linux/arch/s390/kernel/ptrace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task_stack.h>
  13#include <linux/mm.h>
  14#include <linux/smp.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/elf.h>
  22#include <linux/regset.h>
  23#include <linux/tracehook.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
  27#include <asm/page.h>
  28#include <linux/uaccess.h>
  29#include <asm/unistd.h>
  30#include <asm/switch_to.h>
  31#include <asm/runtime_instr.h>
  32#include <asm/facility.h>
  33
  34#include "entry.h"
  35
  36#ifdef CONFIG_COMPAT
  37#include "compat_ptrace.h"
  38#endif
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/syscalls.h>
  42
  43void update_cr_regs(struct task_struct *task)
  44{
  45        struct pt_regs *regs = task_pt_regs(task);
  46        struct thread_struct *thread = &task->thread;
  47        struct per_regs old, new;
  48        union ctlreg0 cr0_old, cr0_new;
  49        union ctlreg2 cr2_old, cr2_new;
  50        int cr0_changed, cr2_changed;
  51
  52        __ctl_store(cr0_old.val, 0, 0);
  53        __ctl_store(cr2_old.val, 2, 2);
  54        cr0_new = cr0_old;
  55        cr2_new = cr2_old;
  56        /* Take care of the enable/disable of transactional execution. */
  57        if (MACHINE_HAS_TE) {
  58                /* Set or clear transaction execution TXC bit 8. */
  59                cr0_new.tcx = 1;
  60                if (task->thread.per_flags & PER_FLAG_NO_TE)
  61                        cr0_new.tcx = 0;
  62                /* Set or clear transaction execution TDC bits 62 and 63. */
  63                cr2_new.tdc = 0;
  64                if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  65                        if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  66                                cr2_new.tdc = 1;
  67                        else
  68                                cr2_new.tdc = 2;
  69                }
  70        }
  71        /* Take care of enable/disable of guarded storage. */
  72        if (MACHINE_HAS_GS) {
  73                cr2_new.gse = 0;
  74                if (task->thread.gs_cb)
  75                        cr2_new.gse = 1;
  76        }
  77        /* Load control register 0/2 iff changed */
  78        cr0_changed = cr0_new.val != cr0_old.val;
  79        cr2_changed = cr2_new.val != cr2_old.val;
  80        if (cr0_changed)
  81                __ctl_load(cr0_new.val, 0, 0);
  82        if (cr2_changed)
  83                __ctl_load(cr2_new.val, 2, 2);
  84        /* Copy user specified PER registers */
  85        new.control = thread->per_user.control;
  86        new.start = thread->per_user.start;
  87        new.end = thread->per_user.end;
  88
  89        /* merge TIF_SINGLE_STEP into user specified PER registers. */
  90        if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  91            test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  92                if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  93                        new.control |= PER_EVENT_BRANCH;
  94                else
  95                        new.control |= PER_EVENT_IFETCH;
  96                new.control |= PER_CONTROL_SUSPENSION;
  97                new.control |= PER_EVENT_TRANSACTION_END;
  98                if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
  99                        new.control |= PER_EVENT_IFETCH;
 100                new.start = 0;
 101                new.end = -1UL;
 102        }
 103
 104        /* Take care of the PER enablement bit in the PSW. */
 105        if (!(new.control & PER_EVENT_MASK)) {
 106                regs->psw.mask &= ~PSW_MASK_PER;
 107                return;
 108        }
 109        regs->psw.mask |= PSW_MASK_PER;
 110        __ctl_store(old, 9, 11);
 111        if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 112                __ctl_load(new, 9, 11);
 113}
 114
 115void user_enable_single_step(struct task_struct *task)
 116{
 117        clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 118        set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 119}
 120
 121void user_disable_single_step(struct task_struct *task)
 122{
 123        clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 124        clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 125}
 126
 127void user_enable_block_step(struct task_struct *task)
 128{
 129        set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 130        set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 131}
 132
 133/*
 134 * Called by kernel/ptrace.c when detaching..
 135 *
 136 * Clear all debugging related fields.
 137 */
 138void ptrace_disable(struct task_struct *task)
 139{
 140        memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 141        memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 142        clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 143        clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 144        task->thread.per_flags = 0;
 145}
 146
 147#define __ADDR_MASK 7
 148
 149static inline unsigned long __peek_user_per(struct task_struct *child,
 150                                            addr_t addr)
 151{
 152        struct per_struct_kernel *dummy = NULL;
 153
 154        if (addr == (addr_t) &dummy->cr9)
 155                /* Control bits of the active per set. */
 156                return test_thread_flag(TIF_SINGLE_STEP) ?
 157                        PER_EVENT_IFETCH : child->thread.per_user.control;
 158        else if (addr == (addr_t) &dummy->cr10)
 159                /* Start address of the active per set. */
 160                return test_thread_flag(TIF_SINGLE_STEP) ?
 161                        0 : child->thread.per_user.start;
 162        else if (addr == (addr_t) &dummy->cr11)
 163                /* End address of the active per set. */
 164                return test_thread_flag(TIF_SINGLE_STEP) ?
 165                        -1UL : child->thread.per_user.end;
 166        else if (addr == (addr_t) &dummy->bits)
 167                /* Single-step bit. */
 168                return test_thread_flag(TIF_SINGLE_STEP) ?
 169                        (1UL << (BITS_PER_LONG - 1)) : 0;
 170        else if (addr == (addr_t) &dummy->starting_addr)
 171                /* Start address of the user specified per set. */
 172                return child->thread.per_user.start;
 173        else if (addr == (addr_t) &dummy->ending_addr)
 174                /* End address of the user specified per set. */
 175                return child->thread.per_user.end;
 176        else if (addr == (addr_t) &dummy->perc_atmid)
 177                /* PER code, ATMID and AI of the last PER trap */
 178                return (unsigned long)
 179                        child->thread.per_event.cause << (BITS_PER_LONG - 16);
 180        else if (addr == (addr_t) &dummy->address)
 181                /* Address of the last PER trap */
 182                return child->thread.per_event.address;
 183        else if (addr == (addr_t) &dummy->access_id)
 184                /* Access id of the last PER trap */
 185                return (unsigned long)
 186                        child->thread.per_event.paid << (BITS_PER_LONG - 8);
 187        return 0;
 188}
 189
 190/*
 191 * Read the word at offset addr from the user area of a process. The
 192 * trouble here is that the information is littered over different
 193 * locations. The process registers are found on the kernel stack,
 194 * the floating point stuff and the trace settings are stored in
 195 * the task structure. In addition the different structures in
 196 * struct user contain pad bytes that should be read as zeroes.
 197 * Lovely...
 198 */
 199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 200{
 201        struct user *dummy = NULL;
 202        addr_t offset, tmp;
 203
 204        if (addr < (addr_t) &dummy->regs.acrs) {
 205                /*
 206                 * psw and gprs are stored on the stack
 207                 */
 208                tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 209                if (addr == (addr_t) &dummy->regs.psw.mask) {
 210                        /* Return a clean psw mask. */
 211                        tmp &= PSW_MASK_USER | PSW_MASK_RI;
 212                        tmp |= PSW_USER_BITS;
 213                }
 214
 215        } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 216                /*
 217                 * access registers are stored in the thread structure
 218                 */
 219                offset = addr - (addr_t) &dummy->regs.acrs;
 220                /*
 221                 * Very special case: old & broken 64 bit gdb reading
 222                 * from acrs[15]. Result is a 64 bit value. Read the
 223                 * 32 bit acrs[15] value and shift it by 32. Sick...
 224                 */
 225                if (addr == (addr_t) &dummy->regs.acrs[15])
 226                        tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 227                else
 228                        tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 229
 230        } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 231                /*
 232                 * orig_gpr2 is stored on the kernel stack
 233                 */
 234                tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 235
 236        } else if (addr < (addr_t) &dummy->regs.fp_regs) {
 237                /*
 238                 * prevent reads of padding hole between
 239                 * orig_gpr2 and fp_regs on s390.
 240                 */
 241                tmp = 0;
 242
 243        } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 244                /*
 245                 * floating point control reg. is in the thread structure
 246                 */
 247                tmp = child->thread.fpu.fpc;
 248                tmp <<= BITS_PER_LONG - 32;
 249
 250        } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 251                /*
 252                 * floating point regs. are either in child->thread.fpu
 253                 * or the child->thread.fpu.vxrs array
 254                 */
 255                offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 256                if (MACHINE_HAS_VX)
 257                        tmp = *(addr_t *)
 258                               ((addr_t) child->thread.fpu.vxrs + 2*offset);
 259                else
 260                        tmp = *(addr_t *)
 261                               ((addr_t) child->thread.fpu.fprs + offset);
 262
 263        } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 264                /*
 265                 * Handle access to the per_info structure.
 266                 */
 267                addr -= (addr_t) &dummy->regs.per_info;
 268                tmp = __peek_user_per(child, addr);
 269
 270        } else
 271                tmp = 0;
 272
 273        return tmp;
 274}
 275
 276static int
 277peek_user(struct task_struct *child, addr_t addr, addr_t data)
 278{
 279        addr_t tmp, mask;
 280
 281        /*
 282         * Stupid gdb peeks/pokes the access registers in 64 bit with
 283         * an alignment of 4. Programmers from hell...
 284         */
 285        mask = __ADDR_MASK;
 286        if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 287            addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 288                mask = 3;
 289        if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 290                return -EIO;
 291
 292        tmp = __peek_user(child, addr);
 293        return put_user(tmp, (addr_t __user *) data);
 294}
 295
 296static inline void __poke_user_per(struct task_struct *child,
 297                                   addr_t addr, addr_t data)
 298{
 299        struct per_struct_kernel *dummy = NULL;
 300
 301        /*
 302         * There are only three fields in the per_info struct that the
 303         * debugger user can write to.
 304         * 1) cr9: the debugger wants to set a new PER event mask
 305         * 2) starting_addr: the debugger wants to set a new starting
 306         *    address to use with the PER event mask.
 307         * 3) ending_addr: the debugger wants to set a new ending
 308         *    address to use with the PER event mask.
 309         * The user specified PER event mask and the start and end
 310         * addresses are used only if single stepping is not in effect.
 311         * Writes to any other field in per_info are ignored.
 312         */
 313        if (addr == (addr_t) &dummy->cr9)
 314                /* PER event mask of the user specified per set. */
 315                child->thread.per_user.control =
 316                        data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 317        else if (addr == (addr_t) &dummy->starting_addr)
 318                /* Starting address of the user specified per set. */
 319                child->thread.per_user.start = data;
 320        else if (addr == (addr_t) &dummy->ending_addr)
 321                /* Ending address of the user specified per set. */
 322                child->thread.per_user.end = data;
 323}
 324
 325static void fixup_int_code(struct task_struct *child, addr_t data)
 326{
 327        struct pt_regs *regs = task_pt_regs(child);
 328        int ilc = regs->int_code >> 16;
 329        u16 insn;
 330
 331        if (ilc > 6)
 332                return;
 333
 334        if (ptrace_access_vm(child, regs->psw.addr - (regs->int_code >> 16),
 335                        &insn, sizeof(insn), FOLL_FORCE) != sizeof(insn))
 336                return;
 337
 338        /* double check that tracee stopped on svc instruction */
 339        if ((insn >> 8) != 0xa)
 340                return;
 341
 342        regs->int_code = 0x20000 | (data & 0xffff);
 343}
 344/*
 345 * Write a word to the user area of a process at location addr. This
 346 * operation does have an additional problem compared to peek_user.
 347 * Stores to the program status word and on the floating point
 348 * control register needs to get checked for validity.
 349 */
 350static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 351{
 352        struct user *dummy = NULL;
 353        addr_t offset;
 354
 355
 356        if (addr < (addr_t) &dummy->regs.acrs) {
 357                struct pt_regs *regs = task_pt_regs(child);
 358                /*
 359                 * psw and gprs are stored on the stack
 360                 */
 361                if (addr == (addr_t) &dummy->regs.psw.mask) {
 362                        unsigned long mask = PSW_MASK_USER;
 363
 364                        mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 365                        if ((data ^ PSW_USER_BITS) & ~mask)
 366                                /* Invalid psw mask. */
 367                                return -EINVAL;
 368                        if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 369                                /* Invalid address-space-control bits */
 370                                return -EINVAL;
 371                        if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 372                                /* Invalid addressing mode bits */
 373                                return -EINVAL;
 374                }
 375
 376                if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 377                        addr == offsetof(struct user, regs.gprs[2]))
 378                        fixup_int_code(child, data);
 379                *(addr_t *)((addr_t) &regs->psw + addr) = data;
 380
 381        } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 382                /*
 383                 * access registers are stored in the thread structure
 384                 */
 385                offset = addr - (addr_t) &dummy->regs.acrs;
 386                /*
 387                 * Very special case: old & broken 64 bit gdb writing
 388                 * to acrs[15] with a 64 bit value. Ignore the lower
 389                 * half of the value and write the upper 32 bit to
 390                 * acrs[15]. Sick...
 391                 */
 392                if (addr == (addr_t) &dummy->regs.acrs[15])
 393                        child->thread.acrs[15] = (unsigned int) (data >> 32);
 394                else
 395                        *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 396
 397        } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 398                /*
 399                 * orig_gpr2 is stored on the kernel stack
 400                 */
 401                task_pt_regs(child)->orig_gpr2 = data;
 402
 403        } else if (addr < (addr_t) &dummy->regs.fp_regs) {
 404                /*
 405                 * prevent writes of padding hole between
 406                 * orig_gpr2 and fp_regs on s390.
 407                 */
 408                return 0;
 409
 410        } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 411                /*
 412                 * floating point control reg. is in the thread structure
 413                 */
 414                if ((unsigned int) data != 0 ||
 415                    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 416                        return -EINVAL;
 417                child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 418
 419        } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 420                /*
 421                 * floating point regs. are either in child->thread.fpu
 422                 * or the child->thread.fpu.vxrs array
 423                 */
 424                offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 425                if (MACHINE_HAS_VX)
 426                        *(addr_t *)((addr_t)
 427                                child->thread.fpu.vxrs + 2*offset) = data;
 428                else
 429                        *(addr_t *)((addr_t)
 430                                child->thread.fpu.fprs + offset) = data;
 431
 432        } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 433                /*
 434                 * Handle access to the per_info structure.
 435                 */
 436                addr -= (addr_t) &dummy->regs.per_info;
 437                __poke_user_per(child, addr, data);
 438
 439        }
 440
 441        return 0;
 442}
 443
 444static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 445{
 446        addr_t mask;
 447
 448        /*
 449         * Stupid gdb peeks/pokes the access registers in 64 bit with
 450         * an alignment of 4. Programmers from hell indeed...
 451         */
 452        mask = __ADDR_MASK;
 453        if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 454            addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 455                mask = 3;
 456        if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 457                return -EIO;
 458
 459        return __poke_user(child, addr, data);
 460}
 461
 462long arch_ptrace(struct task_struct *child, long request,
 463                 unsigned long addr, unsigned long data)
 464{
 465        ptrace_area parea; 
 466        int copied, ret;
 467
 468        switch (request) {
 469        case PTRACE_PEEKUSR:
 470                /* read the word at location addr in the USER area. */
 471                return peek_user(child, addr, data);
 472
 473        case PTRACE_POKEUSR:
 474                /* write the word at location addr in the USER area */
 475                return poke_user(child, addr, data);
 476
 477        case PTRACE_PEEKUSR_AREA:
 478        case PTRACE_POKEUSR_AREA:
 479                if (copy_from_user(&parea, (void __force __user *) addr,
 480                                                        sizeof(parea)))
 481                        return -EFAULT;
 482                addr = parea.kernel_addr;
 483                data = parea.process_addr;
 484                copied = 0;
 485                while (copied < parea.len) {
 486                        if (request == PTRACE_PEEKUSR_AREA)
 487                                ret = peek_user(child, addr, data);
 488                        else {
 489                                addr_t utmp;
 490                                if (get_user(utmp,
 491                                             (addr_t __force __user *) data))
 492                                        return -EFAULT;
 493                                ret = poke_user(child, addr, utmp);
 494                        }
 495                        if (ret)
 496                                return ret;
 497                        addr += sizeof(unsigned long);
 498                        data += sizeof(unsigned long);
 499                        copied += sizeof(unsigned long);
 500                }
 501                return 0;
 502        case PTRACE_GET_LAST_BREAK:
 503                put_user(child->thread.last_break,
 504                         (unsigned long __user *) data);
 505                return 0;
 506        case PTRACE_ENABLE_TE:
 507                if (!MACHINE_HAS_TE)
 508                        return -EIO;
 509                child->thread.per_flags &= ~PER_FLAG_NO_TE;
 510                return 0;
 511        case PTRACE_DISABLE_TE:
 512                if (!MACHINE_HAS_TE)
 513                        return -EIO;
 514                child->thread.per_flags |= PER_FLAG_NO_TE;
 515                child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 516                return 0;
 517        case PTRACE_TE_ABORT_RAND:
 518                if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 519                        return -EIO;
 520                switch (data) {
 521                case 0UL:
 522                        child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 523                        break;
 524                case 1UL:
 525                        child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 526                        child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 527                        break;
 528                case 2UL:
 529                        child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 530                        child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 531                        break;
 532                default:
 533                        return -EINVAL;
 534                }
 535                return 0;
 536        default:
 537                return ptrace_request(child, request, addr, data);
 538        }
 539}
 540
 541#ifdef CONFIG_COMPAT
 542/*
 543 * Now the fun part starts... a 31 bit program running in the
 544 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 545 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 546 * to handle, the difference to the 64 bit versions of the requests
 547 * is that the access is done in multiples of 4 byte instead of
 548 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 549 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 550 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 551 * is a 31 bit program too, the content of struct user can be
 552 * emulated. A 31 bit program peeking into the struct user of
 553 * a 64 bit program is a no-no.
 554 */
 555
 556/*
 557 * Same as peek_user_per but for a 31 bit program.
 558 */
 559static inline __u32 __peek_user_per_compat(struct task_struct *child,
 560                                           addr_t addr)
 561{
 562        struct compat_per_struct_kernel *dummy32 = NULL;
 563
 564        if (addr == (addr_t) &dummy32->cr9)
 565                /* Control bits of the active per set. */
 566                return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 567                        PER_EVENT_IFETCH : child->thread.per_user.control;
 568        else if (addr == (addr_t) &dummy32->cr10)
 569                /* Start address of the active per set. */
 570                return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 571                        0 : child->thread.per_user.start;
 572        else if (addr == (addr_t) &dummy32->cr11)
 573                /* End address of the active per set. */
 574                return test_thread_flag(TIF_SINGLE_STEP) ?
 575                        PSW32_ADDR_INSN : child->thread.per_user.end;
 576        else if (addr == (addr_t) &dummy32->bits)
 577                /* Single-step bit. */
 578                return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 579                        0x80000000 : 0;
 580        else if (addr == (addr_t) &dummy32->starting_addr)
 581                /* Start address of the user specified per set. */
 582                return (__u32) child->thread.per_user.start;
 583        else if (addr == (addr_t) &dummy32->ending_addr)
 584                /* End address of the user specified per set. */
 585                return (__u32) child->thread.per_user.end;
 586        else if (addr == (addr_t) &dummy32->perc_atmid)
 587                /* PER code, ATMID and AI of the last PER trap */
 588                return (__u32) child->thread.per_event.cause << 16;
 589        else if (addr == (addr_t) &dummy32->address)
 590                /* Address of the last PER trap */
 591                return (__u32) child->thread.per_event.address;
 592        else if (addr == (addr_t) &dummy32->access_id)
 593                /* Access id of the last PER trap */
 594                return (__u32) child->thread.per_event.paid << 24;
 595        return 0;
 596}
 597
 598/*
 599 * Same as peek_user but for a 31 bit program.
 600 */
 601static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 602{
 603        struct compat_user *dummy32 = NULL;
 604        addr_t offset;
 605        __u32 tmp;
 606
 607        if (addr < (addr_t) &dummy32->regs.acrs) {
 608                struct pt_regs *regs = task_pt_regs(child);
 609                /*
 610                 * psw and gprs are stored on the stack
 611                 */
 612                if (addr == (addr_t) &dummy32->regs.psw.mask) {
 613                        /* Fake a 31 bit psw mask. */
 614                        tmp = (__u32)(regs->psw.mask >> 32);
 615                        tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 616                        tmp |= PSW32_USER_BITS;
 617                } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 618                        /* Fake a 31 bit psw address. */
 619                        tmp = (__u32) regs->psw.addr |
 620                                (__u32)(regs->psw.mask & PSW_MASK_BA);
 621                } else {
 622                        /* gpr 0-15 */
 623                        tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 624                }
 625        } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 626                /*
 627                 * access registers are stored in the thread structure
 628                 */
 629                offset = addr - (addr_t) &dummy32->regs.acrs;
 630                tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 631
 632        } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 633                /*
 634                 * orig_gpr2 is stored on the kernel stack
 635                 */
 636                tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 637
 638        } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 639                /*
 640                 * prevent reads of padding hole between
 641                 * orig_gpr2 and fp_regs on s390.
 642                 */
 643                tmp = 0;
 644
 645        } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 646                /*
 647                 * floating point control reg. is in the thread structure
 648                 */
 649                tmp = child->thread.fpu.fpc;
 650
 651        } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 652                /*
 653                 * floating point regs. are either in child->thread.fpu
 654                 * or the child->thread.fpu.vxrs array
 655                 */
 656                offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 657                if (MACHINE_HAS_VX)
 658                        tmp = *(__u32 *)
 659                               ((addr_t) child->thread.fpu.vxrs + 2*offset);
 660                else
 661                        tmp = *(__u32 *)
 662                               ((addr_t) child->thread.fpu.fprs + offset);
 663
 664        } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 665                /*
 666                 * Handle access to the per_info structure.
 667                 */
 668                addr -= (addr_t) &dummy32->regs.per_info;
 669                tmp = __peek_user_per_compat(child, addr);
 670
 671        } else
 672                tmp = 0;
 673
 674        return tmp;
 675}
 676
 677static int peek_user_compat(struct task_struct *child,
 678                            addr_t addr, addr_t data)
 679{
 680        __u32 tmp;
 681
 682        if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 683                return -EIO;
 684
 685        tmp = __peek_user_compat(child, addr);
 686        return put_user(tmp, (__u32 __user *) data);
 687}
 688
 689/*
 690 * Same as poke_user_per but for a 31 bit program.
 691 */
 692static inline void __poke_user_per_compat(struct task_struct *child,
 693                                          addr_t addr, __u32 data)
 694{
 695        struct compat_per_struct_kernel *dummy32 = NULL;
 696
 697        if (addr == (addr_t) &dummy32->cr9)
 698                /* PER event mask of the user specified per set. */
 699                child->thread.per_user.control =
 700                        data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 701        else if (addr == (addr_t) &dummy32->starting_addr)
 702                /* Starting address of the user specified per set. */
 703                child->thread.per_user.start = data;
 704        else if (addr == (addr_t) &dummy32->ending_addr)
 705                /* Ending address of the user specified per set. */
 706                child->thread.per_user.end = data;
 707}
 708
 709/*
 710 * Same as poke_user but for a 31 bit program.
 711 */
 712static int __poke_user_compat(struct task_struct *child,
 713                              addr_t addr, addr_t data)
 714{
 715        struct compat_user *dummy32 = NULL;
 716        __u32 tmp = (__u32) data;
 717        addr_t offset;
 718
 719        if (addr < (addr_t) &dummy32->regs.acrs) {
 720                struct pt_regs *regs = task_pt_regs(child);
 721                /*
 722                 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 723                 */
 724                if (addr == (addr_t) &dummy32->regs.psw.mask) {
 725                        __u32 mask = PSW32_MASK_USER;
 726
 727                        mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 728                        /* Build a 64 bit psw mask from 31 bit mask. */
 729                        if ((tmp ^ PSW32_USER_BITS) & ~mask)
 730                                /* Invalid psw mask. */
 731                                return -EINVAL;
 732                        if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 733                                /* Invalid address-space-control bits */
 734                                return -EINVAL;
 735                        regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 736                                (regs->psw.mask & PSW_MASK_BA) |
 737                                (__u64)(tmp & mask) << 32;
 738                } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 739                        /* Build a 64 bit psw address from 31 bit address. */
 740                        regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 741                        /* Transfer 31 bit amode bit to psw mask. */
 742                        regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 743                                (__u64)(tmp & PSW32_ADDR_AMODE);
 744                } else {
 745
 746                        if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 747                                addr == offsetof(struct compat_user, regs.gprs[2]))
 748                                fixup_int_code(child, data);
 749                        /* gpr 0-15 */
 750                        *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 751                }
 752        } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 753                /*
 754                 * access registers are stored in the thread structure
 755                 */
 756                offset = addr - (addr_t) &dummy32->regs.acrs;
 757                *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 758
 759        } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 760                /*
 761                 * orig_gpr2 is stored on the kernel stack
 762                 */
 763                *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 764
 765        } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 766                /*
 767                 * prevent writess of padding hole between
 768                 * orig_gpr2 and fp_regs on s390.
 769                 */
 770                return 0;
 771
 772        } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 773                /*
 774                 * floating point control reg. is in the thread structure
 775                 */
 776                if (test_fp_ctl(tmp))
 777                        return -EINVAL;
 778                child->thread.fpu.fpc = data;
 779
 780        } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 781                /*
 782                 * floating point regs. are either in child->thread.fpu
 783                 * or the child->thread.fpu.vxrs array
 784                 */
 785                offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 786                if (MACHINE_HAS_VX)
 787                        *(__u32 *)((addr_t)
 788                                child->thread.fpu.vxrs + 2*offset) = tmp;
 789                else
 790                        *(__u32 *)((addr_t)
 791                                child->thread.fpu.fprs + offset) = tmp;
 792
 793        } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 794                /*
 795                 * Handle access to the per_info structure.
 796                 */
 797                addr -= (addr_t) &dummy32->regs.per_info;
 798                __poke_user_per_compat(child, addr, data);
 799        }
 800
 801        return 0;
 802}
 803
 804static int poke_user_compat(struct task_struct *child,
 805                            addr_t addr, addr_t data)
 806{
 807        if (!is_compat_task() || (addr & 3) ||
 808            addr > sizeof(struct compat_user) - 3)
 809                return -EIO;
 810
 811        return __poke_user_compat(child, addr, data);
 812}
 813
 814long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 815                        compat_ulong_t caddr, compat_ulong_t cdata)
 816{
 817        unsigned long addr = caddr;
 818        unsigned long data = cdata;
 819        compat_ptrace_area parea;
 820        int copied, ret;
 821
 822        switch (request) {
 823        case PTRACE_PEEKUSR:
 824                /* read the word at location addr in the USER area. */
 825                return peek_user_compat(child, addr, data);
 826
 827        case PTRACE_POKEUSR:
 828                /* write the word at location addr in the USER area */
 829                return poke_user_compat(child, addr, data);
 830
 831        case PTRACE_PEEKUSR_AREA:
 832        case PTRACE_POKEUSR_AREA:
 833                if (copy_from_user(&parea, (void __force __user *) addr,
 834                                                        sizeof(parea)))
 835                        return -EFAULT;
 836                addr = parea.kernel_addr;
 837                data = parea.process_addr;
 838                copied = 0;
 839                while (copied < parea.len) {
 840                        if (request == PTRACE_PEEKUSR_AREA)
 841                                ret = peek_user_compat(child, addr, data);
 842                        else {
 843                                __u32 utmp;
 844                                if (get_user(utmp,
 845                                             (__u32 __force __user *) data))
 846                                        return -EFAULT;
 847                                ret = poke_user_compat(child, addr, utmp);
 848                        }
 849                        if (ret)
 850                                return ret;
 851                        addr += sizeof(unsigned int);
 852                        data += sizeof(unsigned int);
 853                        copied += sizeof(unsigned int);
 854                }
 855                return 0;
 856        case PTRACE_GET_LAST_BREAK:
 857                put_user(child->thread.last_break,
 858                         (unsigned int __user *) data);
 859                return 0;
 860        }
 861        return compat_ptrace_request(child, request, addr, data);
 862}
 863#endif
 864
 865asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 866{
 867        unsigned long mask = -1UL;
 868        long ret = -1;
 869
 870        if (is_compat_task())
 871                mask = 0xffffffff;
 872
 873        /*
 874         * The sysc_tracesys code in entry.S stored the system
 875         * call number to gprs[2].
 876         */
 877        if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 878            tracehook_report_syscall_entry(regs)) {
 879                /*
 880                 * Tracing decided this syscall should not happen. Skip
 881                 * the system call and the system call restart handling.
 882                 */
 883                goto skip;
 884        }
 885
 886#ifdef CONFIG_SECCOMP
 887        /* Do the secure computing check after ptrace. */
 888        if (unlikely(test_thread_flag(TIF_SECCOMP))) {
 889                struct seccomp_data sd;
 890
 891                if (is_compat_task()) {
 892                        sd.instruction_pointer = regs->psw.addr & 0x7fffffff;
 893                        sd.arch = AUDIT_ARCH_S390;
 894                } else {
 895                        sd.instruction_pointer = regs->psw.addr;
 896                        sd.arch = AUDIT_ARCH_S390X;
 897                }
 898
 899                sd.nr = regs->int_code & 0xffff;
 900                sd.args[0] = regs->orig_gpr2 & mask;
 901                sd.args[1] = regs->gprs[3] & mask;
 902                sd.args[2] = regs->gprs[4] & mask;
 903                sd.args[3] = regs->gprs[5] & mask;
 904                sd.args[4] = regs->gprs[6] & mask;
 905                sd.args[5] = regs->gprs[7] & mask;
 906
 907                if (__secure_computing(&sd) == -1)
 908                        goto skip;
 909        }
 910#endif /* CONFIG_SECCOMP */
 911
 912        if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 913                trace_sys_enter(regs, regs->int_code & 0xffff);
 914
 915
 916        audit_syscall_entry(regs->int_code & 0xffff, regs->orig_gpr2 & mask,
 917                            regs->gprs[3] &mask, regs->gprs[4] &mask,
 918                            regs->gprs[5] &mask);
 919
 920        if ((signed long)regs->gprs[2] >= NR_syscalls) {
 921                regs->gprs[2] = -ENOSYS;
 922                ret = -ENOSYS;
 923        }
 924        return regs->gprs[2];
 925skip:
 926        clear_pt_regs_flag(regs, PIF_SYSCALL);
 927        return ret;
 928}
 929
 930asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 931{
 932        audit_syscall_exit(regs);
 933
 934        if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 935                trace_sys_exit(regs, regs->gprs[2]);
 936
 937        if (test_thread_flag(TIF_SYSCALL_TRACE))
 938                tracehook_report_syscall_exit(regs, 0);
 939}
 940
 941/*
 942 * user_regset definitions.
 943 */
 944
 945static int s390_regs_get(struct task_struct *target,
 946                         const struct user_regset *regset,
 947                         struct membuf to)
 948{
 949        unsigned pos;
 950        if (target == current)
 951                save_access_regs(target->thread.acrs);
 952
 953        for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 954                membuf_store(&to, __peek_user(target, pos));
 955        return 0;
 956}
 957
 958static int s390_regs_set(struct task_struct *target,
 959                         const struct user_regset *regset,
 960                         unsigned int pos, unsigned int count,
 961                         const void *kbuf, const void __user *ubuf)
 962{
 963        int rc = 0;
 964
 965        if (target == current)
 966                save_access_regs(target->thread.acrs);
 967
 968        if (kbuf) {
 969                const unsigned long *k = kbuf;
 970                while (count > 0 && !rc) {
 971                        rc = __poke_user(target, pos, *k++);
 972                        count -= sizeof(*k);
 973                        pos += sizeof(*k);
 974                }
 975        } else {
 976                const unsigned long  __user *u = ubuf;
 977                while (count > 0 && !rc) {
 978                        unsigned long word;
 979                        rc = __get_user(word, u++);
 980                        if (rc)
 981                                break;
 982                        rc = __poke_user(target, pos, word);
 983                        count -= sizeof(*u);
 984                        pos += sizeof(*u);
 985                }
 986        }
 987
 988        if (rc == 0 && target == current)
 989                restore_access_regs(target->thread.acrs);
 990
 991        return rc;
 992}
 993
 994static int s390_fpregs_get(struct task_struct *target,
 995                           const struct user_regset *regset,
 996                           struct membuf to)
 997{
 998        _s390_fp_regs fp_regs;
 999
1000        if (target == current)
1001                save_fpu_regs();
1002
1003        fp_regs.fpc = target->thread.fpu.fpc;
1004        fpregs_store(&fp_regs, &target->thread.fpu);
1005
1006        return membuf_write(&to, &fp_regs, sizeof(fp_regs));
1007}
1008
1009static int s390_fpregs_set(struct task_struct *target,
1010                           const struct user_regset *regset, unsigned int pos,
1011                           unsigned int count, const void *kbuf,
1012                           const void __user *ubuf)
1013{
1014        int rc = 0;
1015        freg_t fprs[__NUM_FPRS];
1016
1017        if (target == current)
1018                save_fpu_regs();
1019
1020        if (MACHINE_HAS_VX)
1021                convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
1022        else
1023                memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
1024
1025        /* If setting FPC, must validate it first. */
1026        if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
1027                u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
1028                rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
1029                                        0, offsetof(s390_fp_regs, fprs));
1030                if (rc)
1031                        return rc;
1032                if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
1033                        return -EINVAL;
1034                target->thread.fpu.fpc = ufpc[0];
1035        }
1036
1037        if (rc == 0 && count > 0)
1038                rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1039                                        fprs, offsetof(s390_fp_regs, fprs), -1);
1040        if (rc)
1041                return rc;
1042
1043        if (MACHINE_HAS_VX)
1044                convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1045        else
1046                memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1047
1048        return rc;
1049}
1050
1051static int s390_last_break_get(struct task_struct *target,
1052                               const struct user_regset *regset,
1053                               struct membuf to)
1054{
1055        return membuf_store(&to, target->thread.last_break);
1056}
1057
1058static int s390_last_break_set(struct task_struct *target,
1059                               const struct user_regset *regset,
1060                               unsigned int pos, unsigned int count,
1061                               const void *kbuf, const void __user *ubuf)
1062{
1063        return 0;
1064}
1065
1066static int s390_tdb_get(struct task_struct *target,
1067                        const struct user_regset *regset,
1068                        struct membuf to)
1069{
1070        struct pt_regs *regs = task_pt_regs(target);
1071
1072        if (!(regs->int_code & 0x200))
1073                return -ENODATA;
1074        return membuf_write(&to, target->thread.trap_tdb, 256);
1075}
1076
1077static int s390_tdb_set(struct task_struct *target,
1078                        const struct user_regset *regset,
1079                        unsigned int pos, unsigned int count,
1080                        const void *kbuf, const void __user *ubuf)
1081{
1082        return 0;
1083}
1084
1085static int s390_vxrs_low_get(struct task_struct *target,
1086                             const struct user_regset *regset,
1087                             struct membuf to)
1088{
1089        __u64 vxrs[__NUM_VXRS_LOW];
1090        int i;
1091
1092        if (!MACHINE_HAS_VX)
1093                return -ENODEV;
1094        if (target == current)
1095                save_fpu_regs();
1096        for (i = 0; i < __NUM_VXRS_LOW; i++)
1097                vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1098        return membuf_write(&to, vxrs, sizeof(vxrs));
1099}
1100
1101static int s390_vxrs_low_set(struct task_struct *target,
1102                             const struct user_regset *regset,
1103                             unsigned int pos, unsigned int count,
1104                             const void *kbuf, const void __user *ubuf)
1105{
1106        __u64 vxrs[__NUM_VXRS_LOW];
1107        int i, rc;
1108
1109        if (!MACHINE_HAS_VX)
1110                return -ENODEV;
1111        if (target == current)
1112                save_fpu_regs();
1113
1114        for (i = 0; i < __NUM_VXRS_LOW; i++)
1115                vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1116
1117        rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1118        if (rc == 0)
1119                for (i = 0; i < __NUM_VXRS_LOW; i++)
1120                        *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1121
1122        return rc;
1123}
1124
1125static int s390_vxrs_high_get(struct task_struct *target,
1126                              const struct user_regset *regset,
1127                              struct membuf to)
1128{
1129        if (!MACHINE_HAS_VX)
1130                return -ENODEV;
1131        if (target == current)
1132                save_fpu_regs();
1133        return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1134                            __NUM_VXRS_HIGH * sizeof(__vector128));
1135}
1136
1137static int s390_vxrs_high_set(struct task_struct *target,
1138                              const struct user_regset *regset,
1139                              unsigned int pos, unsigned int count,
1140                              const void *kbuf, const void __user *ubuf)
1141{
1142        int rc;
1143
1144        if (!MACHINE_HAS_VX)
1145                return -ENODEV;
1146        if (target == current)
1147                save_fpu_regs();
1148
1149        rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150                                target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1151        return rc;
1152}
1153
1154static int s390_system_call_get(struct task_struct *target,
1155                                const struct user_regset *regset,
1156                                struct membuf to)
1157{
1158        return membuf_store(&to, target->thread.system_call);
1159}
1160
1161static int s390_system_call_set(struct task_struct *target,
1162                                const struct user_regset *regset,
1163                                unsigned int pos, unsigned int count,
1164                                const void *kbuf, const void __user *ubuf)
1165{
1166        unsigned int *data = &target->thread.system_call;
1167        return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1168                                  data, 0, sizeof(unsigned int));
1169}
1170
1171static int s390_gs_cb_get(struct task_struct *target,
1172                          const struct user_regset *regset,
1173                          struct membuf to)
1174{
1175        struct gs_cb *data = target->thread.gs_cb;
1176
1177        if (!MACHINE_HAS_GS)
1178                return -ENODEV;
1179        if (!data)
1180                return -ENODATA;
1181        if (target == current)
1182                save_gs_cb(data);
1183        return membuf_write(&to, data, sizeof(struct gs_cb));
1184}
1185
1186static int s390_gs_cb_set(struct task_struct *target,
1187                          const struct user_regset *regset,
1188                          unsigned int pos, unsigned int count,
1189                          const void *kbuf, const void __user *ubuf)
1190{
1191        struct gs_cb gs_cb = { }, *data = NULL;
1192        int rc;
1193
1194        if (!MACHINE_HAS_GS)
1195                return -ENODEV;
1196        if (!target->thread.gs_cb) {
1197                data = kzalloc(sizeof(*data), GFP_KERNEL);
1198                if (!data)
1199                        return -ENOMEM;
1200        }
1201        if (!target->thread.gs_cb)
1202                gs_cb.gsd = 25;
1203        else if (target == current)
1204                save_gs_cb(&gs_cb);
1205        else
1206                gs_cb = *target->thread.gs_cb;
1207        rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1208                                &gs_cb, 0, sizeof(gs_cb));
1209        if (rc) {
1210                kfree(data);
1211                return -EFAULT;
1212        }
1213        preempt_disable();
1214        if (!target->thread.gs_cb)
1215                target->thread.gs_cb = data;
1216        *target->thread.gs_cb = gs_cb;
1217        if (target == current) {
1218                __ctl_set_bit(2, 4);
1219                restore_gs_cb(target->thread.gs_cb);
1220        }
1221        preempt_enable();
1222        return rc;
1223}
1224
1225static int s390_gs_bc_get(struct task_struct *target,
1226                          const struct user_regset *regset,
1227                          struct membuf to)
1228{
1229        struct gs_cb *data = target->thread.gs_bc_cb;
1230
1231        if (!MACHINE_HAS_GS)
1232                return -ENODEV;
1233        if (!data)
1234                return -ENODATA;
1235        return membuf_write(&to, data, sizeof(struct gs_cb));
1236}
1237
1238static int s390_gs_bc_set(struct task_struct *target,
1239                          const struct user_regset *regset,
1240                          unsigned int pos, unsigned int count,
1241                          const void *kbuf, const void __user *ubuf)
1242{
1243        struct gs_cb *data = target->thread.gs_bc_cb;
1244
1245        if (!MACHINE_HAS_GS)
1246                return -ENODEV;
1247        if (!data) {
1248                data = kzalloc(sizeof(*data), GFP_KERNEL);
1249                if (!data)
1250                        return -ENOMEM;
1251                target->thread.gs_bc_cb = data;
1252        }
1253        return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1254                                  data, 0, sizeof(struct gs_cb));
1255}
1256
1257static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1258{
1259        return (cb->rca & 0x1f) == 0 &&
1260                (cb->roa & 0xfff) == 0 &&
1261                (cb->rla & 0xfff) == 0xfff &&
1262                cb->s == 1 &&
1263                cb->k == 1 &&
1264                cb->h == 0 &&
1265                cb->reserved1 == 0 &&
1266                cb->ps == 1 &&
1267                cb->qs == 0 &&
1268                cb->pc == 1 &&
1269                cb->qc == 0 &&
1270                cb->reserved2 == 0 &&
1271                cb->reserved3 == 0 &&
1272                cb->reserved4 == 0 &&
1273                cb->reserved5 == 0 &&
1274                cb->reserved6 == 0 &&
1275                cb->reserved7 == 0 &&
1276                cb->reserved8 == 0 &&
1277                cb->rla >= cb->roa &&
1278                cb->rca >= cb->roa &&
1279                cb->rca <= cb->rla+1 &&
1280                cb->m < 3;
1281}
1282
1283static int s390_runtime_instr_get(struct task_struct *target,
1284                                const struct user_regset *regset,
1285                                struct membuf to)
1286{
1287        struct runtime_instr_cb *data = target->thread.ri_cb;
1288
1289        if (!test_facility(64))
1290                return -ENODEV;
1291        if (!data)
1292                return -ENODATA;
1293
1294        return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1295}
1296
1297static int s390_runtime_instr_set(struct task_struct *target,
1298                                  const struct user_regset *regset,
1299                                  unsigned int pos, unsigned int count,
1300                                  const void *kbuf, const void __user *ubuf)
1301{
1302        struct runtime_instr_cb ri_cb = { }, *data = NULL;
1303        int rc;
1304
1305        if (!test_facility(64))
1306                return -ENODEV;
1307
1308        if (!target->thread.ri_cb) {
1309                data = kzalloc(sizeof(*data), GFP_KERNEL);
1310                if (!data)
1311                        return -ENOMEM;
1312        }
1313
1314        if (target->thread.ri_cb) {
1315                if (target == current)
1316                        store_runtime_instr_cb(&ri_cb);
1317                else
1318                        ri_cb = *target->thread.ri_cb;
1319        }
1320
1321        rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1322                                &ri_cb, 0, sizeof(struct runtime_instr_cb));
1323        if (rc) {
1324                kfree(data);
1325                return -EFAULT;
1326        }
1327
1328        if (!is_ri_cb_valid(&ri_cb)) {
1329                kfree(data);
1330                return -EINVAL;
1331        }
1332        /*
1333         * Override access key in any case, since user space should
1334         * not be able to set it, nor should it care about it.
1335         */
1336        ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1337        preempt_disable();
1338        if (!target->thread.ri_cb)
1339                target->thread.ri_cb = data;
1340        *target->thread.ri_cb = ri_cb;
1341        if (target == current)
1342                load_runtime_instr_cb(target->thread.ri_cb);
1343        preempt_enable();
1344
1345        return 0;
1346}
1347
1348static const struct user_regset s390_regsets[] = {
1349        {
1350                .core_note_type = NT_PRSTATUS,
1351                .n = sizeof(s390_regs) / sizeof(long),
1352                .size = sizeof(long),
1353                .align = sizeof(long),
1354                .regset_get = s390_regs_get,
1355                .set = s390_regs_set,
1356        },
1357        {
1358                .core_note_type = NT_PRFPREG,
1359                .n = sizeof(s390_fp_regs) / sizeof(long),
1360                .size = sizeof(long),
1361                .align = sizeof(long),
1362                .regset_get = s390_fpregs_get,
1363                .set = s390_fpregs_set,
1364        },
1365        {
1366                .core_note_type = NT_S390_SYSTEM_CALL,
1367                .n = 1,
1368                .size = sizeof(unsigned int),
1369                .align = sizeof(unsigned int),
1370                .regset_get = s390_system_call_get,
1371                .set = s390_system_call_set,
1372        },
1373        {
1374                .core_note_type = NT_S390_LAST_BREAK,
1375                .n = 1,
1376                .size = sizeof(long),
1377                .align = sizeof(long),
1378                .regset_get = s390_last_break_get,
1379                .set = s390_last_break_set,
1380        },
1381        {
1382                .core_note_type = NT_S390_TDB,
1383                .n = 1,
1384                .size = 256,
1385                .align = 1,
1386                .regset_get = s390_tdb_get,
1387                .set = s390_tdb_set,
1388        },
1389        {
1390                .core_note_type = NT_S390_VXRS_LOW,
1391                .n = __NUM_VXRS_LOW,
1392                .size = sizeof(__u64),
1393                .align = sizeof(__u64),
1394                .regset_get = s390_vxrs_low_get,
1395                .set = s390_vxrs_low_set,
1396        },
1397        {
1398                .core_note_type = NT_S390_VXRS_HIGH,
1399                .n = __NUM_VXRS_HIGH,
1400                .size = sizeof(__vector128),
1401                .align = sizeof(__vector128),
1402                .regset_get = s390_vxrs_high_get,
1403                .set = s390_vxrs_high_set,
1404        },
1405        {
1406                .core_note_type = NT_S390_GS_CB,
1407                .n = sizeof(struct gs_cb) / sizeof(__u64),
1408                .size = sizeof(__u64),
1409                .align = sizeof(__u64),
1410                .regset_get = s390_gs_cb_get,
1411                .set = s390_gs_cb_set,
1412        },
1413        {
1414                .core_note_type = NT_S390_GS_BC,
1415                .n = sizeof(struct gs_cb) / sizeof(__u64),
1416                .size = sizeof(__u64),
1417                .align = sizeof(__u64),
1418                .regset_get = s390_gs_bc_get,
1419                .set = s390_gs_bc_set,
1420        },
1421        {
1422                .core_note_type = NT_S390_RI_CB,
1423                .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1424                .size = sizeof(__u64),
1425                .align = sizeof(__u64),
1426                .regset_get = s390_runtime_instr_get,
1427                .set = s390_runtime_instr_set,
1428        },
1429};
1430
1431static const struct user_regset_view user_s390_view = {
1432        .name = "s390x",
1433        .e_machine = EM_S390,
1434        .regsets = s390_regsets,
1435        .n = ARRAY_SIZE(s390_regsets)
1436};
1437
1438#ifdef CONFIG_COMPAT
1439static int s390_compat_regs_get(struct task_struct *target,
1440                                const struct user_regset *regset,
1441                                struct membuf to)
1442{
1443        unsigned n;
1444
1445        if (target == current)
1446                save_access_regs(target->thread.acrs);
1447
1448        for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1449                membuf_store(&to, __peek_user_compat(target, n));
1450        return 0;
1451}
1452
1453static int s390_compat_regs_set(struct task_struct *target,
1454                                const struct user_regset *regset,
1455                                unsigned int pos, unsigned int count,
1456                                const void *kbuf, const void __user *ubuf)
1457{
1458        int rc = 0;
1459
1460        if (target == current)
1461                save_access_regs(target->thread.acrs);
1462
1463        if (kbuf) {
1464                const compat_ulong_t *k = kbuf;
1465                while (count > 0 && !rc) {
1466                        rc = __poke_user_compat(target, pos, *k++);
1467                        count -= sizeof(*k);
1468                        pos += sizeof(*k);
1469                }
1470        } else {
1471                const compat_ulong_t  __user *u = ubuf;
1472                while (count > 0 && !rc) {
1473                        compat_ulong_t word;
1474                        rc = __get_user(word, u++);
1475                        if (rc)
1476                                break;
1477                        rc = __poke_user_compat(target, pos, word);
1478                        count -= sizeof(*u);
1479                        pos += sizeof(*u);
1480                }
1481        }
1482
1483        if (rc == 0 && target == current)
1484                restore_access_regs(target->thread.acrs);
1485
1486        return rc;
1487}
1488
1489static int s390_compat_regs_high_get(struct task_struct *target,
1490                                     const struct user_regset *regset,
1491                                     struct membuf to)
1492{
1493        compat_ulong_t *gprs_high;
1494        int i;
1495
1496        gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1497        for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1498                membuf_store(&to, *gprs_high);
1499        return 0;
1500}
1501
1502static int s390_compat_regs_high_set(struct task_struct *target,
1503                                     const struct user_regset *regset,
1504                                     unsigned int pos, unsigned int count,
1505                                     const void *kbuf, const void __user *ubuf)
1506{
1507        compat_ulong_t *gprs_high;
1508        int rc = 0;
1509
1510        gprs_high = (compat_ulong_t *)
1511                &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1512        if (kbuf) {
1513                const compat_ulong_t *k = kbuf;
1514                while (count > 0) {
1515                        *gprs_high = *k++;
1516                        *gprs_high += 2;
1517                        count -= sizeof(*k);
1518                }
1519        } else {
1520                const compat_ulong_t  __user *u = ubuf;
1521                while (count > 0 && !rc) {
1522                        unsigned long word;
1523                        rc = __get_user(word, u++);
1524                        if (rc)
1525                                break;
1526                        *gprs_high = word;
1527                        *gprs_high += 2;
1528                        count -= sizeof(*u);
1529                }
1530        }
1531
1532        return rc;
1533}
1534
1535static int s390_compat_last_break_get(struct task_struct *target,
1536                                      const struct user_regset *regset,
1537                                      struct membuf to)
1538{
1539        compat_ulong_t last_break = target->thread.last_break;
1540
1541        return membuf_store(&to, (unsigned long)last_break);
1542}
1543
1544static int s390_compat_last_break_set(struct task_struct *target,
1545                                      const struct user_regset *regset,
1546                                      unsigned int pos, unsigned int count,
1547                                      const void *kbuf, const void __user *ubuf)
1548{
1549        return 0;
1550}
1551
1552static const struct user_regset s390_compat_regsets[] = {
1553        {
1554                .core_note_type = NT_PRSTATUS,
1555                .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1556                .size = sizeof(compat_long_t),
1557                .align = sizeof(compat_long_t),
1558                .regset_get = s390_compat_regs_get,
1559                .set = s390_compat_regs_set,
1560        },
1561        {
1562                .core_note_type = NT_PRFPREG,
1563                .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1564                .size = sizeof(compat_long_t),
1565                .align = sizeof(compat_long_t),
1566                .regset_get = s390_fpregs_get,
1567                .set = s390_fpregs_set,
1568        },
1569        {
1570                .core_note_type = NT_S390_SYSTEM_CALL,
1571                .n = 1,
1572                .size = sizeof(compat_uint_t),
1573                .align = sizeof(compat_uint_t),
1574                .regset_get = s390_system_call_get,
1575                .set = s390_system_call_set,
1576        },
1577        {
1578                .core_note_type = NT_S390_LAST_BREAK,
1579                .n = 1,
1580                .size = sizeof(long),
1581                .align = sizeof(long),
1582                .regset_get = s390_compat_last_break_get,
1583                .set = s390_compat_last_break_set,
1584        },
1585        {
1586                .core_note_type = NT_S390_TDB,
1587                .n = 1,
1588                .size = 256,
1589                .align = 1,
1590                .regset_get = s390_tdb_get,
1591                .set = s390_tdb_set,
1592        },
1593        {
1594                .core_note_type = NT_S390_VXRS_LOW,
1595                .n = __NUM_VXRS_LOW,
1596                .size = sizeof(__u64),
1597                .align = sizeof(__u64),
1598                .regset_get = s390_vxrs_low_get,
1599                .set = s390_vxrs_low_set,
1600        },
1601        {
1602                .core_note_type = NT_S390_VXRS_HIGH,
1603                .n = __NUM_VXRS_HIGH,
1604                .size = sizeof(__vector128),
1605                .align = sizeof(__vector128),
1606                .regset_get = s390_vxrs_high_get,
1607                .set = s390_vxrs_high_set,
1608        },
1609        {
1610                .core_note_type = NT_S390_HIGH_GPRS,
1611                .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1612                .size = sizeof(compat_long_t),
1613                .align = sizeof(compat_long_t),
1614                .regset_get = s390_compat_regs_high_get,
1615                .set = s390_compat_regs_high_set,
1616        },
1617        {
1618                .core_note_type = NT_S390_GS_CB,
1619                .n = sizeof(struct gs_cb) / sizeof(__u64),
1620                .size = sizeof(__u64),
1621                .align = sizeof(__u64),
1622                .regset_get = s390_gs_cb_get,
1623                .set = s390_gs_cb_set,
1624        },
1625        {
1626                .core_note_type = NT_S390_GS_BC,
1627                .n = sizeof(struct gs_cb) / sizeof(__u64),
1628                .size = sizeof(__u64),
1629                .align = sizeof(__u64),
1630                .regset_get = s390_gs_bc_get,
1631                .set = s390_gs_bc_set,
1632        },
1633        {
1634                .core_note_type = NT_S390_RI_CB,
1635                .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1636                .size = sizeof(__u64),
1637                .align = sizeof(__u64),
1638                .regset_get = s390_runtime_instr_get,
1639                .set = s390_runtime_instr_set,
1640        },
1641};
1642
1643static const struct user_regset_view user_s390_compat_view = {
1644        .name = "s390",
1645        .e_machine = EM_S390,
1646        .regsets = s390_compat_regsets,
1647        .n = ARRAY_SIZE(s390_compat_regsets)
1648};
1649#endif
1650
1651const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1652{
1653#ifdef CONFIG_COMPAT
1654        if (test_tsk_thread_flag(task, TIF_31BIT))
1655                return &user_s390_compat_view;
1656#endif
1657        return &user_s390_view;
1658}
1659
1660static const char *gpr_names[NUM_GPRS] = {
1661        "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1662        "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1663};
1664
1665unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1666{
1667        if (offset >= NUM_GPRS)
1668                return 0;
1669        return regs->gprs[offset];
1670}
1671
1672int regs_query_register_offset(const char *name)
1673{
1674        unsigned long offset;
1675
1676        if (!name || *name != 'r')
1677                return -EINVAL;
1678        if (kstrtoul(name + 1, 10, &offset))
1679                return -EINVAL;
1680        if (offset >= NUM_GPRS)
1681                return -EINVAL;
1682        return offset;
1683}
1684
1685const char *regs_query_register_name(unsigned int offset)
1686{
1687        if (offset >= NUM_GPRS)
1688                return NULL;
1689        return gpr_names[offset];
1690}
1691
1692static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1693{
1694        unsigned long ksp = kernel_stack_pointer(regs);
1695
1696        return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1697}
1698
1699/**
1700 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1701 * @regs:pt_regs which contains kernel stack pointer.
1702 * @n:stack entry number.
1703 *
1704 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1705 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1706 * this returns 0.
1707 */
1708unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1709{
1710        unsigned long addr;
1711
1712        addr = kernel_stack_pointer(regs) + n * sizeof(long);
1713        if (!regs_within_kernel_stack(regs, addr))
1714                return 0;
1715        return *(unsigned long *)addr;
1716}
1717