linux/arch/powerpc/platforms/powernv/pci-sriov.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2
   3#include <linux/kernel.h>
   4#include <linux/ioport.h>
   5#include <linux/bitmap.h>
   6#include <linux/pci.h>
   7
   8#include <asm/opal.h>
   9
  10#include "pci.h"
  11
  12/* for pci_dev_is_added() */
  13#include "../../../../drivers/pci/pci.h"
  14
  15/*
  16 * The majority of the complexity in supporting SR-IOV on PowerNV comes from
  17 * the need to put the MMIO space for each VF into a separate PE. Internally
  18 * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table".
  19 * The MBT historically only applied to the 64bit MMIO window of the PHB
  20 * so it's common to see it referred to as the "M64BT".
  21 *
  22 * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces
  23 * the address range that we want to map to be power-of-two sized and aligned.
  24 * For conventional PCI devices this isn't really an issue since PCI device BARs
  25 * have the same requirement.
  26 *
  27 * For a SR-IOV BAR things are a little more awkward since size and alignment
  28 * are not coupled. The alignment is set based on the the per-VF BAR size, but
  29 * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs
  30 * isn't necessarily a power of two, so neither is the total size. To fix that
  31 * we need to finesse (read: hack) the Linux BAR allocator so that it will
  32 * allocate the SR-IOV BARs in a way that lets us map them using the MBT.
  33 *
  34 * The changes to size and alignment that we need to do depend on the "mode"
  35 * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above,
  36 * so as a baseline we can assume that we have the following BAR modes
  37 * available:
  38 *
  39 *   NB: $PE_COUNT is the number of PEs that the PHB supports.
  40 *
  41 * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized
  42 *    segments. The n'th segment is mapped to the n'th PE.
  43 * b) An un-segmented BAR that maps the whole address range to a specific PE.
  44 *
  45 *
  46 * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR
  47 * For comparison b) requires one entry per-VF per-BAR, or:
  48 * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment
  49 * to equal the size of the per-VF BAR area. So:
  50 *
  51 *      new_size = per-vf-size * number-of-PEs
  52 *
  53 * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size
  54 * to "new_size", calculated above. Implementing this is a convoluted process
  55 * which requires several hooks in the PCI core:
  56 *
  57 * 1. In pcibios_add_device() we call pnv_pci_ioda_fixup_iov().
  58 *
  59 *    At this point the device has been probed and the device's BARs are sized,
  60 *    but no resource allocations have been done. The SR-IOV BARs are sized
  61 *    based on the maximum number of VFs supported by the device and we need
  62 *    to increase that to new_size.
  63 *
  64 * 2. Later, when Linux actually assigns resources it tries to make the resource
  65 *    allocations for each PCI bus as compact as possible. As a part of that it
  66 *    sorts the BARs on a bus by their required alignment, which is calculated
  67 *    using pci_resource_alignment().
  68 *
  69 *    For IOV resources this goes:
  70 *    pci_resource_alignment()
  71 *        pci_sriov_resource_alignment()
  72 *            pcibios_sriov_resource_alignment()
  73 *                pnv_pci_iov_resource_alignment()
  74 *
  75 *    Our hook overrides the default alignment, equal to the per-vf-size, with
  76 *    new_size computed above.
  77 *
  78 * 3. When userspace enables VFs for a device:
  79 *
  80 *    sriov_enable()
  81 *       pcibios_sriov_enable()
  82 *           pnv_pcibios_sriov_enable()
  83 *
  84 *    This is where we actually allocate PE numbers for each VF and setup the
  85 *    MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena"
  86 *    where each MBT segment is equal in size to the VF BAR so we can shift
  87 *    around the actual SR-IOV BAR location within this arena. We need this
  88 *    ability because the PE space is shared by all devices on the same PHB.
  89 *    When using mode a) described above segment 0 in maps to PE#0 which might
  90 *    be already being used by another device on the PHB.
  91 *
  92 *    As a result we need allocate a contigious range of PE numbers, then shift
  93 *    the address programmed into the SR-IOV BAR of the PF so that the address
  94 *    of VF0 matches up with the segment corresponding to the first allocated
  95 *    PE number. This is handled in pnv_pci_vf_resource_shift().
  96 *
  97 *    Once all that is done we return to the PCI core which then enables VFs,
  98 *    scans them and creates pci_devs for each. The init process for a VF is
  99 *    largely the same as a normal device, but the VF is inserted into the IODA
 100 *    PE that we allocated for it rather than the PE associated with the bus.
 101 *
 102 * 4. When userspace disables VFs we unwind the above in
 103 *    pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since
 104 *    we don't need to validate anything, just tear down the mappings and
 105 *    move SR-IOV resource back to its "proper" location.
 106 *
 107 * That's how mode a) works. In theory mode b) (single PE mapping) is less work
 108 * since we can map each individual VF with a separate BAR. However, there's a
 109 * few limitations:
 110 *
 111 * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes
 112 *    it only usable for devices with very large per-VF BARs. Such devices are
 113 *    similar to Big Foot. They definitely exist, but I've never seen one.
 114 *
 115 * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only
 116 *    16 total and some are needed for. Most SR-IOV capable network cards can support
 117 *    more than 16 VFs on each port.
 118 *
 119 * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO
 120 * window of the PHB.
 121 *
 122 *
 123 *
 124 * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It
 125 * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows
 126 * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since
 127 * the Linux BAR allocation will place any BAR marked as non-prefetchable into
 128 * the non-prefetchable bridge window, which is 32bit only. It also added two
 129 * new modes:
 130 *
 131 * c) A segmented BAR similar to a), but each segment can be individually
 132 *    mapped to any PE. This is matches how the 32bit MMIO window worked on
 133 *    IODA1&2.
 134 *
 135 * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a),
 136 *    but with fewer segments and configurable base PE.
 137 *
 138 *    i.e. The n'th segment maps to the (n + base)'th PE.
 139 *
 140 *    The base PE is also required to be a multiple of the window size.
 141 *
 142 * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us
 143 * to exploit any of the IODA3 features.
 144 */
 145
 146static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
 147{
 148        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
 149        struct resource *res;
 150        int i;
 151        resource_size_t vf_bar_sz;
 152        struct pnv_iov_data *iov;
 153        int mul;
 154
 155        iov = kzalloc(sizeof(*iov), GFP_KERNEL);
 156        if (!iov)
 157                goto disable_iov;
 158        pdev->dev.archdata.iov_data = iov;
 159        mul = phb->ioda.total_pe_num;
 160
 161        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
 162                res = &pdev->resource[i + PCI_IOV_RESOURCES];
 163                if (!res->flags || res->parent)
 164                        continue;
 165                if (!pnv_pci_is_m64_flags(res->flags)) {
 166                        dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n",
 167                                 i, res);
 168                        goto disable_iov;
 169                }
 170
 171                vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
 172
 173                /*
 174                 * Generally, one segmented M64 BAR maps one IOV BAR. However,
 175                 * if a VF BAR is too large we end up wasting a lot of space.
 176                 * If each VF needs more than 1/4 of the default m64 segment
 177                 * then each VF BAR should be mapped in single-PE mode to reduce
 178                 * the amount of space required. This does however limit the
 179                 * number of VFs we can support.
 180                 *
 181                 * The 1/4 limit is arbitrary and can be tweaked.
 182                 */
 183                if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) {
 184                        /*
 185                         * On PHB3, the minimum size alignment of M64 BAR in
 186                         * single mode is 32MB. If this VF BAR is smaller than
 187                         * 32MB, but still too large for a segmented window
 188                         * then we can't map it and need to disable SR-IOV for
 189                         * this device.
 190                         */
 191                        if (vf_bar_sz < SZ_32M) {
 192                                pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n",
 193                                        i, res);
 194                                goto disable_iov;
 195                        }
 196
 197                        iov->m64_single_mode[i] = true;
 198                        continue;
 199                }
 200
 201                /*
 202                 * This BAR can be mapped with one segmented window, so adjust
 203                 * te resource size to accommodate.
 204                 */
 205                pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res);
 206                res->end = res->start + vf_bar_sz * mul - 1;
 207                pci_dbg(pdev, "                       %pR\n", res);
 208
 209                pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
 210                         i, res, mul);
 211
 212                iov->need_shift = true;
 213        }
 214
 215        return;
 216
 217disable_iov:
 218        /* Save ourselves some MMIO space by disabling the unusable BARs */
 219        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
 220                res = &pdev->resource[i + PCI_IOV_RESOURCES];
 221                res->flags = 0;
 222                res->end = res->start - 1;
 223        }
 224
 225        pdev->dev.archdata.iov_data = NULL;
 226        kfree(iov);
 227}
 228
 229void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
 230{
 231        if (WARN_ON(pci_dev_is_added(pdev)))
 232                return;
 233
 234        if (pdev->is_virtfn) {
 235                struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
 236
 237                /*
 238                 * VF PEs are single-device PEs so their pdev pointer needs to
 239                 * be set. The pdev doesn't exist when the PE is allocated (in
 240                 * (pcibios_sriov_enable()) so we fix it up here.
 241                 */
 242                pe->pdev = pdev;
 243                WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
 244        } else if (pdev->is_physfn) {
 245                /*
 246                 * For PFs adjust their allocated IOV resources to match what
 247                 * the PHB can support using it's M64 BAR table.
 248                 */
 249                pnv_pci_ioda_fixup_iov_resources(pdev);
 250        }
 251}
 252
 253resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
 254                                                      int resno)
 255{
 256        resource_size_t align = pci_iov_resource_size(pdev, resno);
 257        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
 258        struct pnv_iov_data *iov = pnv_iov_get(pdev);
 259
 260        /*
 261         * iov can be null if we have an SR-IOV device with IOV BAR that can't
 262         * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch).
 263         * In that case we don't allow VFs to be enabled since one of their
 264         * BARs would not be placed in the correct PE.
 265         */
 266        if (!iov)
 267                return align;
 268
 269        /*
 270         * If we're using single mode then we can just use the native VF BAR
 271         * alignment. We validated that it's possible to use a single PE
 272         * window above when we did the fixup.
 273         */
 274        if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES])
 275                return align;
 276
 277        /*
 278         * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
 279         * SR-IOV. While from hardware perspective, the range mapped by M64
 280         * BAR should be size aligned.
 281         *
 282         * This function returns the total IOV BAR size if M64 BAR is in
 283         * Shared PE mode or just VF BAR size if not.
 284         * If the M64 BAR is in Single PE mode, return the VF BAR size or
 285         * M64 segment size if IOV BAR size is less.
 286         */
 287        return phb->ioda.total_pe_num * align;
 288}
 289
 290static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
 291{
 292        struct pnv_iov_data   *iov;
 293        struct pnv_phb        *phb;
 294        int window_id;
 295
 296        phb = pci_bus_to_pnvhb(pdev->bus);
 297        iov = pnv_iov_get(pdev);
 298
 299        for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) {
 300                opal_pci_phb_mmio_enable(phb->opal_id,
 301                                         OPAL_M64_WINDOW_TYPE,
 302                                         window_id,
 303                                         0);
 304
 305                clear_bit(window_id, &phb->ioda.m64_bar_alloc);
 306        }
 307
 308        return 0;
 309}
 310
 311
 312/*
 313 * PHB3 and beyond support segmented windows. The window's address range
 314 * is subdivided into phb->ioda.total_pe_num segments and there's a 1-1
 315 * mapping between PEs and segments.
 316 */
 317static int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb,
 318                                          int window_id,
 319                                          resource_size_t start,
 320                                          resource_size_t size)
 321{
 322        int64_t rc;
 323
 324        rc = opal_pci_set_phb_mem_window(phb->opal_id,
 325                                         OPAL_M64_WINDOW_TYPE,
 326                                         window_id,
 327                                         start,
 328                                         0, /* unused */
 329                                         size);
 330        if (rc)
 331                goto out;
 332
 333        rc = opal_pci_phb_mmio_enable(phb->opal_id,
 334                                      OPAL_M64_WINDOW_TYPE,
 335                                      window_id,
 336                                      OPAL_ENABLE_M64_SPLIT);
 337out:
 338        if (rc)
 339                pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc);
 340
 341        return rc;
 342}
 343
 344static int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb,
 345                                       int pe_num,
 346                                       int window_id,
 347                                       resource_size_t start,
 348                                       resource_size_t size)
 349{
 350        int64_t rc;
 351
 352        /*
 353         * The API for setting up m64 mmio windows seems to have been designed
 354         * with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed
 355         * split of 8 equally sized segments each of which could individually
 356         * assigned to a PE.
 357         *
 358         * The problem with this is that the API doesn't have any way to
 359         * communicate the number of segments we want on a BAR. This wasn't
 360         * a problem for p7-ioc since you didn't have a choice, but the
 361         * single PE windows added in PHB3 don't map cleanly to this API.
 362         *
 363         * As a result we've got this slightly awkward process where we
 364         * call opal_pci_map_pe_mmio_window() to put the single in single
 365         * PE mode, and set the PE for the window before setting the address
 366         * bounds. We need to do it this way because the single PE windows
 367         * for PHB3 have different alignment requirements on PHB3.
 368         */
 369        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
 370                                         pe_num,
 371                                         OPAL_M64_WINDOW_TYPE,
 372                                         window_id,
 373                                         0);
 374        if (rc)
 375                goto out;
 376
 377        /*
 378         * NB: In single PE mode the window needs to be aligned to 32MB
 379         */
 380        rc = opal_pci_set_phb_mem_window(phb->opal_id,
 381                                         OPAL_M64_WINDOW_TYPE,
 382                                         window_id,
 383                                         start,
 384                                         0, /* ignored by FW, m64 is 1-1 */
 385                                         size);
 386        if (rc)
 387                goto out;
 388
 389        /*
 390         * Now actually enable it. We specified the BAR should be in "non-split"
 391         * mode so FW will validate that the BAR is in single PE mode.
 392         */
 393        rc = opal_pci_phb_mmio_enable(phb->opal_id,
 394                                      OPAL_M64_WINDOW_TYPE,
 395                                      window_id,
 396                                      OPAL_ENABLE_M64_NON_SPLIT);
 397out:
 398        if (rc)
 399                pr_err("Error mapping single PE BAR\n");
 400
 401        return rc;
 402}
 403
 404static int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov)
 405{
 406        int win;
 407
 408        do {
 409                win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
 410                                phb->ioda.m64_bar_idx + 1, 0);
 411
 412                if (win >= phb->ioda.m64_bar_idx + 1)
 413                        return -1;
 414        } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
 415
 416        set_bit(win, iov->used_m64_bar_mask);
 417
 418        return win;
 419}
 420
 421static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
 422{
 423        struct pnv_iov_data   *iov;
 424        struct pnv_phb        *phb;
 425        unsigned int           win;
 426        struct resource       *res;
 427        int                    i, j;
 428        int64_t                rc;
 429        resource_size_t        size, start;
 430        int                    base_pe_num;
 431
 432        phb = pci_bus_to_pnvhb(pdev->bus);
 433        iov = pnv_iov_get(pdev);
 434
 435        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
 436                res = &pdev->resource[i + PCI_IOV_RESOURCES];
 437                if (!res->flags || !res->parent)
 438                        continue;
 439
 440                /* don't need single mode? map everything in one go! */
 441                if (!iov->m64_single_mode[i]) {
 442                        win = pnv_pci_alloc_m64_bar(phb, iov);
 443                        if (win < 0)
 444                                goto m64_failed;
 445
 446                        size = resource_size(res);
 447                        start = res->start;
 448
 449                        rc = pnv_ioda_map_m64_segmented(phb, win, start, size);
 450                        if (rc)
 451                                goto m64_failed;
 452
 453                        continue;
 454                }
 455
 456                /* otherwise map each VF with single PE BARs */
 457                size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i);
 458                base_pe_num = iov->vf_pe_arr[0].pe_number;
 459
 460                for (j = 0; j < num_vfs; j++) {
 461                        win = pnv_pci_alloc_m64_bar(phb, iov);
 462                        if (win < 0)
 463                                goto m64_failed;
 464
 465                        start = res->start + size * j;
 466                        rc = pnv_ioda_map_m64_single(phb, win,
 467                                                     base_pe_num + j,
 468                                                     start,
 469                                                     size);
 470                        if (rc)
 471                                goto m64_failed;
 472                }
 473        }
 474        return 0;
 475
 476m64_failed:
 477        pnv_pci_vf_release_m64(pdev, num_vfs);
 478        return -EBUSY;
 479}
 480
 481static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
 482{
 483        struct pnv_phb        *phb;
 484        struct pnv_ioda_pe    *pe, *pe_n;
 485
 486        phb = pci_bus_to_pnvhb(pdev->bus);
 487
 488        if (!pdev->is_physfn)
 489                return;
 490
 491        /* FIXME: Use pnv_ioda_release_pe()? */
 492        list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
 493                if (pe->parent_dev != pdev)
 494                        continue;
 495
 496                pnv_pci_ioda2_release_pe_dma(pe);
 497
 498                /* Remove from list */
 499                mutex_lock(&phb->ioda.pe_list_mutex);
 500                list_del(&pe->list);
 501                mutex_unlock(&phb->ioda.pe_list_mutex);
 502
 503                pnv_ioda_deconfigure_pe(phb, pe);
 504
 505                pnv_ioda_free_pe(pe);
 506        }
 507}
 508
 509static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
 510{
 511        struct resource *res, res2;
 512        struct pnv_iov_data *iov;
 513        resource_size_t size;
 514        u16 num_vfs;
 515        int i;
 516
 517        if (!dev->is_physfn)
 518                return -EINVAL;
 519        iov = pnv_iov_get(dev);
 520
 521        /*
 522         * "offset" is in VFs.  The M64 windows are sized so that when they
 523         * are segmented, each segment is the same size as the IOV BAR.
 524         * Each segment is in a separate PE, and the high order bits of the
 525         * address are the PE number.  Therefore, each VF's BAR is in a
 526         * separate PE, and changing the IOV BAR start address changes the
 527         * range of PEs the VFs are in.
 528         */
 529        num_vfs = iov->num_vfs;
 530        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
 531                res = &dev->resource[i + PCI_IOV_RESOURCES];
 532                if (!res->flags || !res->parent)
 533                        continue;
 534                if (iov->m64_single_mode[i])
 535                        continue;
 536
 537                /*
 538                 * The actual IOV BAR range is determined by the start address
 539                 * and the actual size for num_vfs VFs BAR.  This check is to
 540                 * make sure that after shifting, the range will not overlap
 541                 * with another device.
 542                 */
 543                size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
 544                res2.flags = res->flags;
 545                res2.start = res->start + (size * offset);
 546                res2.end = res2.start + (size * num_vfs) - 1;
 547
 548                if (res2.end > res->end) {
 549                        dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
 550                                i, &res2, res, num_vfs, offset);
 551                        return -EBUSY;
 552                }
 553        }
 554
 555        /*
 556         * Since M64 BAR shares segments among all possible 256 PEs,
 557         * we have to shift the beginning of PF IOV BAR to make it start from
 558         * the segment which belongs to the PE number assigned to the first VF.
 559         * This creates a "hole" in the /proc/iomem which could be used for
 560         * allocating other resources so we reserve this area below and
 561         * release when IOV is released.
 562         */
 563        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
 564                res = &dev->resource[i + PCI_IOV_RESOURCES];
 565                if (!res->flags || !res->parent)
 566                        continue;
 567                if (iov->m64_single_mode[i])
 568                        continue;
 569
 570                size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
 571                res2 = *res;
 572                res->start += size * offset;
 573
 574                dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
 575                         i, &res2, res, (offset > 0) ? "En" : "Dis",
 576                         num_vfs, offset);
 577
 578                if (offset < 0) {
 579                        devm_release_resource(&dev->dev, &iov->holes[i]);
 580                        memset(&iov->holes[i], 0, sizeof(iov->holes[i]));
 581                }
 582
 583                pci_update_resource(dev, i + PCI_IOV_RESOURCES);
 584
 585                if (offset > 0) {
 586                        iov->holes[i].start = res2.start;
 587                        iov->holes[i].end = res2.start + size * offset - 1;
 588                        iov->holes[i].flags = IORESOURCE_BUS;
 589                        iov->holes[i].name = "pnv_iov_reserved";
 590                        devm_request_resource(&dev->dev, res->parent,
 591                                        &iov->holes[i]);
 592                }
 593        }
 594        return 0;
 595}
 596
 597static void pnv_pci_sriov_disable(struct pci_dev *pdev)
 598{
 599        u16                    num_vfs, base_pe;
 600        struct pnv_iov_data   *iov;
 601
 602        iov = pnv_iov_get(pdev);
 603        num_vfs = iov->num_vfs;
 604        base_pe = iov->vf_pe_arr[0].pe_number;
 605
 606        if (WARN_ON(!iov))
 607                return;
 608
 609        /* Release VF PEs */
 610        pnv_ioda_release_vf_PE(pdev);
 611
 612        /* Un-shift the IOV BARs if we need to */
 613        if (iov->need_shift)
 614                pnv_pci_vf_resource_shift(pdev, -base_pe);
 615
 616        /* Release M64 windows */
 617        pnv_pci_vf_release_m64(pdev, num_vfs);
 618}
 619
 620static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
 621{
 622        struct pnv_phb        *phb;
 623        struct pnv_ioda_pe    *pe;
 624        int                    pe_num;
 625        u16                    vf_index;
 626        struct pnv_iov_data   *iov;
 627        struct pci_dn         *pdn;
 628
 629        if (!pdev->is_physfn)
 630                return;
 631
 632        phb = pci_bus_to_pnvhb(pdev->bus);
 633        pdn = pci_get_pdn(pdev);
 634        iov = pnv_iov_get(pdev);
 635
 636        /* Reserve PE for each VF */
 637        for (vf_index = 0; vf_index < num_vfs; vf_index++) {
 638                int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
 639                int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
 640                struct pci_dn *vf_pdn;
 641
 642                pe = &iov->vf_pe_arr[vf_index];
 643                pe->phb = phb;
 644                pe->flags = PNV_IODA_PE_VF;
 645                pe->pbus = NULL;
 646                pe->parent_dev = pdev;
 647                pe->mve_number = -1;
 648                pe->rid = (vf_bus << 8) | vf_devfn;
 649
 650                pe_num = pe->pe_number;
 651                pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
 652                        pci_domain_nr(pdev->bus), pdev->bus->number,
 653                        PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
 654
 655                if (pnv_ioda_configure_pe(phb, pe)) {
 656                        /* XXX What do we do here ? */
 657                        pnv_ioda_free_pe(pe);
 658                        pe->pdev = NULL;
 659                        continue;
 660                }
 661
 662                /* Put PE to the list */
 663                mutex_lock(&phb->ioda.pe_list_mutex);
 664                list_add_tail(&pe->list, &phb->ioda.pe_list);
 665                mutex_unlock(&phb->ioda.pe_list_mutex);
 666
 667                /* associate this pe to it's pdn */
 668                list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
 669                        if (vf_pdn->busno == vf_bus &&
 670                            vf_pdn->devfn == vf_devfn) {
 671                                vf_pdn->pe_number = pe_num;
 672                                break;
 673                        }
 674                }
 675
 676                pnv_pci_ioda2_setup_dma_pe(phb, pe);
 677        }
 678}
 679
 680static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
 681{
 682        struct pnv_ioda_pe    *base_pe;
 683        struct pnv_iov_data   *iov;
 684        struct pnv_phb        *phb;
 685        int                    ret;
 686        u16                    i;
 687
 688        phb = pci_bus_to_pnvhb(pdev->bus);
 689        iov = pnv_iov_get(pdev);
 690
 691        /*
 692         * There's a calls to IODA2 PE setup code littered throughout. We could
 693         * probably fix that, but we'd still have problems due to the
 694         * restriction inherent on IODA1 PHBs.
 695         *
 696         * NB: We class IODA3 as IODA2 since they're very similar.
 697         */
 698        if (phb->type != PNV_PHB_IODA2) {
 699                pci_err(pdev, "SR-IOV is not supported on this PHB\n");
 700                return -ENXIO;
 701        }
 702
 703        if (!iov) {
 704                dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n");
 705                return -ENOSPC;
 706        }
 707
 708        /* allocate a contigious block of PEs for our VFs */
 709        base_pe = pnv_ioda_alloc_pe(phb, num_vfs);
 710        if (!base_pe) {
 711                pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs);
 712                return -EBUSY;
 713        }
 714
 715        iov->vf_pe_arr = base_pe;
 716        iov->num_vfs = num_vfs;
 717
 718        /* Assign M64 window accordingly */
 719        ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
 720        if (ret) {
 721                dev_info(&pdev->dev, "Not enough M64 window resources\n");
 722                goto m64_failed;
 723        }
 724
 725        /*
 726         * When using one M64 BAR to map one IOV BAR, we need to shift
 727         * the IOV BAR according to the PE# allocated to the VFs.
 728         * Otherwise, the PE# for the VF will conflict with others.
 729         */
 730        if (iov->need_shift) {
 731                ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number);
 732                if (ret)
 733                        goto shift_failed;
 734        }
 735
 736        /* Setup VF PEs */
 737        pnv_ioda_setup_vf_PE(pdev, num_vfs);
 738
 739        return 0;
 740
 741shift_failed:
 742        pnv_pci_vf_release_m64(pdev, num_vfs);
 743
 744m64_failed:
 745        for (i = 0; i < num_vfs; i++)
 746                pnv_ioda_free_pe(&iov->vf_pe_arr[i]);
 747
 748        return ret;
 749}
 750
 751int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
 752{
 753        pnv_pci_sriov_disable(pdev);
 754
 755        /* Release PCI data */
 756        remove_sriov_vf_pdns(pdev);
 757        return 0;
 758}
 759
 760int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
 761{
 762        /* Allocate PCI data */
 763        add_sriov_vf_pdns(pdev);
 764
 765        return pnv_pci_sriov_enable(pdev, num_vfs);
 766}
 767