linux/arch/x86/kernel/kvmclock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*  KVM paravirtual clock driver. A clocksource implementation
   3    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
   4*/
   5
   6#include <linux/clocksource.h>
   7#include <linux/kvm_para.h>
   8#include <asm/pvclock.h>
   9#include <asm/msr.h>
  10#include <asm/apic.h>
  11#include <linux/percpu.h>
  12#include <linux/hardirq.h>
  13#include <linux/cpuhotplug.h>
  14#include <linux/sched.h>
  15#include <linux/sched/clock.h>
  16#include <linux/mm.h>
  17#include <linux/slab.h>
  18#include <linux/set_memory.h>
  19
  20#include <asm/hypervisor.h>
  21#include <asm/mem_encrypt.h>
  22#include <asm/x86_init.h>
  23#include <asm/reboot.h>
  24#include <asm/kvmclock.h>
  25
  26static int kvmclock __initdata = 1;
  27static int kvmclock_vsyscall __initdata = 1;
  28static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
  29static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
  30static u64 kvm_sched_clock_offset __ro_after_init;
  31
  32static int __init parse_no_kvmclock(char *arg)
  33{
  34        kvmclock = 0;
  35        return 0;
  36}
  37early_param("no-kvmclock", parse_no_kvmclock);
  38
  39static int __init parse_no_kvmclock_vsyscall(char *arg)
  40{
  41        kvmclock_vsyscall = 0;
  42        return 0;
  43}
  44early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
  45
  46/* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
  47#define HV_CLOCK_SIZE   (sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
  48#define HVC_BOOT_ARRAY_SIZE \
  49        (PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
  50
  51static struct pvclock_vsyscall_time_info
  52                        hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
  53static struct pvclock_wall_clock wall_clock __bss_decrypted;
  54static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
  55static struct pvclock_vsyscall_time_info *hvclock_mem;
  56
  57static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
  58{
  59        return &this_cpu_read(hv_clock_per_cpu)->pvti;
  60}
  61
  62static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
  63{
  64        return this_cpu_read(hv_clock_per_cpu);
  65}
  66
  67/*
  68 * The wallclock is the time of day when we booted. Since then, some time may
  69 * have elapsed since the hypervisor wrote the data. So we try to account for
  70 * that with system time
  71 */
  72static void kvm_get_wallclock(struct timespec64 *now)
  73{
  74        wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
  75        preempt_disable();
  76        pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
  77        preempt_enable();
  78}
  79
  80static int kvm_set_wallclock(const struct timespec64 *now)
  81{
  82        return -ENODEV;
  83}
  84
  85static u64 kvm_clock_read(void)
  86{
  87        u64 ret;
  88
  89        preempt_disable_notrace();
  90        ret = pvclock_clocksource_read(this_cpu_pvti());
  91        preempt_enable_notrace();
  92        return ret;
  93}
  94
  95static u64 kvm_clock_get_cycles(struct clocksource *cs)
  96{
  97        return kvm_clock_read();
  98}
  99
 100static u64 kvm_sched_clock_read(void)
 101{
 102        return kvm_clock_read() - kvm_sched_clock_offset;
 103}
 104
 105static inline void kvm_sched_clock_init(bool stable)
 106{
 107        if (!stable)
 108                clear_sched_clock_stable();
 109        kvm_sched_clock_offset = kvm_clock_read();
 110        pv_ops.time.sched_clock = kvm_sched_clock_read;
 111
 112        pr_info("kvm-clock: using sched offset of %llu cycles",
 113                kvm_sched_clock_offset);
 114
 115        BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
 116                sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
 117}
 118
 119/*
 120 * If we don't do that, there is the possibility that the guest
 121 * will calibrate under heavy load - thus, getting a lower lpj -
 122 * and execute the delays themselves without load. This is wrong,
 123 * because no delay loop can finish beforehand.
 124 * Any heuristics is subject to fail, because ultimately, a large
 125 * poll of guests can be running and trouble each other. So we preset
 126 * lpj here
 127 */
 128static unsigned long kvm_get_tsc_khz(void)
 129{
 130        setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 131        return pvclock_tsc_khz(this_cpu_pvti());
 132}
 133
 134static void __init kvm_get_preset_lpj(void)
 135{
 136        unsigned long khz;
 137        u64 lpj;
 138
 139        khz = kvm_get_tsc_khz();
 140
 141        lpj = ((u64)khz * 1000);
 142        do_div(lpj, HZ);
 143        preset_lpj = lpj;
 144}
 145
 146bool kvm_check_and_clear_guest_paused(void)
 147{
 148        struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
 149        bool ret = false;
 150
 151        if (!src)
 152                return ret;
 153
 154        if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
 155                src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
 156                pvclock_touch_watchdogs();
 157                ret = true;
 158        }
 159        return ret;
 160}
 161
 162static int kvm_cs_enable(struct clocksource *cs)
 163{
 164        vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
 165        return 0;
 166}
 167
 168struct clocksource kvm_clock = {
 169        .name   = "kvm-clock",
 170        .read   = kvm_clock_get_cycles,
 171        .rating = 400,
 172        .mask   = CLOCKSOURCE_MASK(64),
 173        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 174        .enable = kvm_cs_enable,
 175};
 176EXPORT_SYMBOL_GPL(kvm_clock);
 177
 178static void kvm_register_clock(char *txt)
 179{
 180        struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
 181        u64 pa;
 182
 183        if (!src)
 184                return;
 185
 186        pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
 187        wrmsrl(msr_kvm_system_time, pa);
 188        pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
 189}
 190
 191static void kvm_save_sched_clock_state(void)
 192{
 193}
 194
 195static void kvm_restore_sched_clock_state(void)
 196{
 197        kvm_register_clock("primary cpu clock, resume");
 198}
 199
 200#ifdef CONFIG_X86_LOCAL_APIC
 201static void kvm_setup_secondary_clock(void)
 202{
 203        kvm_register_clock("secondary cpu clock");
 204}
 205#endif
 206
 207/*
 208 * After the clock is registered, the host will keep writing to the
 209 * registered memory location. If the guest happens to shutdown, this memory
 210 * won't be valid. In cases like kexec, in which you install a new kernel, this
 211 * means a random memory location will be kept being written. So before any
 212 * kind of shutdown from our side, we unregister the clock by writing anything
 213 * that does not have the 'enable' bit set in the msr
 214 */
 215#ifdef CONFIG_KEXEC_CORE
 216static void kvm_crash_shutdown(struct pt_regs *regs)
 217{
 218        native_write_msr(msr_kvm_system_time, 0, 0);
 219        kvm_disable_steal_time();
 220        native_machine_crash_shutdown(regs);
 221}
 222#endif
 223
 224static void kvm_shutdown(void)
 225{
 226        native_write_msr(msr_kvm_system_time, 0, 0);
 227        kvm_disable_steal_time();
 228        native_machine_shutdown();
 229}
 230
 231static void __init kvmclock_init_mem(void)
 232{
 233        unsigned long ncpus;
 234        unsigned int order;
 235        struct page *p;
 236        int r;
 237
 238        if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
 239                return;
 240
 241        ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
 242        order = get_order(ncpus * sizeof(*hvclock_mem));
 243
 244        p = alloc_pages(GFP_KERNEL, order);
 245        if (!p) {
 246                pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
 247                return;
 248        }
 249
 250        hvclock_mem = page_address(p);
 251
 252        /*
 253         * hvclock is shared between the guest and the hypervisor, must
 254         * be mapped decrypted.
 255         */
 256        if (sev_active()) {
 257                r = set_memory_decrypted((unsigned long) hvclock_mem,
 258                                         1UL << order);
 259                if (r) {
 260                        __free_pages(p, order);
 261                        hvclock_mem = NULL;
 262                        pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
 263                        return;
 264                }
 265        }
 266
 267        memset(hvclock_mem, 0, PAGE_SIZE << order);
 268}
 269
 270static int __init kvm_setup_vsyscall_timeinfo(void)
 271{
 272#ifdef CONFIG_X86_64
 273        u8 flags;
 274
 275        if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
 276                return 0;
 277
 278        flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
 279        if (!(flags & PVCLOCK_TSC_STABLE_BIT))
 280                return 0;
 281
 282        kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
 283#endif
 284
 285        kvmclock_init_mem();
 286
 287        return 0;
 288}
 289early_initcall(kvm_setup_vsyscall_timeinfo);
 290
 291static int kvmclock_setup_percpu(unsigned int cpu)
 292{
 293        struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
 294
 295        /*
 296         * The per cpu area setup replicates CPU0 data to all cpu
 297         * pointers. So carefully check. CPU0 has been set up in init
 298         * already.
 299         */
 300        if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
 301                return 0;
 302
 303        /* Use the static page for the first CPUs, allocate otherwise */
 304        if (cpu < HVC_BOOT_ARRAY_SIZE)
 305                p = &hv_clock_boot[cpu];
 306        else if (hvclock_mem)
 307                p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
 308        else
 309                return -ENOMEM;
 310
 311        per_cpu(hv_clock_per_cpu, cpu) = p;
 312        return p ? 0 : -ENOMEM;
 313}
 314
 315void __init kvmclock_init(void)
 316{
 317        u8 flags;
 318
 319        if (!kvm_para_available() || !kvmclock)
 320                return;
 321
 322        if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
 323                msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
 324                msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
 325        } else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
 326                return;
 327        }
 328
 329        if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
 330                              kvmclock_setup_percpu, NULL) < 0) {
 331                return;
 332        }
 333
 334        pr_info("kvm-clock: Using msrs %x and %x",
 335                msr_kvm_system_time, msr_kvm_wall_clock);
 336
 337        this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
 338        kvm_register_clock("primary cpu clock");
 339        pvclock_set_pvti_cpu0_va(hv_clock_boot);
 340
 341        if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
 342                pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 343
 344        flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
 345        kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
 346
 347        x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 348        x86_platform.calibrate_cpu = kvm_get_tsc_khz;
 349        x86_platform.get_wallclock = kvm_get_wallclock;
 350        x86_platform.set_wallclock = kvm_set_wallclock;
 351#ifdef CONFIG_X86_LOCAL_APIC
 352        x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
 353#endif
 354        x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
 355        x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
 356        machine_ops.shutdown  = kvm_shutdown;
 357#ifdef CONFIG_KEXEC_CORE
 358        machine_ops.crash_shutdown  = kvm_crash_shutdown;
 359#endif
 360        kvm_get_preset_lpj();
 361
 362        /*
 363         * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
 364         * with P/T states and does not stop in deep C-states.
 365         *
 366         * Invariant TSC exposed by host means kvmclock is not necessary:
 367         * can use TSC as clocksource.
 368         *
 369         */
 370        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
 371            boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
 372            !check_tsc_unstable())
 373                kvm_clock.rating = 299;
 374
 375        clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 376        pv_info.name = "KVM";
 377}
 378