linux/arch/x86/boot/compressed/kaslr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * kaslr.c
   4 *
   5 * This contains the routines needed to generate a reasonable level of
   6 * entropy to choose a randomized kernel base address offset in support
   7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
   8 * handles walking the physical memory maps (and tracking memory regions
   9 * to avoid) in order to select a physical memory location that can
  10 * contain the entire properly aligned running kernel image.
  11 *
  12 */
  13
  14/*
  15 * isspace() in linux/ctype.h is expected by next_args() to filter
  16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
  17 * since isdigit() is implemented in both of them. Hence disable it
  18 * here.
  19 */
  20#define BOOT_CTYPE_H
  21
  22#include "misc.h"
  23#include "error.h"
  24#include "../string.h"
  25
  26#include <generated/compile.h>
  27#include <linux/module.h>
  28#include <linux/uts.h>
  29#include <linux/utsname.h>
  30#include <linux/ctype.h>
  31#include <linux/efi.h>
  32#include <generated/utsrelease.h>
  33#include <asm/efi.h>
  34
  35/* Macros used by the included decompressor code below. */
  36#define STATIC
  37#include <linux/decompress/mm.h>
  38
  39#ifdef CONFIG_X86_5LEVEL
  40unsigned int __pgtable_l5_enabled;
  41unsigned int pgdir_shift __ro_after_init = 39;
  42unsigned int ptrs_per_p4d __ro_after_init = 1;
  43#endif
  44
  45extern unsigned long get_cmd_line_ptr(void);
  46
  47/* Used by PAGE_KERN* macros: */
  48pteval_t __default_kernel_pte_mask __read_mostly = ~0;
  49
  50/* Simplified build-specific string for starting entropy. */
  51static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
  52                LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
  53
  54static unsigned long rotate_xor(unsigned long hash, const void *area,
  55                                size_t size)
  56{
  57        size_t i;
  58        unsigned long *ptr = (unsigned long *)area;
  59
  60        for (i = 0; i < size / sizeof(hash); i++) {
  61                /* Rotate by odd number of bits and XOR. */
  62                hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
  63                hash ^= ptr[i];
  64        }
  65
  66        return hash;
  67}
  68
  69/* Attempt to create a simple but unpredictable starting entropy. */
  70static unsigned long get_boot_seed(void)
  71{
  72        unsigned long hash = 0;
  73
  74        hash = rotate_xor(hash, build_str, sizeof(build_str));
  75        hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
  76
  77        return hash;
  78}
  79
  80#define KASLR_COMPRESSED_BOOT
  81#include "../../lib/kaslr.c"
  82
  83
  84/* Only supporting at most 4 unusable memmap regions with kaslr */
  85#define MAX_MEMMAP_REGIONS      4
  86
  87static bool memmap_too_large;
  88
  89
  90/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
  91static unsigned long long mem_limit = ULLONG_MAX;
  92
  93/* Number of immovable memory regions */
  94static int num_immovable_mem;
  95
  96enum mem_avoid_index {
  97        MEM_AVOID_ZO_RANGE = 0,
  98        MEM_AVOID_INITRD,
  99        MEM_AVOID_CMDLINE,
 100        MEM_AVOID_BOOTPARAMS,
 101        MEM_AVOID_MEMMAP_BEGIN,
 102        MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
 103        MEM_AVOID_MAX,
 104};
 105
 106static struct mem_vector mem_avoid[MEM_AVOID_MAX];
 107
 108static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
 109{
 110        /* Item one is entirely before item two. */
 111        if (one->start + one->size <= two->start)
 112                return false;
 113        /* Item one is entirely after item two. */
 114        if (one->start >= two->start + two->size)
 115                return false;
 116        return true;
 117}
 118
 119char *skip_spaces(const char *str)
 120{
 121        while (isspace(*str))
 122                ++str;
 123        return (char *)str;
 124}
 125#include "../../../../lib/ctype.c"
 126#include "../../../../lib/cmdline.c"
 127
 128enum parse_mode {
 129        PARSE_MEMMAP,
 130        PARSE_EFI,
 131};
 132
 133static int
 134parse_memmap(char *p, unsigned long long *start, unsigned long long *size,
 135                enum parse_mode mode)
 136{
 137        char *oldp;
 138
 139        if (!p)
 140                return -EINVAL;
 141
 142        /* We don't care about this option here */
 143        if (!strncmp(p, "exactmap", 8))
 144                return -EINVAL;
 145
 146        oldp = p;
 147        *size = memparse(p, &p);
 148        if (p == oldp)
 149                return -EINVAL;
 150
 151        switch (*p) {
 152        case '#':
 153        case '$':
 154        case '!':
 155                *start = memparse(p + 1, &p);
 156                return 0;
 157        case '@':
 158                if (mode == PARSE_MEMMAP) {
 159                        /*
 160                         * memmap=nn@ss specifies usable region, should
 161                         * be skipped
 162                         */
 163                        *size = 0;
 164                } else {
 165                        unsigned long long flags;
 166
 167                        /*
 168                         * efi_fake_mem=nn@ss:attr the attr specifies
 169                         * flags that might imply a soft-reservation.
 170                         */
 171                        *start = memparse(p + 1, &p);
 172                        if (p && *p == ':') {
 173                                p++;
 174                                if (kstrtoull(p, 0, &flags) < 0)
 175                                        *size = 0;
 176                                else if (flags & EFI_MEMORY_SP)
 177                                        return 0;
 178                        }
 179                        *size = 0;
 180                }
 181                fallthrough;
 182        default:
 183                /*
 184                 * If w/o offset, only size specified, memmap=nn[KMG] has the
 185                 * same behaviour as mem=nn[KMG]. It limits the max address
 186                 * system can use. Region above the limit should be avoided.
 187                 */
 188                *start = 0;
 189                return 0;
 190        }
 191
 192        return -EINVAL;
 193}
 194
 195static void mem_avoid_memmap(enum parse_mode mode, char *str)
 196{
 197        static int i;
 198
 199        if (i >= MAX_MEMMAP_REGIONS)
 200                return;
 201
 202        while (str && (i < MAX_MEMMAP_REGIONS)) {
 203                int rc;
 204                unsigned long long start, size;
 205                char *k = strchr(str, ',');
 206
 207                if (k)
 208                        *k++ = 0;
 209
 210                rc = parse_memmap(str, &start, &size, mode);
 211                if (rc < 0)
 212                        break;
 213                str = k;
 214
 215                if (start == 0) {
 216                        /* Store the specified memory limit if size > 0 */
 217                        if (size > 0)
 218                                mem_limit = size;
 219
 220                        continue;
 221                }
 222
 223                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
 224                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
 225                i++;
 226        }
 227
 228        /* More than 4 memmaps, fail kaslr */
 229        if ((i >= MAX_MEMMAP_REGIONS) && str)
 230                memmap_too_large = true;
 231}
 232
 233/* Store the number of 1GB huge pages which users specified: */
 234static unsigned long max_gb_huge_pages;
 235
 236static void parse_gb_huge_pages(char *param, char *val)
 237{
 238        static bool gbpage_sz;
 239        char *p;
 240
 241        if (!strcmp(param, "hugepagesz")) {
 242                p = val;
 243                if (memparse(p, &p) != PUD_SIZE) {
 244                        gbpage_sz = false;
 245                        return;
 246                }
 247
 248                if (gbpage_sz)
 249                        warn("Repeatedly set hugeTLB page size of 1G!\n");
 250                gbpage_sz = true;
 251                return;
 252        }
 253
 254        if (!strcmp(param, "hugepages") && gbpage_sz) {
 255                p = val;
 256                max_gb_huge_pages = simple_strtoull(p, &p, 0);
 257                return;
 258        }
 259}
 260
 261static void handle_mem_options(void)
 262{
 263        char *args = (char *)get_cmd_line_ptr();
 264        size_t len = strlen((char *)args);
 265        char *tmp_cmdline;
 266        char *param, *val;
 267        u64 mem_size;
 268
 269        if (!strstr(args, "memmap=") && !strstr(args, "mem=") &&
 270                !strstr(args, "hugepages"))
 271                return;
 272
 273        tmp_cmdline = malloc(len + 1);
 274        if (!tmp_cmdline)
 275                error("Failed to allocate space for tmp_cmdline");
 276
 277        memcpy(tmp_cmdline, args, len);
 278        tmp_cmdline[len] = 0;
 279        args = tmp_cmdline;
 280
 281        /* Chew leading spaces */
 282        args = skip_spaces(args);
 283
 284        while (*args) {
 285                args = next_arg(args, &param, &val);
 286                /* Stop at -- */
 287                if (!val && strcmp(param, "--") == 0) {
 288                        warn("Only '--' specified in cmdline");
 289                        goto out;
 290                }
 291
 292                if (!strcmp(param, "memmap")) {
 293                        mem_avoid_memmap(PARSE_MEMMAP, val);
 294                } else if (strstr(param, "hugepages")) {
 295                        parse_gb_huge_pages(param, val);
 296                } else if (!strcmp(param, "mem")) {
 297                        char *p = val;
 298
 299                        if (!strcmp(p, "nopentium"))
 300                                continue;
 301                        mem_size = memparse(p, &p);
 302                        if (mem_size == 0)
 303                                goto out;
 304
 305                        mem_limit = mem_size;
 306                } else if (!strcmp(param, "efi_fake_mem")) {
 307                        mem_avoid_memmap(PARSE_EFI, val);
 308                }
 309        }
 310
 311out:
 312        free(tmp_cmdline);
 313        return;
 314}
 315
 316/*
 317 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 318 * The mem_avoid array is used to store the ranges that need to be avoided
 319 * when KASLR searches for an appropriate random address. We must avoid any
 320 * regions that are unsafe to overlap with during decompression, and other
 321 * things like the initrd, cmdline and boot_params. This comment seeks to
 322 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 323 * memory ranges lead to really hard to debug boot failures.
 324 *
 325 * The initrd, cmdline, and boot_params are trivial to identify for
 326 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
 327 * MEM_AVOID_BOOTPARAMS respectively below.
 328 *
 329 * What is not obvious how to avoid is the range of memory that is used
 330 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 331 * the compressed kernel (ZO) and its run space, which is used to extract
 332 * the uncompressed kernel (VO) and relocs.
 333 *
 334 * ZO's full run size sits against the end of the decompression buffer, so
 335 * we can calculate where text, data, bss, etc of ZO are positioned more
 336 * easily.
 337 *
 338 * For additional background, the decompression calculations can be found
 339 * in header.S, and the memory diagram is based on the one found in misc.c.
 340 *
 341 * The following conditions are already enforced by the image layouts and
 342 * associated code:
 343 *  - input + input_size >= output + output_size
 344 *  - kernel_total_size <= init_size
 345 *  - kernel_total_size <= output_size (see Note below)
 346 *  - output + init_size >= output + output_size
 347 *
 348 * (Note that kernel_total_size and output_size have no fundamental
 349 * relationship, but output_size is passed to choose_random_location
 350 * as a maximum of the two. The diagram is showing a case where
 351 * kernel_total_size is larger than output_size, but this case is
 352 * handled by bumping output_size.)
 353 *
 354 * The above conditions can be illustrated by a diagram:
 355 *
 356 * 0   output            input            input+input_size    output+init_size
 357 * |     |                 |                             |             |
 358 * |     |                 |                             |             |
 359 * |-----|--------|--------|--------------|-----------|--|-------------|
 360 *                |                       |           |
 361 *                |                       |           |
 362 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
 363 *
 364 * [output, output+init_size) is the entire memory range used for
 365 * extracting the compressed image.
 366 *
 367 * [output, output+kernel_total_size) is the range needed for the
 368 * uncompressed kernel (VO) and its run size (bss, brk, etc).
 369 *
 370 * [output, output+output_size) is VO plus relocs (i.e. the entire
 371 * uncompressed payload contained by ZO). This is the area of the buffer
 372 * written to during decompression.
 373 *
 374 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 375 * range of the copied ZO and decompression code. (i.e. the range
 376 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
 377 *
 378 * [input, input+input_size) is the original copied compressed image (ZO)
 379 * (i.e. it does not include its run size). This range must be avoided
 380 * because it contains the data used for decompression.
 381 *
 382 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 383 * range includes ZO's heap and stack, and must be avoided since it
 384 * performs the decompression.
 385 *
 386 * Since the above two ranges need to be avoided and they are adjacent,
 387 * they can be merged, resulting in: [input, output+init_size) which
 388 * becomes the MEM_AVOID_ZO_RANGE below.
 389 */
 390static void mem_avoid_init(unsigned long input, unsigned long input_size,
 391                           unsigned long output)
 392{
 393        unsigned long init_size = boot_params->hdr.init_size;
 394        u64 initrd_start, initrd_size;
 395        u64 cmd_line, cmd_line_size;
 396        char *ptr;
 397
 398        /*
 399         * Avoid the region that is unsafe to overlap during
 400         * decompression.
 401         */
 402        mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
 403        mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
 404        add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
 405                         mem_avoid[MEM_AVOID_ZO_RANGE].size);
 406
 407        /* Avoid initrd. */
 408        initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
 409        initrd_start |= boot_params->hdr.ramdisk_image;
 410        initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
 411        initrd_size |= boot_params->hdr.ramdisk_size;
 412        mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
 413        mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
 414        /* No need to set mapping for initrd, it will be handled in VO. */
 415
 416        /* Avoid kernel command line. */
 417        cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
 418        cmd_line |= boot_params->hdr.cmd_line_ptr;
 419        /* Calculate size of cmd_line. */
 420        ptr = (char *)(unsigned long)cmd_line;
 421        for (cmd_line_size = 0; ptr[cmd_line_size++];)
 422                ;
 423        mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
 424        mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
 425        add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
 426                         mem_avoid[MEM_AVOID_CMDLINE].size);
 427
 428        /* Avoid boot parameters. */
 429        mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
 430        mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
 431        add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
 432                         mem_avoid[MEM_AVOID_BOOTPARAMS].size);
 433
 434        /* We don't need to set a mapping for setup_data. */
 435
 436        /* Mark the memmap regions we need to avoid */
 437        handle_mem_options();
 438
 439        /* Enumerate the immovable memory regions */
 440        num_immovable_mem = count_immovable_mem_regions();
 441
 442#ifdef CONFIG_X86_VERBOSE_BOOTUP
 443        /* Make sure video RAM can be used. */
 444        add_identity_map(0, PMD_SIZE);
 445#endif
 446}
 447
 448/*
 449 * Does this memory vector overlap a known avoided area? If so, record the
 450 * overlap region with the lowest address.
 451 */
 452static bool mem_avoid_overlap(struct mem_vector *img,
 453                              struct mem_vector *overlap)
 454{
 455        int i;
 456        struct setup_data *ptr;
 457        unsigned long earliest = img->start + img->size;
 458        bool is_overlapping = false;
 459
 460        for (i = 0; i < MEM_AVOID_MAX; i++) {
 461                if (mem_overlaps(img, &mem_avoid[i]) &&
 462                    mem_avoid[i].start < earliest) {
 463                        *overlap = mem_avoid[i];
 464                        earliest = overlap->start;
 465                        is_overlapping = true;
 466                }
 467        }
 468
 469        /* Avoid all entries in the setup_data linked list. */
 470        ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
 471        while (ptr) {
 472                struct mem_vector avoid;
 473
 474                avoid.start = (unsigned long)ptr;
 475                avoid.size = sizeof(*ptr) + ptr->len;
 476
 477                if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 478                        *overlap = avoid;
 479                        earliest = overlap->start;
 480                        is_overlapping = true;
 481                }
 482
 483                if (ptr->type == SETUP_INDIRECT &&
 484                    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
 485                        avoid.start = ((struct setup_indirect *)ptr->data)->addr;
 486                        avoid.size = ((struct setup_indirect *)ptr->data)->len;
 487
 488                        if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 489                                *overlap = avoid;
 490                                earliest = overlap->start;
 491                                is_overlapping = true;
 492                        }
 493                }
 494
 495                ptr = (struct setup_data *)(unsigned long)ptr->next;
 496        }
 497
 498        return is_overlapping;
 499}
 500
 501struct slot_area {
 502        unsigned long addr;
 503        int num;
 504};
 505
 506#define MAX_SLOT_AREA 100
 507
 508static struct slot_area slot_areas[MAX_SLOT_AREA];
 509
 510static unsigned long slot_max;
 511
 512static unsigned long slot_area_index;
 513
 514static void store_slot_info(struct mem_vector *region, unsigned long image_size)
 515{
 516        struct slot_area slot_area;
 517
 518        if (slot_area_index == MAX_SLOT_AREA)
 519                return;
 520
 521        slot_area.addr = region->start;
 522        slot_area.num = (region->size - image_size) /
 523                        CONFIG_PHYSICAL_ALIGN + 1;
 524
 525        if (slot_area.num > 0) {
 526                slot_areas[slot_area_index++] = slot_area;
 527                slot_max += slot_area.num;
 528        }
 529}
 530
 531/*
 532 * Skip as many 1GB huge pages as possible in the passed region
 533 * according to the number which users specified:
 534 */
 535static void
 536process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
 537{
 538        unsigned long addr, size = 0;
 539        struct mem_vector tmp;
 540        int i = 0;
 541
 542        if (!max_gb_huge_pages) {
 543                store_slot_info(region, image_size);
 544                return;
 545        }
 546
 547        addr = ALIGN(region->start, PUD_SIZE);
 548        /* Did we raise the address above the passed in memory entry? */
 549        if (addr < region->start + region->size)
 550                size = region->size - (addr - region->start);
 551
 552        /* Check how many 1GB huge pages can be filtered out: */
 553        while (size > PUD_SIZE && max_gb_huge_pages) {
 554                size -= PUD_SIZE;
 555                max_gb_huge_pages--;
 556                i++;
 557        }
 558
 559        /* No good 1GB huge pages found: */
 560        if (!i) {
 561                store_slot_info(region, image_size);
 562                return;
 563        }
 564
 565        /*
 566         * Skip those 'i'*1GB good huge pages, and continue checking and
 567         * processing the remaining head or tail part of the passed region
 568         * if available.
 569         */
 570
 571        if (addr >= region->start + image_size) {
 572                tmp.start = region->start;
 573                tmp.size = addr - region->start;
 574                store_slot_info(&tmp, image_size);
 575        }
 576
 577        size  = region->size - (addr - region->start) - i * PUD_SIZE;
 578        if (size >= image_size) {
 579                tmp.start = addr + i * PUD_SIZE;
 580                tmp.size = size;
 581                store_slot_info(&tmp, image_size);
 582        }
 583}
 584
 585static unsigned long slots_fetch_random(void)
 586{
 587        unsigned long slot;
 588        int i;
 589
 590        /* Handle case of no slots stored. */
 591        if (slot_max == 0)
 592                return 0;
 593
 594        slot = kaslr_get_random_long("Physical") % slot_max;
 595
 596        for (i = 0; i < slot_area_index; i++) {
 597                if (slot >= slot_areas[i].num) {
 598                        slot -= slot_areas[i].num;
 599                        continue;
 600                }
 601                return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
 602        }
 603
 604        if (i == slot_area_index)
 605                debug_putstr("slots_fetch_random() failed!?\n");
 606        return 0;
 607}
 608
 609static void __process_mem_region(struct mem_vector *entry,
 610                                 unsigned long minimum,
 611                                 unsigned long image_size)
 612{
 613        struct mem_vector region, overlap;
 614        unsigned long start_orig, end;
 615        struct mem_vector cur_entry;
 616
 617        /* On 32-bit, ignore entries entirely above our maximum. */
 618        if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
 619                return;
 620
 621        /* Ignore entries entirely below our minimum. */
 622        if (entry->start + entry->size < minimum)
 623                return;
 624
 625        /* Ignore entries above memory limit */
 626        end = min(entry->size + entry->start, mem_limit);
 627        if (entry->start >= end)
 628                return;
 629        cur_entry.start = entry->start;
 630        cur_entry.size = end - entry->start;
 631
 632        region.start = cur_entry.start;
 633        region.size = cur_entry.size;
 634
 635        /* Give up if slot area array is full. */
 636        while (slot_area_index < MAX_SLOT_AREA) {
 637                start_orig = region.start;
 638
 639                /* Potentially raise address to minimum location. */
 640                if (region.start < minimum)
 641                        region.start = minimum;
 642
 643                /* Potentially raise address to meet alignment needs. */
 644                region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
 645
 646                /* Did we raise the address above the passed in memory entry? */
 647                if (region.start > cur_entry.start + cur_entry.size)
 648                        return;
 649
 650                /* Reduce size by any delta from the original address. */
 651                region.size -= region.start - start_orig;
 652
 653                /* On 32-bit, reduce region size to fit within max size. */
 654                if (IS_ENABLED(CONFIG_X86_32) &&
 655                    region.start + region.size > KERNEL_IMAGE_SIZE)
 656                        region.size = KERNEL_IMAGE_SIZE - region.start;
 657
 658                /* Return if region can't contain decompressed kernel */
 659                if (region.size < image_size)
 660                        return;
 661
 662                /* If nothing overlaps, store the region and return. */
 663                if (!mem_avoid_overlap(&region, &overlap)) {
 664                        process_gb_huge_pages(&region, image_size);
 665                        return;
 666                }
 667
 668                /* Store beginning of region if holds at least image_size. */
 669                if (overlap.start > region.start + image_size) {
 670                        struct mem_vector beginning;
 671
 672                        beginning.start = region.start;
 673                        beginning.size = overlap.start - region.start;
 674                        process_gb_huge_pages(&beginning, image_size);
 675                }
 676
 677                /* Return if overlap extends to or past end of region. */
 678                if (overlap.start + overlap.size >= region.start + region.size)
 679                        return;
 680
 681                /* Clip off the overlapping region and start over. */
 682                region.size -= overlap.start - region.start + overlap.size;
 683                region.start = overlap.start + overlap.size;
 684        }
 685}
 686
 687static bool process_mem_region(struct mem_vector *region,
 688                               unsigned long long minimum,
 689                               unsigned long long image_size)
 690{
 691        int i;
 692        /*
 693         * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
 694         * use @region directly.
 695         */
 696        if (!num_immovable_mem) {
 697                __process_mem_region(region, minimum, image_size);
 698
 699                if (slot_area_index == MAX_SLOT_AREA) {
 700                        debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
 701                        return 1;
 702                }
 703                return 0;
 704        }
 705
 706#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
 707        /*
 708         * If immovable memory found, filter the intersection between
 709         * immovable memory and @region.
 710         */
 711        for (i = 0; i < num_immovable_mem; i++) {
 712                unsigned long long start, end, entry_end, region_end;
 713                struct mem_vector entry;
 714
 715                if (!mem_overlaps(region, &immovable_mem[i]))
 716                        continue;
 717
 718                start = immovable_mem[i].start;
 719                end = start + immovable_mem[i].size;
 720                region_end = region->start + region->size;
 721
 722                entry.start = clamp(region->start, start, end);
 723                entry_end = clamp(region_end, start, end);
 724                entry.size = entry_end - entry.start;
 725
 726                __process_mem_region(&entry, minimum, image_size);
 727
 728                if (slot_area_index == MAX_SLOT_AREA) {
 729                        debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
 730                        return 1;
 731                }
 732        }
 733#endif
 734        return 0;
 735}
 736
 737#ifdef CONFIG_EFI
 738/*
 739 * Returns true if mirror region found (and must have been processed
 740 * for slots adding)
 741 */
 742static bool
 743process_efi_entries(unsigned long minimum, unsigned long image_size)
 744{
 745        struct efi_info *e = &boot_params->efi_info;
 746        bool efi_mirror_found = false;
 747        struct mem_vector region;
 748        efi_memory_desc_t *md;
 749        unsigned long pmap;
 750        char *signature;
 751        u32 nr_desc;
 752        int i;
 753
 754        signature = (char *)&e->efi_loader_signature;
 755        if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
 756            strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
 757                return false;
 758
 759#ifdef CONFIG_X86_32
 760        /* Can't handle data above 4GB at this time */
 761        if (e->efi_memmap_hi) {
 762                warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
 763                return false;
 764        }
 765        pmap =  e->efi_memmap;
 766#else
 767        pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
 768#endif
 769
 770        nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
 771        for (i = 0; i < nr_desc; i++) {
 772                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 773                if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 774                        efi_mirror_found = true;
 775                        break;
 776                }
 777        }
 778
 779        for (i = 0; i < nr_desc; i++) {
 780                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 781
 782                /*
 783                 * Here we are more conservative in picking free memory than
 784                 * the EFI spec allows:
 785                 *
 786                 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
 787                 * free memory and thus available to place the kernel image into,
 788                 * but in practice there's firmware where using that memory leads
 789                 * to crashes.
 790                 *
 791                 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
 792                 */
 793                if (md->type != EFI_CONVENTIONAL_MEMORY)
 794                        continue;
 795
 796                if (efi_soft_reserve_enabled() &&
 797                    (md->attribute & EFI_MEMORY_SP))
 798                        continue;
 799
 800                if (efi_mirror_found &&
 801                    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
 802                        continue;
 803
 804                region.start = md->phys_addr;
 805                region.size = md->num_pages << EFI_PAGE_SHIFT;
 806                if (process_mem_region(&region, minimum, image_size))
 807                        break;
 808        }
 809        return true;
 810}
 811#else
 812static inline bool
 813process_efi_entries(unsigned long minimum, unsigned long image_size)
 814{
 815        return false;
 816}
 817#endif
 818
 819static void process_e820_entries(unsigned long minimum,
 820                                 unsigned long image_size)
 821{
 822        int i;
 823        struct mem_vector region;
 824        struct boot_e820_entry *entry;
 825
 826        /* Verify potential e820 positions, appending to slots list. */
 827        for (i = 0; i < boot_params->e820_entries; i++) {
 828                entry = &boot_params->e820_table[i];
 829                /* Skip non-RAM entries. */
 830                if (entry->type != E820_TYPE_RAM)
 831                        continue;
 832                region.start = entry->addr;
 833                region.size = entry->size;
 834                if (process_mem_region(&region, minimum, image_size))
 835                        break;
 836        }
 837}
 838
 839static unsigned long find_random_phys_addr(unsigned long minimum,
 840                                           unsigned long image_size)
 841{
 842        /* Check if we had too many memmaps. */
 843        if (memmap_too_large) {
 844                debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
 845                return 0;
 846        }
 847
 848        /* Make sure minimum is aligned. */
 849        minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 850
 851        if (process_efi_entries(minimum, image_size))
 852                return slots_fetch_random();
 853
 854        process_e820_entries(minimum, image_size);
 855        return slots_fetch_random();
 856}
 857
 858static unsigned long find_random_virt_addr(unsigned long minimum,
 859                                           unsigned long image_size)
 860{
 861        unsigned long slots, random_addr;
 862
 863        /* Make sure minimum is aligned. */
 864        minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 865        /* Align image_size for easy slot calculations. */
 866        image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
 867
 868        /*
 869         * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
 870         * that can hold image_size within the range of minimum to
 871         * KERNEL_IMAGE_SIZE?
 872         */
 873        slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
 874                 CONFIG_PHYSICAL_ALIGN + 1;
 875
 876        random_addr = kaslr_get_random_long("Virtual") % slots;
 877
 878        return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
 879}
 880
 881/*
 882 * Since this function examines addresses much more numerically,
 883 * it takes the input and output pointers as 'unsigned long'.
 884 */
 885void choose_random_location(unsigned long input,
 886                            unsigned long input_size,
 887                            unsigned long *output,
 888                            unsigned long output_size,
 889                            unsigned long *virt_addr)
 890{
 891        unsigned long random_addr, min_addr;
 892
 893        if (cmdline_find_option_bool("nokaslr")) {
 894                warn("KASLR disabled: 'nokaslr' on cmdline.");
 895                return;
 896        }
 897
 898#ifdef CONFIG_X86_5LEVEL
 899        if (__read_cr4() & X86_CR4_LA57) {
 900                __pgtable_l5_enabled = 1;
 901                pgdir_shift = 48;
 902                ptrs_per_p4d = 512;
 903        }
 904#endif
 905
 906        boot_params->hdr.loadflags |= KASLR_FLAG;
 907
 908        /* Prepare to add new identity pagetables on demand. */
 909        initialize_identity_maps();
 910
 911        /* Record the various known unsafe memory ranges. */
 912        mem_avoid_init(input, input_size, *output);
 913
 914        /*
 915         * Low end of the randomization range should be the
 916         * smaller of 512M or the initial kernel image
 917         * location:
 918         */
 919        min_addr = min(*output, 512UL << 20);
 920
 921        /* Walk available memory entries to find a random address. */
 922        random_addr = find_random_phys_addr(min_addr, output_size);
 923        if (!random_addr) {
 924                warn("Physical KASLR disabled: no suitable memory region!");
 925        } else {
 926                /* Update the new physical address location. */
 927                if (*output != random_addr) {
 928                        add_identity_map(random_addr, output_size);
 929                        *output = random_addr;
 930                }
 931
 932                /*
 933                 * This loads the identity mapping page table.
 934                 * This should only be done if a new physical address
 935                 * is found for the kernel, otherwise we should keep
 936                 * the old page table to make it be like the "nokaslr"
 937                 * case.
 938                 */
 939                finalize_identity_maps();
 940        }
 941
 942
 943        /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
 944        if (IS_ENABLED(CONFIG_X86_64))
 945                random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
 946        *virt_addr = random_addr;
 947}
 948