linux/arch/powerpc/sysdev/xive/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2016,2017 IBM Corporation.
   4 */
   5
   6#define pr_fmt(fmt) "xive: " fmt
   7
   8#include <linux/types.h>
   9#include <linux/threads.h>
  10#include <linux/kernel.h>
  11#include <linux/irq.h>
  12#include <linux/debugfs.h>
  13#include <linux/smp.h>
  14#include <linux/interrupt.h>
  15#include <linux/seq_file.h>
  16#include <linux/init.h>
  17#include <linux/cpu.h>
  18#include <linux/of.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/msi.h>
  22#include <linux/vmalloc.h>
  23
  24#include <asm/debugfs.h>
  25#include <asm/prom.h>
  26#include <asm/io.h>
  27#include <asm/smp.h>
  28#include <asm/machdep.h>
  29#include <asm/irq.h>
  30#include <asm/errno.h>
  31#include <asm/xive.h>
  32#include <asm/xive-regs.h>
  33#include <asm/xmon.h>
  34
  35#include "xive-internal.h"
  36
  37#undef DEBUG_FLUSH
  38#undef DEBUG_ALL
  39
  40#ifdef DEBUG_ALL
  41#define DBG_VERBOSE(fmt, ...)   pr_devel("cpu %d - " fmt, \
  42                                         smp_processor_id(), ## __VA_ARGS__)
  43#else
  44#define DBG_VERBOSE(fmt...)     do { } while(0)
  45#endif
  46
  47bool __xive_enabled;
  48EXPORT_SYMBOL_GPL(__xive_enabled);
  49bool xive_cmdline_disabled;
  50
  51/* We use only one priority for now */
  52static u8 xive_irq_priority;
  53
  54/* TIMA exported to KVM */
  55void __iomem *xive_tima;
  56EXPORT_SYMBOL_GPL(xive_tima);
  57u32 xive_tima_offset;
  58
  59/* Backend ops */
  60static const struct xive_ops *xive_ops;
  61
  62/* Our global interrupt domain */
  63static struct irq_domain *xive_irq_domain;
  64
  65#ifdef CONFIG_SMP
  66/* The IPIs all use the same logical irq number */
  67static u32 xive_ipi_irq;
  68#endif
  69
  70/* Xive state for each CPU */
  71static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
  72
  73/* An invalid CPU target */
  74#define XIVE_INVALID_TARGET     (-1)
  75
  76/*
  77 * Read the next entry in a queue, return its content if it's valid
  78 * or 0 if there is no new entry.
  79 *
  80 * The queue pointer is moved forward unless "just_peek" is set
  81 */
  82static u32 xive_read_eq(struct xive_q *q, bool just_peek)
  83{
  84        u32 cur;
  85
  86        if (!q->qpage)
  87                return 0;
  88        cur = be32_to_cpup(q->qpage + q->idx);
  89
  90        /* Check valid bit (31) vs current toggle polarity */
  91        if ((cur >> 31) == q->toggle)
  92                return 0;
  93
  94        /* If consuming from the queue ... */
  95        if (!just_peek) {
  96                /* Next entry */
  97                q->idx = (q->idx + 1) & q->msk;
  98
  99                /* Wrap around: flip valid toggle */
 100                if (q->idx == 0)
 101                        q->toggle ^= 1;
 102        }
 103        /* Mask out the valid bit (31) */
 104        return cur & 0x7fffffff;
 105}
 106
 107/*
 108 * Scans all the queue that may have interrupts in them
 109 * (based on "pending_prio") in priority order until an
 110 * interrupt is found or all the queues are empty.
 111 *
 112 * Then updates the CPPR (Current Processor Priority
 113 * Register) based on the most favored interrupt found
 114 * (0xff if none) and return what was found (0 if none).
 115 *
 116 * If just_peek is set, return the most favored pending
 117 * interrupt if any but don't update the queue pointers.
 118 *
 119 * Note: This function can operate generically on any number
 120 * of queues (up to 8). The current implementation of the XIVE
 121 * driver only uses a single queue however.
 122 *
 123 * Note2: This will also "flush" "the pending_count" of a queue
 124 * into the "count" when that queue is observed to be empty.
 125 * This is used to keep track of the amount of interrupts
 126 * targetting a queue. When an interrupt is moved away from
 127 * a queue, we only decrement that queue count once the queue
 128 * has been observed empty to avoid races.
 129 */
 130static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
 131{
 132        u32 irq = 0;
 133        u8 prio = 0;
 134
 135        /* Find highest pending priority */
 136        while (xc->pending_prio != 0) {
 137                struct xive_q *q;
 138
 139                prio = ffs(xc->pending_prio) - 1;
 140                DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
 141
 142                /* Try to fetch */
 143                irq = xive_read_eq(&xc->queue[prio], just_peek);
 144
 145                /* Found something ? That's it */
 146                if (irq) {
 147                        if (just_peek || irq_to_desc(irq))
 148                                break;
 149                        /*
 150                         * We should never get here; if we do then we must
 151                         * have failed to synchronize the interrupt properly
 152                         * when shutting it down.
 153                         */
 154                        pr_crit("xive: got interrupt %d without descriptor, dropping\n",
 155                                irq);
 156                        WARN_ON(1);
 157                        continue;
 158                }
 159
 160                /* Clear pending bits */
 161                xc->pending_prio &= ~(1 << prio);
 162
 163                /*
 164                 * Check if the queue count needs adjusting due to
 165                 * interrupts being moved away. See description of
 166                 * xive_dec_target_count()
 167                 */
 168                q = &xc->queue[prio];
 169                if (atomic_read(&q->pending_count)) {
 170                        int p = atomic_xchg(&q->pending_count, 0);
 171                        if (p) {
 172                                WARN_ON(p > atomic_read(&q->count));
 173                                atomic_sub(p, &q->count);
 174                        }
 175                }
 176        }
 177
 178        /* If nothing was found, set CPPR to 0xff */
 179        if (irq == 0)
 180                prio = 0xff;
 181
 182        /* Update HW CPPR to match if necessary */
 183        if (prio != xc->cppr) {
 184                DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
 185                xc->cppr = prio;
 186                out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
 187        }
 188
 189        return irq;
 190}
 191
 192/*
 193 * This is used to perform the magic loads from an ESB
 194 * described in xive-regs.h
 195 */
 196static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
 197{
 198        u64 val;
 199
 200        if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
 201                offset |= XIVE_ESB_LD_ST_MO;
 202
 203        /* Handle HW errata */
 204        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 205                offset |= offset << 4;
 206
 207        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 208                val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
 209        else
 210                val = in_be64(xd->eoi_mmio + offset);
 211
 212        return (u8)val;
 213}
 214
 215static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
 216{
 217        /* Handle HW errata */
 218        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 219                offset |= offset << 4;
 220
 221        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 222                xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
 223        else
 224                out_be64(xd->eoi_mmio + offset, data);
 225}
 226
 227#ifdef CONFIG_XMON
 228static notrace void xive_dump_eq(const char *name, struct xive_q *q)
 229{
 230        u32 i0, i1, idx;
 231
 232        if (!q->qpage)
 233                return;
 234        idx = q->idx;
 235        i0 = be32_to_cpup(q->qpage + idx);
 236        idx = (idx + 1) & q->msk;
 237        i1 = be32_to_cpup(q->qpage + idx);
 238        xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
 239                     q->idx, q->toggle, i0, i1);
 240}
 241
 242notrace void xmon_xive_do_dump(int cpu)
 243{
 244        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 245
 246        xmon_printf("CPU %d:", cpu);
 247        if (xc) {
 248                xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
 249
 250#ifdef CONFIG_SMP
 251                {
 252                        u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
 253
 254                        xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
 255                                    val & XIVE_ESB_VAL_P ? 'P' : '-',
 256                                    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
 257                }
 258#endif
 259                xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
 260        }
 261        xmon_printf("\n");
 262}
 263
 264int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
 265{
 266        struct irq_chip *chip = irq_data_get_irq_chip(d);
 267        int rc;
 268        u32 target;
 269        u8 prio;
 270        u32 lirq;
 271
 272        if (!is_xive_irq(chip))
 273                return -EINVAL;
 274
 275        rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
 276        if (rc) {
 277                xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
 278                return rc;
 279        }
 280
 281        xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
 282                    hw_irq, target, prio, lirq);
 283
 284        if (d) {
 285                struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 286                u64 val = xive_esb_read(xd, XIVE_ESB_GET);
 287
 288                xmon_printf("flags=%c%c%c PQ=%c%c",
 289                            xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
 290                            xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
 291                            xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
 292                            val & XIVE_ESB_VAL_P ? 'P' : '-',
 293                            val & XIVE_ESB_VAL_Q ? 'Q' : '-');
 294        }
 295
 296        xmon_printf("\n");
 297        return 0;
 298}
 299
 300#endif /* CONFIG_XMON */
 301
 302static unsigned int xive_get_irq(void)
 303{
 304        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 305        u32 irq;
 306
 307        /*
 308         * This can be called either as a result of a HW interrupt or
 309         * as a "replay" because EOI decided there was still something
 310         * in one of the queues.
 311         *
 312         * First we perform an ACK cycle in order to update our mask
 313         * of pending priorities. This will also have the effect of
 314         * updating the CPPR to the most favored pending interrupts.
 315         *
 316         * In the future, if we have a way to differentiate a first
 317         * entry (on HW interrupt) from a replay triggered by EOI,
 318         * we could skip this on replays unless we soft-mask tells us
 319         * that a new HW interrupt occurred.
 320         */
 321        xive_ops->update_pending(xc);
 322
 323        DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
 324
 325        /* Scan our queue(s) for interrupts */
 326        irq = xive_scan_interrupts(xc, false);
 327
 328        DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
 329            irq, xc->pending_prio);
 330
 331        /* Return pending interrupt if any */
 332        if (irq == XIVE_BAD_IRQ)
 333                return 0;
 334        return irq;
 335}
 336
 337/*
 338 * After EOI'ing an interrupt, we need to re-check the queue
 339 * to see if another interrupt is pending since multiple
 340 * interrupts can coalesce into a single notification to the
 341 * CPU.
 342 *
 343 * If we find that there is indeed more in there, we call
 344 * force_external_irq_replay() to make Linux synthetize an
 345 * external interrupt on the next call to local_irq_restore().
 346 */
 347static void xive_do_queue_eoi(struct xive_cpu *xc)
 348{
 349        if (xive_scan_interrupts(xc, true) != 0) {
 350                DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
 351                force_external_irq_replay();
 352        }
 353}
 354
 355/*
 356 * EOI an interrupt at the source. There are several methods
 357 * to do this depending on the HW version and source type
 358 */
 359static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
 360{
 361        xd->stale_p = false;
 362        /* If the XIVE supports the new "store EOI facility, use it */
 363        if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
 364                xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
 365        else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
 366                /*
 367                 * The FW told us to call it. This happens for some
 368                 * interrupt sources that need additional HW whacking
 369                 * beyond the ESB manipulation. For example LPC interrupts
 370                 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
 371                 * itself. The Firmware will take care of it.
 372                 */
 373                if (WARN_ON_ONCE(!xive_ops->eoi))
 374                        return;
 375                xive_ops->eoi(hw_irq);
 376        } else {
 377                u8 eoi_val;
 378
 379                /*
 380                 * Otherwise for EOI, we use the special MMIO that does
 381                 * a clear of both P and Q and returns the old Q,
 382                 * except for LSIs where we use the "EOI cycle" special
 383                 * load.
 384                 *
 385                 * This allows us to then do a re-trigger if Q was set
 386                 * rather than synthesizing an interrupt in software
 387                 *
 388                 * For LSIs the HW EOI cycle is used rather than PQ bits,
 389                 * as they are automatically re-triggred in HW when still
 390                 * pending.
 391                 */
 392                if (xd->flags & XIVE_IRQ_FLAG_LSI)
 393                        xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
 394                else {
 395                        eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 396                        DBG_VERBOSE("eoi_val=%x\n", eoi_val);
 397
 398                        /* Re-trigger if needed */
 399                        if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
 400                                out_be64(xd->trig_mmio, 0);
 401                }
 402        }
 403}
 404
 405/* irq_chip eoi callback, called with irq descriptor lock held */
 406static void xive_irq_eoi(struct irq_data *d)
 407{
 408        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 409        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 410
 411        DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
 412                    d->irq, irqd_to_hwirq(d), xc->pending_prio);
 413
 414        /*
 415         * EOI the source if it hasn't been disabled and hasn't
 416         * been passed-through to a KVM guest
 417         */
 418        if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
 419            !(xd->flags & XIVE_IRQ_NO_EOI))
 420                xive_do_source_eoi(irqd_to_hwirq(d), xd);
 421        else
 422                xd->stale_p = true;
 423
 424        /*
 425         * Clear saved_p to indicate that it's no longer occupying
 426         * a queue slot on the target queue
 427         */
 428        xd->saved_p = false;
 429
 430        /* Check for more work in the queue */
 431        xive_do_queue_eoi(xc);
 432}
 433
 434/*
 435 * Helper used to mask and unmask an interrupt source. This
 436 * is only called for normal interrupts that do not require
 437 * masking/unmasking via firmware.
 438 */
 439static void xive_do_source_set_mask(struct xive_irq_data *xd,
 440                                    bool mask)
 441{
 442        u64 val;
 443
 444        /*
 445         * If the interrupt had P set, it may be in a queue.
 446         *
 447         * We need to make sure we don't re-enable it until it
 448         * has been fetched from that queue and EOId. We keep
 449         * a copy of that P state and use it to restore the
 450         * ESB accordingly on unmask.
 451         */
 452        if (mask) {
 453                val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
 454                if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
 455                        xd->saved_p = true;
 456                xd->stale_p = false;
 457        } else if (xd->saved_p) {
 458                xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 459                xd->saved_p = false;
 460        } else {
 461                xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 462                xd->stale_p = false;
 463        }
 464}
 465
 466/*
 467 * Try to chose "cpu" as a new interrupt target. Increments
 468 * the queue accounting for that target if it's not already
 469 * full.
 470 */
 471static bool xive_try_pick_target(int cpu)
 472{
 473        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 474        struct xive_q *q = &xc->queue[xive_irq_priority];
 475        int max;
 476
 477        /*
 478         * Calculate max number of interrupts in that queue.
 479         *
 480         * We leave a gap of 1 just in case...
 481         */
 482        max = (q->msk + 1) - 1;
 483        return !!atomic_add_unless(&q->count, 1, max);
 484}
 485
 486/*
 487 * Un-account an interrupt for a target CPU. We don't directly
 488 * decrement q->count since the interrupt might still be present
 489 * in the queue.
 490 *
 491 * Instead increment a separate counter "pending_count" which
 492 * will be substracted from "count" later when that CPU observes
 493 * the queue to be empty.
 494 */
 495static void xive_dec_target_count(int cpu)
 496{
 497        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 498        struct xive_q *q = &xc->queue[xive_irq_priority];
 499
 500        if (WARN_ON(cpu < 0 || !xc)) {
 501                pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
 502                return;
 503        }
 504
 505        /*
 506         * We increment the "pending count" which will be used
 507         * to decrement the target queue count whenever it's next
 508         * processed and found empty. This ensure that we don't
 509         * decrement while we still have the interrupt there
 510         * occupying a slot.
 511         */
 512        atomic_inc(&q->pending_count);
 513}
 514
 515/* Find a tentative CPU target in a CPU mask */
 516static int xive_find_target_in_mask(const struct cpumask *mask,
 517                                    unsigned int fuzz)
 518{
 519        int cpu, first, num, i;
 520
 521        /* Pick up a starting point CPU in the mask based on  fuzz */
 522        num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
 523        first = fuzz % num;
 524
 525        /* Locate it */
 526        cpu = cpumask_first(mask);
 527        for (i = 0; i < first && cpu < nr_cpu_ids; i++)
 528                cpu = cpumask_next(cpu, mask);
 529
 530        /* Sanity check */
 531        if (WARN_ON(cpu >= nr_cpu_ids))
 532                cpu = cpumask_first(cpu_online_mask);
 533
 534        /* Remember first one to handle wrap-around */
 535        first = cpu;
 536
 537        /*
 538         * Now go through the entire mask until we find a valid
 539         * target.
 540         */
 541        do {
 542                /*
 543                 * We re-check online as the fallback case passes us
 544                 * an untested affinity mask
 545                 */
 546                if (cpu_online(cpu) && xive_try_pick_target(cpu))
 547                        return cpu;
 548                cpu = cpumask_next(cpu, mask);
 549                /* Wrap around */
 550                if (cpu >= nr_cpu_ids)
 551                        cpu = cpumask_first(mask);
 552        } while (cpu != first);
 553
 554        return -1;
 555}
 556
 557/*
 558 * Pick a target CPU for an interrupt. This is done at
 559 * startup or if the affinity is changed in a way that
 560 * invalidates the current target.
 561 */
 562static int xive_pick_irq_target(struct irq_data *d,
 563                                const struct cpumask *affinity)
 564{
 565        static unsigned int fuzz;
 566        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 567        cpumask_var_t mask;
 568        int cpu = -1;
 569
 570        /*
 571         * If we have chip IDs, first we try to build a mask of
 572         * CPUs matching the CPU and find a target in there
 573         */
 574        if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
 575                zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
 576                /* Build a mask of matching chip IDs */
 577                for_each_cpu_and(cpu, affinity, cpu_online_mask) {
 578                        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 579                        if (xc->chip_id == xd->src_chip)
 580                                cpumask_set_cpu(cpu, mask);
 581                }
 582                /* Try to find a target */
 583                if (cpumask_empty(mask))
 584                        cpu = -1;
 585                else
 586                        cpu = xive_find_target_in_mask(mask, fuzz++);
 587                free_cpumask_var(mask);
 588                if (cpu >= 0)
 589                        return cpu;
 590                fuzz--;
 591        }
 592
 593        /* No chip IDs, fallback to using the affinity mask */
 594        return xive_find_target_in_mask(affinity, fuzz++);
 595}
 596
 597static unsigned int xive_irq_startup(struct irq_data *d)
 598{
 599        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 600        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 601        int target, rc;
 602
 603        xd->saved_p = false;
 604        xd->stale_p = false;
 605        pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
 606                 d->irq, hw_irq, d);
 607
 608#ifdef CONFIG_PCI_MSI
 609        /*
 610         * The generic MSI code returns with the interrupt disabled on the
 611         * card, using the MSI mask bits. Firmware doesn't appear to unmask
 612         * at that level, so we do it here by hand.
 613         */
 614        if (irq_data_get_msi_desc(d))
 615                pci_msi_unmask_irq(d);
 616#endif
 617
 618        /* Pick a target */
 619        target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
 620        if (target == XIVE_INVALID_TARGET) {
 621                /* Try again breaking affinity */
 622                target = xive_pick_irq_target(d, cpu_online_mask);
 623                if (target == XIVE_INVALID_TARGET)
 624                        return -ENXIO;
 625                pr_warn("irq %d started with broken affinity\n", d->irq);
 626        }
 627
 628        /* Sanity check */
 629        if (WARN_ON(target == XIVE_INVALID_TARGET ||
 630                    target >= nr_cpu_ids))
 631                target = smp_processor_id();
 632
 633        xd->target = target;
 634
 635        /*
 636         * Configure the logical number to be the Linux IRQ number
 637         * and set the target queue
 638         */
 639        rc = xive_ops->configure_irq(hw_irq,
 640                                     get_hard_smp_processor_id(target),
 641                                     xive_irq_priority, d->irq);
 642        if (rc)
 643                return rc;
 644
 645        /* Unmask the ESB */
 646        xive_do_source_set_mask(xd, false);
 647
 648        return 0;
 649}
 650
 651/* called with irq descriptor lock held */
 652static void xive_irq_shutdown(struct irq_data *d)
 653{
 654        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 655        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 656
 657        pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
 658                 d->irq, hw_irq, d);
 659
 660        if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
 661                return;
 662
 663        /* Mask the interrupt at the source */
 664        xive_do_source_set_mask(xd, true);
 665
 666        /*
 667         * Mask the interrupt in HW in the IVT/EAS and set the number
 668         * to be the "bad" IRQ number
 669         */
 670        xive_ops->configure_irq(hw_irq,
 671                                get_hard_smp_processor_id(xd->target),
 672                                0xff, XIVE_BAD_IRQ);
 673
 674        xive_dec_target_count(xd->target);
 675        xd->target = XIVE_INVALID_TARGET;
 676}
 677
 678static void xive_irq_unmask(struct irq_data *d)
 679{
 680        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 681
 682        pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
 683
 684        /*
 685         * This is a workaround for PCI LSI problems on P9, for
 686         * these, we call FW to set the mask. The problems might
 687         * be fixed by P9 DD2.0, if that is the case, firmware
 688         * will no longer set that flag.
 689         */
 690        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 691                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 692                xive_ops->configure_irq(hw_irq,
 693                                        get_hard_smp_processor_id(xd->target),
 694                                        xive_irq_priority, d->irq);
 695                return;
 696        }
 697
 698        xive_do_source_set_mask(xd, false);
 699}
 700
 701static void xive_irq_mask(struct irq_data *d)
 702{
 703        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 704
 705        pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
 706
 707        /*
 708         * This is a workaround for PCI LSI problems on P9, for
 709         * these, we call OPAL to set the mask. The problems might
 710         * be fixed by P9 DD2.0, if that is the case, firmware
 711         * will no longer set that flag.
 712         */
 713        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 714                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 715                xive_ops->configure_irq(hw_irq,
 716                                        get_hard_smp_processor_id(xd->target),
 717                                        0xff, d->irq);
 718                return;
 719        }
 720
 721        xive_do_source_set_mask(xd, true);
 722}
 723
 724static int xive_irq_set_affinity(struct irq_data *d,
 725                                 const struct cpumask *cpumask,
 726                                 bool force)
 727{
 728        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 729        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 730        u32 target, old_target;
 731        int rc = 0;
 732
 733        pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
 734
 735        /* Is this valid ? */
 736        if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
 737                return -EINVAL;
 738
 739        /* Don't do anything if the interrupt isn't started */
 740        if (!irqd_is_started(d))
 741                return IRQ_SET_MASK_OK;
 742
 743        /*
 744         * If existing target is already in the new mask, and is
 745         * online then do nothing.
 746         */
 747        if (xd->target != XIVE_INVALID_TARGET &&
 748            cpu_online(xd->target) &&
 749            cpumask_test_cpu(xd->target, cpumask))
 750                return IRQ_SET_MASK_OK;
 751
 752        /* Pick a new target */
 753        target = xive_pick_irq_target(d, cpumask);
 754
 755        /* No target found */
 756        if (target == XIVE_INVALID_TARGET)
 757                return -ENXIO;
 758
 759        /* Sanity check */
 760        if (WARN_ON(target >= nr_cpu_ids))
 761                target = smp_processor_id();
 762
 763        old_target = xd->target;
 764
 765        /*
 766         * Only configure the irq if it's not currently passed-through to
 767         * a KVM guest
 768         */
 769        if (!irqd_is_forwarded_to_vcpu(d))
 770                rc = xive_ops->configure_irq(hw_irq,
 771                                             get_hard_smp_processor_id(target),
 772                                             xive_irq_priority, d->irq);
 773        if (rc < 0) {
 774                pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
 775                return rc;
 776        }
 777
 778        pr_devel("  target: 0x%x\n", target);
 779        xd->target = target;
 780
 781        /* Give up previous target */
 782        if (old_target != XIVE_INVALID_TARGET)
 783            xive_dec_target_count(old_target);
 784
 785        return IRQ_SET_MASK_OK;
 786}
 787
 788static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
 789{
 790        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 791
 792        /*
 793         * We only support these. This has really no effect other than setting
 794         * the corresponding descriptor bits mind you but those will in turn
 795         * affect the resend function when re-enabling an edge interrupt.
 796         *
 797         * Set set the default to edge as explained in map().
 798         */
 799        if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
 800                flow_type = IRQ_TYPE_EDGE_RISING;
 801
 802        if (flow_type != IRQ_TYPE_EDGE_RISING &&
 803            flow_type != IRQ_TYPE_LEVEL_LOW)
 804                return -EINVAL;
 805
 806        irqd_set_trigger_type(d, flow_type);
 807
 808        /*
 809         * Double check it matches what the FW thinks
 810         *
 811         * NOTE: We don't know yet if the PAPR interface will provide
 812         * the LSI vs MSI information apart from the device-tree so
 813         * this check might have to move into an optional backend call
 814         * that is specific to the native backend
 815         */
 816        if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
 817            !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
 818                pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
 819                        d->irq, (u32)irqd_to_hwirq(d),
 820                        (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
 821                        (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
 822        }
 823
 824        return IRQ_SET_MASK_OK_NOCOPY;
 825}
 826
 827static int xive_irq_retrigger(struct irq_data *d)
 828{
 829        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 830
 831        /* This should be only for MSIs */
 832        if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
 833                return 0;
 834
 835        /*
 836         * To perform a retrigger, we first set the PQ bits to
 837         * 11, then perform an EOI.
 838         */
 839        xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 840
 841        /*
 842         * Note: We pass "0" to the hw_irq argument in order to
 843         * avoid calling into the backend EOI code which we don't
 844         * want to do in the case of a re-trigger. Backends typically
 845         * only do EOI for LSIs anyway.
 846         */
 847        xive_do_source_eoi(0, xd);
 848
 849        return 1;
 850}
 851
 852/*
 853 * Caller holds the irq descriptor lock, so this won't be called
 854 * concurrently with xive_get_irqchip_state on the same interrupt.
 855 */
 856static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
 857{
 858        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 859        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 860        int rc;
 861        u8 pq;
 862
 863        /*
 864         * We only support this on interrupts that do not require
 865         * firmware calls for masking and unmasking
 866         */
 867        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
 868                return -EIO;
 869
 870        /*
 871         * This is called by KVM with state non-NULL for enabling
 872         * pass-through or NULL for disabling it
 873         */
 874        if (state) {
 875                irqd_set_forwarded_to_vcpu(d);
 876
 877                /* Set it to PQ=10 state to prevent further sends */
 878                pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 879                if (!xd->stale_p) {
 880                        xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
 881                        xd->stale_p = !xd->saved_p;
 882                }
 883
 884                /* No target ? nothing to do */
 885                if (xd->target == XIVE_INVALID_TARGET) {
 886                        /*
 887                         * An untargetted interrupt should have been
 888                         * also masked at the source
 889                         */
 890                        WARN_ON(xd->saved_p);
 891
 892                        return 0;
 893                }
 894
 895                /*
 896                 * If P was set, adjust state to PQ=11 to indicate
 897                 * that a resend is needed for the interrupt to reach
 898                 * the guest. Also remember the value of P.
 899                 *
 900                 * This also tells us that it's in flight to a host queue
 901                 * or has already been fetched but hasn't been EOIed yet
 902                 * by the host. This it's potentially using up a host
 903                 * queue slot. This is important to know because as long
 904                 * as this is the case, we must not hard-unmask it when
 905                 * "returning" that interrupt to the host.
 906                 *
 907                 * This saved_p is cleared by the host EOI, when we know
 908                 * for sure the queue slot is no longer in use.
 909                 */
 910                if (xd->saved_p) {
 911                        xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 912
 913                        /*
 914                         * Sync the XIVE source HW to ensure the interrupt
 915                         * has gone through the EAS before we change its
 916                         * target to the guest. That should guarantee us
 917                         * that we *will* eventually get an EOI for it on
 918                         * the host. Otherwise there would be a small window
 919                         * for P to be seen here but the interrupt going
 920                         * to the guest queue.
 921                         */
 922                        if (xive_ops->sync_source)
 923                                xive_ops->sync_source(hw_irq);
 924                }
 925        } else {
 926                irqd_clr_forwarded_to_vcpu(d);
 927
 928                /* No host target ? hard mask and return */
 929                if (xd->target == XIVE_INVALID_TARGET) {
 930                        xive_do_source_set_mask(xd, true);
 931                        return 0;
 932                }
 933
 934                /*
 935                 * Sync the XIVE source HW to ensure the interrupt
 936                 * has gone through the EAS before we change its
 937                 * target to the host.
 938                 */
 939                if (xive_ops->sync_source)
 940                        xive_ops->sync_source(hw_irq);
 941
 942                /*
 943                 * By convention we are called with the interrupt in
 944                 * a PQ=10 or PQ=11 state, ie, it won't fire and will
 945                 * have latched in Q whether there's a pending HW
 946                 * interrupt or not.
 947                 *
 948                 * First reconfigure the target.
 949                 */
 950                rc = xive_ops->configure_irq(hw_irq,
 951                                             get_hard_smp_processor_id(xd->target),
 952                                             xive_irq_priority, d->irq);
 953                if (rc)
 954                        return rc;
 955
 956                /*
 957                 * Then if saved_p is not set, effectively re-enable the
 958                 * interrupt with an EOI. If it is set, we know there is
 959                 * still a message in a host queue somewhere that will be
 960                 * EOId eventually.
 961                 *
 962                 * Note: We don't check irqd_irq_disabled(). Effectively,
 963                 * we *will* let the irq get through even if masked if the
 964                 * HW is still firing it in order to deal with the whole
 965                 * saved_p business properly. If the interrupt triggers
 966                 * while masked, the generic code will re-mask it anyway.
 967                 */
 968                if (!xd->saved_p)
 969                        xive_do_source_eoi(hw_irq, xd);
 970
 971        }
 972        return 0;
 973}
 974
 975/* Called with irq descriptor lock held. */
 976static int xive_get_irqchip_state(struct irq_data *data,
 977                                  enum irqchip_irq_state which, bool *state)
 978{
 979        struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
 980        u8 pq;
 981
 982        switch (which) {
 983        case IRQCHIP_STATE_ACTIVE:
 984                pq = xive_esb_read(xd, XIVE_ESB_GET);
 985
 986                /*
 987                 * The esb value being all 1's means we couldn't get
 988                 * the PQ state of the interrupt through mmio. It may
 989                 * happen, for example when querying a PHB interrupt
 990                 * while the PHB is in an error state. We consider the
 991                 * interrupt to be inactive in that case.
 992                 */
 993                *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
 994                        (xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
 995                return 0;
 996        default:
 997                return -EINVAL;
 998        }
 999}
1000
1001static struct irq_chip xive_irq_chip = {
1002        .name = "XIVE-IRQ",
1003        .irq_startup = xive_irq_startup,
1004        .irq_shutdown = xive_irq_shutdown,
1005        .irq_eoi = xive_irq_eoi,
1006        .irq_mask = xive_irq_mask,
1007        .irq_unmask = xive_irq_unmask,
1008        .irq_set_affinity = xive_irq_set_affinity,
1009        .irq_set_type = xive_irq_set_type,
1010        .irq_retrigger = xive_irq_retrigger,
1011        .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
1012        .irq_get_irqchip_state = xive_get_irqchip_state,
1013};
1014
1015bool is_xive_irq(struct irq_chip *chip)
1016{
1017        return chip == &xive_irq_chip;
1018}
1019EXPORT_SYMBOL_GPL(is_xive_irq);
1020
1021void xive_cleanup_irq_data(struct xive_irq_data *xd)
1022{
1023        if (xd->eoi_mmio) {
1024                unmap_kernel_range((unsigned long)xd->eoi_mmio,
1025                                   1u << xd->esb_shift);
1026                iounmap(xd->eoi_mmio);
1027                if (xd->eoi_mmio == xd->trig_mmio)
1028                        xd->trig_mmio = NULL;
1029                xd->eoi_mmio = NULL;
1030        }
1031        if (xd->trig_mmio) {
1032                unmap_kernel_range((unsigned long)xd->trig_mmio,
1033                                   1u << xd->esb_shift);
1034                iounmap(xd->trig_mmio);
1035                xd->trig_mmio = NULL;
1036        }
1037}
1038EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1039
1040static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1041{
1042        struct xive_irq_data *xd;
1043        int rc;
1044
1045        xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1046        if (!xd)
1047                return -ENOMEM;
1048        rc = xive_ops->populate_irq_data(hw, xd);
1049        if (rc) {
1050                kfree(xd);
1051                return rc;
1052        }
1053        xd->target = XIVE_INVALID_TARGET;
1054        irq_set_handler_data(virq, xd);
1055
1056        /*
1057         * Turn OFF by default the interrupt being mapped. A side
1058         * effect of this check is the mapping the ESB page of the
1059         * interrupt in the Linux address space. This prevents page
1060         * fault issues in the crash handler which masks all
1061         * interrupts.
1062         */
1063        xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1064
1065        return 0;
1066}
1067
1068static void xive_irq_free_data(unsigned int virq)
1069{
1070        struct xive_irq_data *xd = irq_get_handler_data(virq);
1071
1072        if (!xd)
1073                return;
1074        irq_set_handler_data(virq, NULL);
1075        xive_cleanup_irq_data(xd);
1076        kfree(xd);
1077}
1078
1079#ifdef CONFIG_SMP
1080
1081static void xive_cause_ipi(int cpu)
1082{
1083        struct xive_cpu *xc;
1084        struct xive_irq_data *xd;
1085
1086        xc = per_cpu(xive_cpu, cpu);
1087
1088        DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1089                    smp_processor_id(), cpu, xc->hw_ipi);
1090
1091        xd = &xc->ipi_data;
1092        if (WARN_ON(!xd->trig_mmio))
1093                return;
1094        out_be64(xd->trig_mmio, 0);
1095}
1096
1097static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1098{
1099        return smp_ipi_demux();
1100}
1101
1102static void xive_ipi_eoi(struct irq_data *d)
1103{
1104        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1105
1106        /* Handle possible race with unplug and drop stale IPIs */
1107        if (!xc)
1108                return;
1109
1110        DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1111                    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1112
1113        xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1114        xive_do_queue_eoi(xc);
1115}
1116
1117static void xive_ipi_do_nothing(struct irq_data *d)
1118{
1119        /*
1120         * Nothing to do, we never mask/unmask IPIs, but the callback
1121         * has to exist for the struct irq_chip.
1122         */
1123}
1124
1125static struct irq_chip xive_ipi_chip = {
1126        .name = "XIVE-IPI",
1127        .irq_eoi = xive_ipi_eoi,
1128        .irq_mask = xive_ipi_do_nothing,
1129        .irq_unmask = xive_ipi_do_nothing,
1130};
1131
1132static void __init xive_request_ipi(void)
1133{
1134        unsigned int virq;
1135
1136        /*
1137         * Initialization failed, move on, we might manage to
1138         * reach the point where we display our errors before
1139         * the system falls appart
1140         */
1141        if (!xive_irq_domain)
1142                return;
1143
1144        /* Initialize it */
1145        virq = irq_create_mapping(xive_irq_domain, 0);
1146        xive_ipi_irq = virq;
1147
1148        WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1149                            IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1150}
1151
1152static int xive_setup_cpu_ipi(unsigned int cpu)
1153{
1154        struct xive_cpu *xc;
1155        int rc;
1156
1157        pr_debug("Setting up IPI for CPU %d\n", cpu);
1158
1159        xc = per_cpu(xive_cpu, cpu);
1160
1161        /* Check if we are already setup */
1162        if (xc->hw_ipi != XIVE_BAD_IRQ)
1163                return 0;
1164
1165        /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1166        if (xive_ops->get_ipi(cpu, xc))
1167                return -EIO;
1168
1169        /*
1170         * Populate the IRQ data in the xive_cpu structure and
1171         * configure the HW / enable the IPIs.
1172         */
1173        rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1174        if (rc) {
1175                pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1176                return -EIO;
1177        }
1178        rc = xive_ops->configure_irq(xc->hw_ipi,
1179                                     get_hard_smp_processor_id(cpu),
1180                                     xive_irq_priority, xive_ipi_irq);
1181        if (rc) {
1182                pr_err("Failed to map IPI CPU %d\n", cpu);
1183                return -EIO;
1184        }
1185        pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1186            xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1187
1188        /* Unmask it */
1189        xive_do_source_set_mask(&xc->ipi_data, false);
1190
1191        return 0;
1192}
1193
1194static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1195{
1196        /* Disable the IPI and free the IRQ data */
1197
1198        /* Already cleaned up ? */
1199        if (xc->hw_ipi == XIVE_BAD_IRQ)
1200                return;
1201
1202        /* Mask the IPI */
1203        xive_do_source_set_mask(&xc->ipi_data, true);
1204
1205        /*
1206         * Note: We don't call xive_cleanup_irq_data() to free
1207         * the mappings as this is called from an IPI on kexec
1208         * which is not a safe environment to call iounmap()
1209         */
1210
1211        /* Deconfigure/mask in the backend */
1212        xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1213                                0xff, xive_ipi_irq);
1214
1215        /* Free the IPIs in the backend */
1216        xive_ops->put_ipi(cpu, xc);
1217}
1218
1219void __init xive_smp_probe(void)
1220{
1221        smp_ops->cause_ipi = xive_cause_ipi;
1222
1223        /* Register the IPI */
1224        xive_request_ipi();
1225
1226        /* Allocate and setup IPI for the boot CPU */
1227        xive_setup_cpu_ipi(smp_processor_id());
1228}
1229
1230#endif /* CONFIG_SMP */
1231
1232static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1233                               irq_hw_number_t hw)
1234{
1235        int rc;
1236
1237        /*
1238         * Mark interrupts as edge sensitive by default so that resend
1239         * actually works. Will fix that up below if needed.
1240         */
1241        irq_clear_status_flags(virq, IRQ_LEVEL);
1242
1243#ifdef CONFIG_SMP
1244        /* IPIs are special and come up with HW number 0 */
1245        if (hw == 0) {
1246                /*
1247                 * IPIs are marked per-cpu. We use separate HW interrupts under
1248                 * the hood but associated with the same "linux" interrupt
1249                 */
1250                irq_set_chip_and_handler(virq, &xive_ipi_chip,
1251                                         handle_percpu_irq);
1252                return 0;
1253        }
1254#endif
1255
1256        rc = xive_irq_alloc_data(virq, hw);
1257        if (rc)
1258                return rc;
1259
1260        irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1261
1262        return 0;
1263}
1264
1265static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1266{
1267        struct irq_data *data = irq_get_irq_data(virq);
1268        unsigned int hw_irq;
1269
1270        /* XXX Assign BAD number */
1271        if (!data)
1272                return;
1273        hw_irq = (unsigned int)irqd_to_hwirq(data);
1274        if (hw_irq)
1275                xive_irq_free_data(virq);
1276}
1277
1278static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1279                                 const u32 *intspec, unsigned int intsize,
1280                                 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1281
1282{
1283        *out_hwirq = intspec[0];
1284
1285        /*
1286         * If intsize is at least 2, we look for the type in the second cell,
1287         * we assume the LSB indicates a level interrupt.
1288         */
1289        if (intsize > 1) {
1290                if (intspec[1] & 1)
1291                        *out_flags = IRQ_TYPE_LEVEL_LOW;
1292                else
1293                        *out_flags = IRQ_TYPE_EDGE_RISING;
1294        } else
1295                *out_flags = IRQ_TYPE_LEVEL_LOW;
1296
1297        return 0;
1298}
1299
1300static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1301                                 enum irq_domain_bus_token bus_token)
1302{
1303        return xive_ops->match(node);
1304}
1305
1306static const struct irq_domain_ops xive_irq_domain_ops = {
1307        .match = xive_irq_domain_match,
1308        .map = xive_irq_domain_map,
1309        .unmap = xive_irq_domain_unmap,
1310        .xlate = xive_irq_domain_xlate,
1311};
1312
1313static void __init xive_init_host(void)
1314{
1315        xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1316                                               &xive_irq_domain_ops, NULL);
1317        if (WARN_ON(xive_irq_domain == NULL))
1318                return;
1319        irq_set_default_host(xive_irq_domain);
1320}
1321
1322static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1323{
1324        if (xc->queue[xive_irq_priority].qpage)
1325                xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1326}
1327
1328static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1329{
1330        int rc = 0;
1331
1332        /* We setup 1 queues for now with a 64k page */
1333        if (!xc->queue[xive_irq_priority].qpage)
1334                rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1335
1336        return rc;
1337}
1338
1339static int xive_prepare_cpu(unsigned int cpu)
1340{
1341        struct xive_cpu *xc;
1342
1343        xc = per_cpu(xive_cpu, cpu);
1344        if (!xc) {
1345                struct device_node *np;
1346
1347                xc = kzalloc_node(sizeof(struct xive_cpu),
1348                                  GFP_KERNEL, cpu_to_node(cpu));
1349                if (!xc)
1350                        return -ENOMEM;
1351                np = of_get_cpu_node(cpu, NULL);
1352                if (np)
1353                        xc->chip_id = of_get_ibm_chip_id(np);
1354                of_node_put(np);
1355                xc->hw_ipi = XIVE_BAD_IRQ;
1356
1357                per_cpu(xive_cpu, cpu) = xc;
1358        }
1359
1360        /* Setup EQs if not already */
1361        return xive_setup_cpu_queues(cpu, xc);
1362}
1363
1364static void xive_setup_cpu(void)
1365{
1366        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1367
1368        /* The backend might have additional things to do */
1369        if (xive_ops->setup_cpu)
1370                xive_ops->setup_cpu(smp_processor_id(), xc);
1371
1372        /* Set CPPR to 0xff to enable flow of interrupts */
1373        xc->cppr = 0xff;
1374        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1375}
1376
1377#ifdef CONFIG_SMP
1378void xive_smp_setup_cpu(void)
1379{
1380        pr_devel("SMP setup CPU %d\n", smp_processor_id());
1381
1382        /* This will have already been done on the boot CPU */
1383        if (smp_processor_id() != boot_cpuid)
1384                xive_setup_cpu();
1385
1386}
1387
1388int xive_smp_prepare_cpu(unsigned int cpu)
1389{
1390        int rc;
1391
1392        /* Allocate per-CPU data and queues */
1393        rc = xive_prepare_cpu(cpu);
1394        if (rc)
1395                return rc;
1396
1397        /* Allocate and setup IPI for the new CPU */
1398        return xive_setup_cpu_ipi(cpu);
1399}
1400
1401#ifdef CONFIG_HOTPLUG_CPU
1402static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1403{
1404        u32 irq;
1405
1406        /* We assume local irqs are disabled */
1407        WARN_ON(!irqs_disabled());
1408
1409        /* Check what's already in the CPU queue */
1410        while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1411                /*
1412                 * We need to re-route that interrupt to its new destination.
1413                 * First get and lock the descriptor
1414                 */
1415                struct irq_desc *desc = irq_to_desc(irq);
1416                struct irq_data *d = irq_desc_get_irq_data(desc);
1417                struct xive_irq_data *xd;
1418                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1419
1420                /*
1421                 * Ignore anything that isn't a XIVE irq and ignore
1422                 * IPIs, so can just be dropped.
1423                 */
1424                if (d->domain != xive_irq_domain || hw_irq == 0)
1425                        continue;
1426
1427                /*
1428                 * The IRQ should have already been re-routed, it's just a
1429                 * stale in the old queue, so re-trigger it in order to make
1430                 * it reach is new destination.
1431                 */
1432#ifdef DEBUG_FLUSH
1433                pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1434                        cpu, irq);
1435#endif
1436                raw_spin_lock(&desc->lock);
1437                xd = irq_desc_get_handler_data(desc);
1438
1439                /*
1440                 * Clear saved_p to indicate that it's no longer pending
1441                 */
1442                xd->saved_p = false;
1443
1444                /*
1445                 * For LSIs, we EOI, this will cause a resend if it's
1446                 * still asserted. Otherwise do an MSI retrigger.
1447                 */
1448                if (xd->flags & XIVE_IRQ_FLAG_LSI)
1449                        xive_do_source_eoi(irqd_to_hwirq(d), xd);
1450                else
1451                        xive_irq_retrigger(d);
1452
1453                raw_spin_unlock(&desc->lock);
1454        }
1455}
1456
1457void xive_smp_disable_cpu(void)
1458{
1459        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1460        unsigned int cpu = smp_processor_id();
1461
1462        /* Migrate interrupts away from the CPU */
1463        irq_migrate_all_off_this_cpu();
1464
1465        /* Set CPPR to 0 to disable flow of interrupts */
1466        xc->cppr = 0;
1467        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1468
1469        /* Flush everything still in the queue */
1470        xive_flush_cpu_queue(cpu, xc);
1471
1472        /* Re-enable CPPR  */
1473        xc->cppr = 0xff;
1474        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1475}
1476
1477void xive_flush_interrupt(void)
1478{
1479        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1480        unsigned int cpu = smp_processor_id();
1481
1482        /* Called if an interrupt occurs while the CPU is hot unplugged */
1483        xive_flush_cpu_queue(cpu, xc);
1484}
1485
1486#endif /* CONFIG_HOTPLUG_CPU */
1487
1488#endif /* CONFIG_SMP */
1489
1490void xive_teardown_cpu(void)
1491{
1492        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1493        unsigned int cpu = smp_processor_id();
1494
1495        /* Set CPPR to 0 to disable flow of interrupts */
1496        xc->cppr = 0;
1497        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1498
1499        if (xive_ops->teardown_cpu)
1500                xive_ops->teardown_cpu(cpu, xc);
1501
1502#ifdef CONFIG_SMP
1503        /* Get rid of IPI */
1504        xive_cleanup_cpu_ipi(cpu, xc);
1505#endif
1506
1507        /* Disable and free the queues */
1508        xive_cleanup_cpu_queues(cpu, xc);
1509}
1510
1511void xive_shutdown(void)
1512{
1513        xive_ops->shutdown();
1514}
1515
1516bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1517                           u8 max_prio)
1518{
1519        xive_tima = area;
1520        xive_tima_offset = offset;
1521        xive_ops = ops;
1522        xive_irq_priority = max_prio;
1523
1524        ppc_md.get_irq = xive_get_irq;
1525        __xive_enabled = true;
1526
1527        pr_devel("Initializing host..\n");
1528        xive_init_host();
1529
1530        pr_devel("Initializing boot CPU..\n");
1531
1532        /* Allocate per-CPU data and queues */
1533        xive_prepare_cpu(smp_processor_id());
1534
1535        /* Get ready for interrupts */
1536        xive_setup_cpu();
1537
1538        pr_info("Interrupt handling initialized with %s backend\n",
1539                xive_ops->name);
1540        pr_info("Using priority %d for all interrupts\n", max_prio);
1541
1542        return true;
1543}
1544
1545__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1546{
1547        unsigned int alloc_order;
1548        struct page *pages;
1549        __be32 *qpage;
1550
1551        alloc_order = xive_alloc_order(queue_shift);
1552        pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1553        if (!pages)
1554                return ERR_PTR(-ENOMEM);
1555        qpage = (__be32 *)page_address(pages);
1556        memset(qpage, 0, 1 << queue_shift);
1557
1558        return qpage;
1559}
1560
1561static int __init xive_off(char *arg)
1562{
1563        xive_cmdline_disabled = true;
1564        return 0;
1565}
1566__setup("xive=off", xive_off);
1567
1568void xive_debug_show_cpu(struct seq_file *m, int cpu)
1569{
1570        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1571
1572        seq_printf(m, "CPU %d:", cpu);
1573        if (xc) {
1574                seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1575
1576#ifdef CONFIG_SMP
1577                {
1578                        u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1579
1580                        seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1581                                   val & XIVE_ESB_VAL_P ? 'P' : '-',
1582                                   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1583                }
1584#endif
1585                {
1586                        struct xive_q *q = &xc->queue[xive_irq_priority];
1587                        u32 i0, i1, idx;
1588
1589                        if (q->qpage) {
1590                                idx = q->idx;
1591                                i0 = be32_to_cpup(q->qpage + idx);
1592                                idx = (idx + 1) & q->msk;
1593                                i1 = be32_to_cpup(q->qpage + idx);
1594                                seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1595                                           q->idx, q->toggle, i0, i1);
1596                        }
1597                }
1598        }
1599        seq_puts(m, "\n");
1600}
1601
1602void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d)
1603{
1604        struct irq_chip *chip = irq_data_get_irq_chip(d);
1605        int rc;
1606        u32 target;
1607        u8 prio;
1608        u32 lirq;
1609
1610        if (!is_xive_irq(chip))
1611                return;
1612
1613        rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1614        if (rc) {
1615                seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1616                return;
1617        }
1618
1619        seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1620                   hw_irq, target, prio, lirq);
1621
1622        if (d) {
1623                struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1624                u64 val = xive_esb_read(xd, XIVE_ESB_GET);
1625
1626                seq_printf(m, "flags=%c%c%c PQ=%c%c",
1627                           xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1628                           xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1629                           xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1630                           val & XIVE_ESB_VAL_P ? 'P' : '-',
1631                           val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1632        }
1633        seq_puts(m, "\n");
1634}
1635
1636static int xive_core_debug_show(struct seq_file *m, void *private)
1637{
1638        unsigned int i;
1639        struct irq_desc *desc;
1640        int cpu;
1641
1642        if (xive_ops->debug_show)
1643                xive_ops->debug_show(m, private);
1644
1645        for_each_possible_cpu(cpu)
1646                xive_debug_show_cpu(m, cpu);
1647
1648        for_each_irq_desc(i, desc) {
1649                struct irq_data *d = irq_desc_get_irq_data(desc);
1650                unsigned int hw_irq;
1651
1652                if (!d)
1653                        continue;
1654
1655                hw_irq = (unsigned int)irqd_to_hwirq(d);
1656
1657                /* IPIs are special (HW number 0) */
1658                if (hw_irq)
1659                        xive_debug_show_irq(m, hw_irq, d);
1660        }
1661        return 0;
1662}
1663DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1664
1665int xive_core_debug_init(void)
1666{
1667        if (xive_enabled())
1668                debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1669                                    NULL, &xive_core_debug_fops);
1670        return 0;
1671}
1672