linux/arch/powerpc/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/moduleparam.h>
  19#include <linux/swap.h>
  20#include <linux/swapops.h>
  21#include <linux/kmemleak.h>
  22#include <asm/pgalloc.h>
  23#include <asm/tlb.h>
  24#include <asm/setup.h>
  25#include <asm/hugetlb.h>
  26#include <asm/pte-walk.h>
  27
  28bool hugetlb_disabled = false;
  29
  30#define hugepd_none(hpd)        (hpd_val(hpd) == 0)
  31
  32#define PTE_T_ORDER     (__builtin_ffs(sizeof(pte_basic_t)) - \
  33                         __builtin_ffs(sizeof(void *)))
  34
  35pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
  36{
  37        /*
  38         * Only called for hugetlbfs pages, hence can ignore THP and the
  39         * irq disabled walk.
  40         */
  41        return __find_linux_pte(mm->pgd, addr, NULL, NULL);
  42}
  43
  44static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  45                           unsigned long address, unsigned int pdshift,
  46                           unsigned int pshift, spinlock_t *ptl)
  47{
  48        struct kmem_cache *cachep;
  49        pte_t *new;
  50        int i;
  51        int num_hugepd;
  52
  53        if (pshift >= pdshift) {
  54                cachep = PGT_CACHE(PTE_T_ORDER);
  55                num_hugepd = 1 << (pshift - pdshift);
  56        } else {
  57                cachep = PGT_CACHE(pdshift - pshift);
  58                num_hugepd = 1;
  59        }
  60
  61        if (!cachep) {
  62                WARN_ONCE(1, "No page table cache created for hugetlb tables");
  63                return -ENOMEM;
  64        }
  65
  66        new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
  67
  68        BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  69        BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  70
  71        if (!new)
  72                return -ENOMEM;
  73
  74        /*
  75         * Make sure other cpus find the hugepd set only after a
  76         * properly initialized page table is visible to them.
  77         * For more details look for comment in __pte_alloc().
  78         */
  79        smp_wmb();
  80
  81        spin_lock(ptl);
  82        /*
  83         * We have multiple higher-level entries that point to the same
  84         * actual pte location.  Fill in each as we go and backtrack on error.
  85         * We need all of these so the DTLB pgtable walk code can find the
  86         * right higher-level entry without knowing if it's a hugepage or not.
  87         */
  88        for (i = 0; i < num_hugepd; i++, hpdp++) {
  89                if (unlikely(!hugepd_none(*hpdp)))
  90                        break;
  91                hugepd_populate(hpdp, new, pshift);
  92        }
  93        /* If we bailed from the for loop early, an error occurred, clean up */
  94        if (i < num_hugepd) {
  95                for (i = i - 1 ; i >= 0; i--, hpdp--)
  96                        *hpdp = __hugepd(0);
  97                kmem_cache_free(cachep, new);
  98        } else {
  99                kmemleak_ignore(new);
 100        }
 101        spin_unlock(ptl);
 102        return 0;
 103}
 104
 105/*
 106 * At this point we do the placement change only for BOOK3S 64. This would
 107 * possibly work on other subarchs.
 108 */
 109pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 110{
 111        pgd_t *pg;
 112        p4d_t *p4;
 113        pud_t *pu;
 114        pmd_t *pm;
 115        hugepd_t *hpdp = NULL;
 116        unsigned pshift = __ffs(sz);
 117        unsigned pdshift = PGDIR_SHIFT;
 118        spinlock_t *ptl;
 119
 120        addr &= ~(sz-1);
 121        pg = pgd_offset(mm, addr);
 122        p4 = p4d_offset(pg, addr);
 123
 124#ifdef CONFIG_PPC_BOOK3S_64
 125        if (pshift == PGDIR_SHIFT)
 126                /* 16GB huge page */
 127                return (pte_t *) p4;
 128        else if (pshift > PUD_SHIFT) {
 129                /*
 130                 * We need to use hugepd table
 131                 */
 132                ptl = &mm->page_table_lock;
 133                hpdp = (hugepd_t *)p4;
 134        } else {
 135                pdshift = PUD_SHIFT;
 136                pu = pud_alloc(mm, p4, addr);
 137                if (!pu)
 138                        return NULL;
 139                if (pshift == PUD_SHIFT)
 140                        return (pte_t *)pu;
 141                else if (pshift > PMD_SHIFT) {
 142                        ptl = pud_lockptr(mm, pu);
 143                        hpdp = (hugepd_t *)pu;
 144                } else {
 145                        pdshift = PMD_SHIFT;
 146                        pm = pmd_alloc(mm, pu, addr);
 147                        if (!pm)
 148                                return NULL;
 149                        if (pshift == PMD_SHIFT)
 150                                /* 16MB hugepage */
 151                                return (pte_t *)pm;
 152                        else {
 153                                ptl = pmd_lockptr(mm, pm);
 154                                hpdp = (hugepd_t *)pm;
 155                        }
 156                }
 157        }
 158#else
 159        if (pshift >= PGDIR_SHIFT) {
 160                ptl = &mm->page_table_lock;
 161                hpdp = (hugepd_t *)p4;
 162        } else {
 163                pdshift = PUD_SHIFT;
 164                pu = pud_alloc(mm, p4, addr);
 165                if (!pu)
 166                        return NULL;
 167                if (pshift >= PUD_SHIFT) {
 168                        ptl = pud_lockptr(mm, pu);
 169                        hpdp = (hugepd_t *)pu;
 170                } else {
 171                        pdshift = PMD_SHIFT;
 172                        pm = pmd_alloc(mm, pu, addr);
 173                        if (!pm)
 174                                return NULL;
 175                        ptl = pmd_lockptr(mm, pm);
 176                        hpdp = (hugepd_t *)pm;
 177                }
 178        }
 179#endif
 180        if (!hpdp)
 181                return NULL;
 182
 183        if (IS_ENABLED(CONFIG_PPC_8xx) && sz == SZ_512K)
 184                return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
 185
 186        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 187
 188        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
 189                                                  pdshift, pshift, ptl))
 190                return NULL;
 191
 192        return hugepte_offset(*hpdp, addr, pdshift);
 193}
 194
 195#ifdef CONFIG_PPC_BOOK3S_64
 196/*
 197 * Tracks gpages after the device tree is scanned and before the
 198 * huge_boot_pages list is ready on pseries.
 199 */
 200#define MAX_NUMBER_GPAGES       1024
 201__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
 202__initdata static unsigned nr_gpages;
 203
 204/*
 205 * Build list of addresses of gigantic pages.  This function is used in early
 206 * boot before the buddy allocator is setup.
 207 */
 208void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 209{
 210        if (!addr)
 211                return;
 212        while (number_of_pages > 0) {
 213                gpage_freearray[nr_gpages] = addr;
 214                nr_gpages++;
 215                number_of_pages--;
 216                addr += page_size;
 217        }
 218}
 219
 220int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
 221{
 222        struct huge_bootmem_page *m;
 223        if (nr_gpages == 0)
 224                return 0;
 225        m = phys_to_virt(gpage_freearray[--nr_gpages]);
 226        gpage_freearray[nr_gpages] = 0;
 227        list_add(&m->list, &huge_boot_pages);
 228        m->hstate = hstate;
 229        return 1;
 230}
 231#endif
 232
 233
 234int __init alloc_bootmem_huge_page(struct hstate *h)
 235{
 236
 237#ifdef CONFIG_PPC_BOOK3S_64
 238        if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
 239                return pseries_alloc_bootmem_huge_page(h);
 240#endif
 241        return __alloc_bootmem_huge_page(h);
 242}
 243
 244#ifndef CONFIG_PPC_BOOK3S_64
 245#define HUGEPD_FREELIST_SIZE \
 246        ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 247
 248struct hugepd_freelist {
 249        struct rcu_head rcu;
 250        unsigned int index;
 251        void *ptes[];
 252};
 253
 254static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 255
 256static void hugepd_free_rcu_callback(struct rcu_head *head)
 257{
 258        struct hugepd_freelist *batch =
 259                container_of(head, struct hugepd_freelist, rcu);
 260        unsigned int i;
 261
 262        for (i = 0; i < batch->index; i++)
 263                kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
 264
 265        free_page((unsigned long)batch);
 266}
 267
 268static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 269{
 270        struct hugepd_freelist **batchp;
 271
 272        batchp = &get_cpu_var(hugepd_freelist_cur);
 273
 274        if (atomic_read(&tlb->mm->mm_users) < 2 ||
 275            mm_is_thread_local(tlb->mm)) {
 276                kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
 277                put_cpu_var(hugepd_freelist_cur);
 278                return;
 279        }
 280
 281        if (*batchp == NULL) {
 282                *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 283                (*batchp)->index = 0;
 284        }
 285
 286        (*batchp)->ptes[(*batchp)->index++] = hugepte;
 287        if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 288                call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
 289                *batchp = NULL;
 290        }
 291        put_cpu_var(hugepd_freelist_cur);
 292}
 293#else
 294static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
 295#endif
 296
 297static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 298                              unsigned long start, unsigned long end,
 299                              unsigned long floor, unsigned long ceiling)
 300{
 301        pte_t *hugepte = hugepd_page(*hpdp);
 302        int i;
 303
 304        unsigned long pdmask = ~((1UL << pdshift) - 1);
 305        unsigned int num_hugepd = 1;
 306        unsigned int shift = hugepd_shift(*hpdp);
 307
 308        /* Note: On fsl the hpdp may be the first of several */
 309        if (shift > pdshift)
 310                num_hugepd = 1 << (shift - pdshift);
 311
 312        start &= pdmask;
 313        if (start < floor)
 314                return;
 315        if (ceiling) {
 316                ceiling &= pdmask;
 317                if (! ceiling)
 318                        return;
 319        }
 320        if (end - 1 > ceiling - 1)
 321                return;
 322
 323        for (i = 0; i < num_hugepd; i++, hpdp++)
 324                *hpdp = __hugepd(0);
 325
 326        if (shift >= pdshift)
 327                hugepd_free(tlb, hugepte);
 328        else
 329                pgtable_free_tlb(tlb, hugepte,
 330                                 get_hugepd_cache_index(pdshift - shift));
 331}
 332
 333static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr)
 334{
 335        pgtable_t token = pmd_pgtable(*pmd);
 336
 337        pmd_clear(pmd);
 338        pte_free_tlb(tlb, token, addr);
 339        mm_dec_nr_ptes(tlb->mm);
 340}
 341
 342static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 343                                   unsigned long addr, unsigned long end,
 344                                   unsigned long floor, unsigned long ceiling)
 345{
 346        pmd_t *pmd;
 347        unsigned long next;
 348        unsigned long start;
 349
 350        start = addr;
 351        do {
 352                unsigned long more;
 353
 354                pmd = pmd_offset(pud, addr);
 355                next = pmd_addr_end(addr, end);
 356                if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 357                        if (pmd_none_or_clear_bad(pmd))
 358                                continue;
 359
 360                        /*
 361                         * if it is not hugepd pointer, we should already find
 362                         * it cleared.
 363                         */
 364                        WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
 365
 366                        hugetlb_free_pte_range(tlb, pmd, addr);
 367
 368                        continue;
 369                }
 370                /*
 371                 * Increment next by the size of the huge mapping since
 372                 * there may be more than one entry at this level for a
 373                 * single hugepage, but all of them point to
 374                 * the same kmem cache that holds the hugepte.
 375                 */
 376                more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 377                if (more > next)
 378                        next = more;
 379
 380                free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 381                                  addr, next, floor, ceiling);
 382        } while (addr = next, addr != end);
 383
 384        start &= PUD_MASK;
 385        if (start < floor)
 386                return;
 387        if (ceiling) {
 388                ceiling &= PUD_MASK;
 389                if (!ceiling)
 390                        return;
 391        }
 392        if (end - 1 > ceiling - 1)
 393                return;
 394
 395        pmd = pmd_offset(pud, start);
 396        pud_clear(pud);
 397        pmd_free_tlb(tlb, pmd, start);
 398        mm_dec_nr_pmds(tlb->mm);
 399}
 400
 401static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 402                                   unsigned long addr, unsigned long end,
 403                                   unsigned long floor, unsigned long ceiling)
 404{
 405        pud_t *pud;
 406        unsigned long next;
 407        unsigned long start;
 408
 409        start = addr;
 410        do {
 411                pud = pud_offset(p4d, addr);
 412                next = pud_addr_end(addr, end);
 413                if (!is_hugepd(__hugepd(pud_val(*pud)))) {
 414                        if (pud_none_or_clear_bad(pud))
 415                                continue;
 416                        hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 417                                               ceiling);
 418                } else {
 419                        unsigned long more;
 420                        /*
 421                         * Increment next by the size of the huge mapping since
 422                         * there may be more than one entry at this level for a
 423                         * single hugepage, but all of them point to
 424                         * the same kmem cache that holds the hugepte.
 425                         */
 426                        more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 427                        if (more > next)
 428                                next = more;
 429
 430                        free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 431                                          addr, next, floor, ceiling);
 432                }
 433        } while (addr = next, addr != end);
 434
 435        start &= PGDIR_MASK;
 436        if (start < floor)
 437                return;
 438        if (ceiling) {
 439                ceiling &= PGDIR_MASK;
 440                if (!ceiling)
 441                        return;
 442        }
 443        if (end - 1 > ceiling - 1)
 444                return;
 445
 446        pud = pud_offset(p4d, start);
 447        p4d_clear(p4d);
 448        pud_free_tlb(tlb, pud, start);
 449        mm_dec_nr_puds(tlb->mm);
 450}
 451
 452/*
 453 * This function frees user-level page tables of a process.
 454 */
 455void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 456                            unsigned long addr, unsigned long end,
 457                            unsigned long floor, unsigned long ceiling)
 458{
 459        pgd_t *pgd;
 460        p4d_t *p4d;
 461        unsigned long next;
 462
 463        /*
 464         * Because there are a number of different possible pagetable
 465         * layouts for hugepage ranges, we limit knowledge of how
 466         * things should be laid out to the allocation path
 467         * (huge_pte_alloc(), above).  Everything else works out the
 468         * structure as it goes from information in the hugepd
 469         * pointers.  That means that we can't here use the
 470         * optimization used in the normal page free_pgd_range(), of
 471         * checking whether we're actually covering a large enough
 472         * range to have to do anything at the top level of the walk
 473         * instead of at the bottom.
 474         *
 475         * To make sense of this, you should probably go read the big
 476         * block comment at the top of the normal free_pgd_range(),
 477         * too.
 478         */
 479
 480        do {
 481                next = pgd_addr_end(addr, end);
 482                pgd = pgd_offset(tlb->mm, addr);
 483                p4d = p4d_offset(pgd, addr);
 484                if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
 485                        if (p4d_none_or_clear_bad(p4d))
 486                                continue;
 487                        hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 488                } else {
 489                        unsigned long more;
 490                        /*
 491                         * Increment next by the size of the huge mapping since
 492                         * there may be more than one entry at the pgd level
 493                         * for a single hugepage, but all of them point to the
 494                         * same kmem cache that holds the hugepte.
 495                         */
 496                        more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 497                        if (more > next)
 498                                next = more;
 499
 500                        free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
 501                                          addr, next, floor, ceiling);
 502                }
 503        } while (addr = next, addr != end);
 504}
 505
 506struct page *follow_huge_pd(struct vm_area_struct *vma,
 507                            unsigned long address, hugepd_t hpd,
 508                            int flags, int pdshift)
 509{
 510        pte_t *ptep;
 511        spinlock_t *ptl;
 512        struct page *page = NULL;
 513        unsigned long mask;
 514        int shift = hugepd_shift(hpd);
 515        struct mm_struct *mm = vma->vm_mm;
 516
 517retry:
 518        /*
 519         * hugepage directory entries are protected by mm->page_table_lock
 520         * Use this instead of huge_pte_lockptr
 521         */
 522        ptl = &mm->page_table_lock;
 523        spin_lock(ptl);
 524
 525        ptep = hugepte_offset(hpd, address, pdshift);
 526        if (pte_present(*ptep)) {
 527                mask = (1UL << shift) - 1;
 528                page = pte_page(*ptep);
 529                page += ((address & mask) >> PAGE_SHIFT);
 530                if (flags & FOLL_GET)
 531                        get_page(page);
 532        } else {
 533                if (is_hugetlb_entry_migration(*ptep)) {
 534                        spin_unlock(ptl);
 535                        __migration_entry_wait(mm, ptep, ptl);
 536                        goto retry;
 537                }
 538        }
 539        spin_unlock(ptl);
 540        return page;
 541}
 542
 543#ifdef CONFIG_PPC_MM_SLICES
 544unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 545                                        unsigned long len, unsigned long pgoff,
 546                                        unsigned long flags)
 547{
 548        struct hstate *hstate = hstate_file(file);
 549        int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 550
 551#ifdef CONFIG_PPC_RADIX_MMU
 552        if (radix_enabled())
 553                return radix__hugetlb_get_unmapped_area(file, addr, len,
 554                                                       pgoff, flags);
 555#endif
 556        return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 557}
 558#endif
 559
 560unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 561{
 562        /* With radix we don't use slice, so derive it from vma*/
 563        if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
 564                unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 565
 566                return 1UL << mmu_psize_to_shift(psize);
 567        }
 568        return vma_kernel_pagesize(vma);
 569}
 570
 571bool __init arch_hugetlb_valid_size(unsigned long size)
 572{
 573        int shift = __ffs(size);
 574        int mmu_psize;
 575
 576        /* Check that it is a page size supported by the hardware and
 577         * that it fits within pagetable and slice limits. */
 578        if (size <= PAGE_SIZE || !is_power_of_2(size))
 579                return false;
 580
 581        mmu_psize = check_and_get_huge_psize(shift);
 582        if (mmu_psize < 0)
 583                return false;
 584
 585        BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 586
 587        return true;
 588}
 589
 590static int __init add_huge_page_size(unsigned long long size)
 591{
 592        int shift = __ffs(size);
 593
 594        if (!arch_hugetlb_valid_size((unsigned long)size))
 595                return -EINVAL;
 596
 597        hugetlb_add_hstate(shift - PAGE_SHIFT);
 598        return 0;
 599}
 600
 601static int __init hugetlbpage_init(void)
 602{
 603        bool configured = false;
 604        int psize;
 605
 606        if (hugetlb_disabled) {
 607                pr_info("HugeTLB support is disabled!\n");
 608                return 0;
 609        }
 610
 611        if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
 612            !mmu_has_feature(MMU_FTR_16M_PAGE))
 613                return -ENODEV;
 614
 615        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 616                unsigned shift;
 617                unsigned pdshift;
 618
 619                if (!mmu_psize_defs[psize].shift)
 620                        continue;
 621
 622                shift = mmu_psize_to_shift(psize);
 623
 624#ifdef CONFIG_PPC_BOOK3S_64
 625                if (shift > PGDIR_SHIFT)
 626                        continue;
 627                else if (shift > PUD_SHIFT)
 628                        pdshift = PGDIR_SHIFT;
 629                else if (shift > PMD_SHIFT)
 630                        pdshift = PUD_SHIFT;
 631                else
 632                        pdshift = PMD_SHIFT;
 633#else
 634                if (shift < PUD_SHIFT)
 635                        pdshift = PMD_SHIFT;
 636                else if (shift < PGDIR_SHIFT)
 637                        pdshift = PUD_SHIFT;
 638                else
 639                        pdshift = PGDIR_SHIFT;
 640#endif
 641
 642                if (add_huge_page_size(1ULL << shift) < 0)
 643                        continue;
 644                /*
 645                 * if we have pdshift and shift value same, we don't
 646                 * use pgt cache for hugepd.
 647                 */
 648                if (pdshift > shift) {
 649                        if (!IS_ENABLED(CONFIG_PPC_8xx))
 650                                pgtable_cache_add(pdshift - shift);
 651                } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
 652                           IS_ENABLED(CONFIG_PPC_8xx)) {
 653                        pgtable_cache_add(PTE_T_ORDER);
 654                }
 655
 656                configured = true;
 657        }
 658
 659        if (configured) {
 660                if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
 661                        hugetlbpage_init_default();
 662        } else
 663                pr_info("Failed to initialize. Disabling HugeTLB");
 664
 665        return 0;
 666}
 667
 668arch_initcall(hugetlbpage_init);
 669
 670void flush_dcache_icache_hugepage(struct page *page)
 671{
 672        int i;
 673        void *start;
 674
 675        BUG_ON(!PageCompound(page));
 676
 677        for (i = 0; i < compound_nr(page); i++) {
 678                if (!PageHighMem(page)) {
 679                        __flush_dcache_icache(page_address(page+i));
 680                } else {
 681                        start = kmap_atomic(page+i);
 682                        __flush_dcache_icache(start);
 683                        kunmap_atomic(start);
 684                }
 685        }
 686}
 687
 688void __init gigantic_hugetlb_cma_reserve(void)
 689{
 690        unsigned long order = 0;
 691
 692        if (radix_enabled())
 693                order = PUD_SHIFT - PAGE_SHIFT;
 694        else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
 695                /*
 696                 * For pseries we do use ibm,expected#pages for reserving 16G pages.
 697                 */
 698                order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
 699
 700        if (order) {
 701                VM_WARN_ON(order < MAX_ORDER);
 702                hugetlb_cma_reserve(order);
 703        }
 704}
 705