linux/arch/x86/kernel/cpu/intel.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/kernel.h>
   3#include <linux/pgtable.h>
   4
   5#include <linux/string.h>
   6#include <linux/bitops.h>
   7#include <linux/smp.h>
   8#include <linux/sched.h>
   9#include <linux/sched/clock.h>
  10#include <linux/thread_info.h>
  11#include <linux/init.h>
  12#include <linux/uaccess.h>
  13
  14#include <asm/cpufeature.h>
  15#include <asm/msr.h>
  16#include <asm/bugs.h>
  17#include <asm/cpu.h>
  18#include <asm/intel-family.h>
  19#include <asm/microcode_intel.h>
  20#include <asm/hwcap2.h>
  21#include <asm/elf.h>
  22#include <asm/cpu_device_id.h>
  23#include <asm/cmdline.h>
  24#include <asm/traps.h>
  25#include <asm/resctrl.h>
  26#include <asm/numa.h>
  27
  28#ifdef CONFIG_X86_64
  29#include <linux/topology.h>
  30#endif
  31
  32#include "cpu.h"
  33
  34#ifdef CONFIG_X86_LOCAL_APIC
  35#include <asm/mpspec.h>
  36#include <asm/apic.h>
  37#endif
  38
  39enum split_lock_detect_state {
  40        sld_off = 0,
  41        sld_warn,
  42        sld_fatal,
  43};
  44
  45/*
  46 * Default to sld_off because most systems do not support split lock detection
  47 * split_lock_setup() will switch this to sld_warn on systems that support
  48 * split lock detect, unless there is a command line override.
  49 */
  50static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
  51static u64 msr_test_ctrl_cache __ro_after_init;
  52
  53/*
  54 * With a name like MSR_TEST_CTL it should go without saying, but don't touch
  55 * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
  56 * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
  57 */
  58static bool cpu_model_supports_sld __ro_after_init;
  59
  60/*
  61 * Processors which have self-snooping capability can handle conflicting
  62 * memory type across CPUs by snooping its own cache. However, there exists
  63 * CPU models in which having conflicting memory types still leads to
  64 * unpredictable behavior, machine check errors, or hangs. Clear this
  65 * feature to prevent its use on machines with known erratas.
  66 */
  67static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
  68{
  69        switch (c->x86_model) {
  70        case INTEL_FAM6_CORE_YONAH:
  71        case INTEL_FAM6_CORE2_MEROM:
  72        case INTEL_FAM6_CORE2_MEROM_L:
  73        case INTEL_FAM6_CORE2_PENRYN:
  74        case INTEL_FAM6_CORE2_DUNNINGTON:
  75        case INTEL_FAM6_NEHALEM:
  76        case INTEL_FAM6_NEHALEM_G:
  77        case INTEL_FAM6_NEHALEM_EP:
  78        case INTEL_FAM6_NEHALEM_EX:
  79        case INTEL_FAM6_WESTMERE:
  80        case INTEL_FAM6_WESTMERE_EP:
  81        case INTEL_FAM6_SANDYBRIDGE:
  82                setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
  83        }
  84}
  85
  86static bool ring3mwait_disabled __read_mostly;
  87
  88static int __init ring3mwait_disable(char *__unused)
  89{
  90        ring3mwait_disabled = true;
  91        return 0;
  92}
  93__setup("ring3mwait=disable", ring3mwait_disable);
  94
  95static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
  96{
  97        /*
  98         * Ring 3 MONITOR/MWAIT feature cannot be detected without
  99         * cpu model and family comparison.
 100         */
 101        if (c->x86 != 6)
 102                return;
 103        switch (c->x86_model) {
 104        case INTEL_FAM6_XEON_PHI_KNL:
 105        case INTEL_FAM6_XEON_PHI_KNM:
 106                break;
 107        default:
 108                return;
 109        }
 110
 111        if (ring3mwait_disabled)
 112                return;
 113
 114        set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
 115        this_cpu_or(msr_misc_features_shadow,
 116                    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
 117
 118        if (c == &boot_cpu_data)
 119                ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 120}
 121
 122/*
 123 * Early microcode releases for the Spectre v2 mitigation were broken.
 124 * Information taken from;
 125 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
 126 * - https://kb.vmware.com/s/article/52345
 127 * - Microcode revisions observed in the wild
 128 * - Release note from 20180108 microcode release
 129 */
 130struct sku_microcode {
 131        u8 model;
 132        u8 stepping;
 133        u32 microcode;
 134};
 135static const struct sku_microcode spectre_bad_microcodes[] = {
 136        { INTEL_FAM6_KABYLAKE,          0x0B,   0x80 },
 137        { INTEL_FAM6_KABYLAKE,          0x0A,   0x80 },
 138        { INTEL_FAM6_KABYLAKE,          0x09,   0x80 },
 139        { INTEL_FAM6_KABYLAKE_L,        0x0A,   0x80 },
 140        { INTEL_FAM6_KABYLAKE_L,        0x09,   0x80 },
 141        { INTEL_FAM6_SKYLAKE_X,         0x03,   0x0100013e },
 142        { INTEL_FAM6_SKYLAKE_X,         0x04,   0x0200003c },
 143        { INTEL_FAM6_BROADWELL,         0x04,   0x28 },
 144        { INTEL_FAM6_BROADWELL_G,       0x01,   0x1b },
 145        { INTEL_FAM6_BROADWELL_D,       0x02,   0x14 },
 146        { INTEL_FAM6_BROADWELL_D,       0x03,   0x07000011 },
 147        { INTEL_FAM6_BROADWELL_X,       0x01,   0x0b000025 },
 148        { INTEL_FAM6_HASWELL_L,         0x01,   0x21 },
 149        { INTEL_FAM6_HASWELL_G,         0x01,   0x18 },
 150        { INTEL_FAM6_HASWELL,           0x03,   0x23 },
 151        { INTEL_FAM6_HASWELL_X,         0x02,   0x3b },
 152        { INTEL_FAM6_HASWELL_X,         0x04,   0x10 },
 153        { INTEL_FAM6_IVYBRIDGE_X,       0x04,   0x42a },
 154        /* Observed in the wild */
 155        { INTEL_FAM6_SANDYBRIDGE_X,     0x06,   0x61b },
 156        { INTEL_FAM6_SANDYBRIDGE_X,     0x07,   0x712 },
 157};
 158
 159static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
 160{
 161        int i;
 162
 163        /*
 164         * We know that the hypervisor lie to us on the microcode version so
 165         * we may as well hope that it is running the correct version.
 166         */
 167        if (cpu_has(c, X86_FEATURE_HYPERVISOR))
 168                return false;
 169
 170        if (c->x86 != 6)
 171                return false;
 172
 173        for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
 174                if (c->x86_model == spectre_bad_microcodes[i].model &&
 175                    c->x86_stepping == spectre_bad_microcodes[i].stepping)
 176                        return (c->microcode <= spectre_bad_microcodes[i].microcode);
 177        }
 178        return false;
 179}
 180
 181static void early_init_intel(struct cpuinfo_x86 *c)
 182{
 183        u64 misc_enable;
 184
 185        /* Unmask CPUID levels if masked: */
 186        if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 187                if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 188                                  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 189                        c->cpuid_level = cpuid_eax(0);
 190                        get_cpu_cap(c);
 191                }
 192        }
 193
 194        if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 195                (c->x86 == 0x6 && c->x86_model >= 0x0e))
 196                set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 197
 198        if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
 199                c->microcode = intel_get_microcode_revision();
 200
 201        /* Now if any of them are set, check the blacklist and clear the lot */
 202        if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
 203             cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
 204             cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
 205             cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
 206                pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
 207                setup_clear_cpu_cap(X86_FEATURE_IBRS);
 208                setup_clear_cpu_cap(X86_FEATURE_IBPB);
 209                setup_clear_cpu_cap(X86_FEATURE_STIBP);
 210                setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
 211                setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
 212                setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
 213                setup_clear_cpu_cap(X86_FEATURE_SSBD);
 214                setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
 215        }
 216
 217        /*
 218         * Atom erratum AAE44/AAF40/AAG38/AAH41:
 219         *
 220         * A race condition between speculative fetches and invalidating
 221         * a large page.  This is worked around in microcode, but we
 222         * need the microcode to have already been loaded... so if it is
 223         * not, recommend a BIOS update and disable large pages.
 224         */
 225        if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
 226            c->microcode < 0x20e) {
 227                pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
 228                clear_cpu_cap(c, X86_FEATURE_PSE);
 229        }
 230
 231#ifdef CONFIG_X86_64
 232        set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 233#else
 234        /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 235        if (c->x86 == 15 && c->x86_cache_alignment == 64)
 236                c->x86_cache_alignment = 128;
 237#endif
 238
 239        /* CPUID workaround for 0F33/0F34 CPU */
 240        if (c->x86 == 0xF && c->x86_model == 0x3
 241            && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
 242                c->x86_phys_bits = 36;
 243
 244        /*
 245         * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 246         * with P/T states and does not stop in deep C-states.
 247         *
 248         * It is also reliable across cores and sockets. (but not across
 249         * cabinets - we turn it off in that case explicitly.)
 250         */
 251        if (c->x86_power & (1 << 8)) {
 252                set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 253                set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 254        }
 255
 256        /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 257        if (c->x86 == 6) {
 258                switch (c->x86_model) {
 259                case INTEL_FAM6_ATOM_SALTWELL_MID:
 260                case INTEL_FAM6_ATOM_SALTWELL_TABLET:
 261                case INTEL_FAM6_ATOM_SILVERMONT_MID:
 262                case INTEL_FAM6_ATOM_AIRMONT_NP:
 263                        set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
 264                        break;
 265                default:
 266                        break;
 267                }
 268        }
 269
 270        /*
 271         * There is a known erratum on Pentium III and Core Solo
 272         * and Core Duo CPUs.
 273         * " Page with PAT set to WC while associated MTRR is UC
 274         *   may consolidate to UC "
 275         * Because of this erratum, it is better to stick with
 276         * setting WC in MTRR rather than using PAT on these CPUs.
 277         *
 278         * Enable PAT WC only on P4, Core 2 or later CPUs.
 279         */
 280        if (c->x86 == 6 && c->x86_model < 15)
 281                clear_cpu_cap(c, X86_FEATURE_PAT);
 282
 283        /*
 284         * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
 285         * clear the fast string and enhanced fast string CPU capabilities.
 286         */
 287        if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 288                rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 289                if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
 290                        pr_info("Disabled fast string operations\n");
 291                        setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
 292                        setup_clear_cpu_cap(X86_FEATURE_ERMS);
 293                }
 294        }
 295
 296        /*
 297         * Intel Quark Core DevMan_001.pdf section 6.4.11
 298         * "The operating system also is required to invalidate (i.e., flush)
 299         *  the TLB when any changes are made to any of the page table entries.
 300         *  The operating system must reload CR3 to cause the TLB to be flushed"
 301         *
 302         * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
 303         * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
 304         * to be modified.
 305         */
 306        if (c->x86 == 5 && c->x86_model == 9) {
 307                pr_info("Disabling PGE capability bit\n");
 308                setup_clear_cpu_cap(X86_FEATURE_PGE);
 309        }
 310
 311        if (c->cpuid_level >= 0x00000001) {
 312                u32 eax, ebx, ecx, edx;
 313
 314                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 315                /*
 316                 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
 317                 * apicids which are reserved per package. Store the resulting
 318                 * shift value for the package management code.
 319                 */
 320                if (edx & (1U << 28))
 321                        c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
 322        }
 323
 324        check_memory_type_self_snoop_errata(c);
 325
 326        /*
 327         * Get the number of SMT siblings early from the extended topology
 328         * leaf, if available. Otherwise try the legacy SMT detection.
 329         */
 330        if (detect_extended_topology_early(c) < 0)
 331                detect_ht_early(c);
 332}
 333
 334static void bsp_init_intel(struct cpuinfo_x86 *c)
 335{
 336        resctrl_cpu_detect(c);
 337}
 338
 339#ifdef CONFIG_X86_32
 340/*
 341 *      Early probe support logic for ppro memory erratum #50
 342 *
 343 *      This is called before we do cpu ident work
 344 */
 345
 346int ppro_with_ram_bug(void)
 347{
 348        /* Uses data from early_cpu_detect now */
 349        if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
 350            boot_cpu_data.x86 == 6 &&
 351            boot_cpu_data.x86_model == 1 &&
 352            boot_cpu_data.x86_stepping < 8) {
 353                pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
 354                return 1;
 355        }
 356        return 0;
 357}
 358
 359static void intel_smp_check(struct cpuinfo_x86 *c)
 360{
 361        /* calling is from identify_secondary_cpu() ? */
 362        if (!c->cpu_index)
 363                return;
 364
 365        /*
 366         * Mask B, Pentium, but not Pentium MMX
 367         */
 368        if (c->x86 == 5 &&
 369            c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
 370            c->x86_model <= 3) {
 371                /*
 372                 * Remember we have B step Pentia with bugs
 373                 */
 374                WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
 375                                    "with B stepping processors.\n");
 376        }
 377}
 378
 379static int forcepae;
 380static int __init forcepae_setup(char *__unused)
 381{
 382        forcepae = 1;
 383        return 1;
 384}
 385__setup("forcepae", forcepae_setup);
 386
 387static void intel_workarounds(struct cpuinfo_x86 *c)
 388{
 389#ifdef CONFIG_X86_F00F_BUG
 390        /*
 391         * All models of Pentium and Pentium with MMX technology CPUs
 392         * have the F0 0F bug, which lets nonprivileged users lock up the
 393         * system. Announce that the fault handler will be checking for it.
 394         * The Quark is also family 5, but does not have the same bug.
 395         */
 396        clear_cpu_bug(c, X86_BUG_F00F);
 397        if (c->x86 == 5 && c->x86_model < 9) {
 398                static int f00f_workaround_enabled;
 399
 400                set_cpu_bug(c, X86_BUG_F00F);
 401                if (!f00f_workaround_enabled) {
 402                        pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
 403                        f00f_workaround_enabled = 1;
 404                }
 405        }
 406#endif
 407
 408        /*
 409         * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
 410         * model 3 mask 3
 411         */
 412        if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
 413                clear_cpu_cap(c, X86_FEATURE_SEP);
 414
 415        /*
 416         * PAE CPUID issue: many Pentium M report no PAE but may have a
 417         * functionally usable PAE implementation.
 418         * Forcefully enable PAE if kernel parameter "forcepae" is present.
 419         */
 420        if (forcepae) {
 421                pr_warn("PAE forced!\n");
 422                set_cpu_cap(c, X86_FEATURE_PAE);
 423                add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
 424        }
 425
 426        /*
 427         * P4 Xeon erratum 037 workaround.
 428         * Hardware prefetcher may cause stale data to be loaded into the cache.
 429         */
 430        if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
 431                if (msr_set_bit(MSR_IA32_MISC_ENABLE,
 432                                MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
 433                        pr_info("CPU: C0 stepping P4 Xeon detected.\n");
 434                        pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
 435                }
 436        }
 437
 438        /*
 439         * See if we have a good local APIC by checking for buggy Pentia,
 440         * i.e. all B steppings and the C2 stepping of P54C when using their
 441         * integrated APIC (see 11AP erratum in "Pentium Processor
 442         * Specification Update").
 443         */
 444        if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
 445            (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
 446                set_cpu_bug(c, X86_BUG_11AP);
 447
 448
 449#ifdef CONFIG_X86_INTEL_USERCOPY
 450        /*
 451         * Set up the preferred alignment for movsl bulk memory moves
 452         */
 453        switch (c->x86) {
 454        case 4:         /* 486: untested */
 455                break;
 456        case 5:         /* Old Pentia: untested */
 457                break;
 458        case 6:         /* PII/PIII only like movsl with 8-byte alignment */
 459                movsl_mask.mask = 7;
 460                break;
 461        case 15:        /* P4 is OK down to 8-byte alignment */
 462                movsl_mask.mask = 7;
 463                break;
 464        }
 465#endif
 466
 467        intel_smp_check(c);
 468}
 469#else
 470static void intel_workarounds(struct cpuinfo_x86 *c)
 471{
 472}
 473#endif
 474
 475static void srat_detect_node(struct cpuinfo_x86 *c)
 476{
 477#ifdef CONFIG_NUMA
 478        unsigned node;
 479        int cpu = smp_processor_id();
 480
 481        /* Don't do the funky fallback heuristics the AMD version employs
 482           for now. */
 483        node = numa_cpu_node(cpu);
 484        if (node == NUMA_NO_NODE || !node_online(node)) {
 485                /* reuse the value from init_cpu_to_node() */
 486                node = cpu_to_node(cpu);
 487        }
 488        numa_set_node(cpu, node);
 489#endif
 490}
 491
 492#define MSR_IA32_TME_ACTIVATE           0x982
 493
 494/* Helpers to access TME_ACTIVATE MSR */
 495#define TME_ACTIVATE_LOCKED(x)          (x & 0x1)
 496#define TME_ACTIVATE_ENABLED(x)         (x & 0x2)
 497
 498#define TME_ACTIVATE_POLICY(x)          ((x >> 4) & 0xf)        /* Bits 7:4 */
 499#define TME_ACTIVATE_POLICY_AES_XTS_128 0
 500
 501#define TME_ACTIVATE_KEYID_BITS(x)      ((x >> 32) & 0xf)       /* Bits 35:32 */
 502
 503#define TME_ACTIVATE_CRYPTO_ALGS(x)     ((x >> 48) & 0xffff)    /* Bits 63:48 */
 504#define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
 505
 506/* Values for mktme_status (SW only construct) */
 507#define MKTME_ENABLED                   0
 508#define MKTME_DISABLED                  1
 509#define MKTME_UNINITIALIZED             2
 510static int mktme_status = MKTME_UNINITIALIZED;
 511
 512static void detect_tme(struct cpuinfo_x86 *c)
 513{
 514        u64 tme_activate, tme_policy, tme_crypto_algs;
 515        int keyid_bits = 0, nr_keyids = 0;
 516        static u64 tme_activate_cpu0 = 0;
 517
 518        rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
 519
 520        if (mktme_status != MKTME_UNINITIALIZED) {
 521                if (tme_activate != tme_activate_cpu0) {
 522                        /* Broken BIOS? */
 523                        pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
 524                        pr_err_once("x86/tme: MKTME is not usable\n");
 525                        mktme_status = MKTME_DISABLED;
 526
 527                        /* Proceed. We may need to exclude bits from x86_phys_bits. */
 528                }
 529        } else {
 530                tme_activate_cpu0 = tme_activate;
 531        }
 532
 533        if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
 534                pr_info_once("x86/tme: not enabled by BIOS\n");
 535                mktme_status = MKTME_DISABLED;
 536                return;
 537        }
 538
 539        if (mktme_status != MKTME_UNINITIALIZED)
 540                goto detect_keyid_bits;
 541
 542        pr_info("x86/tme: enabled by BIOS\n");
 543
 544        tme_policy = TME_ACTIVATE_POLICY(tme_activate);
 545        if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
 546                pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
 547
 548        tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
 549        if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
 550                pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
 551                                tme_crypto_algs);
 552                mktme_status = MKTME_DISABLED;
 553        }
 554detect_keyid_bits:
 555        keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
 556        nr_keyids = (1UL << keyid_bits) - 1;
 557        if (nr_keyids) {
 558                pr_info_once("x86/mktme: enabled by BIOS\n");
 559                pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
 560        } else {
 561                pr_info_once("x86/mktme: disabled by BIOS\n");
 562        }
 563
 564        if (mktme_status == MKTME_UNINITIALIZED) {
 565                /* MKTME is usable */
 566                mktme_status = MKTME_ENABLED;
 567        }
 568
 569        /*
 570         * KeyID bits effectively lower the number of physical address
 571         * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
 572         */
 573        c->x86_phys_bits -= keyid_bits;
 574}
 575
 576static void init_cpuid_fault(struct cpuinfo_x86 *c)
 577{
 578        u64 msr;
 579
 580        if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
 581                if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
 582                        set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
 583        }
 584}
 585
 586static void init_intel_misc_features(struct cpuinfo_x86 *c)
 587{
 588        u64 msr;
 589
 590        if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
 591                return;
 592
 593        /* Clear all MISC features */
 594        this_cpu_write(msr_misc_features_shadow, 0);
 595
 596        /* Check features and update capabilities and shadow control bits */
 597        init_cpuid_fault(c);
 598        probe_xeon_phi_r3mwait(c);
 599
 600        msr = this_cpu_read(msr_misc_features_shadow);
 601        wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
 602}
 603
 604static void split_lock_init(void);
 605
 606static void init_intel(struct cpuinfo_x86 *c)
 607{
 608        early_init_intel(c);
 609
 610        intel_workarounds(c);
 611
 612        /*
 613         * Detect the extended topology information if available. This
 614         * will reinitialise the initial_apicid which will be used
 615         * in init_intel_cacheinfo()
 616         */
 617        detect_extended_topology(c);
 618
 619        if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
 620                /*
 621                 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
 622                 * detection.
 623                 */
 624                detect_num_cpu_cores(c);
 625#ifdef CONFIG_X86_32
 626                detect_ht(c);
 627#endif
 628        }
 629
 630        init_intel_cacheinfo(c);
 631
 632        if (c->cpuid_level > 9) {
 633                unsigned eax = cpuid_eax(10);
 634                /* Check for version and the number of counters */
 635                if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
 636                        set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
 637        }
 638
 639        if (cpu_has(c, X86_FEATURE_XMM2))
 640                set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
 641
 642        if (boot_cpu_has(X86_FEATURE_DS)) {
 643                unsigned int l1, l2;
 644
 645                rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
 646                if (!(l1 & (1<<11)))
 647                        set_cpu_cap(c, X86_FEATURE_BTS);
 648                if (!(l1 & (1<<12)))
 649                        set_cpu_cap(c, X86_FEATURE_PEBS);
 650        }
 651
 652        if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
 653            (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
 654                set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
 655
 656        if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
 657                ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
 658                set_cpu_bug(c, X86_BUG_MONITOR);
 659
 660#ifdef CONFIG_X86_64
 661        if (c->x86 == 15)
 662                c->x86_cache_alignment = c->x86_clflush_size * 2;
 663        if (c->x86 == 6)
 664                set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 665#else
 666        /*
 667         * Names for the Pentium II/Celeron processors
 668         * detectable only by also checking the cache size.
 669         * Dixon is NOT a Celeron.
 670         */
 671        if (c->x86 == 6) {
 672                unsigned int l2 = c->x86_cache_size;
 673                char *p = NULL;
 674
 675                switch (c->x86_model) {
 676                case 5:
 677                        if (l2 == 0)
 678                                p = "Celeron (Covington)";
 679                        else if (l2 == 256)
 680                                p = "Mobile Pentium II (Dixon)";
 681                        break;
 682
 683                case 6:
 684                        if (l2 == 128)
 685                                p = "Celeron (Mendocino)";
 686                        else if (c->x86_stepping == 0 || c->x86_stepping == 5)
 687                                p = "Celeron-A";
 688                        break;
 689
 690                case 8:
 691                        if (l2 == 128)
 692                                p = "Celeron (Coppermine)";
 693                        break;
 694                }
 695
 696                if (p)
 697                        strcpy(c->x86_model_id, p);
 698        }
 699
 700        if (c->x86 == 15)
 701                set_cpu_cap(c, X86_FEATURE_P4);
 702        if (c->x86 == 6)
 703                set_cpu_cap(c, X86_FEATURE_P3);
 704#endif
 705
 706        /* Work around errata */
 707        srat_detect_node(c);
 708
 709        init_ia32_feat_ctl(c);
 710
 711        if (cpu_has(c, X86_FEATURE_TME))
 712                detect_tme(c);
 713
 714        init_intel_misc_features(c);
 715
 716        if (tsx_ctrl_state == TSX_CTRL_ENABLE)
 717                tsx_enable();
 718        if (tsx_ctrl_state == TSX_CTRL_DISABLE)
 719                tsx_disable();
 720
 721        split_lock_init();
 722}
 723
 724#ifdef CONFIG_X86_32
 725static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
 726{
 727        /*
 728         * Intel PIII Tualatin. This comes in two flavours.
 729         * One has 256kb of cache, the other 512. We have no way
 730         * to determine which, so we use a boottime override
 731         * for the 512kb model, and assume 256 otherwise.
 732         */
 733        if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
 734                size = 256;
 735
 736        /*
 737         * Intel Quark SoC X1000 contains a 4-way set associative
 738         * 16K cache with a 16 byte cache line and 256 lines per tag
 739         */
 740        if ((c->x86 == 5) && (c->x86_model == 9))
 741                size = 16;
 742        return size;
 743}
 744#endif
 745
 746#define TLB_INST_4K     0x01
 747#define TLB_INST_4M     0x02
 748#define TLB_INST_2M_4M  0x03
 749
 750#define TLB_INST_ALL    0x05
 751#define TLB_INST_1G     0x06
 752
 753#define TLB_DATA_4K     0x11
 754#define TLB_DATA_4M     0x12
 755#define TLB_DATA_2M_4M  0x13
 756#define TLB_DATA_4K_4M  0x14
 757
 758#define TLB_DATA_1G     0x16
 759
 760#define TLB_DATA0_4K    0x21
 761#define TLB_DATA0_4M    0x22
 762#define TLB_DATA0_2M_4M 0x23
 763
 764#define STLB_4K         0x41
 765#define STLB_4K_2M      0x42
 766
 767static const struct _tlb_table intel_tlb_table[] = {
 768        { 0x01, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages, 4-way set associative" },
 769        { 0x02, TLB_INST_4M,            2,      " TLB_INST 4 MByte pages, full associative" },
 770        { 0x03, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way set associative" },
 771        { 0x04, TLB_DATA_4M,            8,      " TLB_DATA 4 MByte pages, 4-way set associative" },
 772        { 0x05, TLB_DATA_4M,            32,     " TLB_DATA 4 MByte pages, 4-way set associative" },
 773        { 0x0b, TLB_INST_4M,            4,      " TLB_INST 4 MByte pages, 4-way set associative" },
 774        { 0x4f, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages" },
 775        { 0x50, TLB_INST_ALL,           64,     " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 776        { 0x51, TLB_INST_ALL,           128,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 777        { 0x52, TLB_INST_ALL,           256,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 778        { 0x55, TLB_INST_2M_4M,         7,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 779        { 0x56, TLB_DATA0_4M,           16,     " TLB_DATA0 4 MByte pages, 4-way set associative" },
 780        { 0x57, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, 4-way associative" },
 781        { 0x59, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, fully associative" },
 782        { 0x5a, TLB_DATA0_2M_4M,        32,     " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
 783        { 0x5b, TLB_DATA_4K_4M,         64,     " TLB_DATA 4 KByte and 4 MByte pages" },
 784        { 0x5c, TLB_DATA_4K_4M,         128,    " TLB_DATA 4 KByte and 4 MByte pages" },
 785        { 0x5d, TLB_DATA_4K_4M,         256,    " TLB_DATA 4 KByte and 4 MByte pages" },
 786        { 0x61, TLB_INST_4K,            48,     " TLB_INST 4 KByte pages, full associative" },
 787        { 0x63, TLB_DATA_1G,            4,      " TLB_DATA 1 GByte pages, 4-way set associative" },
 788        { 0x6b, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 8-way associative" },
 789        { 0x6c, TLB_DATA_2M_4M,         128,    " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
 790        { 0x6d, TLB_DATA_1G,            16,     " TLB_DATA 1 GByte pages, fully associative" },
 791        { 0x76, TLB_INST_2M_4M,         8,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 792        { 0xb0, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 4-way set associative" },
 793        { 0xb1, TLB_INST_2M_4M,         4,      " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
 794        { 0xb2, TLB_INST_4K,            64,     " TLB_INST 4KByte pages, 4-way set associative" },
 795        { 0xb3, TLB_DATA_4K,            128,    " TLB_DATA 4 KByte pages, 4-way set associative" },
 796        { 0xb4, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 4-way associative" },
 797        { 0xb5, TLB_INST_4K,            64,     " TLB_INST 4 KByte pages, 8-way set associative" },
 798        { 0xb6, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 8-way set associative" },
 799        { 0xba, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way associative" },
 800        { 0xc0, TLB_DATA_4K_4M,         8,      " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
 801        { 0xc1, STLB_4K_2M,             1024,   " STLB 4 KByte and 2 MByte pages, 8-way associative" },
 802        { 0xc2, TLB_DATA_2M_4M,         16,     " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
 803        { 0xca, STLB_4K,                512,    " STLB 4 KByte pages, 4-way associative" },
 804        { 0x00, 0, 0 }
 805};
 806
 807static void intel_tlb_lookup(const unsigned char desc)
 808{
 809        unsigned char k;
 810        if (desc == 0)
 811                return;
 812
 813        /* look up this descriptor in the table */
 814        for (k = 0; intel_tlb_table[k].descriptor != desc &&
 815             intel_tlb_table[k].descriptor != 0; k++)
 816                ;
 817
 818        if (intel_tlb_table[k].tlb_type == 0)
 819                return;
 820
 821        switch (intel_tlb_table[k].tlb_type) {
 822        case STLB_4K:
 823                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 824                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 825                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 826                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 827                break;
 828        case STLB_4K_2M:
 829                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 830                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 831                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 832                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 833                if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 834                        tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 835                if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 836                        tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 837                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 838                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 839                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 840                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 841                break;
 842        case TLB_INST_ALL:
 843                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 844                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 845                if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 846                        tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 847                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 848                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 849                break;
 850        case TLB_INST_4K:
 851                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 852                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 853                break;
 854        case TLB_INST_4M:
 855                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 856                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 857                break;
 858        case TLB_INST_2M_4M:
 859                if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 860                        tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 861                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 862                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 863                break;
 864        case TLB_DATA_4K:
 865        case TLB_DATA0_4K:
 866                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 867                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 868                break;
 869        case TLB_DATA_4M:
 870        case TLB_DATA0_4M:
 871                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 872                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 873                break;
 874        case TLB_DATA_2M_4M:
 875        case TLB_DATA0_2M_4M:
 876                if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 877                        tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 878                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 879                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 880                break;
 881        case TLB_DATA_4K_4M:
 882                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 883                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 884                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 885                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 886                break;
 887        case TLB_DATA_1G:
 888                if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
 889                        tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
 890                break;
 891        }
 892}
 893
 894static void intel_detect_tlb(struct cpuinfo_x86 *c)
 895{
 896        int i, j, n;
 897        unsigned int regs[4];
 898        unsigned char *desc = (unsigned char *)regs;
 899
 900        if (c->cpuid_level < 2)
 901                return;
 902
 903        /* Number of times to iterate */
 904        n = cpuid_eax(2) & 0xFF;
 905
 906        for (i = 0 ; i < n ; i++) {
 907                cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
 908
 909                /* If bit 31 is set, this is an unknown format */
 910                for (j = 0 ; j < 3 ; j++)
 911                        if (regs[j] & (1 << 31))
 912                                regs[j] = 0;
 913
 914                /* Byte 0 is level count, not a descriptor */
 915                for (j = 1 ; j < 16 ; j++)
 916                        intel_tlb_lookup(desc[j]);
 917        }
 918}
 919
 920static const struct cpu_dev intel_cpu_dev = {
 921        .c_vendor       = "Intel",
 922        .c_ident        = { "GenuineIntel" },
 923#ifdef CONFIG_X86_32
 924        .legacy_models = {
 925                { .family = 4, .model_names =
 926                  {
 927                          [0] = "486 DX-25/33",
 928                          [1] = "486 DX-50",
 929                          [2] = "486 SX",
 930                          [3] = "486 DX/2",
 931                          [4] = "486 SL",
 932                          [5] = "486 SX/2",
 933                          [7] = "486 DX/2-WB",
 934                          [8] = "486 DX/4",
 935                          [9] = "486 DX/4-WB"
 936                  }
 937                },
 938                { .family = 5, .model_names =
 939                  {
 940                          [0] = "Pentium 60/66 A-step",
 941                          [1] = "Pentium 60/66",
 942                          [2] = "Pentium 75 - 200",
 943                          [3] = "OverDrive PODP5V83",
 944                          [4] = "Pentium MMX",
 945                          [7] = "Mobile Pentium 75 - 200",
 946                          [8] = "Mobile Pentium MMX",
 947                          [9] = "Quark SoC X1000",
 948                  }
 949                },
 950                { .family = 6, .model_names =
 951                  {
 952                          [0] = "Pentium Pro A-step",
 953                          [1] = "Pentium Pro",
 954                          [3] = "Pentium II (Klamath)",
 955                          [4] = "Pentium II (Deschutes)",
 956                          [5] = "Pentium II (Deschutes)",
 957                          [6] = "Mobile Pentium II",
 958                          [7] = "Pentium III (Katmai)",
 959                          [8] = "Pentium III (Coppermine)",
 960                          [10] = "Pentium III (Cascades)",
 961                          [11] = "Pentium III (Tualatin)",
 962                  }
 963                },
 964                { .family = 15, .model_names =
 965                  {
 966                          [0] = "Pentium 4 (Unknown)",
 967                          [1] = "Pentium 4 (Willamette)",
 968                          [2] = "Pentium 4 (Northwood)",
 969                          [4] = "Pentium 4 (Foster)",
 970                          [5] = "Pentium 4 (Foster)",
 971                  }
 972                },
 973        },
 974        .legacy_cache_size = intel_size_cache,
 975#endif
 976        .c_detect_tlb   = intel_detect_tlb,
 977        .c_early_init   = early_init_intel,
 978        .c_bsp_init     = bsp_init_intel,
 979        .c_init         = init_intel,
 980        .c_x86_vendor   = X86_VENDOR_INTEL,
 981};
 982
 983cpu_dev_register(intel_cpu_dev);
 984
 985#undef pr_fmt
 986#define pr_fmt(fmt) "x86/split lock detection: " fmt
 987
 988static const struct {
 989        const char                      *option;
 990        enum split_lock_detect_state    state;
 991} sld_options[] __initconst = {
 992        { "off",        sld_off   },
 993        { "warn",       sld_warn  },
 994        { "fatal",      sld_fatal },
 995};
 996
 997static inline bool match_option(const char *arg, int arglen, const char *opt)
 998{
 999        int len = strlen(opt);
1000
1001        return len == arglen && !strncmp(arg, opt, len);
1002}
1003
1004static bool split_lock_verify_msr(bool on)
1005{
1006        u64 ctrl, tmp;
1007
1008        if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1009                return false;
1010        if (on)
1011                ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1012        else
1013                ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1014        if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1015                return false;
1016        rdmsrl(MSR_TEST_CTRL, tmp);
1017        return ctrl == tmp;
1018}
1019
1020static void __init split_lock_setup(void)
1021{
1022        enum split_lock_detect_state state = sld_warn;
1023        char arg[20];
1024        int i, ret;
1025
1026        if (!split_lock_verify_msr(false)) {
1027                pr_info("MSR access failed: Disabled\n");
1028                return;
1029        }
1030
1031        ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1032                                  arg, sizeof(arg));
1033        if (ret >= 0) {
1034                for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1035                        if (match_option(arg, ret, sld_options[i].option)) {
1036                                state = sld_options[i].state;
1037                                break;
1038                        }
1039                }
1040        }
1041
1042        switch (state) {
1043        case sld_off:
1044                pr_info("disabled\n");
1045                return;
1046        case sld_warn:
1047                pr_info("warning about user-space split_locks\n");
1048                break;
1049        case sld_fatal:
1050                pr_info("sending SIGBUS on user-space split_locks\n");
1051                break;
1052        }
1053
1054        rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1055
1056        if (!split_lock_verify_msr(true)) {
1057                pr_info("MSR access failed: Disabled\n");
1058                return;
1059        }
1060
1061        sld_state = state;
1062        setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1063}
1064
1065/*
1066 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1067 * is not implemented as one thread could undo the setting of the other
1068 * thread immediately after dropping the lock anyway.
1069 */
1070static void sld_update_msr(bool on)
1071{
1072        u64 test_ctrl_val = msr_test_ctrl_cache;
1073
1074        if (on)
1075                test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1076
1077        wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1078}
1079
1080static void split_lock_init(void)
1081{
1082        if (cpu_model_supports_sld)
1083                split_lock_verify_msr(sld_state != sld_off);
1084}
1085
1086static void split_lock_warn(unsigned long ip)
1087{
1088        pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1089                            current->comm, current->pid, ip);
1090
1091        /*
1092         * Disable the split lock detection for this task so it can make
1093         * progress and set TIF_SLD so the detection is re-enabled via
1094         * switch_to_sld() when the task is scheduled out.
1095         */
1096        sld_update_msr(false);
1097        set_tsk_thread_flag(current, TIF_SLD);
1098}
1099
1100bool handle_guest_split_lock(unsigned long ip)
1101{
1102        if (sld_state == sld_warn) {
1103                split_lock_warn(ip);
1104                return true;
1105        }
1106
1107        pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1108                     current->comm, current->pid,
1109                     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1110
1111        current->thread.error_code = 0;
1112        current->thread.trap_nr = X86_TRAP_AC;
1113        force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1114        return false;
1115}
1116EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1117
1118bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1119{
1120        if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1121                return false;
1122        split_lock_warn(regs->ip);
1123        return true;
1124}
1125
1126/*
1127 * This function is called only when switching between tasks with
1128 * different split-lock detection modes. It sets the MSR for the
1129 * mode of the new task. This is right most of the time, but since
1130 * the MSR is shared by hyperthreads on a physical core there can
1131 * be glitches when the two threads need different modes.
1132 */
1133void switch_to_sld(unsigned long tifn)
1134{
1135        sld_update_msr(!(tifn & _TIF_SLD));
1136}
1137
1138/*
1139 * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
1140 * only be trusted if it is confirmed that a CPU model implements a
1141 * specific feature at a particular bit position.
1142 *
1143 * The possible driver data field values:
1144 *
1145 * - 0: CPU models that are known to have the per-core split-lock detection
1146 *      feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1147 *
1148 * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
1149 *      bit 5 to enumerate the per-core split-lock detection feature.
1150 */
1151static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1152        X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,           0),
1153        X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,           0),
1154        X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,           0),
1155        X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,        1),
1156        X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,      1),
1157        X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,      1),
1158        X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,         1),
1159        X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,           1),
1160        X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,    1),
1161        X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,           1),
1162        {}
1163};
1164
1165void __init cpu_set_core_cap_bits(struct cpuinfo_x86 *c)
1166{
1167        const struct x86_cpu_id *m;
1168        u64 ia32_core_caps;
1169
1170        if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1171                return;
1172
1173        m = x86_match_cpu(split_lock_cpu_ids);
1174        if (!m)
1175                return;
1176
1177        switch (m->driver_data) {
1178        case 0:
1179                break;
1180        case 1:
1181                if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1182                        return;
1183                rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1184                if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
1185                        return;
1186                break;
1187        default:
1188                return;
1189        }
1190
1191        cpu_model_supports_sld = true;
1192        split_lock_setup();
1193}
1194