linux/arch/x86/kernel/ldt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
   4 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
   5 * Copyright (C) 2002 Andi Kleen
   6 *
   7 * This handles calls from both 32bit and 64bit mode.
   8 *
   9 * Lock order:
  10 *      contex.ldt_usr_sem
  11 *        mmap_lock
  12 *          context.lock
  13 */
  14
  15#include <linux/errno.h>
  16#include <linux/gfp.h>
  17#include <linux/sched.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/smp.h>
  21#include <linux/syscalls.h>
  22#include <linux/slab.h>
  23#include <linux/vmalloc.h>
  24#include <linux/uaccess.h>
  25
  26#include <asm/ldt.h>
  27#include <asm/tlb.h>
  28#include <asm/desc.h>
  29#include <asm/mmu_context.h>
  30#include <asm/pgtable_areas.h>
  31
  32#include <xen/xen.h>
  33
  34/* This is a multiple of PAGE_SIZE. */
  35#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
  36
  37static inline void *ldt_slot_va(int slot)
  38{
  39        return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
  40}
  41
  42void load_mm_ldt(struct mm_struct *mm)
  43{
  44        struct ldt_struct *ldt;
  45
  46        /* READ_ONCE synchronizes with smp_store_release */
  47        ldt = READ_ONCE(mm->context.ldt);
  48
  49        /*
  50         * Any change to mm->context.ldt is followed by an IPI to all
  51         * CPUs with the mm active.  The LDT will not be freed until
  52         * after the IPI is handled by all such CPUs.  This means that,
  53         * if the ldt_struct changes before we return, the values we see
  54         * will be safe, and the new values will be loaded before we run
  55         * any user code.
  56         *
  57         * NB: don't try to convert this to use RCU without extreme care.
  58         * We would still need IRQs off, because we don't want to change
  59         * the local LDT after an IPI loaded a newer value than the one
  60         * that we can see.
  61         */
  62
  63        if (unlikely(ldt)) {
  64                if (static_cpu_has(X86_FEATURE_PTI)) {
  65                        if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
  66                                /*
  67                                 * Whoops -- either the new LDT isn't mapped
  68                                 * (if slot == -1) or is mapped into a bogus
  69                                 * slot (if slot > 1).
  70                                 */
  71                                clear_LDT();
  72                                return;
  73                        }
  74
  75                        /*
  76                         * If page table isolation is enabled, ldt->entries
  77                         * will not be mapped in the userspace pagetables.
  78                         * Tell the CPU to access the LDT through the alias
  79                         * at ldt_slot_va(ldt->slot).
  80                         */
  81                        set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
  82                } else {
  83                        set_ldt(ldt->entries, ldt->nr_entries);
  84                }
  85        } else {
  86                clear_LDT();
  87        }
  88}
  89
  90void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
  91{
  92        /*
  93         * Load the LDT if either the old or new mm had an LDT.
  94         *
  95         * An mm will never go from having an LDT to not having an LDT.  Two
  96         * mms never share an LDT, so we don't gain anything by checking to
  97         * see whether the LDT changed.  There's also no guarantee that
  98         * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
  99         * then prev->context.ldt will also be non-NULL.
 100         *
 101         * If we really cared, we could optimize the case where prev == next
 102         * and we're exiting lazy mode.  Most of the time, if this happens,
 103         * we don't actually need to reload LDTR, but modify_ldt() is mostly
 104         * used by legacy code and emulators where we don't need this level of
 105         * performance.
 106         *
 107         * This uses | instead of || because it generates better code.
 108         */
 109        if (unlikely((unsigned long)prev->context.ldt |
 110                     (unsigned long)next->context.ldt))
 111                load_mm_ldt(next);
 112
 113        DEBUG_LOCKS_WARN_ON(preemptible());
 114}
 115
 116static void refresh_ldt_segments(void)
 117{
 118#ifdef CONFIG_X86_64
 119        unsigned short sel;
 120
 121        /*
 122         * Make sure that the cached DS and ES descriptors match the updated
 123         * LDT.
 124         */
 125        savesegment(ds, sel);
 126        if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
 127                loadsegment(ds, sel);
 128
 129        savesegment(es, sel);
 130        if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
 131                loadsegment(es, sel);
 132#endif
 133}
 134
 135/* context.lock is held by the task which issued the smp function call */
 136static void flush_ldt(void *__mm)
 137{
 138        struct mm_struct *mm = __mm;
 139
 140        if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
 141                return;
 142
 143        load_mm_ldt(mm);
 144
 145        refresh_ldt_segments();
 146}
 147
 148/* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
 149static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
 150{
 151        struct ldt_struct *new_ldt;
 152        unsigned int alloc_size;
 153
 154        if (num_entries > LDT_ENTRIES)
 155                return NULL;
 156
 157        new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL);
 158        if (!new_ldt)
 159                return NULL;
 160
 161        BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
 162        alloc_size = num_entries * LDT_ENTRY_SIZE;
 163
 164        /*
 165         * Xen is very picky: it requires a page-aligned LDT that has no
 166         * trailing nonzero bytes in any page that contains LDT descriptors.
 167         * Keep it simple: zero the whole allocation and never allocate less
 168         * than PAGE_SIZE.
 169         */
 170        if (alloc_size > PAGE_SIZE)
 171                new_ldt->entries = vzalloc(alloc_size);
 172        else
 173                new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL);
 174
 175        if (!new_ldt->entries) {
 176                kfree(new_ldt);
 177                return NULL;
 178        }
 179
 180        /* The new LDT isn't aliased for PTI yet. */
 181        new_ldt->slot = -1;
 182
 183        new_ldt->nr_entries = num_entries;
 184        return new_ldt;
 185}
 186
 187#ifdef CONFIG_PAGE_TABLE_ISOLATION
 188
 189static void do_sanity_check(struct mm_struct *mm,
 190                            bool had_kernel_mapping,
 191                            bool had_user_mapping)
 192{
 193        if (mm->context.ldt) {
 194                /*
 195                 * We already had an LDT.  The top-level entry should already
 196                 * have been allocated and synchronized with the usermode
 197                 * tables.
 198                 */
 199                WARN_ON(!had_kernel_mapping);
 200                if (boot_cpu_has(X86_FEATURE_PTI))
 201                        WARN_ON(!had_user_mapping);
 202        } else {
 203                /*
 204                 * This is the first time we're mapping an LDT for this process.
 205                 * Sync the pgd to the usermode tables.
 206                 */
 207                WARN_ON(had_kernel_mapping);
 208                if (boot_cpu_has(X86_FEATURE_PTI))
 209                        WARN_ON(had_user_mapping);
 210        }
 211}
 212
 213#ifdef CONFIG_X86_PAE
 214
 215static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
 216{
 217        p4d_t *p4d;
 218        pud_t *pud;
 219
 220        if (pgd->pgd == 0)
 221                return NULL;
 222
 223        p4d = p4d_offset(pgd, va);
 224        if (p4d_none(*p4d))
 225                return NULL;
 226
 227        pud = pud_offset(p4d, va);
 228        if (pud_none(*pud))
 229                return NULL;
 230
 231        return pmd_offset(pud, va);
 232}
 233
 234static void map_ldt_struct_to_user(struct mm_struct *mm)
 235{
 236        pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
 237        pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
 238        pmd_t *k_pmd, *u_pmd;
 239
 240        k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
 241        u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
 242
 243        if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
 244                set_pmd(u_pmd, *k_pmd);
 245}
 246
 247static void sanity_check_ldt_mapping(struct mm_struct *mm)
 248{
 249        pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
 250        pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
 251        bool had_kernel, had_user;
 252        pmd_t *k_pmd, *u_pmd;
 253
 254        k_pmd      = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
 255        u_pmd      = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
 256        had_kernel = (k_pmd->pmd != 0);
 257        had_user   = (u_pmd->pmd != 0);
 258
 259        do_sanity_check(mm, had_kernel, had_user);
 260}
 261
 262#else /* !CONFIG_X86_PAE */
 263
 264static void map_ldt_struct_to_user(struct mm_struct *mm)
 265{
 266        pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
 267
 268        if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
 269                set_pgd(kernel_to_user_pgdp(pgd), *pgd);
 270}
 271
 272static void sanity_check_ldt_mapping(struct mm_struct *mm)
 273{
 274        pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
 275        bool had_kernel = (pgd->pgd != 0);
 276        bool had_user   = (kernel_to_user_pgdp(pgd)->pgd != 0);
 277
 278        do_sanity_check(mm, had_kernel, had_user);
 279}
 280
 281#endif /* CONFIG_X86_PAE */
 282
 283/*
 284 * If PTI is enabled, this maps the LDT into the kernelmode and
 285 * usermode tables for the given mm.
 286 */
 287static int
 288map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
 289{
 290        unsigned long va;
 291        bool is_vmalloc;
 292        spinlock_t *ptl;
 293        int i, nr_pages;
 294
 295        if (!boot_cpu_has(X86_FEATURE_PTI))
 296                return 0;
 297
 298        /*
 299         * Any given ldt_struct should have map_ldt_struct() called at most
 300         * once.
 301         */
 302        WARN_ON(ldt->slot != -1);
 303
 304        /* Check if the current mappings are sane */
 305        sanity_check_ldt_mapping(mm);
 306
 307        is_vmalloc = is_vmalloc_addr(ldt->entries);
 308
 309        nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
 310
 311        for (i = 0; i < nr_pages; i++) {
 312                unsigned long offset = i << PAGE_SHIFT;
 313                const void *src = (char *)ldt->entries + offset;
 314                unsigned long pfn;
 315                pgprot_t pte_prot;
 316                pte_t pte, *ptep;
 317
 318                va = (unsigned long)ldt_slot_va(slot) + offset;
 319                pfn = is_vmalloc ? vmalloc_to_pfn(src) :
 320                        page_to_pfn(virt_to_page(src));
 321                /*
 322                 * Treat the PTI LDT range as a *userspace* range.
 323                 * get_locked_pte() will allocate all needed pagetables
 324                 * and account for them in this mm.
 325                 */
 326                ptep = get_locked_pte(mm, va, &ptl);
 327                if (!ptep)
 328                        return -ENOMEM;
 329                /*
 330                 * Map it RO so the easy to find address is not a primary
 331                 * target via some kernel interface which misses a
 332                 * permission check.
 333                 */
 334                pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
 335                /* Filter out unsuppored __PAGE_KERNEL* bits: */
 336                pgprot_val(pte_prot) &= __supported_pte_mask;
 337                pte = pfn_pte(pfn, pte_prot);
 338                set_pte_at(mm, va, ptep, pte);
 339                pte_unmap_unlock(ptep, ptl);
 340        }
 341
 342        /* Propagate LDT mapping to the user page-table */
 343        map_ldt_struct_to_user(mm);
 344
 345        ldt->slot = slot;
 346        return 0;
 347}
 348
 349static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
 350{
 351        unsigned long va;
 352        int i, nr_pages;
 353
 354        if (!ldt)
 355                return;
 356
 357        /* LDT map/unmap is only required for PTI */
 358        if (!boot_cpu_has(X86_FEATURE_PTI))
 359                return;
 360
 361        nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
 362
 363        for (i = 0; i < nr_pages; i++) {
 364                unsigned long offset = i << PAGE_SHIFT;
 365                spinlock_t *ptl;
 366                pte_t *ptep;
 367
 368                va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
 369                ptep = get_locked_pte(mm, va, &ptl);
 370                pte_clear(mm, va, ptep);
 371                pte_unmap_unlock(ptep, ptl);
 372        }
 373
 374        va = (unsigned long)ldt_slot_va(ldt->slot);
 375        flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
 376}
 377
 378#else /* !CONFIG_PAGE_TABLE_ISOLATION */
 379
 380static int
 381map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
 382{
 383        return 0;
 384}
 385
 386static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
 387{
 388}
 389#endif /* CONFIG_PAGE_TABLE_ISOLATION */
 390
 391static void free_ldt_pgtables(struct mm_struct *mm)
 392{
 393#ifdef CONFIG_PAGE_TABLE_ISOLATION
 394        struct mmu_gather tlb;
 395        unsigned long start = LDT_BASE_ADDR;
 396        unsigned long end = LDT_END_ADDR;
 397
 398        if (!boot_cpu_has(X86_FEATURE_PTI))
 399                return;
 400
 401        tlb_gather_mmu(&tlb, mm, start, end);
 402        free_pgd_range(&tlb, start, end, start, end);
 403        tlb_finish_mmu(&tlb, start, end);
 404#endif
 405}
 406
 407/* After calling this, the LDT is immutable. */
 408static void finalize_ldt_struct(struct ldt_struct *ldt)
 409{
 410        paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
 411}
 412
 413static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
 414{
 415        mutex_lock(&mm->context.lock);
 416
 417        /* Synchronizes with READ_ONCE in load_mm_ldt. */
 418        smp_store_release(&mm->context.ldt, ldt);
 419
 420        /* Activate the LDT for all CPUs using currents mm. */
 421        on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
 422
 423        mutex_unlock(&mm->context.lock);
 424}
 425
 426static void free_ldt_struct(struct ldt_struct *ldt)
 427{
 428        if (likely(!ldt))
 429                return;
 430
 431        paravirt_free_ldt(ldt->entries, ldt->nr_entries);
 432        if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
 433                vfree_atomic(ldt->entries);
 434        else
 435                free_page((unsigned long)ldt->entries);
 436        kfree(ldt);
 437}
 438
 439/*
 440 * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
 441 * the new task is not running, so nothing can be installed.
 442 */
 443int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
 444{
 445        struct ldt_struct *new_ldt;
 446        int retval = 0;
 447
 448        if (!old_mm)
 449                return 0;
 450
 451        mutex_lock(&old_mm->context.lock);
 452        if (!old_mm->context.ldt)
 453                goto out_unlock;
 454
 455        new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
 456        if (!new_ldt) {
 457                retval = -ENOMEM;
 458                goto out_unlock;
 459        }
 460
 461        memcpy(new_ldt->entries, old_mm->context.ldt->entries,
 462               new_ldt->nr_entries * LDT_ENTRY_SIZE);
 463        finalize_ldt_struct(new_ldt);
 464
 465        retval = map_ldt_struct(mm, new_ldt, 0);
 466        if (retval) {
 467                free_ldt_pgtables(mm);
 468                free_ldt_struct(new_ldt);
 469                goto out_unlock;
 470        }
 471        mm->context.ldt = new_ldt;
 472
 473out_unlock:
 474        mutex_unlock(&old_mm->context.lock);
 475        return retval;
 476}
 477
 478/*
 479 * No need to lock the MM as we are the last user
 480 *
 481 * 64bit: Don't touch the LDT register - we're already in the next thread.
 482 */
 483void destroy_context_ldt(struct mm_struct *mm)
 484{
 485        free_ldt_struct(mm->context.ldt);
 486        mm->context.ldt = NULL;
 487}
 488
 489void ldt_arch_exit_mmap(struct mm_struct *mm)
 490{
 491        free_ldt_pgtables(mm);
 492}
 493
 494static int read_ldt(void __user *ptr, unsigned long bytecount)
 495{
 496        struct mm_struct *mm = current->mm;
 497        unsigned long entries_size;
 498        int retval;
 499
 500        down_read(&mm->context.ldt_usr_sem);
 501
 502        if (!mm->context.ldt) {
 503                retval = 0;
 504                goto out_unlock;
 505        }
 506
 507        if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
 508                bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
 509
 510        entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
 511        if (entries_size > bytecount)
 512                entries_size = bytecount;
 513
 514        if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
 515                retval = -EFAULT;
 516                goto out_unlock;
 517        }
 518
 519        if (entries_size != bytecount) {
 520                /* Zero-fill the rest and pretend we read bytecount bytes. */
 521                if (clear_user(ptr + entries_size, bytecount - entries_size)) {
 522                        retval = -EFAULT;
 523                        goto out_unlock;
 524                }
 525        }
 526        retval = bytecount;
 527
 528out_unlock:
 529        up_read(&mm->context.ldt_usr_sem);
 530        return retval;
 531}
 532
 533static int read_default_ldt(void __user *ptr, unsigned long bytecount)
 534{
 535        /* CHECKME: Can we use _one_ random number ? */
 536#ifdef CONFIG_X86_32
 537        unsigned long size = 5 * sizeof(struct desc_struct);
 538#else
 539        unsigned long size = 128;
 540#endif
 541        if (bytecount > size)
 542                bytecount = size;
 543        if (clear_user(ptr, bytecount))
 544                return -EFAULT;
 545        return bytecount;
 546}
 547
 548static bool allow_16bit_segments(void)
 549{
 550        if (!IS_ENABLED(CONFIG_X86_16BIT))
 551                return false;
 552
 553#ifdef CONFIG_XEN_PV
 554        /*
 555         * Xen PV does not implement ESPFIX64, which means that 16-bit
 556         * segments will not work correctly.  Until either Xen PV implements
 557         * ESPFIX64 and can signal this fact to the guest or unless someone
 558         * provides compelling evidence that allowing broken 16-bit segments
 559         * is worthwhile, disallow 16-bit segments under Xen PV.
 560         */
 561        if (xen_pv_domain()) {
 562                pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n");
 563                return false;
 564        }
 565#endif
 566
 567        return true;
 568}
 569
 570static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
 571{
 572        struct mm_struct *mm = current->mm;
 573        struct ldt_struct *new_ldt, *old_ldt;
 574        unsigned int old_nr_entries, new_nr_entries;
 575        struct user_desc ldt_info;
 576        struct desc_struct ldt;
 577        int error;
 578
 579        error = -EINVAL;
 580        if (bytecount != sizeof(ldt_info))
 581                goto out;
 582        error = -EFAULT;
 583        if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
 584                goto out;
 585
 586        error = -EINVAL;
 587        if (ldt_info.entry_number >= LDT_ENTRIES)
 588                goto out;
 589        if (ldt_info.contents == 3) {
 590                if (oldmode)
 591                        goto out;
 592                if (ldt_info.seg_not_present == 0)
 593                        goto out;
 594        }
 595
 596        if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
 597            LDT_empty(&ldt_info)) {
 598                /* The user wants to clear the entry. */
 599                memset(&ldt, 0, sizeof(ldt));
 600        } else {
 601                if (!ldt_info.seg_32bit && !allow_16bit_segments()) {
 602                        error = -EINVAL;
 603                        goto out;
 604                }
 605
 606                fill_ldt(&ldt, &ldt_info);
 607                if (oldmode)
 608                        ldt.avl = 0;
 609        }
 610
 611        if (down_write_killable(&mm->context.ldt_usr_sem))
 612                return -EINTR;
 613
 614        old_ldt       = mm->context.ldt;
 615        old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
 616        new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
 617
 618        error = -ENOMEM;
 619        new_ldt = alloc_ldt_struct(new_nr_entries);
 620        if (!new_ldt)
 621                goto out_unlock;
 622
 623        if (old_ldt)
 624                memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
 625
 626        new_ldt->entries[ldt_info.entry_number] = ldt;
 627        finalize_ldt_struct(new_ldt);
 628
 629        /*
 630         * If we are using PTI, map the new LDT into the userspace pagetables.
 631         * If there is already an LDT, use the other slot so that other CPUs
 632         * will continue to use the old LDT until install_ldt() switches
 633         * them over to the new LDT.
 634         */
 635        error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
 636        if (error) {
 637                /*
 638                 * This only can fail for the first LDT setup. If an LDT is
 639                 * already installed then the PTE page is already
 640                 * populated. Mop up a half populated page table.
 641                 */
 642                if (!WARN_ON_ONCE(old_ldt))
 643                        free_ldt_pgtables(mm);
 644                free_ldt_struct(new_ldt);
 645                goto out_unlock;
 646        }
 647
 648        install_ldt(mm, new_ldt);
 649        unmap_ldt_struct(mm, old_ldt);
 650        free_ldt_struct(old_ldt);
 651        error = 0;
 652
 653out_unlock:
 654        up_write(&mm->context.ldt_usr_sem);
 655out:
 656        return error;
 657}
 658
 659SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
 660                unsigned long , bytecount)
 661{
 662        int ret = -ENOSYS;
 663
 664        switch (func) {
 665        case 0:
 666                ret = read_ldt(ptr, bytecount);
 667                break;
 668        case 1:
 669                ret = write_ldt(ptr, bytecount, 1);
 670                break;
 671        case 2:
 672                ret = read_default_ldt(ptr, bytecount);
 673                break;
 674        case 0x11:
 675                ret = write_ldt(ptr, bytecount, 0);
 676                break;
 677        }
 678        /*
 679         * The SYSCALL_DEFINE() macros give us an 'unsigned long'
 680         * return type, but tht ABI for sys_modify_ldt() expects
 681         * 'int'.  This cast gives us an int-sized value in %rax
 682         * for the return code.  The 'unsigned' is necessary so
 683         * the compiler does not try to sign-extend the negative
 684         * return codes into the high half of the register when
 685         * taking the value from int->long.
 686         */
 687        return (unsigned int)ret;
 688}
 689