linux/arch/x86/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events x86 architecture code
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2009 Jaswinder Singh Rajput
   7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
   9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
  11 *
  12 *  For licencing details see kernel-base/COPYING
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/capability.h>
  17#include <linux/notifier.h>
  18#include <linux/hardirq.h>
  19#include <linux/kprobes.h>
  20#include <linux/export.h>
  21#include <linux/init.h>
  22#include <linux/kdebug.h>
  23#include <linux/sched/mm.h>
  24#include <linux/sched/clock.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <linux/cpu.h>
  28#include <linux/bitops.h>
  29#include <linux/device.h>
  30#include <linux/nospec.h>
  31
  32#include <asm/apic.h>
  33#include <asm/stacktrace.h>
  34#include <asm/nmi.h>
  35#include <asm/smp.h>
  36#include <asm/alternative.h>
  37#include <asm/mmu_context.h>
  38#include <asm/tlbflush.h>
  39#include <asm/timer.h>
  40#include <asm/desc.h>
  41#include <asm/ldt.h>
  42#include <asm/unwind.h>
  43
  44#include "perf_event.h"
  45
  46struct x86_pmu x86_pmu __read_mostly;
  47
  48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  49        .enabled = 1,
  50};
  51
  52DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
  53DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
  54
  55u64 __read_mostly hw_cache_event_ids
  56                                [PERF_COUNT_HW_CACHE_MAX]
  57                                [PERF_COUNT_HW_CACHE_OP_MAX]
  58                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  59u64 __read_mostly hw_cache_extra_regs
  60                                [PERF_COUNT_HW_CACHE_MAX]
  61                                [PERF_COUNT_HW_CACHE_OP_MAX]
  62                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  63
  64/*
  65 * Propagate event elapsed time into the generic event.
  66 * Can only be executed on the CPU where the event is active.
  67 * Returns the delta events processed.
  68 */
  69u64 x86_perf_event_update(struct perf_event *event)
  70{
  71        struct hw_perf_event *hwc = &event->hw;
  72        int shift = 64 - x86_pmu.cntval_bits;
  73        u64 prev_raw_count, new_raw_count;
  74        u64 delta;
  75
  76        if (unlikely(!hwc->event_base))
  77                return 0;
  78
  79        /*
  80         * Careful: an NMI might modify the previous event value.
  81         *
  82         * Our tactic to handle this is to first atomically read and
  83         * exchange a new raw count - then add that new-prev delta
  84         * count to the generic event atomically:
  85         */
  86again:
  87        prev_raw_count = local64_read(&hwc->prev_count);
  88        rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  89
  90        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  91                                        new_raw_count) != prev_raw_count)
  92                goto again;
  93
  94        /*
  95         * Now we have the new raw value and have updated the prev
  96         * timestamp already. We can now calculate the elapsed delta
  97         * (event-)time and add that to the generic event.
  98         *
  99         * Careful, not all hw sign-extends above the physical width
 100         * of the count.
 101         */
 102        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 103        delta >>= shift;
 104
 105        local64_add(delta, &event->count);
 106        local64_sub(delta, &hwc->period_left);
 107
 108        return new_raw_count;
 109}
 110
 111/*
 112 * Find and validate any extra registers to set up.
 113 */
 114static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 115{
 116        struct hw_perf_event_extra *reg;
 117        struct extra_reg *er;
 118
 119        reg = &event->hw.extra_reg;
 120
 121        if (!x86_pmu.extra_regs)
 122                return 0;
 123
 124        for (er = x86_pmu.extra_regs; er->msr; er++) {
 125                if (er->event != (config & er->config_mask))
 126                        continue;
 127                if (event->attr.config1 & ~er->valid_mask)
 128                        return -EINVAL;
 129                /* Check if the extra msrs can be safely accessed*/
 130                if (!er->extra_msr_access)
 131                        return -ENXIO;
 132
 133                reg->idx = er->idx;
 134                reg->config = event->attr.config1;
 135                reg->reg = er->msr;
 136                break;
 137        }
 138        return 0;
 139}
 140
 141static atomic_t active_events;
 142static atomic_t pmc_refcount;
 143static DEFINE_MUTEX(pmc_reserve_mutex);
 144
 145#ifdef CONFIG_X86_LOCAL_APIC
 146
 147static bool reserve_pmc_hardware(void)
 148{
 149        int i;
 150
 151        for (i = 0; i < x86_pmu.num_counters; i++) {
 152                if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 153                        goto perfctr_fail;
 154        }
 155
 156        for (i = 0; i < x86_pmu.num_counters; i++) {
 157                if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 158                        goto eventsel_fail;
 159        }
 160
 161        return true;
 162
 163eventsel_fail:
 164        for (i--; i >= 0; i--)
 165                release_evntsel_nmi(x86_pmu_config_addr(i));
 166
 167        i = x86_pmu.num_counters;
 168
 169perfctr_fail:
 170        for (i--; i >= 0; i--)
 171                release_perfctr_nmi(x86_pmu_event_addr(i));
 172
 173        return false;
 174}
 175
 176static void release_pmc_hardware(void)
 177{
 178        int i;
 179
 180        for (i = 0; i < x86_pmu.num_counters; i++) {
 181                release_perfctr_nmi(x86_pmu_event_addr(i));
 182                release_evntsel_nmi(x86_pmu_config_addr(i));
 183        }
 184}
 185
 186#else
 187
 188static bool reserve_pmc_hardware(void) { return true; }
 189static void release_pmc_hardware(void) {}
 190
 191#endif
 192
 193static bool check_hw_exists(void)
 194{
 195        u64 val, val_fail = -1, val_new= ~0;
 196        int i, reg, reg_fail = -1, ret = 0;
 197        int bios_fail = 0;
 198        int reg_safe = -1;
 199
 200        /*
 201         * Check to see if the BIOS enabled any of the counters, if so
 202         * complain and bail.
 203         */
 204        for (i = 0; i < x86_pmu.num_counters; i++) {
 205                reg = x86_pmu_config_addr(i);
 206                ret = rdmsrl_safe(reg, &val);
 207                if (ret)
 208                        goto msr_fail;
 209                if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 210                        bios_fail = 1;
 211                        val_fail = val;
 212                        reg_fail = reg;
 213                } else {
 214                        reg_safe = i;
 215                }
 216        }
 217
 218        if (x86_pmu.num_counters_fixed) {
 219                reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 220                ret = rdmsrl_safe(reg, &val);
 221                if (ret)
 222                        goto msr_fail;
 223                for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
 224                        if (val & (0x03 << i*4)) {
 225                                bios_fail = 1;
 226                                val_fail = val;
 227                                reg_fail = reg;
 228                        }
 229                }
 230        }
 231
 232        /*
 233         * If all the counters are enabled, the below test will always
 234         * fail.  The tools will also become useless in this scenario.
 235         * Just fail and disable the hardware counters.
 236         */
 237
 238        if (reg_safe == -1) {
 239                reg = reg_safe;
 240                goto msr_fail;
 241        }
 242
 243        /*
 244         * Read the current value, change it and read it back to see if it
 245         * matches, this is needed to detect certain hardware emulators
 246         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 247         */
 248        reg = x86_pmu_event_addr(reg_safe);
 249        if (rdmsrl_safe(reg, &val))
 250                goto msr_fail;
 251        val ^= 0xffffUL;
 252        ret = wrmsrl_safe(reg, val);
 253        ret |= rdmsrl_safe(reg, &val_new);
 254        if (ret || val != val_new)
 255                goto msr_fail;
 256
 257        /*
 258         * We still allow the PMU driver to operate:
 259         */
 260        if (bios_fail) {
 261                pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
 262                pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
 263                              reg_fail, val_fail);
 264        }
 265
 266        return true;
 267
 268msr_fail:
 269        if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 270                pr_cont("PMU not available due to virtualization, using software events only.\n");
 271        } else {
 272                pr_cont("Broken PMU hardware detected, using software events only.\n");
 273                pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
 274                       reg, val_new);
 275        }
 276
 277        return false;
 278}
 279
 280static void hw_perf_event_destroy(struct perf_event *event)
 281{
 282        x86_release_hardware();
 283        atomic_dec(&active_events);
 284}
 285
 286void hw_perf_lbr_event_destroy(struct perf_event *event)
 287{
 288        hw_perf_event_destroy(event);
 289
 290        /* undo the lbr/bts event accounting */
 291        x86_del_exclusive(x86_lbr_exclusive_lbr);
 292}
 293
 294static inline int x86_pmu_initialized(void)
 295{
 296        return x86_pmu.handle_irq != NULL;
 297}
 298
 299static inline int
 300set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 301{
 302        struct perf_event_attr *attr = &event->attr;
 303        unsigned int cache_type, cache_op, cache_result;
 304        u64 config, val;
 305
 306        config = attr->config;
 307
 308        cache_type = (config >> 0) & 0xff;
 309        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 310                return -EINVAL;
 311        cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
 312
 313        cache_op = (config >>  8) & 0xff;
 314        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 315                return -EINVAL;
 316        cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
 317
 318        cache_result = (config >> 16) & 0xff;
 319        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 320                return -EINVAL;
 321        cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
 322
 323        val = hw_cache_event_ids[cache_type][cache_op][cache_result];
 324
 325        if (val == 0)
 326                return -ENOENT;
 327
 328        if (val == -1)
 329                return -EINVAL;
 330
 331        hwc->config |= val;
 332        attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
 333        return x86_pmu_extra_regs(val, event);
 334}
 335
 336int x86_reserve_hardware(void)
 337{
 338        int err = 0;
 339
 340        if (!atomic_inc_not_zero(&pmc_refcount)) {
 341                mutex_lock(&pmc_reserve_mutex);
 342                if (atomic_read(&pmc_refcount) == 0) {
 343                        if (!reserve_pmc_hardware())
 344                                err = -EBUSY;
 345                        else
 346                                reserve_ds_buffers();
 347                }
 348                if (!err)
 349                        atomic_inc(&pmc_refcount);
 350                mutex_unlock(&pmc_reserve_mutex);
 351        }
 352
 353        return err;
 354}
 355
 356void x86_release_hardware(void)
 357{
 358        if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
 359                release_pmc_hardware();
 360                release_ds_buffers();
 361                release_lbr_buffers();
 362                mutex_unlock(&pmc_reserve_mutex);
 363        }
 364}
 365
 366/*
 367 * Check if we can create event of a certain type (that no conflicting events
 368 * are present).
 369 */
 370int x86_add_exclusive(unsigned int what)
 371{
 372        int i;
 373
 374        /*
 375         * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
 376         * LBR and BTS are still mutually exclusive.
 377         */
 378        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 379                goto out;
 380
 381        if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
 382                mutex_lock(&pmc_reserve_mutex);
 383                for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
 384                        if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
 385                                goto fail_unlock;
 386                }
 387                atomic_inc(&x86_pmu.lbr_exclusive[what]);
 388                mutex_unlock(&pmc_reserve_mutex);
 389        }
 390
 391out:
 392        atomic_inc(&active_events);
 393        return 0;
 394
 395fail_unlock:
 396        mutex_unlock(&pmc_reserve_mutex);
 397        return -EBUSY;
 398}
 399
 400void x86_del_exclusive(unsigned int what)
 401{
 402        atomic_dec(&active_events);
 403
 404        /*
 405         * See the comment in x86_add_exclusive().
 406         */
 407        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 408                return;
 409
 410        atomic_dec(&x86_pmu.lbr_exclusive[what]);
 411}
 412
 413int x86_setup_perfctr(struct perf_event *event)
 414{
 415        struct perf_event_attr *attr = &event->attr;
 416        struct hw_perf_event *hwc = &event->hw;
 417        u64 config;
 418
 419        if (!is_sampling_event(event)) {
 420                hwc->sample_period = x86_pmu.max_period;
 421                hwc->last_period = hwc->sample_period;
 422                local64_set(&hwc->period_left, hwc->sample_period);
 423        }
 424
 425        if (attr->type == PERF_TYPE_RAW)
 426                return x86_pmu_extra_regs(event->attr.config, event);
 427
 428        if (attr->type == PERF_TYPE_HW_CACHE)
 429                return set_ext_hw_attr(hwc, event);
 430
 431        if (attr->config >= x86_pmu.max_events)
 432                return -EINVAL;
 433
 434        attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
 435
 436        /*
 437         * The generic map:
 438         */
 439        config = x86_pmu.event_map(attr->config);
 440
 441        if (config == 0)
 442                return -ENOENT;
 443
 444        if (config == -1LL)
 445                return -EINVAL;
 446
 447        hwc->config |= config;
 448
 449        return 0;
 450}
 451
 452/*
 453 * check that branch_sample_type is compatible with
 454 * settings needed for precise_ip > 1 which implies
 455 * using the LBR to capture ALL taken branches at the
 456 * priv levels of the measurement
 457 */
 458static inline int precise_br_compat(struct perf_event *event)
 459{
 460        u64 m = event->attr.branch_sample_type;
 461        u64 b = 0;
 462
 463        /* must capture all branches */
 464        if (!(m & PERF_SAMPLE_BRANCH_ANY))
 465                return 0;
 466
 467        m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 468
 469        if (!event->attr.exclude_user)
 470                b |= PERF_SAMPLE_BRANCH_USER;
 471
 472        if (!event->attr.exclude_kernel)
 473                b |= PERF_SAMPLE_BRANCH_KERNEL;
 474
 475        /*
 476         * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 477         */
 478
 479        return m == b;
 480}
 481
 482int x86_pmu_max_precise(void)
 483{
 484        int precise = 0;
 485
 486        /* Support for constant skid */
 487        if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 488                precise++;
 489
 490                /* Support for IP fixup */
 491                if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
 492                        precise++;
 493
 494                if (x86_pmu.pebs_prec_dist)
 495                        precise++;
 496        }
 497        return precise;
 498}
 499
 500int x86_pmu_hw_config(struct perf_event *event)
 501{
 502        if (event->attr.precise_ip) {
 503                int precise = x86_pmu_max_precise();
 504
 505                if (event->attr.precise_ip > precise)
 506                        return -EOPNOTSUPP;
 507
 508                /* There's no sense in having PEBS for non sampling events: */
 509                if (!is_sampling_event(event))
 510                        return -EINVAL;
 511        }
 512        /*
 513         * check that PEBS LBR correction does not conflict with
 514         * whatever the user is asking with attr->branch_sample_type
 515         */
 516        if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
 517                u64 *br_type = &event->attr.branch_sample_type;
 518
 519                if (has_branch_stack(event)) {
 520                        if (!precise_br_compat(event))
 521                                return -EOPNOTSUPP;
 522
 523                        /* branch_sample_type is compatible */
 524
 525                } else {
 526                        /*
 527                         * user did not specify  branch_sample_type
 528                         *
 529                         * For PEBS fixups, we capture all
 530                         * the branches at the priv level of the
 531                         * event.
 532                         */
 533                        *br_type = PERF_SAMPLE_BRANCH_ANY;
 534
 535                        if (!event->attr.exclude_user)
 536                                *br_type |= PERF_SAMPLE_BRANCH_USER;
 537
 538                        if (!event->attr.exclude_kernel)
 539                                *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 540                }
 541        }
 542
 543        if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
 544                event->attach_state |= PERF_ATTACH_TASK_DATA;
 545
 546        /*
 547         * Generate PMC IRQs:
 548         * (keep 'enabled' bit clear for now)
 549         */
 550        event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 551
 552        /*
 553         * Count user and OS events unless requested not to
 554         */
 555        if (!event->attr.exclude_user)
 556                event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 557        if (!event->attr.exclude_kernel)
 558                event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 559
 560        if (event->attr.type == PERF_TYPE_RAW)
 561                event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 562
 563        if (event->attr.sample_period && x86_pmu.limit_period) {
 564                if (x86_pmu.limit_period(event, event->attr.sample_period) >
 565                                event->attr.sample_period)
 566                        return -EINVAL;
 567        }
 568
 569        /* sample_regs_user never support XMM registers */
 570        if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
 571                return -EINVAL;
 572        /*
 573         * Besides the general purpose registers, XMM registers may
 574         * be collected in PEBS on some platforms, e.g. Icelake
 575         */
 576        if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
 577                if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
 578                        return -EINVAL;
 579
 580                if (!event->attr.precise_ip)
 581                        return -EINVAL;
 582        }
 583
 584        return x86_setup_perfctr(event);
 585}
 586
 587/*
 588 * Setup the hardware configuration for a given attr_type
 589 */
 590static int __x86_pmu_event_init(struct perf_event *event)
 591{
 592        int err;
 593
 594        if (!x86_pmu_initialized())
 595                return -ENODEV;
 596
 597        err = x86_reserve_hardware();
 598        if (err)
 599                return err;
 600
 601        atomic_inc(&active_events);
 602        event->destroy = hw_perf_event_destroy;
 603
 604        event->hw.idx = -1;
 605        event->hw.last_cpu = -1;
 606        event->hw.last_tag = ~0ULL;
 607
 608        /* mark unused */
 609        event->hw.extra_reg.idx = EXTRA_REG_NONE;
 610        event->hw.branch_reg.idx = EXTRA_REG_NONE;
 611
 612        return x86_pmu.hw_config(event);
 613}
 614
 615void x86_pmu_disable_all(void)
 616{
 617        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 618        int idx;
 619
 620        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 621                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 622                u64 val;
 623
 624                if (!test_bit(idx, cpuc->active_mask))
 625                        continue;
 626                rdmsrl(x86_pmu_config_addr(idx), val);
 627                if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 628                        continue;
 629                val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 630                wrmsrl(x86_pmu_config_addr(idx), val);
 631                if (is_counter_pair(hwc))
 632                        wrmsrl(x86_pmu_config_addr(idx + 1), 0);
 633        }
 634}
 635
 636/*
 637 * There may be PMI landing after enabled=0. The PMI hitting could be before or
 638 * after disable_all.
 639 *
 640 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
 641 * It will not be re-enabled in the NMI handler again, because enabled=0. After
 642 * handling the NMI, disable_all will be called, which will not change the
 643 * state either. If PMI hits after disable_all, the PMU is already disabled
 644 * before entering NMI handler. The NMI handler will not change the state
 645 * either.
 646 *
 647 * So either situation is harmless.
 648 */
 649static void x86_pmu_disable(struct pmu *pmu)
 650{
 651        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 652
 653        if (!x86_pmu_initialized())
 654                return;
 655
 656        if (!cpuc->enabled)
 657                return;
 658
 659        cpuc->n_added = 0;
 660        cpuc->enabled = 0;
 661        barrier();
 662
 663        x86_pmu.disable_all();
 664}
 665
 666void x86_pmu_enable_all(int added)
 667{
 668        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 669        int idx;
 670
 671        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 672                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 673
 674                if (!test_bit(idx, cpuc->active_mask))
 675                        continue;
 676
 677                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 678        }
 679}
 680
 681static struct pmu pmu;
 682
 683static inline int is_x86_event(struct perf_event *event)
 684{
 685        return event->pmu == &pmu;
 686}
 687
 688struct pmu *x86_get_pmu(void)
 689{
 690        return &pmu;
 691}
 692/*
 693 * Event scheduler state:
 694 *
 695 * Assign events iterating over all events and counters, beginning
 696 * with events with least weights first. Keep the current iterator
 697 * state in struct sched_state.
 698 */
 699struct sched_state {
 700        int     weight;
 701        int     event;          /* event index */
 702        int     counter;        /* counter index */
 703        int     unassigned;     /* number of events to be assigned left */
 704        int     nr_gp;          /* number of GP counters used */
 705        u64     used;
 706};
 707
 708/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 709#define SCHED_STATES_MAX        2
 710
 711struct perf_sched {
 712        int                     max_weight;
 713        int                     max_events;
 714        int                     max_gp;
 715        int                     saved_states;
 716        struct event_constraint **constraints;
 717        struct sched_state      state;
 718        struct sched_state      saved[SCHED_STATES_MAX];
 719};
 720
 721/*
 722 * Initialize interator that runs through all events and counters.
 723 */
 724static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
 725                            int num, int wmin, int wmax, int gpmax)
 726{
 727        int idx;
 728
 729        memset(sched, 0, sizeof(*sched));
 730        sched->max_events       = num;
 731        sched->max_weight       = wmax;
 732        sched->max_gp           = gpmax;
 733        sched->constraints      = constraints;
 734
 735        for (idx = 0; idx < num; idx++) {
 736                if (constraints[idx]->weight == wmin)
 737                        break;
 738        }
 739
 740        sched->state.event      = idx;          /* start with min weight */
 741        sched->state.weight     = wmin;
 742        sched->state.unassigned = num;
 743}
 744
 745static void perf_sched_save_state(struct perf_sched *sched)
 746{
 747        if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 748                return;
 749
 750        sched->saved[sched->saved_states] = sched->state;
 751        sched->saved_states++;
 752}
 753
 754static bool perf_sched_restore_state(struct perf_sched *sched)
 755{
 756        if (!sched->saved_states)
 757                return false;
 758
 759        sched->saved_states--;
 760        sched->state = sched->saved[sched->saved_states];
 761
 762        /* this assignment didn't work out */
 763        /* XXX broken vs EVENT_PAIR */
 764        sched->state.used &= ~BIT_ULL(sched->state.counter);
 765
 766        /* try the next one */
 767        sched->state.counter++;
 768
 769        return true;
 770}
 771
 772/*
 773 * Select a counter for the current event to schedule. Return true on
 774 * success.
 775 */
 776static bool __perf_sched_find_counter(struct perf_sched *sched)
 777{
 778        struct event_constraint *c;
 779        int idx;
 780
 781        if (!sched->state.unassigned)
 782                return false;
 783
 784        if (sched->state.event >= sched->max_events)
 785                return false;
 786
 787        c = sched->constraints[sched->state.event];
 788        /* Prefer fixed purpose counters */
 789        if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 790                idx = INTEL_PMC_IDX_FIXED;
 791                for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 792                        u64 mask = BIT_ULL(idx);
 793
 794                        if (sched->state.used & mask)
 795                                continue;
 796
 797                        sched->state.used |= mask;
 798                        goto done;
 799                }
 800        }
 801
 802        /* Grab the first unused counter starting with idx */
 803        idx = sched->state.counter;
 804        for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 805                u64 mask = BIT_ULL(idx);
 806
 807                if (c->flags & PERF_X86_EVENT_PAIR)
 808                        mask |= mask << 1;
 809
 810                if (sched->state.used & mask)
 811                        continue;
 812
 813                if (sched->state.nr_gp++ >= sched->max_gp)
 814                        return false;
 815
 816                sched->state.used |= mask;
 817                goto done;
 818        }
 819
 820        return false;
 821
 822done:
 823        sched->state.counter = idx;
 824
 825        if (c->overlap)
 826                perf_sched_save_state(sched);
 827
 828        return true;
 829}
 830
 831static bool perf_sched_find_counter(struct perf_sched *sched)
 832{
 833        while (!__perf_sched_find_counter(sched)) {
 834                if (!perf_sched_restore_state(sched))
 835                        return false;
 836        }
 837
 838        return true;
 839}
 840
 841/*
 842 * Go through all unassigned events and find the next one to schedule.
 843 * Take events with the least weight first. Return true on success.
 844 */
 845static bool perf_sched_next_event(struct perf_sched *sched)
 846{
 847        struct event_constraint *c;
 848
 849        if (!sched->state.unassigned || !--sched->state.unassigned)
 850                return false;
 851
 852        do {
 853                /* next event */
 854                sched->state.event++;
 855                if (sched->state.event >= sched->max_events) {
 856                        /* next weight */
 857                        sched->state.event = 0;
 858                        sched->state.weight++;
 859                        if (sched->state.weight > sched->max_weight)
 860                                return false;
 861                }
 862                c = sched->constraints[sched->state.event];
 863        } while (c->weight != sched->state.weight);
 864
 865        sched->state.counter = 0;       /* start with first counter */
 866
 867        return true;
 868}
 869
 870/*
 871 * Assign a counter for each event.
 872 */
 873int perf_assign_events(struct event_constraint **constraints, int n,
 874                        int wmin, int wmax, int gpmax, int *assign)
 875{
 876        struct perf_sched sched;
 877
 878        perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
 879
 880        do {
 881                if (!perf_sched_find_counter(&sched))
 882                        break;  /* failed */
 883                if (assign)
 884                        assign[sched.state.event] = sched.state.counter;
 885        } while (perf_sched_next_event(&sched));
 886
 887        return sched.state.unassigned;
 888}
 889EXPORT_SYMBOL_GPL(perf_assign_events);
 890
 891int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 892{
 893        struct event_constraint *c;
 894        struct perf_event *e;
 895        int n0, i, wmin, wmax, unsched = 0;
 896        struct hw_perf_event *hwc;
 897        u64 used_mask = 0;
 898
 899        /*
 900         * Compute the number of events already present; see x86_pmu_add(),
 901         * validate_group() and x86_pmu_commit_txn(). For the former two
 902         * cpuc->n_events hasn't been updated yet, while for the latter
 903         * cpuc->n_txn contains the number of events added in the current
 904         * transaction.
 905         */
 906        n0 = cpuc->n_events;
 907        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
 908                n0 -= cpuc->n_txn;
 909
 910        if (x86_pmu.start_scheduling)
 911                x86_pmu.start_scheduling(cpuc);
 912
 913        for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 914                c = cpuc->event_constraint[i];
 915
 916                /*
 917                 * Previously scheduled events should have a cached constraint,
 918                 * while new events should not have one.
 919                 */
 920                WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
 921
 922                /*
 923                 * Request constraints for new events; or for those events that
 924                 * have a dynamic constraint -- for those the constraint can
 925                 * change due to external factors (sibling state, allow_tfa).
 926                 */
 927                if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
 928                        c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
 929                        cpuc->event_constraint[i] = c;
 930                }
 931
 932                wmin = min(wmin, c->weight);
 933                wmax = max(wmax, c->weight);
 934        }
 935
 936        /*
 937         * fastpath, try to reuse previous register
 938         */
 939        for (i = 0; i < n; i++) {
 940                u64 mask;
 941
 942                hwc = &cpuc->event_list[i]->hw;
 943                c = cpuc->event_constraint[i];
 944
 945                /* never assigned */
 946                if (hwc->idx == -1)
 947                        break;
 948
 949                /* constraint still honored */
 950                if (!test_bit(hwc->idx, c->idxmsk))
 951                        break;
 952
 953                mask = BIT_ULL(hwc->idx);
 954                if (is_counter_pair(hwc))
 955                        mask |= mask << 1;
 956
 957                /* not already used */
 958                if (used_mask & mask)
 959                        break;
 960
 961                used_mask |= mask;
 962
 963                if (assign)
 964                        assign[i] = hwc->idx;
 965        }
 966
 967        /* slow path */
 968        if (i != n) {
 969                int gpmax = x86_pmu.num_counters;
 970
 971                /*
 972                 * Do not allow scheduling of more than half the available
 973                 * generic counters.
 974                 *
 975                 * This helps avoid counter starvation of sibling thread by
 976                 * ensuring at most half the counters cannot be in exclusive
 977                 * mode. There is no designated counters for the limits. Any
 978                 * N/2 counters can be used. This helps with events with
 979                 * specific counter constraints.
 980                 */
 981                if (is_ht_workaround_enabled() && !cpuc->is_fake &&
 982                    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
 983                        gpmax /= 2;
 984
 985                /*
 986                 * Reduce the amount of available counters to allow fitting
 987                 * the extra Merge events needed by large increment events.
 988                 */
 989                if (x86_pmu.flags & PMU_FL_PAIR) {
 990                        gpmax = x86_pmu.num_counters - cpuc->n_pair;
 991                        WARN_ON(gpmax <= 0);
 992                }
 993
 994                unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
 995                                             wmax, gpmax, assign);
 996        }
 997
 998        /*
 999         * In case of success (unsched = 0), mark events as committed,
1000         * so we do not put_constraint() in case new events are added
1001         * and fail to be scheduled
1002         *
1003         * We invoke the lower level commit callback to lock the resource
1004         *
1005         * We do not need to do all of this in case we are called to
1006         * validate an event group (assign == NULL)
1007         */
1008        if (!unsched && assign) {
1009                for (i = 0; i < n; i++) {
1010                        e = cpuc->event_list[i];
1011                        if (x86_pmu.commit_scheduling)
1012                                x86_pmu.commit_scheduling(cpuc, i, assign[i]);
1013                }
1014        } else {
1015                for (i = n0; i < n; i++) {
1016                        e = cpuc->event_list[i];
1017
1018                        /*
1019                         * release events that failed scheduling
1020                         */
1021                        if (x86_pmu.put_event_constraints)
1022                                x86_pmu.put_event_constraints(cpuc, e);
1023
1024                        cpuc->event_constraint[i] = NULL;
1025                }
1026        }
1027
1028        if (x86_pmu.stop_scheduling)
1029                x86_pmu.stop_scheduling(cpuc);
1030
1031        return unsched ? -EINVAL : 0;
1032}
1033
1034/*
1035 * dogrp: true if must collect siblings events (group)
1036 * returns total number of events and error code
1037 */
1038static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1039{
1040        struct perf_event *event;
1041        int n, max_count;
1042
1043        max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1044
1045        /* current number of events already accepted */
1046        n = cpuc->n_events;
1047        if (!cpuc->n_events)
1048                cpuc->pebs_output = 0;
1049
1050        if (!cpuc->is_fake && leader->attr.precise_ip) {
1051                /*
1052                 * For PEBS->PT, if !aux_event, the group leader (PT) went
1053                 * away, the group was broken down and this singleton event
1054                 * can't schedule any more.
1055                 */
1056                if (is_pebs_pt(leader) && !leader->aux_event)
1057                        return -EINVAL;
1058
1059                /*
1060                 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1061                 */
1062                if (cpuc->pebs_output &&
1063                    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1064                        return -EINVAL;
1065
1066                cpuc->pebs_output = is_pebs_pt(leader) + 1;
1067        }
1068
1069        if (is_x86_event(leader)) {
1070                if (n >= max_count)
1071                        return -EINVAL;
1072                cpuc->event_list[n] = leader;
1073                n++;
1074                if (is_counter_pair(&leader->hw))
1075                        cpuc->n_pair++;
1076        }
1077        if (!dogrp)
1078                return n;
1079
1080        for_each_sibling_event(event, leader) {
1081                if (!is_x86_event(event) ||
1082                    event->state <= PERF_EVENT_STATE_OFF)
1083                        continue;
1084
1085                if (n >= max_count)
1086                        return -EINVAL;
1087
1088                cpuc->event_list[n] = event;
1089                n++;
1090                if (is_counter_pair(&event->hw))
1091                        cpuc->n_pair++;
1092        }
1093        return n;
1094}
1095
1096static inline void x86_assign_hw_event(struct perf_event *event,
1097                                struct cpu_hw_events *cpuc, int i)
1098{
1099        struct hw_perf_event *hwc = &event->hw;
1100        int idx;
1101
1102        idx = hwc->idx = cpuc->assign[i];
1103        hwc->last_cpu = smp_processor_id();
1104        hwc->last_tag = ++cpuc->tags[i];
1105
1106        switch (hwc->idx) {
1107        case INTEL_PMC_IDX_FIXED_BTS:
1108        case INTEL_PMC_IDX_FIXED_VLBR:
1109                hwc->config_base = 0;
1110                hwc->event_base = 0;
1111                break;
1112
1113        case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1114                hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1115                hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1116                                (idx - INTEL_PMC_IDX_FIXED);
1117                hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1118                break;
1119
1120        default:
1121                hwc->config_base = x86_pmu_config_addr(hwc->idx);
1122                hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1123                hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1124                break;
1125        }
1126}
1127
1128/**
1129 * x86_perf_rdpmc_index - Return PMC counter used for event
1130 * @event: the perf_event to which the PMC counter was assigned
1131 *
1132 * The counter assigned to this performance event may change if interrupts
1133 * are enabled. This counter should thus never be used while interrupts are
1134 * enabled. Before this function is used to obtain the assigned counter the
1135 * event should be checked for validity using, for example,
1136 * perf_event_read_local(), within the same interrupt disabled section in
1137 * which this counter is planned to be used.
1138 *
1139 * Return: The index of the performance monitoring counter assigned to
1140 * @perf_event.
1141 */
1142int x86_perf_rdpmc_index(struct perf_event *event)
1143{
1144        lockdep_assert_irqs_disabled();
1145
1146        return event->hw.event_base_rdpmc;
1147}
1148
1149static inline int match_prev_assignment(struct hw_perf_event *hwc,
1150                                        struct cpu_hw_events *cpuc,
1151                                        int i)
1152{
1153        return hwc->idx == cpuc->assign[i] &&
1154                hwc->last_cpu == smp_processor_id() &&
1155                hwc->last_tag == cpuc->tags[i];
1156}
1157
1158static void x86_pmu_start(struct perf_event *event, int flags);
1159
1160static void x86_pmu_enable(struct pmu *pmu)
1161{
1162        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1163        struct perf_event *event;
1164        struct hw_perf_event *hwc;
1165        int i, added = cpuc->n_added;
1166
1167        if (!x86_pmu_initialized())
1168                return;
1169
1170        if (cpuc->enabled)
1171                return;
1172
1173        if (cpuc->n_added) {
1174                int n_running = cpuc->n_events - cpuc->n_added;
1175                /*
1176                 * apply assignment obtained either from
1177                 * hw_perf_group_sched_in() or x86_pmu_enable()
1178                 *
1179                 * step1: save events moving to new counters
1180                 */
1181                for (i = 0; i < n_running; i++) {
1182                        event = cpuc->event_list[i];
1183                        hwc = &event->hw;
1184
1185                        /*
1186                         * we can avoid reprogramming counter if:
1187                         * - assigned same counter as last time
1188                         * - running on same CPU as last time
1189                         * - no other event has used the counter since
1190                         */
1191                        if (hwc->idx == -1 ||
1192                            match_prev_assignment(hwc, cpuc, i))
1193                                continue;
1194
1195                        /*
1196                         * Ensure we don't accidentally enable a stopped
1197                         * counter simply because we rescheduled.
1198                         */
1199                        if (hwc->state & PERF_HES_STOPPED)
1200                                hwc->state |= PERF_HES_ARCH;
1201
1202                        x86_pmu_stop(event, PERF_EF_UPDATE);
1203                }
1204
1205                /*
1206                 * step2: reprogram moved events into new counters
1207                 */
1208                for (i = 0; i < cpuc->n_events; i++) {
1209                        event = cpuc->event_list[i];
1210                        hwc = &event->hw;
1211
1212                        if (!match_prev_assignment(hwc, cpuc, i))
1213                                x86_assign_hw_event(event, cpuc, i);
1214                        else if (i < n_running)
1215                                continue;
1216
1217                        if (hwc->state & PERF_HES_ARCH)
1218                                continue;
1219
1220                        x86_pmu_start(event, PERF_EF_RELOAD);
1221                }
1222                cpuc->n_added = 0;
1223                perf_events_lapic_init();
1224        }
1225
1226        cpuc->enabled = 1;
1227        barrier();
1228
1229        x86_pmu.enable_all(added);
1230}
1231
1232static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1233
1234/*
1235 * Set the next IRQ period, based on the hwc->period_left value.
1236 * To be called with the event disabled in hw:
1237 */
1238int x86_perf_event_set_period(struct perf_event *event)
1239{
1240        struct hw_perf_event *hwc = &event->hw;
1241        s64 left = local64_read(&hwc->period_left);
1242        s64 period = hwc->sample_period;
1243        int ret = 0, idx = hwc->idx;
1244
1245        if (unlikely(!hwc->event_base))
1246                return 0;
1247
1248        /*
1249         * If we are way outside a reasonable range then just skip forward:
1250         */
1251        if (unlikely(left <= -period)) {
1252                left = period;
1253                local64_set(&hwc->period_left, left);
1254                hwc->last_period = period;
1255                ret = 1;
1256        }
1257
1258        if (unlikely(left <= 0)) {
1259                left += period;
1260                local64_set(&hwc->period_left, left);
1261                hwc->last_period = period;
1262                ret = 1;
1263        }
1264        /*
1265         * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1266         */
1267        if (unlikely(left < 2))
1268                left = 2;
1269
1270        if (left > x86_pmu.max_period)
1271                left = x86_pmu.max_period;
1272
1273        if (x86_pmu.limit_period)
1274                left = x86_pmu.limit_period(event, left);
1275
1276        per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1277
1278        /*
1279         * The hw event starts counting from this event offset,
1280         * mark it to be able to extra future deltas:
1281         */
1282        local64_set(&hwc->prev_count, (u64)-left);
1283
1284        wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1285
1286        /*
1287         * Clear the Merge event counter's upper 16 bits since
1288         * we currently declare a 48-bit counter width
1289         */
1290        if (is_counter_pair(hwc))
1291                wrmsrl(x86_pmu_event_addr(idx + 1), 0);
1292
1293        /*
1294         * Due to erratum on certan cpu we need
1295         * a second write to be sure the register
1296         * is updated properly
1297         */
1298        if (x86_pmu.perfctr_second_write) {
1299                wrmsrl(hwc->event_base,
1300                        (u64)(-left) & x86_pmu.cntval_mask);
1301        }
1302
1303        perf_event_update_userpage(event);
1304
1305        return ret;
1306}
1307
1308void x86_pmu_enable_event(struct perf_event *event)
1309{
1310        if (__this_cpu_read(cpu_hw_events.enabled))
1311                __x86_pmu_enable_event(&event->hw,
1312                                       ARCH_PERFMON_EVENTSEL_ENABLE);
1313}
1314
1315/*
1316 * Add a single event to the PMU.
1317 *
1318 * The event is added to the group of enabled events
1319 * but only if it can be scheduled with existing events.
1320 */
1321static int x86_pmu_add(struct perf_event *event, int flags)
1322{
1323        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1324        struct hw_perf_event *hwc;
1325        int assign[X86_PMC_IDX_MAX];
1326        int n, n0, ret;
1327
1328        hwc = &event->hw;
1329
1330        n0 = cpuc->n_events;
1331        ret = n = collect_events(cpuc, event, false);
1332        if (ret < 0)
1333                goto out;
1334
1335        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1336        if (!(flags & PERF_EF_START))
1337                hwc->state |= PERF_HES_ARCH;
1338
1339        /*
1340         * If group events scheduling transaction was started,
1341         * skip the schedulability test here, it will be performed
1342         * at commit time (->commit_txn) as a whole.
1343         *
1344         * If commit fails, we'll call ->del() on all events
1345         * for which ->add() was called.
1346         */
1347        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1348                goto done_collect;
1349
1350        ret = x86_pmu.schedule_events(cpuc, n, assign);
1351        if (ret)
1352                goto out;
1353        /*
1354         * copy new assignment, now we know it is possible
1355         * will be used by hw_perf_enable()
1356         */
1357        memcpy(cpuc->assign, assign, n*sizeof(int));
1358
1359done_collect:
1360        /*
1361         * Commit the collect_events() state. See x86_pmu_del() and
1362         * x86_pmu_*_txn().
1363         */
1364        cpuc->n_events = n;
1365        cpuc->n_added += n - n0;
1366        cpuc->n_txn += n - n0;
1367
1368        if (x86_pmu.add) {
1369                /*
1370                 * This is before x86_pmu_enable() will call x86_pmu_start(),
1371                 * so we enable LBRs before an event needs them etc..
1372                 */
1373                x86_pmu.add(event);
1374        }
1375
1376        ret = 0;
1377out:
1378        return ret;
1379}
1380
1381static void x86_pmu_start(struct perf_event *event, int flags)
1382{
1383        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1384        int idx = event->hw.idx;
1385
1386        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1387                return;
1388
1389        if (WARN_ON_ONCE(idx == -1))
1390                return;
1391
1392        if (flags & PERF_EF_RELOAD) {
1393                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1394                x86_perf_event_set_period(event);
1395        }
1396
1397        event->hw.state = 0;
1398
1399        cpuc->events[idx] = event;
1400        __set_bit(idx, cpuc->active_mask);
1401        __set_bit(idx, cpuc->running);
1402        x86_pmu.enable(event);
1403        perf_event_update_userpage(event);
1404}
1405
1406void perf_event_print_debug(void)
1407{
1408        u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1409        u64 pebs, debugctl;
1410        struct cpu_hw_events *cpuc;
1411        unsigned long flags;
1412        int cpu, idx;
1413
1414        if (!x86_pmu.num_counters)
1415                return;
1416
1417        local_irq_save(flags);
1418
1419        cpu = smp_processor_id();
1420        cpuc = &per_cpu(cpu_hw_events, cpu);
1421
1422        if (x86_pmu.version >= 2) {
1423                rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1424                rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1425                rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1426                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1427
1428                pr_info("\n");
1429                pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1430                pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1431                pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1432                pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1433                if (x86_pmu.pebs_constraints) {
1434                        rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1435                        pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1436                }
1437                if (x86_pmu.lbr_nr) {
1438                        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1439                        pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1440                }
1441        }
1442        pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1443
1444        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1445                rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1446                rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1447
1448                prev_left = per_cpu(pmc_prev_left[idx], cpu);
1449
1450                pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1451                        cpu, idx, pmc_ctrl);
1452                pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1453                        cpu, idx, pmc_count);
1454                pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1455                        cpu, idx, prev_left);
1456        }
1457        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1458                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1459
1460                pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1461                        cpu, idx, pmc_count);
1462        }
1463        local_irq_restore(flags);
1464}
1465
1466void x86_pmu_stop(struct perf_event *event, int flags)
1467{
1468        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1469        struct hw_perf_event *hwc = &event->hw;
1470
1471        if (test_bit(hwc->idx, cpuc->active_mask)) {
1472                x86_pmu.disable(event);
1473                __clear_bit(hwc->idx, cpuc->active_mask);
1474                cpuc->events[hwc->idx] = NULL;
1475                WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1476                hwc->state |= PERF_HES_STOPPED;
1477        }
1478
1479        if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1480                /*
1481                 * Drain the remaining delta count out of a event
1482                 * that we are disabling:
1483                 */
1484                x86_perf_event_update(event);
1485                hwc->state |= PERF_HES_UPTODATE;
1486        }
1487}
1488
1489static void x86_pmu_del(struct perf_event *event, int flags)
1490{
1491        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1492        int i;
1493
1494        /*
1495         * If we're called during a txn, we only need to undo x86_pmu.add.
1496         * The events never got scheduled and ->cancel_txn will truncate
1497         * the event_list.
1498         *
1499         * XXX assumes any ->del() called during a TXN will only be on
1500         * an event added during that same TXN.
1501         */
1502        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1503                goto do_del;
1504
1505        /*
1506         * Not a TXN, therefore cleanup properly.
1507         */
1508        x86_pmu_stop(event, PERF_EF_UPDATE);
1509
1510        for (i = 0; i < cpuc->n_events; i++) {
1511                if (event == cpuc->event_list[i])
1512                        break;
1513        }
1514
1515        if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1516                return;
1517
1518        /* If we have a newly added event; make sure to decrease n_added. */
1519        if (i >= cpuc->n_events - cpuc->n_added)
1520                --cpuc->n_added;
1521
1522        if (x86_pmu.put_event_constraints)
1523                x86_pmu.put_event_constraints(cpuc, event);
1524
1525        /* Delete the array entry. */
1526        while (++i < cpuc->n_events) {
1527                cpuc->event_list[i-1] = cpuc->event_list[i];
1528                cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1529        }
1530        cpuc->event_constraint[i-1] = NULL;
1531        --cpuc->n_events;
1532
1533        perf_event_update_userpage(event);
1534
1535do_del:
1536        if (x86_pmu.del) {
1537                /*
1538                 * This is after x86_pmu_stop(); so we disable LBRs after any
1539                 * event can need them etc..
1540                 */
1541                x86_pmu.del(event);
1542        }
1543}
1544
1545int x86_pmu_handle_irq(struct pt_regs *regs)
1546{
1547        struct perf_sample_data data;
1548        struct cpu_hw_events *cpuc;
1549        struct perf_event *event;
1550        int idx, handled = 0;
1551        u64 val;
1552
1553        cpuc = this_cpu_ptr(&cpu_hw_events);
1554
1555        /*
1556         * Some chipsets need to unmask the LVTPC in a particular spot
1557         * inside the nmi handler.  As a result, the unmasking was pushed
1558         * into all the nmi handlers.
1559         *
1560         * This generic handler doesn't seem to have any issues where the
1561         * unmasking occurs so it was left at the top.
1562         */
1563        apic_write(APIC_LVTPC, APIC_DM_NMI);
1564
1565        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1566                if (!test_bit(idx, cpuc->active_mask))
1567                        continue;
1568
1569                event = cpuc->events[idx];
1570
1571                val = x86_perf_event_update(event);
1572                if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1573                        continue;
1574
1575                /*
1576                 * event overflow
1577                 */
1578                handled++;
1579                perf_sample_data_init(&data, 0, event->hw.last_period);
1580
1581                if (!x86_perf_event_set_period(event))
1582                        continue;
1583
1584                if (perf_event_overflow(event, &data, regs))
1585                        x86_pmu_stop(event, 0);
1586        }
1587
1588        if (handled)
1589                inc_irq_stat(apic_perf_irqs);
1590
1591        return handled;
1592}
1593
1594void perf_events_lapic_init(void)
1595{
1596        if (!x86_pmu.apic || !x86_pmu_initialized())
1597                return;
1598
1599        /*
1600         * Always use NMI for PMU
1601         */
1602        apic_write(APIC_LVTPC, APIC_DM_NMI);
1603}
1604
1605static int
1606perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1607{
1608        u64 start_clock;
1609        u64 finish_clock;
1610        int ret;
1611
1612        /*
1613         * All PMUs/events that share this PMI handler should make sure to
1614         * increment active_events for their events.
1615         */
1616        if (!atomic_read(&active_events))
1617                return NMI_DONE;
1618
1619        start_clock = sched_clock();
1620        ret = x86_pmu.handle_irq(regs);
1621        finish_clock = sched_clock();
1622
1623        perf_sample_event_took(finish_clock - start_clock);
1624
1625        return ret;
1626}
1627NOKPROBE_SYMBOL(perf_event_nmi_handler);
1628
1629struct event_constraint emptyconstraint;
1630struct event_constraint unconstrained;
1631
1632static int x86_pmu_prepare_cpu(unsigned int cpu)
1633{
1634        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1635        int i;
1636
1637        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1638                cpuc->kfree_on_online[i] = NULL;
1639        if (x86_pmu.cpu_prepare)
1640                return x86_pmu.cpu_prepare(cpu);
1641        return 0;
1642}
1643
1644static int x86_pmu_dead_cpu(unsigned int cpu)
1645{
1646        if (x86_pmu.cpu_dead)
1647                x86_pmu.cpu_dead(cpu);
1648        return 0;
1649}
1650
1651static int x86_pmu_online_cpu(unsigned int cpu)
1652{
1653        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1654        int i;
1655
1656        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1657                kfree(cpuc->kfree_on_online[i]);
1658                cpuc->kfree_on_online[i] = NULL;
1659        }
1660        return 0;
1661}
1662
1663static int x86_pmu_starting_cpu(unsigned int cpu)
1664{
1665        if (x86_pmu.cpu_starting)
1666                x86_pmu.cpu_starting(cpu);
1667        return 0;
1668}
1669
1670static int x86_pmu_dying_cpu(unsigned int cpu)
1671{
1672        if (x86_pmu.cpu_dying)
1673                x86_pmu.cpu_dying(cpu);
1674        return 0;
1675}
1676
1677static void __init pmu_check_apic(void)
1678{
1679        if (boot_cpu_has(X86_FEATURE_APIC))
1680                return;
1681
1682        x86_pmu.apic = 0;
1683        pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1684        pr_info("no hardware sampling interrupt available.\n");
1685
1686        /*
1687         * If we have a PMU initialized but no APIC
1688         * interrupts, we cannot sample hardware
1689         * events (user-space has to fall back and
1690         * sample via a hrtimer based software event):
1691         */
1692        pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1693
1694}
1695
1696static struct attribute_group x86_pmu_format_group __ro_after_init = {
1697        .name = "format",
1698        .attrs = NULL,
1699};
1700
1701ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1702{
1703        struct perf_pmu_events_attr *pmu_attr =
1704                container_of(attr, struct perf_pmu_events_attr, attr);
1705        u64 config = 0;
1706
1707        if (pmu_attr->id < x86_pmu.max_events)
1708                config = x86_pmu.event_map(pmu_attr->id);
1709
1710        /* string trumps id */
1711        if (pmu_attr->event_str)
1712                return sprintf(page, "%s", pmu_attr->event_str);
1713
1714        return x86_pmu.events_sysfs_show(page, config);
1715}
1716EXPORT_SYMBOL_GPL(events_sysfs_show);
1717
1718ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1719                          char *page)
1720{
1721        struct perf_pmu_events_ht_attr *pmu_attr =
1722                container_of(attr, struct perf_pmu_events_ht_attr, attr);
1723
1724        /*
1725         * Report conditional events depending on Hyper-Threading.
1726         *
1727         * This is overly conservative as usually the HT special
1728         * handling is not needed if the other CPU thread is idle.
1729         *
1730         * Note this does not (and cannot) handle the case when thread
1731         * siblings are invisible, for example with virtualization
1732         * if they are owned by some other guest.  The user tool
1733         * has to re-read when a thread sibling gets onlined later.
1734         */
1735        return sprintf(page, "%s",
1736                        topology_max_smt_threads() > 1 ?
1737                        pmu_attr->event_str_ht :
1738                        pmu_attr->event_str_noht);
1739}
1740
1741EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1742EVENT_ATTR(instructions,                INSTRUCTIONS            );
1743EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1744EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1745EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1746EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1747EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1748EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1749EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1750EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1751
1752static struct attribute *empty_attrs;
1753
1754static struct attribute *events_attr[] = {
1755        EVENT_PTR(CPU_CYCLES),
1756        EVENT_PTR(INSTRUCTIONS),
1757        EVENT_PTR(CACHE_REFERENCES),
1758        EVENT_PTR(CACHE_MISSES),
1759        EVENT_PTR(BRANCH_INSTRUCTIONS),
1760        EVENT_PTR(BRANCH_MISSES),
1761        EVENT_PTR(BUS_CYCLES),
1762        EVENT_PTR(STALLED_CYCLES_FRONTEND),
1763        EVENT_PTR(STALLED_CYCLES_BACKEND),
1764        EVENT_PTR(REF_CPU_CYCLES),
1765        NULL,
1766};
1767
1768/*
1769 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1770 * out of events_attr attributes.
1771 */
1772static umode_t
1773is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1774{
1775        struct perf_pmu_events_attr *pmu_attr;
1776
1777        if (idx >= x86_pmu.max_events)
1778                return 0;
1779
1780        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1781        /* str trumps id */
1782        return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1783}
1784
1785static struct attribute_group x86_pmu_events_group __ro_after_init = {
1786        .name = "events",
1787        .attrs = events_attr,
1788        .is_visible = is_visible,
1789};
1790
1791ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1792{
1793        u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1794        u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1795        bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1796        bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1797        bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1798        bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1799        ssize_t ret;
1800
1801        /*
1802        * We have whole page size to spend and just little data
1803        * to write, so we can safely use sprintf.
1804        */
1805        ret = sprintf(page, "event=0x%02llx", event);
1806
1807        if (umask)
1808                ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1809
1810        if (edge)
1811                ret += sprintf(page + ret, ",edge");
1812
1813        if (pc)
1814                ret += sprintf(page + ret, ",pc");
1815
1816        if (any)
1817                ret += sprintf(page + ret, ",any");
1818
1819        if (inv)
1820                ret += sprintf(page + ret, ",inv");
1821
1822        if (cmask)
1823                ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1824
1825        ret += sprintf(page + ret, "\n");
1826
1827        return ret;
1828}
1829
1830static struct attribute_group x86_pmu_attr_group;
1831static struct attribute_group x86_pmu_caps_group;
1832
1833static int __init init_hw_perf_events(void)
1834{
1835        struct x86_pmu_quirk *quirk;
1836        int err;
1837
1838        pr_info("Performance Events: ");
1839
1840        switch (boot_cpu_data.x86_vendor) {
1841        case X86_VENDOR_INTEL:
1842                err = intel_pmu_init();
1843                break;
1844        case X86_VENDOR_AMD:
1845                err = amd_pmu_init();
1846                break;
1847        case X86_VENDOR_HYGON:
1848                err = amd_pmu_init();
1849                x86_pmu.name = "HYGON";
1850                break;
1851        case X86_VENDOR_ZHAOXIN:
1852        case X86_VENDOR_CENTAUR:
1853                err = zhaoxin_pmu_init();
1854                break;
1855        default:
1856                err = -ENOTSUPP;
1857        }
1858        if (err != 0) {
1859                pr_cont("no PMU driver, software events only.\n");
1860                return 0;
1861        }
1862
1863        pmu_check_apic();
1864
1865        /* sanity check that the hardware exists or is emulated */
1866        if (!check_hw_exists())
1867                return 0;
1868
1869        pr_cont("%s PMU driver.\n", x86_pmu.name);
1870
1871        x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1872
1873        for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1874                quirk->func();
1875
1876        if (!x86_pmu.intel_ctrl)
1877                x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1878
1879        perf_events_lapic_init();
1880        register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1881
1882        unconstrained = (struct event_constraint)
1883                __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1884                                   0, x86_pmu.num_counters, 0, 0);
1885
1886        x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1887
1888        if (!x86_pmu.events_sysfs_show)
1889                x86_pmu_events_group.attrs = &empty_attrs;
1890
1891        pmu.attr_update = x86_pmu.attr_update;
1892
1893        pr_info("... version:                %d\n",     x86_pmu.version);
1894        pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1895        pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1896        pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1897        pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1898        pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1899        pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1900
1901        /*
1902         * Install callbacks. Core will call them for each online
1903         * cpu.
1904         */
1905        err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1906                                x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1907        if (err)
1908                return err;
1909
1910        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1911                                "perf/x86:starting", x86_pmu_starting_cpu,
1912                                x86_pmu_dying_cpu);
1913        if (err)
1914                goto out;
1915
1916        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1917                                x86_pmu_online_cpu, NULL);
1918        if (err)
1919                goto out1;
1920
1921        err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1922        if (err)
1923                goto out2;
1924
1925        return 0;
1926
1927out2:
1928        cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1929out1:
1930        cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1931out:
1932        cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1933        return err;
1934}
1935early_initcall(init_hw_perf_events);
1936
1937static inline void x86_pmu_read(struct perf_event *event)
1938{
1939        if (x86_pmu.read)
1940                return x86_pmu.read(event);
1941        x86_perf_event_update(event);
1942}
1943
1944/*
1945 * Start group events scheduling transaction
1946 * Set the flag to make pmu::enable() not perform the
1947 * schedulability test, it will be performed at commit time
1948 *
1949 * We only support PERF_PMU_TXN_ADD transactions. Save the
1950 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1951 * transactions.
1952 */
1953static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1954{
1955        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1956
1957        WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1958
1959        cpuc->txn_flags = txn_flags;
1960        if (txn_flags & ~PERF_PMU_TXN_ADD)
1961                return;
1962
1963        perf_pmu_disable(pmu);
1964        __this_cpu_write(cpu_hw_events.n_txn, 0);
1965}
1966
1967/*
1968 * Stop group events scheduling transaction
1969 * Clear the flag and pmu::enable() will perform the
1970 * schedulability test.
1971 */
1972static void x86_pmu_cancel_txn(struct pmu *pmu)
1973{
1974        unsigned int txn_flags;
1975        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1976
1977        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1978
1979        txn_flags = cpuc->txn_flags;
1980        cpuc->txn_flags = 0;
1981        if (txn_flags & ~PERF_PMU_TXN_ADD)
1982                return;
1983
1984        /*
1985         * Truncate collected array by the number of events added in this
1986         * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1987         */
1988        __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1989        __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1990        perf_pmu_enable(pmu);
1991}
1992
1993/*
1994 * Commit group events scheduling transaction
1995 * Perform the group schedulability test as a whole
1996 * Return 0 if success
1997 *
1998 * Does not cancel the transaction on failure; expects the caller to do this.
1999 */
2000static int x86_pmu_commit_txn(struct pmu *pmu)
2001{
2002        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2003        int assign[X86_PMC_IDX_MAX];
2004        int n, ret;
2005
2006        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2007
2008        if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2009                cpuc->txn_flags = 0;
2010                return 0;
2011        }
2012
2013        n = cpuc->n_events;
2014
2015        if (!x86_pmu_initialized())
2016                return -EAGAIN;
2017
2018        ret = x86_pmu.schedule_events(cpuc, n, assign);
2019        if (ret)
2020                return ret;
2021
2022        /*
2023         * copy new assignment, now we know it is possible
2024         * will be used by hw_perf_enable()
2025         */
2026        memcpy(cpuc->assign, assign, n*sizeof(int));
2027
2028        cpuc->txn_flags = 0;
2029        perf_pmu_enable(pmu);
2030        return 0;
2031}
2032/*
2033 * a fake_cpuc is used to validate event groups. Due to
2034 * the extra reg logic, we need to also allocate a fake
2035 * per_core and per_cpu structure. Otherwise, group events
2036 * using extra reg may conflict without the kernel being
2037 * able to catch this when the last event gets added to
2038 * the group.
2039 */
2040static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2041{
2042        intel_cpuc_finish(cpuc);
2043        kfree(cpuc);
2044}
2045
2046static struct cpu_hw_events *allocate_fake_cpuc(void)
2047{
2048        struct cpu_hw_events *cpuc;
2049        int cpu = raw_smp_processor_id();
2050
2051        cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2052        if (!cpuc)
2053                return ERR_PTR(-ENOMEM);
2054        cpuc->is_fake = 1;
2055
2056        if (intel_cpuc_prepare(cpuc, cpu))
2057                goto error;
2058
2059        return cpuc;
2060error:
2061        free_fake_cpuc(cpuc);
2062        return ERR_PTR(-ENOMEM);
2063}
2064
2065/*
2066 * validate that we can schedule this event
2067 */
2068static int validate_event(struct perf_event *event)
2069{
2070        struct cpu_hw_events *fake_cpuc;
2071        struct event_constraint *c;
2072        int ret = 0;
2073
2074        fake_cpuc = allocate_fake_cpuc();
2075        if (IS_ERR(fake_cpuc))
2076                return PTR_ERR(fake_cpuc);
2077
2078        c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2079
2080        if (!c || !c->weight)
2081                ret = -EINVAL;
2082
2083        if (x86_pmu.put_event_constraints)
2084                x86_pmu.put_event_constraints(fake_cpuc, event);
2085
2086        free_fake_cpuc(fake_cpuc);
2087
2088        return ret;
2089}
2090
2091/*
2092 * validate a single event group
2093 *
2094 * validation include:
2095 *      - check events are compatible which each other
2096 *      - events do not compete for the same counter
2097 *      - number of events <= number of counters
2098 *
2099 * validation ensures the group can be loaded onto the
2100 * PMU if it was the only group available.
2101 */
2102static int validate_group(struct perf_event *event)
2103{
2104        struct perf_event *leader = event->group_leader;
2105        struct cpu_hw_events *fake_cpuc;
2106        int ret = -EINVAL, n;
2107
2108        fake_cpuc = allocate_fake_cpuc();
2109        if (IS_ERR(fake_cpuc))
2110                return PTR_ERR(fake_cpuc);
2111        /*
2112         * the event is not yet connected with its
2113         * siblings therefore we must first collect
2114         * existing siblings, then add the new event
2115         * before we can simulate the scheduling
2116         */
2117        n = collect_events(fake_cpuc, leader, true);
2118        if (n < 0)
2119                goto out;
2120
2121        fake_cpuc->n_events = n;
2122        n = collect_events(fake_cpuc, event, false);
2123        if (n < 0)
2124                goto out;
2125
2126        fake_cpuc->n_events = 0;
2127        ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2128
2129out:
2130        free_fake_cpuc(fake_cpuc);
2131        return ret;
2132}
2133
2134static int x86_pmu_event_init(struct perf_event *event)
2135{
2136        struct pmu *tmp;
2137        int err;
2138
2139        switch (event->attr.type) {
2140        case PERF_TYPE_RAW:
2141        case PERF_TYPE_HARDWARE:
2142        case PERF_TYPE_HW_CACHE:
2143                break;
2144
2145        default:
2146                return -ENOENT;
2147        }
2148
2149        err = __x86_pmu_event_init(event);
2150        if (!err) {
2151                /*
2152                 * we temporarily connect event to its pmu
2153                 * such that validate_group() can classify
2154                 * it as an x86 event using is_x86_event()
2155                 */
2156                tmp = event->pmu;
2157                event->pmu = &pmu;
2158
2159                if (event->group_leader != event)
2160                        err = validate_group(event);
2161                else
2162                        err = validate_event(event);
2163
2164                event->pmu = tmp;
2165        }
2166        if (err) {
2167                if (event->destroy)
2168                        event->destroy(event);
2169        }
2170
2171        if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2172            !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2173                event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2174
2175        return err;
2176}
2177
2178static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2179{
2180        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2181                return;
2182
2183        /*
2184         * This function relies on not being called concurrently in two
2185         * tasks in the same mm.  Otherwise one task could observe
2186         * perf_rdpmc_allowed > 1 and return all the way back to
2187         * userspace with CR4.PCE clear while another task is still
2188         * doing on_each_cpu_mask() to propagate CR4.PCE.
2189         *
2190         * For now, this can't happen because all callers hold mmap_lock
2191         * for write.  If this changes, we'll need a different solution.
2192         */
2193        mmap_assert_write_locked(mm);
2194
2195        if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2196                on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2197}
2198
2199static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2200{
2201
2202        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2203                return;
2204
2205        if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2206                on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2207}
2208
2209static int x86_pmu_event_idx(struct perf_event *event)
2210{
2211        int idx = event->hw.idx;
2212
2213        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2214                return 0;
2215
2216        if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2217                idx -= INTEL_PMC_IDX_FIXED;
2218                idx |= 1 << 30;
2219        }
2220
2221        return idx + 1;
2222}
2223
2224static ssize_t get_attr_rdpmc(struct device *cdev,
2225                              struct device_attribute *attr,
2226                              char *buf)
2227{
2228        return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2229}
2230
2231static ssize_t set_attr_rdpmc(struct device *cdev,
2232                              struct device_attribute *attr,
2233                              const char *buf, size_t count)
2234{
2235        unsigned long val;
2236        ssize_t ret;
2237
2238        ret = kstrtoul(buf, 0, &val);
2239        if (ret)
2240                return ret;
2241
2242        if (val > 2)
2243                return -EINVAL;
2244
2245        if (x86_pmu.attr_rdpmc_broken)
2246                return -ENOTSUPP;
2247
2248        if (val != x86_pmu.attr_rdpmc) {
2249                /*
2250                 * Changing into or out of never available or always available,
2251                 * aka perf-event-bypassing mode. This path is extremely slow,
2252                 * but only root can trigger it, so it's okay.
2253                 */
2254                if (val == 0)
2255                        static_branch_inc(&rdpmc_never_available_key);
2256                else if (x86_pmu.attr_rdpmc == 0)
2257                        static_branch_dec(&rdpmc_never_available_key);
2258
2259                if (val == 2)
2260                        static_branch_inc(&rdpmc_always_available_key);
2261                else if (x86_pmu.attr_rdpmc == 2)
2262                        static_branch_dec(&rdpmc_always_available_key);
2263
2264                on_each_cpu(cr4_update_pce, NULL, 1);
2265                x86_pmu.attr_rdpmc = val;
2266        }
2267
2268        return count;
2269}
2270
2271static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2272
2273static struct attribute *x86_pmu_attrs[] = {
2274        &dev_attr_rdpmc.attr,
2275        NULL,
2276};
2277
2278static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2279        .attrs = x86_pmu_attrs,
2280};
2281
2282static ssize_t max_precise_show(struct device *cdev,
2283                                  struct device_attribute *attr,
2284                                  char *buf)
2285{
2286        return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2287}
2288
2289static DEVICE_ATTR_RO(max_precise);
2290
2291static struct attribute *x86_pmu_caps_attrs[] = {
2292        &dev_attr_max_precise.attr,
2293        NULL
2294};
2295
2296static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2297        .name = "caps",
2298        .attrs = x86_pmu_caps_attrs,
2299};
2300
2301static const struct attribute_group *x86_pmu_attr_groups[] = {
2302        &x86_pmu_attr_group,
2303        &x86_pmu_format_group,
2304        &x86_pmu_events_group,
2305        &x86_pmu_caps_group,
2306        NULL,
2307};
2308
2309static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2310{
2311        if (x86_pmu.sched_task)
2312                x86_pmu.sched_task(ctx, sched_in);
2313}
2314
2315static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2316                                  struct perf_event_context *next)
2317{
2318        if (x86_pmu.swap_task_ctx)
2319                x86_pmu.swap_task_ctx(prev, next);
2320}
2321
2322void perf_check_microcode(void)
2323{
2324        if (x86_pmu.check_microcode)
2325                x86_pmu.check_microcode();
2326}
2327
2328static int x86_pmu_check_period(struct perf_event *event, u64 value)
2329{
2330        if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2331                return -EINVAL;
2332
2333        if (value && x86_pmu.limit_period) {
2334                if (x86_pmu.limit_period(event, value) > value)
2335                        return -EINVAL;
2336        }
2337
2338        return 0;
2339}
2340
2341static int x86_pmu_aux_output_match(struct perf_event *event)
2342{
2343        if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2344                return 0;
2345
2346        if (x86_pmu.aux_output_match)
2347                return x86_pmu.aux_output_match(event);
2348
2349        return 0;
2350}
2351
2352static struct pmu pmu = {
2353        .pmu_enable             = x86_pmu_enable,
2354        .pmu_disable            = x86_pmu_disable,
2355
2356        .attr_groups            = x86_pmu_attr_groups,
2357
2358        .event_init             = x86_pmu_event_init,
2359
2360        .event_mapped           = x86_pmu_event_mapped,
2361        .event_unmapped         = x86_pmu_event_unmapped,
2362
2363        .add                    = x86_pmu_add,
2364        .del                    = x86_pmu_del,
2365        .start                  = x86_pmu_start,
2366        .stop                   = x86_pmu_stop,
2367        .read                   = x86_pmu_read,
2368
2369        .start_txn              = x86_pmu_start_txn,
2370        .cancel_txn             = x86_pmu_cancel_txn,
2371        .commit_txn             = x86_pmu_commit_txn,
2372
2373        .event_idx              = x86_pmu_event_idx,
2374        .sched_task             = x86_pmu_sched_task,
2375        .swap_task_ctx          = x86_pmu_swap_task_ctx,
2376        .check_period           = x86_pmu_check_period,
2377
2378        .aux_output_match       = x86_pmu_aux_output_match,
2379};
2380
2381void arch_perf_update_userpage(struct perf_event *event,
2382                               struct perf_event_mmap_page *userpg, u64 now)
2383{
2384        struct cyc2ns_data data;
2385        u64 offset;
2386
2387        userpg->cap_user_time = 0;
2388        userpg->cap_user_time_zero = 0;
2389        userpg->cap_user_rdpmc =
2390                !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2391        userpg->pmc_width = x86_pmu.cntval_bits;
2392
2393        if (!using_native_sched_clock() || !sched_clock_stable())
2394                return;
2395
2396        cyc2ns_read_begin(&data);
2397
2398        offset = data.cyc2ns_offset + __sched_clock_offset;
2399
2400        /*
2401         * Internal timekeeping for enabled/running/stopped times
2402         * is always in the local_clock domain.
2403         */
2404        userpg->cap_user_time = 1;
2405        userpg->time_mult = data.cyc2ns_mul;
2406        userpg->time_shift = data.cyc2ns_shift;
2407        userpg->time_offset = offset - now;
2408
2409        /*
2410         * cap_user_time_zero doesn't make sense when we're using a different
2411         * time base for the records.
2412         */
2413        if (!event->attr.use_clockid) {
2414                userpg->cap_user_time_zero = 1;
2415                userpg->time_zero = offset;
2416        }
2417
2418        cyc2ns_read_end();
2419}
2420
2421/*
2422 * Determine whether the regs were taken from an irq/exception handler rather
2423 * than from perf_arch_fetch_caller_regs().
2424 */
2425static bool perf_hw_regs(struct pt_regs *regs)
2426{
2427        return regs->flags & X86_EFLAGS_FIXED;
2428}
2429
2430void
2431perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2432{
2433        struct unwind_state state;
2434        unsigned long addr;
2435
2436        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2437                /* TODO: We don't support guest os callchain now */
2438                return;
2439        }
2440
2441        if (perf_callchain_store(entry, regs->ip))
2442                return;
2443
2444        if (perf_hw_regs(regs))
2445                unwind_start(&state, current, regs, NULL);
2446        else
2447                unwind_start(&state, current, NULL, (void *)regs->sp);
2448
2449        for (; !unwind_done(&state); unwind_next_frame(&state)) {
2450                addr = unwind_get_return_address(&state);
2451                if (!addr || perf_callchain_store(entry, addr))
2452                        return;
2453        }
2454}
2455
2456static inline int
2457valid_user_frame(const void __user *fp, unsigned long size)
2458{
2459        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2460}
2461
2462static unsigned long get_segment_base(unsigned int segment)
2463{
2464        struct desc_struct *desc;
2465        unsigned int idx = segment >> 3;
2466
2467        if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2468#ifdef CONFIG_MODIFY_LDT_SYSCALL
2469                struct ldt_struct *ldt;
2470
2471                /* IRQs are off, so this synchronizes with smp_store_release */
2472                ldt = READ_ONCE(current->active_mm->context.ldt);
2473                if (!ldt || idx >= ldt->nr_entries)
2474                        return 0;
2475
2476                desc = &ldt->entries[idx];
2477#else
2478                return 0;
2479#endif
2480        } else {
2481                if (idx >= GDT_ENTRIES)
2482                        return 0;
2483
2484                desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2485        }
2486
2487        return get_desc_base(desc);
2488}
2489
2490#ifdef CONFIG_IA32_EMULATION
2491
2492#include <linux/compat.h>
2493
2494static inline int
2495perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2496{
2497        /* 32-bit process in 64-bit kernel. */
2498        unsigned long ss_base, cs_base;
2499        struct stack_frame_ia32 frame;
2500        const struct stack_frame_ia32 __user *fp;
2501
2502        if (!test_thread_flag(TIF_IA32))
2503                return 0;
2504
2505        cs_base = get_segment_base(regs->cs);
2506        ss_base = get_segment_base(regs->ss);
2507
2508        fp = compat_ptr(ss_base + regs->bp);
2509        pagefault_disable();
2510        while (entry->nr < entry->max_stack) {
2511                if (!valid_user_frame(fp, sizeof(frame)))
2512                        break;
2513
2514                if (__get_user(frame.next_frame, &fp->next_frame))
2515                        break;
2516                if (__get_user(frame.return_address, &fp->return_address))
2517                        break;
2518
2519                perf_callchain_store(entry, cs_base + frame.return_address);
2520                fp = compat_ptr(ss_base + frame.next_frame);
2521        }
2522        pagefault_enable();
2523        return 1;
2524}
2525#else
2526static inline int
2527perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2528{
2529    return 0;
2530}
2531#endif
2532
2533void
2534perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2535{
2536        struct stack_frame frame;
2537        const struct stack_frame __user *fp;
2538
2539        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2540                /* TODO: We don't support guest os callchain now */
2541                return;
2542        }
2543
2544        /*
2545         * We don't know what to do with VM86 stacks.. ignore them for now.
2546         */
2547        if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2548                return;
2549
2550        fp = (void __user *)regs->bp;
2551
2552        perf_callchain_store(entry, regs->ip);
2553
2554        if (!nmi_uaccess_okay())
2555                return;
2556
2557        if (perf_callchain_user32(regs, entry))
2558                return;
2559
2560        pagefault_disable();
2561        while (entry->nr < entry->max_stack) {
2562                if (!valid_user_frame(fp, sizeof(frame)))
2563                        break;
2564
2565                if (__get_user(frame.next_frame, &fp->next_frame))
2566                        break;
2567                if (__get_user(frame.return_address, &fp->return_address))
2568                        break;
2569
2570                perf_callchain_store(entry, frame.return_address);
2571                fp = (void __user *)frame.next_frame;
2572        }
2573        pagefault_enable();
2574}
2575
2576/*
2577 * Deal with code segment offsets for the various execution modes:
2578 *
2579 *   VM86 - the good olde 16 bit days, where the linear address is
2580 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2581 *
2582 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2583 *          to figure out what the 32bit base address is.
2584 *
2585 *    X32 - has TIF_X32 set, but is running in x86_64
2586 *
2587 * X86_64 - CS,DS,SS,ES are all zero based.
2588 */
2589static unsigned long code_segment_base(struct pt_regs *regs)
2590{
2591        /*
2592         * For IA32 we look at the GDT/LDT segment base to convert the
2593         * effective IP to a linear address.
2594         */
2595
2596#ifdef CONFIG_X86_32
2597        /*
2598         * If we are in VM86 mode, add the segment offset to convert to a
2599         * linear address.
2600         */
2601        if (regs->flags & X86_VM_MASK)
2602                return 0x10 * regs->cs;
2603
2604        if (user_mode(regs) && regs->cs != __USER_CS)
2605                return get_segment_base(regs->cs);
2606#else
2607        if (user_mode(regs) && !user_64bit_mode(regs) &&
2608            regs->cs != __USER32_CS)
2609                return get_segment_base(regs->cs);
2610#endif
2611        return 0;
2612}
2613
2614unsigned long perf_instruction_pointer(struct pt_regs *regs)
2615{
2616        if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2617                return perf_guest_cbs->get_guest_ip();
2618
2619        return regs->ip + code_segment_base(regs);
2620}
2621
2622unsigned long perf_misc_flags(struct pt_regs *regs)
2623{
2624        int misc = 0;
2625
2626        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2627                if (perf_guest_cbs->is_user_mode())
2628                        misc |= PERF_RECORD_MISC_GUEST_USER;
2629                else
2630                        misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2631        } else {
2632                if (user_mode(regs))
2633                        misc |= PERF_RECORD_MISC_USER;
2634                else
2635                        misc |= PERF_RECORD_MISC_KERNEL;
2636        }
2637
2638        if (regs->flags & PERF_EFLAGS_EXACT)
2639                misc |= PERF_RECORD_MISC_EXACT_IP;
2640
2641        return misc;
2642}
2643
2644void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2645{
2646        cap->version            = x86_pmu.version;
2647        cap->num_counters_gp    = x86_pmu.num_counters;
2648        cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2649        cap->bit_width_gp       = x86_pmu.cntval_bits;
2650        cap->bit_width_fixed    = x86_pmu.cntval_bits;
2651        cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2652        cap->events_mask_len    = x86_pmu.events_mask_len;
2653}
2654EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2655