linux/arch/x86/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/timer.h>
  34#include <linux/init.h>
  35#include <linux/bug.h>
  36#include <linux/nmi.h>
  37#include <linux/mm.h>
  38#include <linux/smp.h>
  39#include <linux/io.h>
  40#include <linux/hardirq.h>
  41#include <linux/atomic.h>
  42
  43#include <asm/stacktrace.h>
  44#include <asm/processor.h>
  45#include <asm/debugreg.h>
  46#include <asm/text-patching.h>
  47#include <asm/ftrace.h>
  48#include <asm/traps.h>
  49#include <asm/desc.h>
  50#include <asm/fpu/internal.h>
  51#include <asm/cpu.h>
  52#include <asm/cpu_entry_area.h>
  53#include <asm/mce.h>
  54#include <asm/fixmap.h>
  55#include <asm/mach_traps.h>
  56#include <asm/alternative.h>
  57#include <asm/fpu/xstate.h>
  58#include <asm/vm86.h>
  59#include <asm/umip.h>
  60#include <asm/insn.h>
  61#include <asm/insn-eval.h>
  62
  63#ifdef CONFIG_X86_64
  64#include <asm/x86_init.h>
  65#include <asm/proto.h>
  66#else
  67#include <asm/processor-flags.h>
  68#include <asm/setup.h>
  69#include <asm/proto.h>
  70#endif
  71
  72DECLARE_BITMAP(system_vectors, NR_VECTORS);
  73
  74static inline void cond_local_irq_enable(struct pt_regs *regs)
  75{
  76        if (regs->flags & X86_EFLAGS_IF)
  77                local_irq_enable();
  78}
  79
  80static inline void cond_local_irq_disable(struct pt_regs *regs)
  81{
  82        if (regs->flags & X86_EFLAGS_IF)
  83                local_irq_disable();
  84}
  85
  86__always_inline int is_valid_bugaddr(unsigned long addr)
  87{
  88        if (addr < TASK_SIZE_MAX)
  89                return 0;
  90
  91        /*
  92         * We got #UD, if the text isn't readable we'd have gotten
  93         * a different exception.
  94         */
  95        return *(unsigned short *)addr == INSN_UD2;
  96}
  97
  98static nokprobe_inline int
  99do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
 100                  struct pt_regs *regs, long error_code)
 101{
 102        if (v8086_mode(regs)) {
 103                /*
 104                 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 105                 * On nmi (interrupt 2), do_trap should not be called.
 106                 */
 107                if (trapnr < X86_TRAP_UD) {
 108                        if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 109                                                error_code, trapnr))
 110                                return 0;
 111                }
 112        } else if (!user_mode(regs)) {
 113                if (fixup_exception(regs, trapnr, error_code, 0))
 114                        return 0;
 115
 116                tsk->thread.error_code = error_code;
 117                tsk->thread.trap_nr = trapnr;
 118                die(str, regs, error_code);
 119        }
 120
 121        /*
 122         * We want error_code and trap_nr set for userspace faults and
 123         * kernelspace faults which result in die(), but not
 124         * kernelspace faults which are fixed up.  die() gives the
 125         * process no chance to handle the signal and notice the
 126         * kernel fault information, so that won't result in polluting
 127         * the information about previously queued, but not yet
 128         * delivered, faults.  See also exc_general_protection below.
 129         */
 130        tsk->thread.error_code = error_code;
 131        tsk->thread.trap_nr = trapnr;
 132
 133        return -1;
 134}
 135
 136static void show_signal(struct task_struct *tsk, int signr,
 137                        const char *type, const char *desc,
 138                        struct pt_regs *regs, long error_code)
 139{
 140        if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 141            printk_ratelimit()) {
 142                pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 143                        tsk->comm, task_pid_nr(tsk), type, desc,
 144                        regs->ip, regs->sp, error_code);
 145                print_vma_addr(KERN_CONT " in ", regs->ip);
 146                pr_cont("\n");
 147        }
 148}
 149
 150static void
 151do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 152        long error_code, int sicode, void __user *addr)
 153{
 154        struct task_struct *tsk = current;
 155
 156        if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 157                return;
 158
 159        show_signal(tsk, signr, "trap ", str, regs, error_code);
 160
 161        if (!sicode)
 162                force_sig(signr);
 163        else
 164                force_sig_fault(signr, sicode, addr);
 165}
 166NOKPROBE_SYMBOL(do_trap);
 167
 168static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 169        unsigned long trapnr, int signr, int sicode, void __user *addr)
 170{
 171        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 172
 173        if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 174                        NOTIFY_STOP) {
 175                cond_local_irq_enable(regs);
 176                do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 177                cond_local_irq_disable(regs);
 178        }
 179}
 180
 181/*
 182 * Posix requires to provide the address of the faulting instruction for
 183 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 184 *
 185 * This address is usually regs->ip, but when an uprobe moved the code out
 186 * of line then regs->ip points to the XOL code which would confuse
 187 * anything which analyzes the fault address vs. the unmodified binary. If
 188 * a trap happened in XOL code then uprobe maps regs->ip back to the
 189 * original instruction address.
 190 */
 191static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
 192{
 193        return (void __user *)uprobe_get_trap_addr(regs);
 194}
 195
 196DEFINE_IDTENTRY(exc_divide_error)
 197{
 198        do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
 199                      FPE_INTDIV, error_get_trap_addr(regs));
 200}
 201
 202DEFINE_IDTENTRY(exc_overflow)
 203{
 204        do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
 205}
 206
 207#ifdef CONFIG_X86_F00F_BUG
 208void handle_invalid_op(struct pt_regs *regs)
 209#else
 210static inline void handle_invalid_op(struct pt_regs *regs)
 211#endif
 212{
 213        do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
 214                      ILL_ILLOPN, error_get_trap_addr(regs));
 215}
 216
 217static noinstr bool handle_bug(struct pt_regs *regs)
 218{
 219        bool handled = false;
 220
 221        if (!is_valid_bugaddr(regs->ip))
 222                return handled;
 223
 224        /*
 225         * All lies, just get the WARN/BUG out.
 226         */
 227        instrumentation_begin();
 228        /*
 229         * Since we're emulating a CALL with exceptions, restore the interrupt
 230         * state to what it was at the exception site.
 231         */
 232        if (regs->flags & X86_EFLAGS_IF)
 233                raw_local_irq_enable();
 234        if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
 235                regs->ip += LEN_UD2;
 236                handled = true;
 237        }
 238        if (regs->flags & X86_EFLAGS_IF)
 239                raw_local_irq_disable();
 240        instrumentation_end();
 241
 242        return handled;
 243}
 244
 245DEFINE_IDTENTRY_RAW(exc_invalid_op)
 246{
 247        irqentry_state_t state;
 248
 249        /*
 250         * We use UD2 as a short encoding for 'CALL __WARN', as such
 251         * handle it before exception entry to avoid recursive WARN
 252         * in case exception entry is the one triggering WARNs.
 253         */
 254        if (!user_mode(regs) && handle_bug(regs))
 255                return;
 256
 257        state = irqentry_enter(regs);
 258        instrumentation_begin();
 259        handle_invalid_op(regs);
 260        instrumentation_end();
 261        irqentry_exit(regs, state);
 262}
 263
 264DEFINE_IDTENTRY(exc_coproc_segment_overrun)
 265{
 266        do_error_trap(regs, 0, "coprocessor segment overrun",
 267                      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
 268}
 269
 270DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
 271{
 272        do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
 273                      0, NULL);
 274}
 275
 276DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
 277{
 278        do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
 279                      SIGBUS, 0, NULL);
 280}
 281
 282DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
 283{
 284        do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
 285                      0, NULL);
 286}
 287
 288DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
 289{
 290        char *str = "alignment check";
 291
 292        if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
 293                return;
 294
 295        if (!user_mode(regs))
 296                die("Split lock detected\n", regs, error_code);
 297
 298        local_irq_enable();
 299
 300        if (handle_user_split_lock(regs, error_code))
 301                return;
 302
 303        do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
 304                error_code, BUS_ADRALN, NULL);
 305
 306        local_irq_disable();
 307}
 308
 309#ifdef CONFIG_VMAP_STACK
 310__visible void __noreturn handle_stack_overflow(const char *message,
 311                                                struct pt_regs *regs,
 312                                                unsigned long fault_address)
 313{
 314        printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 315                 (void *)fault_address, current->stack,
 316                 (char *)current->stack + THREAD_SIZE - 1);
 317        die(message, regs, 0);
 318
 319        /* Be absolutely certain we don't return. */
 320        panic("%s", message);
 321}
 322#endif
 323
 324/*
 325 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 326 *
 327 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 328 * SDM's warnings about double faults being unrecoverable, returning works as
 329 * expected.  Presumably what the SDM actually means is that the CPU may get
 330 * the register state wrong on entry, so returning could be a bad idea.
 331 *
 332 * Various CPU engineers have promised that double faults due to an IRET fault
 333 * while the stack is read-only are, in fact, recoverable.
 334 *
 335 * On x86_32, this is entered through a task gate, and regs are synthesized
 336 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 337 * be lost.  If, for some reason, we need to return to a context with modified
 338 * regs, the shim code could be adjusted to synchronize the registers.
 339 *
 340 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 341 * to be read before doing anything else.
 342 */
 343DEFINE_IDTENTRY_DF(exc_double_fault)
 344{
 345        static const char str[] = "double fault";
 346        struct task_struct *tsk = current;
 347
 348#ifdef CONFIG_VMAP_STACK
 349        unsigned long address = read_cr2();
 350#endif
 351
 352#ifdef CONFIG_X86_ESPFIX64
 353        extern unsigned char native_irq_return_iret[];
 354
 355        /*
 356         * If IRET takes a non-IST fault on the espfix64 stack, then we
 357         * end up promoting it to a doublefault.  In that case, take
 358         * advantage of the fact that we're not using the normal (TSS.sp0)
 359         * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 360         * and then modify our own IRET frame so that, when we return,
 361         * we land directly at the #GP(0) vector with the stack already
 362         * set up according to its expectations.
 363         *
 364         * The net result is that our #GP handler will think that we
 365         * entered from usermode with the bad user context.
 366         *
 367         * No need for nmi_enter() here because we don't use RCU.
 368         */
 369        if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 370                regs->cs == __KERNEL_CS &&
 371                regs->ip == (unsigned long)native_irq_return_iret)
 372        {
 373                struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 374                unsigned long *p = (unsigned long *)regs->sp;
 375
 376                /*
 377                 * regs->sp points to the failing IRET frame on the
 378                 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 379                 * in gpregs->ss through gpregs->ip.
 380                 *
 381                 */
 382                gpregs->ip      = p[0];
 383                gpregs->cs      = p[1];
 384                gpregs->flags   = p[2];
 385                gpregs->sp      = p[3];
 386                gpregs->ss      = p[4];
 387                gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 388
 389                /*
 390                 * Adjust our frame so that we return straight to the #GP
 391                 * vector with the expected RSP value.  This is safe because
 392                 * we won't enable interupts or schedule before we invoke
 393                 * general_protection, so nothing will clobber the stack
 394                 * frame we just set up.
 395                 *
 396                 * We will enter general_protection with kernel GSBASE,
 397                 * which is what the stub expects, given that the faulting
 398                 * RIP will be the IRET instruction.
 399                 */
 400                regs->ip = (unsigned long)asm_exc_general_protection;
 401                regs->sp = (unsigned long)&gpregs->orig_ax;
 402
 403                return;
 404        }
 405#endif
 406
 407        idtentry_enter_nmi(regs);
 408        instrumentation_begin();
 409        notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 410
 411        tsk->thread.error_code = error_code;
 412        tsk->thread.trap_nr = X86_TRAP_DF;
 413
 414#ifdef CONFIG_VMAP_STACK
 415        /*
 416         * If we overflow the stack into a guard page, the CPU will fail
 417         * to deliver #PF and will send #DF instead.  Similarly, if we
 418         * take any non-IST exception while too close to the bottom of
 419         * the stack, the processor will get a page fault while
 420         * delivering the exception and will generate a double fault.
 421         *
 422         * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 423         * Page-Fault Exception (#PF):
 424         *
 425         *   Processors update CR2 whenever a page fault is detected. If a
 426         *   second page fault occurs while an earlier page fault is being
 427         *   delivered, the faulting linear address of the second fault will
 428         *   overwrite the contents of CR2 (replacing the previous
 429         *   address). These updates to CR2 occur even if the page fault
 430         *   results in a double fault or occurs during the delivery of a
 431         *   double fault.
 432         *
 433         * The logic below has a small possibility of incorrectly diagnosing
 434         * some errors as stack overflows.  For example, if the IDT or GDT
 435         * gets corrupted such that #GP delivery fails due to a bad descriptor
 436         * causing #GP and we hit this condition while CR2 coincidentally
 437         * points to the stack guard page, we'll think we overflowed the
 438         * stack.  Given that we're going to panic one way or another
 439         * if this happens, this isn't necessarily worth fixing.
 440         *
 441         * If necessary, we could improve the test by only diagnosing
 442         * a stack overflow if the saved RSP points within 47 bytes of
 443         * the bottom of the stack: if RSP == tsk_stack + 48 and we
 444         * take an exception, the stack is already aligned and there
 445         * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 446         * possible error code, so a stack overflow would *not* double
 447         * fault.  With any less space left, exception delivery could
 448         * fail, and, as a practical matter, we've overflowed the
 449         * stack even if the actual trigger for the double fault was
 450         * something else.
 451         */
 452        if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
 453                handle_stack_overflow("kernel stack overflow (double-fault)",
 454                                      regs, address);
 455        }
 456#endif
 457
 458        pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
 459        die("double fault", regs, error_code);
 460        panic("Machine halted.");
 461        instrumentation_end();
 462}
 463
 464DEFINE_IDTENTRY(exc_bounds)
 465{
 466        if (notify_die(DIE_TRAP, "bounds", regs, 0,
 467                        X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 468                return;
 469        cond_local_irq_enable(regs);
 470
 471        if (!user_mode(regs))
 472                die("bounds", regs, 0);
 473
 474        do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
 475
 476        cond_local_irq_disable(regs);
 477}
 478
 479enum kernel_gp_hint {
 480        GP_NO_HINT,
 481        GP_NON_CANONICAL,
 482        GP_CANONICAL
 483};
 484
 485/*
 486 * When an uncaught #GP occurs, try to determine the memory address accessed by
 487 * the instruction and return that address to the caller. Also, try to figure
 488 * out whether any part of the access to that address was non-canonical.
 489 */
 490static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
 491                                                 unsigned long *addr)
 492{
 493        u8 insn_buf[MAX_INSN_SIZE];
 494        struct insn insn;
 495
 496        if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
 497                        MAX_INSN_SIZE))
 498                return GP_NO_HINT;
 499
 500        kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
 501        insn_get_modrm(&insn);
 502        insn_get_sib(&insn);
 503
 504        *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
 505        if (*addr == -1UL)
 506                return GP_NO_HINT;
 507
 508#ifdef CONFIG_X86_64
 509        /*
 510         * Check that:
 511         *  - the operand is not in the kernel half
 512         *  - the last byte of the operand is not in the user canonical half
 513         */
 514        if (*addr < ~__VIRTUAL_MASK &&
 515            *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
 516                return GP_NON_CANONICAL;
 517#endif
 518
 519        return GP_CANONICAL;
 520}
 521
 522#define GPFSTR "general protection fault"
 523
 524DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
 525{
 526        char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
 527        enum kernel_gp_hint hint = GP_NO_HINT;
 528        struct task_struct *tsk;
 529        unsigned long gp_addr;
 530        int ret;
 531
 532        cond_local_irq_enable(regs);
 533
 534        if (static_cpu_has(X86_FEATURE_UMIP)) {
 535                if (user_mode(regs) && fixup_umip_exception(regs))
 536                        goto exit;
 537        }
 538
 539        if (v8086_mode(regs)) {
 540                local_irq_enable();
 541                handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 542                local_irq_disable();
 543                return;
 544        }
 545
 546        tsk = current;
 547
 548        if (user_mode(regs)) {
 549                tsk->thread.error_code = error_code;
 550                tsk->thread.trap_nr = X86_TRAP_GP;
 551
 552                show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 553                force_sig(SIGSEGV);
 554                goto exit;
 555        }
 556
 557        if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
 558                goto exit;
 559
 560        tsk->thread.error_code = error_code;
 561        tsk->thread.trap_nr = X86_TRAP_GP;
 562
 563        /*
 564         * To be potentially processing a kprobe fault and to trust the result
 565         * from kprobe_running(), we have to be non-preemptible.
 566         */
 567        if (!preemptible() &&
 568            kprobe_running() &&
 569            kprobe_fault_handler(regs, X86_TRAP_GP))
 570                goto exit;
 571
 572        ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
 573        if (ret == NOTIFY_STOP)
 574                goto exit;
 575
 576        if (error_code)
 577                snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
 578        else
 579                hint = get_kernel_gp_address(regs, &gp_addr);
 580
 581        if (hint != GP_NO_HINT)
 582                snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
 583                         (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
 584                                                    : "maybe for address",
 585                         gp_addr);
 586
 587        /*
 588         * KASAN is interested only in the non-canonical case, clear it
 589         * otherwise.
 590         */
 591        if (hint != GP_NON_CANONICAL)
 592                gp_addr = 0;
 593
 594        die_addr(desc, regs, error_code, gp_addr);
 595
 596exit:
 597        cond_local_irq_disable(regs);
 598}
 599
 600static bool do_int3(struct pt_regs *regs)
 601{
 602        int res;
 603
 604#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 605        if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
 606                         SIGTRAP) == NOTIFY_STOP)
 607                return true;
 608#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 609
 610#ifdef CONFIG_KPROBES
 611        if (kprobe_int3_handler(regs))
 612                return true;
 613#endif
 614        res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
 615
 616        return res == NOTIFY_STOP;
 617}
 618
 619static void do_int3_user(struct pt_regs *regs)
 620{
 621        if (do_int3(regs))
 622                return;
 623
 624        cond_local_irq_enable(regs);
 625        do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
 626        cond_local_irq_disable(regs);
 627}
 628
 629DEFINE_IDTENTRY_RAW(exc_int3)
 630{
 631        /*
 632         * poke_int3_handler() is completely self contained code; it does (and
 633         * must) *NOT* call out to anything, lest it hits upon yet another
 634         * INT3.
 635         */
 636        if (poke_int3_handler(regs))
 637                return;
 638
 639        /*
 640         * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
 641         * and therefore can trigger INT3, hence poke_int3_handler() must
 642         * be done before. If the entry came from kernel mode, then use
 643         * nmi_enter() because the INT3 could have been hit in any context
 644         * including NMI.
 645         */
 646        if (user_mode(regs)) {
 647                irqentry_enter_from_user_mode(regs);
 648                instrumentation_begin();
 649                do_int3_user(regs);
 650                instrumentation_end();
 651                irqentry_exit_to_user_mode(regs);
 652        } else {
 653                bool irq_state = idtentry_enter_nmi(regs);
 654                instrumentation_begin();
 655                if (!do_int3(regs))
 656                        die("int3", regs, 0);
 657                instrumentation_end();
 658                idtentry_exit_nmi(regs, irq_state);
 659        }
 660}
 661
 662#ifdef CONFIG_X86_64
 663/*
 664 * Help handler running on a per-cpu (IST or entry trampoline) stack
 665 * to switch to the normal thread stack if the interrupted code was in
 666 * user mode. The actual stack switch is done in entry_64.S
 667 */
 668asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
 669{
 670        struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
 671        if (regs != eregs)
 672                *regs = *eregs;
 673        return regs;
 674}
 675
 676struct bad_iret_stack {
 677        void *error_entry_ret;
 678        struct pt_regs regs;
 679};
 680
 681asmlinkage __visible noinstr
 682struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 683{
 684        /*
 685         * This is called from entry_64.S early in handling a fault
 686         * caused by a bad iret to user mode.  To handle the fault
 687         * correctly, we want to move our stack frame to where it would
 688         * be had we entered directly on the entry stack (rather than
 689         * just below the IRET frame) and we want to pretend that the
 690         * exception came from the IRET target.
 691         */
 692        struct bad_iret_stack tmp, *new_stack =
 693                (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 694
 695        /* Copy the IRET target to the temporary storage. */
 696        __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
 697
 698        /* Copy the remainder of the stack from the current stack. */
 699        __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
 700
 701        /* Update the entry stack */
 702        __memcpy(new_stack, &tmp, sizeof(tmp));
 703
 704        BUG_ON(!user_mode(&new_stack->regs));
 705        return new_stack;
 706}
 707#endif
 708
 709static bool is_sysenter_singlestep(struct pt_regs *regs)
 710{
 711        /*
 712         * We don't try for precision here.  If we're anywhere in the region of
 713         * code that can be single-stepped in the SYSENTER entry path, then
 714         * assume that this is a useless single-step trap due to SYSENTER
 715         * being invoked with TF set.  (We don't know in advance exactly
 716         * which instructions will be hit because BTF could plausibly
 717         * be set.)
 718         */
 719#ifdef CONFIG_X86_32
 720        return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 721                (unsigned long)__end_SYSENTER_singlestep_region -
 722                (unsigned long)__begin_SYSENTER_singlestep_region;
 723#elif defined(CONFIG_IA32_EMULATION)
 724        return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 725                (unsigned long)__end_entry_SYSENTER_compat -
 726                (unsigned long)entry_SYSENTER_compat;
 727#else
 728        return false;
 729#endif
 730}
 731
 732static __always_inline unsigned long debug_read_clear_dr6(void)
 733{
 734        unsigned long dr6;
 735
 736        /*
 737         * The Intel SDM says:
 738         *
 739         *   Certain debug exceptions may clear bits 0-3. The remaining
 740         *   contents of the DR6 register are never cleared by the
 741         *   processor. To avoid confusion in identifying debug
 742         *   exceptions, debug handlers should clear the register before
 743         *   returning to the interrupted task.
 744         *
 745         * Keep it simple: clear DR6 immediately.
 746         */
 747        get_debugreg(dr6, 6);
 748        set_debugreg(0, 6);
 749        /* Filter out all the reserved bits which are preset to 1 */
 750        dr6 &= ~DR6_RESERVED;
 751
 752        return dr6;
 753}
 754
 755/*
 756 * Our handling of the processor debug registers is non-trivial.
 757 * We do not clear them on entry and exit from the kernel. Therefore
 758 * it is possible to get a watchpoint trap here from inside the kernel.
 759 * However, the code in ./ptrace.c has ensured that the user can
 760 * only set watchpoints on userspace addresses. Therefore the in-kernel
 761 * watchpoint trap can only occur in code which is reading/writing
 762 * from user space. Such code must not hold kernel locks (since it
 763 * can equally take a page fault), therefore it is safe to call
 764 * force_sig_info even though that claims and releases locks.
 765 *
 766 * Code in ./signal.c ensures that the debug control register
 767 * is restored before we deliver any signal, and therefore that
 768 * user code runs with the correct debug control register even though
 769 * we clear it here.
 770 *
 771 * Being careful here means that we don't have to be as careful in a
 772 * lot of more complicated places (task switching can be a bit lazy
 773 * about restoring all the debug state, and ptrace doesn't have to
 774 * find every occurrence of the TF bit that could be saved away even
 775 * by user code)
 776 *
 777 * May run on IST stack.
 778 */
 779static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
 780{
 781        struct task_struct *tsk = current;
 782        bool user_icebp;
 783        int si_code;
 784
 785        /*
 786         * The SDM says "The processor clears the BTF flag when it
 787         * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 788         * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 789         */
 790        clear_thread_flag(TIF_BLOCKSTEP);
 791
 792        /*
 793         * If DR6 is zero, no point in trying to handle it. The kernel is
 794         * not using INT1.
 795         */
 796        if (!user && !dr6)
 797                return;
 798
 799        /*
 800         * If dr6 has no reason to give us about the origin of this trap,
 801         * then it's very likely the result of an icebp/int01 trap.
 802         * User wants a sigtrap for that.
 803         */
 804        user_icebp = user && !dr6;
 805
 806        /* Store the virtualized DR6 value */
 807        tsk->thread.debugreg6 = dr6;
 808
 809#ifdef CONFIG_KPROBES
 810        if (kprobe_debug_handler(regs)) {
 811                return;
 812        }
 813#endif
 814
 815        if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
 816                       SIGTRAP) == NOTIFY_STOP) {
 817                return;
 818        }
 819
 820        /* It's safe to allow irq's after DR6 has been saved */
 821        cond_local_irq_enable(regs);
 822
 823        if (v8086_mode(regs)) {
 824                handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
 825                                 X86_TRAP_DB);
 826                goto out;
 827        }
 828
 829        if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
 830                /*
 831                 * Historical junk that used to handle SYSENTER single-stepping.
 832                 * This should be unreachable now.  If we survive for a while
 833                 * without anyone hitting this warning, we'll turn this into
 834                 * an oops.
 835                 */
 836                tsk->thread.debugreg6 &= ~DR_STEP;
 837                set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 838                regs->flags &= ~X86_EFLAGS_TF;
 839        }
 840
 841        si_code = get_si_code(tsk->thread.debugreg6);
 842        if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 843                send_sigtrap(regs, 0, si_code);
 844
 845out:
 846        cond_local_irq_disable(regs);
 847}
 848
 849static __always_inline void exc_debug_kernel(struct pt_regs *regs,
 850                                             unsigned long dr6)
 851{
 852        /*
 853         * Disable breakpoints during exception handling; recursive exceptions
 854         * are exceedingly 'fun'.
 855         *
 856         * Since this function is NOKPROBE, and that also applies to
 857         * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
 858         * HW_BREAKPOINT_W on our stack)
 859         *
 860         * Entry text is excluded for HW_BP_X and cpu_entry_area, which
 861         * includes the entry stack is excluded for everything.
 862         */
 863        unsigned long dr7 = local_db_save();
 864        bool irq_state = idtentry_enter_nmi(regs);
 865        instrumentation_begin();
 866
 867        /*
 868         * If something gets miswired and we end up here for a user mode
 869         * #DB, we will malfunction.
 870         */
 871        WARN_ON_ONCE(user_mode(regs));
 872
 873        /*
 874         * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
 875         * watchpoint at the same time then that will still be handled.
 876         */
 877        if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
 878                dr6 &= ~DR_STEP;
 879
 880        handle_debug(regs, dr6, false);
 881
 882        instrumentation_end();
 883        idtentry_exit_nmi(regs, irq_state);
 884
 885        local_db_restore(dr7);
 886}
 887
 888static __always_inline void exc_debug_user(struct pt_regs *regs,
 889                                           unsigned long dr6)
 890{
 891        /*
 892         * If something gets miswired and we end up here for a kernel mode
 893         * #DB, we will malfunction.
 894         */
 895        WARN_ON_ONCE(!user_mode(regs));
 896
 897        /*
 898         * NB: We can't easily clear DR7 here because
 899         * idtentry_exit_to_usermode() can invoke ptrace, schedule, access
 900         * user memory, etc.  This means that a recursive #DB is possible.  If
 901         * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
 902         * Since we're not on the IST stack right now, everything will be
 903         * fine.
 904         */
 905
 906        irqentry_enter_from_user_mode(regs);
 907        instrumentation_begin();
 908
 909        handle_debug(regs, dr6, true);
 910
 911        instrumentation_end();
 912        irqentry_exit_to_user_mode(regs);
 913}
 914
 915#ifdef CONFIG_X86_64
 916/* IST stack entry */
 917DEFINE_IDTENTRY_DEBUG(exc_debug)
 918{
 919        exc_debug_kernel(regs, debug_read_clear_dr6());
 920}
 921
 922/* User entry, runs on regular task stack */
 923DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
 924{
 925        exc_debug_user(regs, debug_read_clear_dr6());
 926}
 927#else
 928/* 32 bit does not have separate entry points. */
 929DEFINE_IDTENTRY_RAW(exc_debug)
 930{
 931        unsigned long dr6 = debug_read_clear_dr6();
 932
 933        if (user_mode(regs))
 934                exc_debug_user(regs, dr6);
 935        else
 936                exc_debug_kernel(regs, dr6);
 937}
 938#endif
 939
 940/*
 941 * Note that we play around with the 'TS' bit in an attempt to get
 942 * the correct behaviour even in the presence of the asynchronous
 943 * IRQ13 behaviour
 944 */
 945static void math_error(struct pt_regs *regs, int trapnr)
 946{
 947        struct task_struct *task = current;
 948        struct fpu *fpu = &task->thread.fpu;
 949        int si_code;
 950        char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
 951                                                "simd exception";
 952
 953        cond_local_irq_enable(regs);
 954
 955        if (!user_mode(regs)) {
 956                if (fixup_exception(regs, trapnr, 0, 0))
 957                        goto exit;
 958
 959                task->thread.error_code = 0;
 960                task->thread.trap_nr = trapnr;
 961
 962                if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
 963                               SIGFPE) != NOTIFY_STOP)
 964                        die(str, regs, 0);
 965                goto exit;
 966        }
 967
 968        /*
 969         * Save the info for the exception handler and clear the error.
 970         */
 971        fpu__save(fpu);
 972
 973        task->thread.trap_nr    = trapnr;
 974        task->thread.error_code = 0;
 975
 976        si_code = fpu__exception_code(fpu, trapnr);
 977        /* Retry when we get spurious exceptions: */
 978        if (!si_code)
 979                goto exit;
 980
 981        force_sig_fault(SIGFPE, si_code,
 982                        (void __user *)uprobe_get_trap_addr(regs));
 983exit:
 984        cond_local_irq_disable(regs);
 985}
 986
 987DEFINE_IDTENTRY(exc_coprocessor_error)
 988{
 989        math_error(regs, X86_TRAP_MF);
 990}
 991
 992DEFINE_IDTENTRY(exc_simd_coprocessor_error)
 993{
 994        if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
 995                /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
 996                if (!static_cpu_has(X86_FEATURE_XMM)) {
 997                        __exc_general_protection(regs, 0);
 998                        return;
 999                }
1000        }
1001        math_error(regs, X86_TRAP_XF);
1002}
1003
1004DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1005{
1006        /*
1007         * This addresses a Pentium Pro Erratum:
1008         *
1009         * PROBLEM: If the APIC subsystem is configured in mixed mode with
1010         * Virtual Wire mode implemented through the local APIC, an
1011         * interrupt vector of 0Fh (Intel reserved encoding) may be
1012         * generated by the local APIC (Int 15).  This vector may be
1013         * generated upon receipt of a spurious interrupt (an interrupt
1014         * which is removed before the system receives the INTA sequence)
1015         * instead of the programmed 8259 spurious interrupt vector.
1016         *
1017         * IMPLICATION: The spurious interrupt vector programmed in the
1018         * 8259 is normally handled by an operating system's spurious
1019         * interrupt handler. However, a vector of 0Fh is unknown to some
1020         * operating systems, which would crash if this erratum occurred.
1021         *
1022         * In theory this could be limited to 32bit, but the handler is not
1023         * hurting and who knows which other CPUs suffer from this.
1024         */
1025}
1026
1027DEFINE_IDTENTRY(exc_device_not_available)
1028{
1029        unsigned long cr0 = read_cr0();
1030
1031#ifdef CONFIG_MATH_EMULATION
1032        if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1033                struct math_emu_info info = { };
1034
1035                cond_local_irq_enable(regs);
1036
1037                info.regs = regs;
1038                math_emulate(&info);
1039
1040                cond_local_irq_disable(regs);
1041                return;
1042        }
1043#endif
1044
1045        /* This should not happen. */
1046        if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1047                /* Try to fix it up and carry on. */
1048                write_cr0(cr0 & ~X86_CR0_TS);
1049        } else {
1050                /*
1051                 * Something terrible happened, and we're better off trying
1052                 * to kill the task than getting stuck in a never-ending
1053                 * loop of #NM faults.
1054                 */
1055                die("unexpected #NM exception", regs, 0);
1056        }
1057}
1058
1059#ifdef CONFIG_X86_32
1060DEFINE_IDTENTRY_SW(iret_error)
1061{
1062        local_irq_enable();
1063        if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1064                        X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1065                do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1066                        ILL_BADSTK, (void __user *)NULL);
1067        }
1068        local_irq_disable();
1069}
1070#endif
1071
1072void __init trap_init(void)
1073{
1074        /* Init cpu_entry_area before IST entries are set up */
1075        setup_cpu_entry_areas();
1076
1077        idt_setup_traps();
1078
1079        /*
1080         * Should be a barrier for any external CPU state:
1081         */
1082        cpu_init();
1083
1084        idt_setup_ist_traps();
1085}
1086