linux/arch/x86/kvm/cpuid.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include "cpuid.h"
  22#include "lapic.h"
  23#include "mmu.h"
  24#include "trace.h"
  25#include "pmu.h"
  26
  27/*
  28 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  29 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  30 */
  31u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
  32EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  33
  34static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  35{
  36        int feature_bit = 0;
  37        u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  38
  39        xstate_bv &= XFEATURE_MASK_EXTEND;
  40        while (xstate_bv) {
  41                if (xstate_bv & 0x1) {
  42                        u32 eax, ebx, ecx, edx, offset;
  43                        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  44                        offset = compacted ? ret : ebx;
  45                        ret = max(ret, offset + eax);
  46                }
  47
  48                xstate_bv >>= 1;
  49                feature_bit++;
  50        }
  51
  52        return ret;
  53}
  54
  55#define F feature_bit
  56
  57static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
  58{
  59        struct kvm_cpuid_entry2 *best;
  60
  61        /*
  62         * The existing code assumes virtual address is 48-bit or 57-bit in the
  63         * canonical address checks; exit if it is ever changed.
  64         */
  65        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  66        if (best) {
  67                int vaddr_bits = (best->eax & 0xff00) >> 8;
  68
  69                if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
  70                        return -EINVAL;
  71        }
  72
  73        return 0;
  74}
  75
  76void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
  77{
  78        struct kvm_cpuid_entry2 *best;
  79
  80        best = kvm_find_cpuid_entry(vcpu, 1, 0);
  81        if (best) {
  82                /* Update OSXSAVE bit */
  83                if (boot_cpu_has(X86_FEATURE_XSAVE))
  84                        cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
  85                                   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
  86
  87                cpuid_entry_change(best, X86_FEATURE_APIC,
  88                           vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
  89        }
  90
  91        best = kvm_find_cpuid_entry(vcpu, 7, 0);
  92        if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
  93                cpuid_entry_change(best, X86_FEATURE_OSPKE,
  94                                   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
  95
  96        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
  97        if (best)
  98                best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
  99
 100        best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 101        if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 102                     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 103                best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 104
 105        best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 106        if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 107                (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 108                best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 109
 110        if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 111                best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 112                if (best)
 113                        cpuid_entry_change(best, X86_FEATURE_MWAIT,
 114                                           vcpu->arch.ia32_misc_enable_msr &
 115                                           MSR_IA32_MISC_ENABLE_MWAIT);
 116        }
 117}
 118
 119static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 120{
 121        struct kvm_lapic *apic = vcpu->arch.apic;
 122        struct kvm_cpuid_entry2 *best;
 123
 124        kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
 125
 126        best = kvm_find_cpuid_entry(vcpu, 1, 0);
 127        if (best && apic) {
 128                if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 129                        apic->lapic_timer.timer_mode_mask = 3 << 17;
 130                else
 131                        apic->lapic_timer.timer_mode_mask = 1 << 17;
 132
 133                kvm_apic_set_version(vcpu);
 134        }
 135
 136        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 137        if (!best)
 138                vcpu->arch.guest_supported_xcr0 = 0;
 139        else
 140                vcpu->arch.guest_supported_xcr0 =
 141                        (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
 142
 143        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 144        kvm_mmu_reset_context(vcpu);
 145
 146        kvm_pmu_refresh(vcpu);
 147        vcpu->arch.cr4_guest_rsvd_bits =
 148            __cr4_reserved_bits(guest_cpuid_has, vcpu);
 149        kvm_x86_ops.update_exception_bitmap(vcpu);
 150}
 151
 152static int is_efer_nx(void)
 153{
 154        return host_efer & EFER_NX;
 155}
 156
 157static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 158{
 159        int i;
 160        struct kvm_cpuid_entry2 *e, *entry;
 161
 162        entry = NULL;
 163        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 164                e = &vcpu->arch.cpuid_entries[i];
 165                if (e->function == 0x80000001) {
 166                        entry = e;
 167                        break;
 168                }
 169        }
 170        if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
 171                cpuid_entry_clear(entry, X86_FEATURE_NX);
 172                printk(KERN_INFO "kvm: guest NX capability removed\n");
 173        }
 174}
 175
 176int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 177{
 178        struct kvm_cpuid_entry2 *best;
 179
 180        best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 181        if (!best || best->eax < 0x80000008)
 182                goto not_found;
 183        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 184        if (best)
 185                return best->eax & 0xff;
 186not_found:
 187        return 36;
 188}
 189EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 190
 191/* when an old userspace process fills a new kernel module */
 192int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 193                             struct kvm_cpuid *cpuid,
 194                             struct kvm_cpuid_entry __user *entries)
 195{
 196        int r, i;
 197        struct kvm_cpuid_entry *cpuid_entries = NULL;
 198
 199        r = -E2BIG;
 200        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 201                goto out;
 202        if (cpuid->nent) {
 203                cpuid_entries = vmemdup_user(entries,
 204                                             array_size(sizeof(struct kvm_cpuid_entry),
 205                                                        cpuid->nent));
 206                if (IS_ERR(cpuid_entries)) {
 207                        r = PTR_ERR(cpuid_entries);
 208                        goto out;
 209                }
 210        }
 211        for (i = 0; i < cpuid->nent; i++) {
 212                vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 213                vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 214                vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 215                vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 216                vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 217                vcpu->arch.cpuid_entries[i].index = 0;
 218                vcpu->arch.cpuid_entries[i].flags = 0;
 219                vcpu->arch.cpuid_entries[i].padding[0] = 0;
 220                vcpu->arch.cpuid_entries[i].padding[1] = 0;
 221                vcpu->arch.cpuid_entries[i].padding[2] = 0;
 222        }
 223        vcpu->arch.cpuid_nent = cpuid->nent;
 224        r = kvm_check_cpuid(vcpu);
 225        if (r) {
 226                vcpu->arch.cpuid_nent = 0;
 227                kvfree(cpuid_entries);
 228                goto out;
 229        }
 230
 231        cpuid_fix_nx_cap(vcpu);
 232        kvm_update_cpuid_runtime(vcpu);
 233        kvm_vcpu_after_set_cpuid(vcpu);
 234
 235        kvfree(cpuid_entries);
 236out:
 237        return r;
 238}
 239
 240int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 241                              struct kvm_cpuid2 *cpuid,
 242                              struct kvm_cpuid_entry2 __user *entries)
 243{
 244        int r;
 245
 246        r = -E2BIG;
 247        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 248                goto out;
 249        r = -EFAULT;
 250        if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 251                           cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 252                goto out;
 253        vcpu->arch.cpuid_nent = cpuid->nent;
 254        r = kvm_check_cpuid(vcpu);
 255        if (r) {
 256                vcpu->arch.cpuid_nent = 0;
 257                goto out;
 258        }
 259
 260        kvm_update_cpuid_runtime(vcpu);
 261        kvm_vcpu_after_set_cpuid(vcpu);
 262out:
 263        return r;
 264}
 265
 266int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 267                              struct kvm_cpuid2 *cpuid,
 268                              struct kvm_cpuid_entry2 __user *entries)
 269{
 270        int r;
 271
 272        r = -E2BIG;
 273        if (cpuid->nent < vcpu->arch.cpuid_nent)
 274                goto out;
 275        r = -EFAULT;
 276        if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 277                         vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 278                goto out;
 279        return 0;
 280
 281out:
 282        cpuid->nent = vcpu->arch.cpuid_nent;
 283        return r;
 284}
 285
 286static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 287{
 288        const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 289        struct kvm_cpuid_entry2 entry;
 290
 291        reverse_cpuid_check(leaf);
 292        kvm_cpu_caps[leaf] &= mask;
 293
 294        cpuid_count(cpuid.function, cpuid.index,
 295                    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 296
 297        kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 298}
 299
 300void kvm_set_cpu_caps(void)
 301{
 302        unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
 303#ifdef CONFIG_X86_64
 304        unsigned int f_gbpages = F(GBPAGES);
 305        unsigned int f_lm = F(LM);
 306#else
 307        unsigned int f_gbpages = 0;
 308        unsigned int f_lm = 0;
 309#endif
 310
 311        BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
 312                     sizeof(boot_cpu_data.x86_capability));
 313
 314        memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 315               sizeof(kvm_cpu_caps));
 316
 317        kvm_cpu_cap_mask(CPUID_1_ECX,
 318                /*
 319                 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 320                 * advertised to guests via CPUID!
 321                 */
 322                F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 323                0 /* DS-CPL, VMX, SMX, EST */ |
 324                0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 325                F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 326                F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 327                F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 328                0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 329                F(F16C) | F(RDRAND)
 330        );
 331        /* KVM emulates x2apic in software irrespective of host support. */
 332        kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 333
 334        kvm_cpu_cap_mask(CPUID_1_EDX,
 335                F(FPU) | F(VME) | F(DE) | F(PSE) |
 336                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 337                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 338                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 339                F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 340                0 /* Reserved, DS, ACPI */ | F(MMX) |
 341                F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 342                0 /* HTT, TM, Reserved, PBE */
 343        );
 344
 345        kvm_cpu_cap_mask(CPUID_7_0_EBX,
 346                F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 347                F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
 348                F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 349                F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 350                F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
 351        );
 352
 353        kvm_cpu_cap_mask(CPUID_7_ECX,
 354                F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 355                F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 356                F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 357                F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
 358        );
 359        /* Set LA57 based on hardware capability. */
 360        if (cpuid_ecx(7) & F(LA57))
 361                kvm_cpu_cap_set(X86_FEATURE_LA57);
 362
 363        /*
 364         * PKU not yet implemented for shadow paging and requires OSPKE
 365         * to be set on the host. Clear it if that is not the case
 366         */
 367        if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 368                kvm_cpu_cap_clear(X86_FEATURE_PKU);
 369
 370        kvm_cpu_cap_mask(CPUID_7_EDX,
 371                F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 372                F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 373                F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 374                F(SERIALIZE)
 375        );
 376
 377        /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 378        kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 379        kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 380
 381        if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 382                kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 383        if (boot_cpu_has(X86_FEATURE_STIBP))
 384                kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 385        if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 386                kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 387
 388        kvm_cpu_cap_mask(CPUID_7_1_EAX,
 389                F(AVX512_BF16)
 390        );
 391
 392        kvm_cpu_cap_mask(CPUID_D_1_EAX,
 393                F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
 394        );
 395
 396        kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 397                F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 398                F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 399                F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 400                0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 401                F(TOPOEXT) | F(PERFCTR_CORE)
 402        );
 403
 404        kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 405                F(FPU) | F(VME) | F(DE) | F(PSE) |
 406                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 407                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 408                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 409                F(PAT) | F(PSE36) | 0 /* Reserved */ |
 410                f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 411                F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 412                0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 413        );
 414
 415        if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 416                kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 417
 418        kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 419                F(CLZERO) | F(XSAVEERPTR) |
 420                F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 421                F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
 422        );
 423
 424        /*
 425         * AMD has separate bits for each SPEC_CTRL bit.
 426         * arch/x86/kernel/cpu/bugs.c is kind enough to
 427         * record that in cpufeatures so use them.
 428         */
 429        if (boot_cpu_has(X86_FEATURE_IBPB))
 430                kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 431        if (boot_cpu_has(X86_FEATURE_IBRS))
 432                kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 433        if (boot_cpu_has(X86_FEATURE_STIBP))
 434                kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 435        if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 436                kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 437        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 438                kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 439        /*
 440         * The preference is to use SPEC CTRL MSR instead of the
 441         * VIRT_SPEC MSR.
 442         */
 443        if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 444            !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 445                kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 446
 447        /*
 448         * Hide all SVM features by default, SVM will set the cap bits for
 449         * features it emulates and/or exposes for L1.
 450         */
 451        kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 452
 453        kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 454                F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 455                F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 456                F(PMM) | F(PMM_EN)
 457        );
 458}
 459EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 460
 461struct kvm_cpuid_array {
 462        struct kvm_cpuid_entry2 *entries;
 463        int maxnent;
 464        int nent;
 465};
 466
 467static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 468                                              u32 function, u32 index)
 469{
 470        struct kvm_cpuid_entry2 *entry;
 471
 472        if (array->nent >= array->maxnent)
 473                return NULL;
 474
 475        entry = &array->entries[array->nent++];
 476
 477        entry->function = function;
 478        entry->index = index;
 479        entry->flags = 0;
 480
 481        cpuid_count(entry->function, entry->index,
 482                    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 483
 484        switch (function) {
 485        case 4:
 486        case 7:
 487        case 0xb:
 488        case 0xd:
 489        case 0xf:
 490        case 0x10:
 491        case 0x12:
 492        case 0x14:
 493        case 0x17:
 494        case 0x18:
 495        case 0x1f:
 496        case 0x8000001d:
 497                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 498                break;
 499        }
 500
 501        return entry;
 502}
 503
 504static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 505{
 506        struct kvm_cpuid_entry2 *entry;
 507
 508        if (array->nent >= array->maxnent)
 509                return -E2BIG;
 510
 511        entry = &array->entries[array->nent];
 512        entry->function = func;
 513        entry->index = 0;
 514        entry->flags = 0;
 515
 516        switch (func) {
 517        case 0:
 518                entry->eax = 7;
 519                ++array->nent;
 520                break;
 521        case 1:
 522                entry->ecx = F(MOVBE);
 523                ++array->nent;
 524                break;
 525        case 7:
 526                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 527                entry->eax = 0;
 528                entry->ecx = F(RDPID);
 529                ++array->nent;
 530        default:
 531                break;
 532        }
 533
 534        return 0;
 535}
 536
 537static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 538{
 539        struct kvm_cpuid_entry2 *entry;
 540        int r, i, max_idx;
 541
 542        /* all calls to cpuid_count() should be made on the same cpu */
 543        get_cpu();
 544
 545        r = -E2BIG;
 546
 547        entry = do_host_cpuid(array, function, 0);
 548        if (!entry)
 549                goto out;
 550
 551        switch (function) {
 552        case 0:
 553                /* Limited to the highest leaf implemented in KVM. */
 554                entry->eax = min(entry->eax, 0x1fU);
 555                break;
 556        case 1:
 557                cpuid_entry_override(entry, CPUID_1_EDX);
 558                cpuid_entry_override(entry, CPUID_1_ECX);
 559                break;
 560        case 2:
 561                /*
 562                 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 563                 * CPUID(function=2, index=0) may return different results each
 564                 * time, with the least-significant byte in EAX enumerating the
 565                 * number of times software should do CPUID(2, 0).
 566                 *
 567                 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 568                 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 569                 * return 01H. Software should ignore this value and not
 570                 * interpret it as an informational descriptor", while AMD's
 571                 * APM states that CPUID(2) is reserved.
 572                 *
 573                 * WARN if a frankenstein CPU that supports virtualization and
 574                 * a stateful CPUID.0x2 is encountered.
 575                 */
 576                WARN_ON_ONCE((entry->eax & 0xff) > 1);
 577                break;
 578        /* functions 4 and 0x8000001d have additional index. */
 579        case 4:
 580        case 0x8000001d:
 581                /*
 582                 * Read entries until the cache type in the previous entry is
 583                 * zero, i.e. indicates an invalid entry.
 584                 */
 585                for (i = 1; entry->eax & 0x1f; ++i) {
 586                        entry = do_host_cpuid(array, function, i);
 587                        if (!entry)
 588                                goto out;
 589                }
 590                break;
 591        case 6: /* Thermal management */
 592                entry->eax = 0x4; /* allow ARAT */
 593                entry->ebx = 0;
 594                entry->ecx = 0;
 595                entry->edx = 0;
 596                break;
 597        /* function 7 has additional index. */
 598        case 7:
 599                entry->eax = min(entry->eax, 1u);
 600                cpuid_entry_override(entry, CPUID_7_0_EBX);
 601                cpuid_entry_override(entry, CPUID_7_ECX);
 602                cpuid_entry_override(entry, CPUID_7_EDX);
 603
 604                /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 605                if (entry->eax == 1) {
 606                        entry = do_host_cpuid(array, function, 1);
 607                        if (!entry)
 608                                goto out;
 609
 610                        cpuid_entry_override(entry, CPUID_7_1_EAX);
 611                        entry->ebx = 0;
 612                        entry->ecx = 0;
 613                        entry->edx = 0;
 614                }
 615                break;
 616        case 9:
 617                break;
 618        case 0xa: { /* Architectural Performance Monitoring */
 619                struct x86_pmu_capability cap;
 620                union cpuid10_eax eax;
 621                union cpuid10_edx edx;
 622
 623                perf_get_x86_pmu_capability(&cap);
 624
 625                /*
 626                 * Only support guest architectural pmu on a host
 627                 * with architectural pmu.
 628                 */
 629                if (!cap.version)
 630                        memset(&cap, 0, sizeof(cap));
 631
 632                eax.split.version_id = min(cap.version, 2);
 633                eax.split.num_counters = cap.num_counters_gp;
 634                eax.split.bit_width = cap.bit_width_gp;
 635                eax.split.mask_length = cap.events_mask_len;
 636
 637                edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
 638                edx.split.bit_width_fixed = cap.bit_width_fixed;
 639                edx.split.reserved = 0;
 640
 641                entry->eax = eax.full;
 642                entry->ebx = cap.events_mask;
 643                entry->ecx = 0;
 644                entry->edx = edx.full;
 645                break;
 646        }
 647        /*
 648         * Per Intel's SDM, the 0x1f is a superset of 0xb,
 649         * thus they can be handled by common code.
 650         */
 651        case 0x1f:
 652        case 0xb:
 653                /*
 654                 * Populate entries until the level type (ECX[15:8]) of the
 655                 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
 656                 * the starting entry, filled by the primary do_host_cpuid().
 657                 */
 658                for (i = 1; entry->ecx & 0xff00; ++i) {
 659                        entry = do_host_cpuid(array, function, i);
 660                        if (!entry)
 661                                goto out;
 662                }
 663                break;
 664        case 0xd:
 665                entry->eax &= supported_xcr0;
 666                entry->ebx = xstate_required_size(supported_xcr0, false);
 667                entry->ecx = entry->ebx;
 668                entry->edx &= supported_xcr0 >> 32;
 669                if (!supported_xcr0)
 670                        break;
 671
 672                entry = do_host_cpuid(array, function, 1);
 673                if (!entry)
 674                        goto out;
 675
 676                cpuid_entry_override(entry, CPUID_D_1_EAX);
 677                if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 678                        entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
 679                                                          true);
 680                else {
 681                        WARN_ON_ONCE(supported_xss != 0);
 682                        entry->ebx = 0;
 683                }
 684                entry->ecx &= supported_xss;
 685                entry->edx &= supported_xss >> 32;
 686
 687                for (i = 2; i < 64; ++i) {
 688                        bool s_state;
 689                        if (supported_xcr0 & BIT_ULL(i))
 690                                s_state = false;
 691                        else if (supported_xss & BIT_ULL(i))
 692                                s_state = true;
 693                        else
 694                                continue;
 695
 696                        entry = do_host_cpuid(array, function, i);
 697                        if (!entry)
 698                                goto out;
 699
 700                        /*
 701                         * The supported check above should have filtered out
 702                         * invalid sub-leafs.  Only valid sub-leafs should
 703                         * reach this point, and they should have a non-zero
 704                         * save state size.  Furthermore, check whether the
 705                         * processor agrees with supported_xcr0/supported_xss
 706                         * on whether this is an XCR0- or IA32_XSS-managed area.
 707                         */
 708                        if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
 709                                --array->nent;
 710                                continue;
 711                        }
 712                        entry->edx = 0;
 713                }
 714                break;
 715        /* Intel PT */
 716        case 0x14:
 717                if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
 718                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 719                        break;
 720                }
 721
 722                for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
 723                        if (!do_host_cpuid(array, function, i))
 724                                goto out;
 725                }
 726                break;
 727        case KVM_CPUID_SIGNATURE: {
 728                static const char signature[12] = "KVMKVMKVM\0\0";
 729                const u32 *sigptr = (const u32 *)signature;
 730                entry->eax = KVM_CPUID_FEATURES;
 731                entry->ebx = sigptr[0];
 732                entry->ecx = sigptr[1];
 733                entry->edx = sigptr[2];
 734                break;
 735        }
 736        case KVM_CPUID_FEATURES:
 737                entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 738                             (1 << KVM_FEATURE_NOP_IO_DELAY) |
 739                             (1 << KVM_FEATURE_CLOCKSOURCE2) |
 740                             (1 << KVM_FEATURE_ASYNC_PF) |
 741                             (1 << KVM_FEATURE_PV_EOI) |
 742                             (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 743                             (1 << KVM_FEATURE_PV_UNHALT) |
 744                             (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 745                             (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 746                             (1 << KVM_FEATURE_PV_SEND_IPI) |
 747                             (1 << KVM_FEATURE_POLL_CONTROL) |
 748                             (1 << KVM_FEATURE_PV_SCHED_YIELD) |
 749                             (1 << KVM_FEATURE_ASYNC_PF_INT);
 750
 751                if (sched_info_on())
 752                        entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 753
 754                entry->ebx = 0;
 755                entry->ecx = 0;
 756                entry->edx = 0;
 757                break;
 758        case 0x80000000:
 759                entry->eax = min(entry->eax, 0x8000001f);
 760                break;
 761        case 0x80000001:
 762                cpuid_entry_override(entry, CPUID_8000_0001_EDX);
 763                cpuid_entry_override(entry, CPUID_8000_0001_ECX);
 764                break;
 765        case 0x80000006:
 766                /* L2 cache and TLB: pass through host info. */
 767                break;
 768        case 0x80000007: /* Advanced power management */
 769                /* invariant TSC is CPUID.80000007H:EDX[8] */
 770                entry->edx &= (1 << 8);
 771                /* mask against host */
 772                entry->edx &= boot_cpu_data.x86_power;
 773                entry->eax = entry->ebx = entry->ecx = 0;
 774                break;
 775        case 0x80000008: {
 776                unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 777                unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 778                unsigned phys_as = entry->eax & 0xff;
 779
 780                if (!g_phys_as)
 781                        g_phys_as = phys_as;
 782                entry->eax = g_phys_as | (virt_as << 8);
 783                entry->edx = 0;
 784                cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 785                break;
 786        }
 787        case 0x8000000A:
 788                if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
 789                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 790                        break;
 791                }
 792                entry->eax = 1; /* SVM revision 1 */
 793                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
 794                                   ASID emulation to nested SVM */
 795                entry->ecx = 0; /* Reserved */
 796                cpuid_entry_override(entry, CPUID_8000_000A_EDX);
 797                break;
 798        case 0x80000019:
 799                entry->ecx = entry->edx = 0;
 800                break;
 801        case 0x8000001a:
 802        case 0x8000001e:
 803                break;
 804        /* Support memory encryption cpuid if host supports it */
 805        case 0x8000001F:
 806                if (!boot_cpu_has(X86_FEATURE_SEV))
 807                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 808                break;
 809        /*Add support for Centaur's CPUID instruction*/
 810        case 0xC0000000:
 811                /*Just support up to 0xC0000004 now*/
 812                entry->eax = min(entry->eax, 0xC0000004);
 813                break;
 814        case 0xC0000001:
 815                cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 816                break;
 817        case 3: /* Processor serial number */
 818        case 5: /* MONITOR/MWAIT */
 819        case 0xC0000002:
 820        case 0xC0000003:
 821        case 0xC0000004:
 822        default:
 823                entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 824                break;
 825        }
 826
 827        r = 0;
 828
 829out:
 830        put_cpu();
 831
 832        return r;
 833}
 834
 835static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 836                         unsigned int type)
 837{
 838        if (type == KVM_GET_EMULATED_CPUID)
 839                return __do_cpuid_func_emulated(array, func);
 840
 841        return __do_cpuid_func(array, func);
 842}
 843
 844#define CENTAUR_CPUID_SIGNATURE 0xC0000000
 845
 846static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 847                          unsigned int type)
 848{
 849        u32 limit;
 850        int r;
 851
 852        if (func == CENTAUR_CPUID_SIGNATURE &&
 853            boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
 854                return 0;
 855
 856        r = do_cpuid_func(array, func, type);
 857        if (r)
 858                return r;
 859
 860        limit = array->entries[array->nent - 1].eax;
 861        for (func = func + 1; func <= limit; ++func) {
 862                r = do_cpuid_func(array, func, type);
 863                if (r)
 864                        break;
 865        }
 866
 867        return r;
 868}
 869
 870static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 871                                 __u32 num_entries, unsigned int ioctl_type)
 872{
 873        int i;
 874        __u32 pad[3];
 875
 876        if (ioctl_type != KVM_GET_EMULATED_CPUID)
 877                return false;
 878
 879        /*
 880         * We want to make sure that ->padding is being passed clean from
 881         * userspace in case we want to use it for something in the future.
 882         *
 883         * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 884         * have to give ourselves satisfied only with the emulated side. /me
 885         * sheds a tear.
 886         */
 887        for (i = 0; i < num_entries; i++) {
 888                if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 889                        return true;
 890
 891                if (pad[0] || pad[1] || pad[2])
 892                        return true;
 893        }
 894        return false;
 895}
 896
 897int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 898                            struct kvm_cpuid_entry2 __user *entries,
 899                            unsigned int type)
 900{
 901        static const u32 funcs[] = {
 902                0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
 903        };
 904
 905        struct kvm_cpuid_array array = {
 906                .nent = 0,
 907        };
 908        int r, i;
 909
 910        if (cpuid->nent < 1)
 911                return -E2BIG;
 912        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 913                cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 914
 915        if (sanity_check_entries(entries, cpuid->nent, type))
 916                return -EINVAL;
 917
 918        array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
 919                                           cpuid->nent));
 920        if (!array.entries)
 921                return -ENOMEM;
 922
 923        array.maxnent = cpuid->nent;
 924
 925        for (i = 0; i < ARRAY_SIZE(funcs); i++) {
 926                r = get_cpuid_func(&array, funcs[i], type);
 927                if (r)
 928                        goto out_free;
 929        }
 930        cpuid->nent = array.nent;
 931
 932        if (copy_to_user(entries, array.entries,
 933                         array.nent * sizeof(struct kvm_cpuid_entry2)))
 934                r = -EFAULT;
 935
 936out_free:
 937        vfree(array.entries);
 938        return r;
 939}
 940
 941struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 942                                              u32 function, u32 index)
 943{
 944        struct kvm_cpuid_entry2 *e;
 945        int i;
 946
 947        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 948                e = &vcpu->arch.cpuid_entries[i];
 949
 950                if (e->function == function && (e->index == index ||
 951                    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
 952                        return e;
 953        }
 954        return NULL;
 955}
 956EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 957
 958/*
 959 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
 960 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
 961 * returns all zeroes for any undefined leaf, whether or not the leaf is in
 962 * range.  Centaur/VIA follows Intel semantics.
 963 *
 964 * A leaf is considered out-of-range if its function is higher than the maximum
 965 * supported leaf of its associated class or if its associated class does not
 966 * exist.
 967 *
 968 * There are three primary classes to be considered, with their respective
 969 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
 970 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
 971 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
 972 *
 973 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
 974 *  - Hypervisor: 0x40000000 - 0x4fffffff
 975 *  - Extended:   0x80000000 - 0xbfffffff
 976 *  - Centaur:    0xc0000000 - 0xcfffffff
 977 *
 978 * The Hypervisor class is further subdivided into sub-classes that each act as
 979 * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
 980 * is advertising support for both HyperV and KVM, the resulting Hypervisor
 981 * CPUID sub-classes are:
 982 *
 983 *  - HyperV:     0x40000000 - 0x400000ff
 984 *  - KVM:        0x40000100 - 0x400001ff
 985 */
 986static struct kvm_cpuid_entry2 *
 987get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
 988{
 989        struct kvm_cpuid_entry2 *basic, *class;
 990        u32 function = *fn_ptr;
 991
 992        basic = kvm_find_cpuid_entry(vcpu, 0, 0);
 993        if (!basic)
 994                return NULL;
 995
 996        if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
 997            is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
 998                return NULL;
 999
1000        if (function >= 0x40000000 && function <= 0x4fffffff)
1001                class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1002        else if (function >= 0xc0000000)
1003                class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1004        else
1005                class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1006
1007        if (class && function <= class->eax)
1008                return NULL;
1009
1010        /*
1011         * Leaf specific adjustments are also applied when redirecting to the
1012         * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1013         * entry for CPUID.0xb.index (see below), then the output value for EDX
1014         * needs to be pulled from CPUID.0xb.1.
1015         */
1016        *fn_ptr = basic->eax;
1017
1018        /*
1019         * The class does not exist or the requested function is out of range;
1020         * the effective CPUID entry is the max basic leaf.  Note, the index of
1021         * the original requested leaf is observed!
1022         */
1023        return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1024}
1025
1026bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1027               u32 *ecx, u32 *edx, bool exact_only)
1028{
1029        u32 orig_function = *eax, function = *eax, index = *ecx;
1030        struct kvm_cpuid_entry2 *entry;
1031        bool exact, used_max_basic = false;
1032
1033        entry = kvm_find_cpuid_entry(vcpu, function, index);
1034        exact = !!entry;
1035
1036        if (!entry && !exact_only) {
1037                entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1038                used_max_basic = !!entry;
1039        }
1040
1041        if (entry) {
1042                *eax = entry->eax;
1043                *ebx = entry->ebx;
1044                *ecx = entry->ecx;
1045                *edx = entry->edx;
1046                if (function == 7 && index == 0) {
1047                        u64 data;
1048                        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1049                            (data & TSX_CTRL_CPUID_CLEAR))
1050                                *ebx &= ~(F(RTM) | F(HLE));
1051                }
1052        } else {
1053                *eax = *ebx = *ecx = *edx = 0;
1054                /*
1055                 * When leaf 0BH or 1FH is defined, CL is pass-through
1056                 * and EDX is always the x2APIC ID, even for undefined
1057                 * subleaves. Index 1 will exist iff the leaf is
1058                 * implemented, so we pass through CL iff leaf 1
1059                 * exists. EDX can be copied from any existing index.
1060                 */
1061                if (function == 0xb || function == 0x1f) {
1062                        entry = kvm_find_cpuid_entry(vcpu, function, 1);
1063                        if (entry) {
1064                                *ecx = index & 0xff;
1065                                *edx = entry->edx;
1066                        }
1067                }
1068        }
1069        trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1070                        used_max_basic);
1071        return exact;
1072}
1073EXPORT_SYMBOL_GPL(kvm_cpuid);
1074
1075int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1076{
1077        u32 eax, ebx, ecx, edx;
1078
1079        if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1080                return 1;
1081
1082        eax = kvm_rax_read(vcpu);
1083        ecx = kvm_rcx_read(vcpu);
1084        kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1085        kvm_rax_write(vcpu, eax);
1086        kvm_rbx_write(vcpu, ebx);
1087        kvm_rcx_write(vcpu, ecx);
1088        kvm_rdx_write(vcpu, edx);
1089        return kvm_skip_emulated_instruction(vcpu);
1090}
1091EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1092