entering/exiting the
 210 * guset.
 211 *
 212 * After invoking opal hmi handler call, one of the thread (of entire core)
 213 * will need to resync the TB. Bit 63 from subcore state bitmap flags
 214 * (sibling_subcore_state->flags) will be used to co-ordinate between
 215 * primary threads to decide who takes up the responsibility.
 216 *
 217 * This is what we do:
 218 * - Primary thread from each subcore tries to set resync required bit[63]
 219 *   of paca->sibling_subcore_state->flags.
 220 * - The first primary thread that is able to set the flag takes the
 221 *   responsibility of TB resync. (Let us call it as thread leader)
 222 * - All other threads which are in host will call
 223 *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
 224 *   paca->sibling_subcore_state to get cleared.
 225 * - All the primary thread will clear its subcore status from subcore
 226 *   state in_guest[] array respectively.
 227 * - Once all primary threads clear in_guest[0-3], all of them will invoke
 228 *   opal hmi handler.
 229 * - Now all threads will wait for TB resync to complete by invoking
 230 *   wait_for_tb_resync() except the thread leader.
 231 * - Thread leader will do a TB resync by invoking opal_resync_timebase()
 232 *   call and the it will clear the resync required bit.
 233 * - All other threads will now come out of resync wait loop and proceed
 234 *   with individual execution.
 235 * - On return of this function, primary thread will signal all
 236 *   secondary threads to proceed.
 237 * - All secondary threads will eventually call opal hmi handler on
 238 *   their exit path.
 239 *
 240 * Returns 1 if the timebase offset should be applied, 0 if not.
 241 */
 242
 243long kvmppc_realmode_hmi_handler(void)
 244{
 245        bool resync_req;
 246
 247        local_paca->hmi_irqs++;
 248
 249        if (hmi_handle_debugtrig(NULL) >= 0)
 250                return 1;
 251
 252        /*
 253         * By now primary thread has already completed guest->host
 254         * partition switch but haven't signaled secondaries yet.
 255         * All the secondary threads on this subcore is waiting
 256         * for primary thread to signal them to go ahead.
 257         *
 258         * For threads from subcore which isn't in guest, they all will
 259         * wait until all other subcores on this core exit the guest.
 260         *
 261         * Now set the resync required bit. If you are the first to
 262         * set this bit then kvmppc_tb_resync_required() function will
 263         * return true. For rest all other subcores
 264         * kvmppc_tb_resync_required() will return false.
 265         *
 266         * If resync_req == true, then this thread is responsible to
 267         * initiate TB resync after hmi handler has completed.
 268         * All other threads on this core will wait until this thread
 269         * clears the resync required bit flag.
 270         */
 271        resync_req = kvmppc_tb_resync_required();
 272
 273        /* Reset the subcore status to indicate it has exited guest */
 274        kvmppc_subcore_exit_guest();
 275
 276        /*
 277         * Wait for other subcores on this core to exit the guest.
 278         * All the primary threads and threads from subcore that are
 279         * not in guest will wait here until all subcores are out
 280         * of guest context.
 281         */
 282        wait_for_subcore_guest_exit();
 283
 284        /*
 285         * At this point we are sure that primary threads from each
 286         * subcore on this core have completed guest->host partition
 287         * switch. Now it is safe to call HMI handler.
 288         */
 289        if (ppc_md.hmi_exception_early)
 290                ppc_md.hmi_exception_early(NULL);
 291
 292        /*
 293         * Check if this thread is responsible to resync TB.
 294         * All other threads will wait until this thread completes the
 295         * TB resync.
 296         */
 297        if (resync_req) {
 298                opal_resync_timebase();
 299                /* Reset TB resync req bit */
 300                kvmppc_tb_resync_done();
 301        } else {
 302                wait_for_tb_resync();
 303        }
 304
 305        /*
 306         * Reset tb_offset_applied so the guest exit code won't try
 307         * to subtract the previous timebase offset from the timebase.
 308         */
 309        if (local_paca->kvm_hstate.kvm_vcore)
 310                local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
 311
 312        return 0;
 313}
 314