linux/arch/s390/kernel/kprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright IBM Corp. 2002, 2006
   6 *
   7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
   8 */
   9
  10#include <linux/kprobes.h>
  11#include <linux/ptrace.h>
  12#include <linux/preempt.h>
  13#include <linux/stop_machine.h>
  14#include <linux/kdebug.h>
  15#include <linux/uaccess.h>
  16#include <linux/extable.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/hardirq.h>
  20#include <linux/ftrace.h>
  21#include <asm/set_memory.h>
  22#include <asm/sections.h>
  23#include <asm/dis.h>
  24
  25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
  26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  27
  28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
  29
  30DEFINE_INSN_CACHE_OPS(s390_insn);
  31
  32static int insn_page_in_use;
  33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
  34
  35static void *alloc_s390_insn_page(void)
  36{
  37        if (xchg(&insn_page_in_use, 1) == 1)
  38                return NULL;
  39        set_memory_x((unsigned long) &insn_page, 1);
  40        return &insn_page;
  41}
  42
  43static void free_s390_insn_page(void *page)
  44{
  45        set_memory_nx((unsigned long) page, 1);
  46        xchg(&insn_page_in_use, 0);
  47}
  48
  49struct kprobe_insn_cache kprobe_s390_insn_slots = {
  50        .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
  51        .alloc = alloc_s390_insn_page,
  52        .free = free_s390_insn_page,
  53        .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
  54        .insn_size = MAX_INSN_SIZE,
  55};
  56
  57static void copy_instruction(struct kprobe *p)
  58{
  59        s64 disp, new_disp;
  60        u64 addr, new_addr;
  61
  62        memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
  63        p->opcode = p->ainsn.insn[0];
  64        if (!probe_is_insn_relative_long(p->ainsn.insn))
  65                return;
  66        /*
  67         * For pc-relative instructions in RIL-b or RIL-c format patch the
  68         * RI2 displacement field. We have already made sure that the insn
  69         * slot for the patched instruction is within the same 2GB area
  70         * as the original instruction (either kernel image or module area).
  71         * Therefore the new displacement will always fit.
  72         */
  73        disp = *(s32 *)&p->ainsn.insn[1];
  74        addr = (u64)(unsigned long)p->addr;
  75        new_addr = (u64)(unsigned long)p->ainsn.insn;
  76        new_disp = ((addr + (disp * 2)) - new_addr) / 2;
  77        *(s32 *)&p->ainsn.insn[1] = new_disp;
  78}
  79NOKPROBE_SYMBOL(copy_instruction);
  80
  81static inline int is_kernel_addr(void *addr)
  82{
  83        return addr < (void *)_end;
  84}
  85
  86static int s390_get_insn_slot(struct kprobe *p)
  87{
  88        /*
  89         * Get an insn slot that is within the same 2GB area like the original
  90         * instruction. That way instructions with a 32bit signed displacement
  91         * field can be patched and executed within the insn slot.
  92         */
  93        p->ainsn.insn = NULL;
  94        if (is_kernel_addr(p->addr))
  95                p->ainsn.insn = get_s390_insn_slot();
  96        else if (is_module_addr(p->addr))
  97                p->ainsn.insn = get_insn_slot();
  98        return p->ainsn.insn ? 0 : -ENOMEM;
  99}
 100NOKPROBE_SYMBOL(s390_get_insn_slot);
 101
 102static void s390_free_insn_slot(struct kprobe *p)
 103{
 104        if (!p->ainsn.insn)
 105                return;
 106        if (is_kernel_addr(p->addr))
 107                free_s390_insn_slot(p->ainsn.insn, 0);
 108        else
 109                free_insn_slot(p->ainsn.insn, 0);
 110        p->ainsn.insn = NULL;
 111}
 112NOKPROBE_SYMBOL(s390_free_insn_slot);
 113
 114int arch_prepare_kprobe(struct kprobe *p)
 115{
 116        if ((unsigned long) p->addr & 0x01)
 117                return -EINVAL;
 118        /* Make sure the probe isn't going on a difficult instruction */
 119        if (probe_is_prohibited_opcode(p->addr))
 120                return -EINVAL;
 121        if (s390_get_insn_slot(p))
 122                return -ENOMEM;
 123        copy_instruction(p);
 124        return 0;
 125}
 126NOKPROBE_SYMBOL(arch_prepare_kprobe);
 127
 128struct swap_insn_args {
 129        struct kprobe *p;
 130        unsigned int arm_kprobe : 1;
 131};
 132
 133static int swap_instruction(void *data)
 134{
 135        struct swap_insn_args *args = data;
 136        struct kprobe *p = args->p;
 137        u16 opc;
 138
 139        opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
 140        s390_kernel_write(p->addr, &opc, sizeof(opc));
 141        return 0;
 142}
 143NOKPROBE_SYMBOL(swap_instruction);
 144
 145void arch_arm_kprobe(struct kprobe *p)
 146{
 147        struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
 148
 149        stop_machine_cpuslocked(swap_instruction, &args, NULL);
 150}
 151NOKPROBE_SYMBOL(arch_arm_kprobe);
 152
 153void arch_disarm_kprobe(struct kprobe *p)
 154{
 155        struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
 156
 157        stop_machine_cpuslocked(swap_instruction, &args, NULL);
 158}
 159NOKPROBE_SYMBOL(arch_disarm_kprobe);
 160
 161void arch_remove_kprobe(struct kprobe *p)
 162{
 163        s390_free_insn_slot(p);
 164}
 165NOKPROBE_SYMBOL(arch_remove_kprobe);
 166
 167static void enable_singlestep(struct kprobe_ctlblk *kcb,
 168                              struct pt_regs *regs,
 169                              unsigned long ip)
 170{
 171        struct per_regs per_kprobe;
 172
 173        /* Set up the PER control registers %cr9-%cr11 */
 174        per_kprobe.control = PER_EVENT_IFETCH;
 175        per_kprobe.start = ip;
 176        per_kprobe.end = ip;
 177
 178        /* Save control regs and psw mask */
 179        __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 180        kcb->kprobe_saved_imask = regs->psw.mask &
 181                (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
 182
 183        /* Set PER control regs, turns on single step for the given address */
 184        __ctl_load(per_kprobe, 9, 11);
 185        regs->psw.mask |= PSW_MASK_PER;
 186        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 187        regs->psw.addr = ip;
 188}
 189NOKPROBE_SYMBOL(enable_singlestep);
 190
 191static void disable_singlestep(struct kprobe_ctlblk *kcb,
 192                               struct pt_regs *regs,
 193                               unsigned long ip)
 194{
 195        /* Restore control regs and psw mask, set new psw address */
 196        __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 197        regs->psw.mask &= ~PSW_MASK_PER;
 198        regs->psw.mask |= kcb->kprobe_saved_imask;
 199        regs->psw.addr = ip;
 200}
 201NOKPROBE_SYMBOL(disable_singlestep);
 202
 203/*
 204 * Activate a kprobe by storing its pointer to current_kprobe. The
 205 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
 206 * two kprobes can be active, see KPROBE_REENTER.
 207 */
 208static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
 209{
 210        kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
 211        kcb->prev_kprobe.status = kcb->kprobe_status;
 212        __this_cpu_write(current_kprobe, p);
 213}
 214NOKPROBE_SYMBOL(push_kprobe);
 215
 216/*
 217 * Deactivate a kprobe by backing up to the previous state. If the
 218 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
 219 * for any other state prev_kprobe.kp will be NULL.
 220 */
 221static void pop_kprobe(struct kprobe_ctlblk *kcb)
 222{
 223        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 224        kcb->kprobe_status = kcb->prev_kprobe.status;
 225}
 226NOKPROBE_SYMBOL(pop_kprobe);
 227
 228void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 229{
 230        ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 231
 232        /* Replace the return addr with trampoline addr */
 233        regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
 234}
 235NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 236
 237static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 238{
 239        switch (kcb->kprobe_status) {
 240        case KPROBE_HIT_SSDONE:
 241        case KPROBE_HIT_ACTIVE:
 242                kprobes_inc_nmissed_count(p);
 243                break;
 244        case KPROBE_HIT_SS:
 245        case KPROBE_REENTER:
 246        default:
 247                /*
 248                 * A kprobe on the code path to single step an instruction
 249                 * is a BUG. The code path resides in the .kprobes.text
 250                 * section and is executed with interrupts disabled.
 251                 */
 252                pr_err("Invalid kprobe detected.\n");
 253                dump_kprobe(p);
 254                BUG();
 255        }
 256}
 257NOKPROBE_SYMBOL(kprobe_reenter_check);
 258
 259static int kprobe_handler(struct pt_regs *regs)
 260{
 261        struct kprobe_ctlblk *kcb;
 262        struct kprobe *p;
 263
 264        /*
 265         * We want to disable preemption for the entire duration of kprobe
 266         * processing. That includes the calls to the pre/post handlers
 267         * and single stepping the kprobe instruction.
 268         */
 269        preempt_disable();
 270        kcb = get_kprobe_ctlblk();
 271        p = get_kprobe((void *)(regs->psw.addr - 2));
 272
 273        if (p) {
 274                if (kprobe_running()) {
 275                        /*
 276                         * We have hit a kprobe while another is still
 277                         * active. This can happen in the pre and post
 278                         * handler. Single step the instruction of the
 279                         * new probe but do not call any handler function
 280                         * of this secondary kprobe.
 281                         * push_kprobe and pop_kprobe saves and restores
 282                         * the currently active kprobe.
 283                         */
 284                        kprobe_reenter_check(kcb, p);
 285                        push_kprobe(kcb, p);
 286                        kcb->kprobe_status = KPROBE_REENTER;
 287                } else {
 288                        /*
 289                         * If we have no pre-handler or it returned 0, we
 290                         * continue with single stepping. If we have a
 291                         * pre-handler and it returned non-zero, it prepped
 292                         * for changing execution path, so get out doing
 293                         * nothing more here.
 294                         */
 295                        push_kprobe(kcb, p);
 296                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 297                        if (p->pre_handler && p->pre_handler(p, regs)) {
 298                                pop_kprobe(kcb);
 299                                preempt_enable_no_resched();
 300                                return 1;
 301                        }
 302                        kcb->kprobe_status = KPROBE_HIT_SS;
 303                }
 304                enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
 305                return 1;
 306        } /* else:
 307           * No kprobe at this address and no active kprobe. The trap has
 308           * not been caused by a kprobe breakpoint. The race of breakpoint
 309           * vs. kprobe remove does not exist because on s390 as we use
 310           * stop_machine to arm/disarm the breakpoints.
 311           */
 312        preempt_enable_no_resched();
 313        return 0;
 314}
 315NOKPROBE_SYMBOL(kprobe_handler);
 316
 317/*
 318 * Function return probe trampoline:
 319 *      - init_kprobes() establishes a probepoint here
 320 *      - When the probed function returns, this probe
 321 *              causes the handlers to fire
 322 */
 323static void __used kretprobe_trampoline_holder(void)
 324{
 325        asm volatile(".global kretprobe_trampoline\n"
 326                     "kretprobe_trampoline: bcr 0,0\n");
 327}
 328
 329/*
 330 * Called when the probe at kretprobe trampoline is hit
 331 */
 332static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 333{
 334        struct kretprobe_instance *ri;
 335        struct hlist_head *head, empty_rp;
 336        struct hlist_node *tmp;
 337        unsigned long flags, orig_ret_address;
 338        unsigned long trampoline_address;
 339        kprobe_opcode_t *correct_ret_addr;
 340
 341        INIT_HLIST_HEAD(&empty_rp);
 342        kretprobe_hash_lock(current, &head, &flags);
 343
 344        /*
 345         * It is possible to have multiple instances associated with a given
 346         * task either because an multiple functions in the call path
 347         * have a return probe installed on them, and/or more than one return
 348         * return probe was registered for a target function.
 349         *
 350         * We can handle this because:
 351         *     - instances are always inserted at the head of the list
 352         *     - when multiple return probes are registered for the same
 353         *       function, the first instance's ret_addr will point to the
 354         *       real return address, and all the rest will point to
 355         *       kretprobe_trampoline
 356         */
 357        ri = NULL;
 358        orig_ret_address = 0;
 359        correct_ret_addr = NULL;
 360        trampoline_address = (unsigned long) &kretprobe_trampoline;
 361        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 362                if (ri->task != current)
 363                        /* another task is sharing our hash bucket */
 364                        continue;
 365
 366                orig_ret_address = (unsigned long) ri->ret_addr;
 367
 368                if (orig_ret_address != trampoline_address)
 369                        /*
 370                         * This is the real return address. Any other
 371                         * instances associated with this task are for
 372                         * other calls deeper on the call stack
 373                         */
 374                        break;
 375        }
 376
 377        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 378
 379        correct_ret_addr = ri->ret_addr;
 380        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 381                if (ri->task != current)
 382                        /* another task is sharing our hash bucket */
 383                        continue;
 384
 385                orig_ret_address = (unsigned long) ri->ret_addr;
 386
 387                if (ri->rp && ri->rp->handler) {
 388                        ri->ret_addr = correct_ret_addr;
 389                        ri->rp->handler(ri, regs);
 390                }
 391
 392                recycle_rp_inst(ri, &empty_rp);
 393
 394                if (orig_ret_address != trampoline_address)
 395                        /*
 396                         * This is the real return address. Any other
 397                         * instances associated with this task are for
 398                         * other calls deeper on the call stack
 399                         */
 400                        break;
 401        }
 402
 403        regs->psw.addr = orig_ret_address;
 404
 405        kretprobe_hash_unlock(current, &flags);
 406
 407        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 408                hlist_del(&ri->hlist);
 409                kfree(ri);
 410        }
 411        /*
 412         * By returning a non-zero value, we are telling
 413         * kprobe_handler() that we don't want the post_handler
 414         * to run (and have re-enabled preemption)
 415         */
 416        return 1;
 417}
 418NOKPROBE_SYMBOL(trampoline_probe_handler);
 419
 420/*
 421 * Called after single-stepping.  p->addr is the address of the
 422 * instruction whose first byte has been replaced by the "breakpoint"
 423 * instruction.  To avoid the SMP problems that can occur when we
 424 * temporarily put back the original opcode to single-step, we
 425 * single-stepped a copy of the instruction.  The address of this
 426 * copy is p->ainsn.insn.
 427 */
 428static void resume_execution(struct kprobe *p, struct pt_regs *regs)
 429{
 430        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 431        unsigned long ip = regs->psw.addr;
 432        int fixup = probe_get_fixup_type(p->ainsn.insn);
 433
 434        if (fixup & FIXUP_PSW_NORMAL)
 435                ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
 436
 437        if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
 438                int ilen = insn_length(p->ainsn.insn[0] >> 8);
 439                if (ip - (unsigned long) p->ainsn.insn == ilen)
 440                        ip = (unsigned long) p->addr + ilen;
 441        }
 442
 443        if (fixup & FIXUP_RETURN_REGISTER) {
 444                int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
 445                regs->gprs[reg] += (unsigned long) p->addr -
 446                                   (unsigned long) p->ainsn.insn;
 447        }
 448
 449        disable_singlestep(kcb, regs, ip);
 450}
 451NOKPROBE_SYMBOL(resume_execution);
 452
 453static int post_kprobe_handler(struct pt_regs *regs)
 454{
 455        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 456        struct kprobe *p = kprobe_running();
 457
 458        if (!p)
 459                return 0;
 460
 461        if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
 462                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 463                p->post_handler(p, regs, 0);
 464        }
 465
 466        resume_execution(p, regs);
 467        pop_kprobe(kcb);
 468        preempt_enable_no_resched();
 469
 470        /*
 471         * if somebody else is singlestepping across a probe point, psw mask
 472         * will have PER set, in which case, continue the remaining processing
 473         * of do_single_step, as if this is not a probe hit.
 474         */
 475        if (regs->psw.mask & PSW_MASK_PER)
 476                return 0;
 477
 478        return 1;
 479}
 480NOKPROBE_SYMBOL(post_kprobe_handler);
 481
 482static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
 483{
 484        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 485        struct kprobe *p = kprobe_running();
 486        const struct exception_table_entry *entry;
 487
 488        switch(kcb->kprobe_status) {
 489        case KPROBE_HIT_SS:
 490        case KPROBE_REENTER:
 491                /*
 492                 * We are here because the instruction being single
 493                 * stepped caused a page fault. We reset the current
 494                 * kprobe and the nip points back to the probe address
 495                 * and allow the page fault handler to continue as a
 496                 * normal page fault.
 497                 */
 498                disable_singlestep(kcb, regs, (unsigned long) p->addr);
 499                pop_kprobe(kcb);
 500                preempt_enable_no_resched();
 501                break;
 502        case KPROBE_HIT_ACTIVE:
 503        case KPROBE_HIT_SSDONE:
 504                /*
 505                 * We increment the nmissed count for accounting,
 506                 * we can also use npre/npostfault count for accounting
 507                 * these specific fault cases.
 508                 */
 509                kprobes_inc_nmissed_count(p);
 510
 511                /*
 512                 * We come here because instructions in the pre/post
 513                 * handler caused the page_fault, this could happen
 514                 * if handler tries to access user space by
 515                 * copy_from_user(), get_user() etc. Let the
 516                 * user-specified handler try to fix it first.
 517                 */
 518                if (p->fault_handler && p->fault_handler(p, regs, trapnr))
 519                        return 1;
 520
 521                /*
 522                 * In case the user-specified fault handler returned
 523                 * zero, try to fix up.
 524                 */
 525                entry = s390_search_extables(regs->psw.addr);
 526                if (entry && ex_handle(entry, regs))
 527                        return 1;
 528
 529                /*
 530                 * fixup_exception() could not handle it,
 531                 * Let do_page_fault() fix it.
 532                 */
 533                break;
 534        default:
 535                break;
 536        }
 537        return 0;
 538}
 539NOKPROBE_SYMBOL(kprobe_trap_handler);
 540
 541int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 542{
 543        int ret;
 544
 545        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 546                local_irq_disable();
 547        ret = kprobe_trap_handler(regs, trapnr);
 548        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 549                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 550        return ret;
 551}
 552NOKPROBE_SYMBOL(kprobe_fault_handler);
 553
 554/*
 555 * Wrapper routine to for handling exceptions.
 556 */
 557int kprobe_exceptions_notify(struct notifier_block *self,
 558                             unsigned long val, void *data)
 559{
 560        struct die_args *args = (struct die_args *) data;
 561        struct pt_regs *regs = args->regs;
 562        int ret = NOTIFY_DONE;
 563
 564        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 565                local_irq_disable();
 566
 567        switch (val) {
 568        case DIE_BPT:
 569                if (kprobe_handler(regs))
 570                        ret = NOTIFY_STOP;
 571                break;
 572        case DIE_SSTEP:
 573                if (post_kprobe_handler(regs))
 574                        ret = NOTIFY_STOP;
 575                break;
 576        case DIE_TRAP:
 577                if (!preemptible() && kprobe_running() &&
 578                    kprobe_trap_handler(regs, args->trapnr))
 579                        ret = NOTIFY_STOP;
 580                break;
 581        default:
 582                break;
 583        }
 584
 585        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 586                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 587
 588        return ret;
 589}
 590NOKPROBE_SYMBOL(kprobe_exceptions_notify);
 591
 592static struct kprobe trampoline = {
 593        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 594        .pre_handler = trampoline_probe_handler
 595};
 596
 597int __init arch_init_kprobes(void)
 598{
 599        return register_kprobe(&trampoline);
 600}
 601
 602int arch_trampoline_kprobe(struct kprobe *p)
 603{
 604        return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
 605}
 606NOKPROBE_SYMBOL(arch_trampoline_kprobe);
 607