linux/arch/x86/kvm/cpuid.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef ARCH_X86_KVM_CPUID_H
   3#define ARCH_X86_KVM_CPUID_H
   4
   5#include "x86.h"
   6#include <asm/cpu.h>
   7#include <asm/processor.h>
   8
   9extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
  10void kvm_set_cpu_caps(void);
  11
  12void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
  13struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  14                                              u32 function, u32 index);
  15int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
  16                            struct kvm_cpuid_entry2 __user *entries,
  17                            unsigned int type);
  18int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  19                             struct kvm_cpuid *cpuid,
  20                             struct kvm_cpuid_entry __user *entries);
  21int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  22                              struct kvm_cpuid2 *cpuid,
  23                              struct kvm_cpuid_entry2 __user *entries);
  24int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  25                              struct kvm_cpuid2 *cpuid,
  26                              struct kvm_cpuid_entry2 __user *entries);
  27bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
  28               u32 *ecx, u32 *edx, bool exact_only);
  29
  30int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
  31
  32static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  33{
  34        return vcpu->arch.maxphyaddr;
  35}
  36
  37struct cpuid_reg {
  38        u32 function;
  39        u32 index;
  40        int reg;
  41};
  42
  43static const struct cpuid_reg reverse_cpuid[] = {
  44        [CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
  45        [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
  46        [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
  47        [CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
  48        [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
  49        [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
  50        [CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
  51        [CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
  52        [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
  53        [CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
  54        [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
  55        [CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
  56        [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
  57        [CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
  58        [CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
  59};
  60
  61/*
  62 * Reverse CPUID and its derivatives can only be used for hardware-defined
  63 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
  64 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
  65 * is nonsensical as the bit number/mask is an arbitrary software-defined value
  66 * and can't be used by KVM to query/control guest capabilities.  And obviously
  67 * the leaf being queried must have an entry in the lookup table.
  68 */
  69static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
  70{
  71        BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
  72        BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
  73        BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
  74        BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
  75        BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
  76        BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
  77}
  78
  79/*
  80 * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
  81 * the hardware defined bit number (stored in bits 4:0) and a software defined
  82 * "word" (stored in bits 31:5).  The word is used to index into arrays of
  83 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
  84 */
  85static __always_inline u32 __feature_bit(int x86_feature)
  86{
  87        reverse_cpuid_check(x86_feature / 32);
  88        return 1 << (x86_feature & 31);
  89}
  90
  91#define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
  92
  93static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
  94{
  95        unsigned int x86_leaf = x86_feature / 32;
  96
  97        reverse_cpuid_check(x86_leaf);
  98        return reverse_cpuid[x86_leaf];
  99}
 100
 101static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
 102                                                  u32 reg)
 103{
 104        switch (reg) {
 105        case CPUID_EAX:
 106                return &entry->eax;
 107        case CPUID_EBX:
 108                return &entry->ebx;
 109        case CPUID_ECX:
 110                return &entry->ecx;
 111        case CPUID_EDX:
 112                return &entry->edx;
 113        default:
 114                BUILD_BUG();
 115                return NULL;
 116        }
 117}
 118
 119static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
 120                                                unsigned int x86_feature)
 121{
 122        const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
 123
 124        return __cpuid_entry_get_reg(entry, cpuid.reg);
 125}
 126
 127static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
 128                                           unsigned int x86_feature)
 129{
 130        u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
 131
 132        return *reg & __feature_bit(x86_feature);
 133}
 134
 135static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
 136                                            unsigned int x86_feature)
 137{
 138        return cpuid_entry_get(entry, x86_feature);
 139}
 140
 141static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
 142                                              unsigned int x86_feature)
 143{
 144        u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
 145
 146        *reg &= ~__feature_bit(x86_feature);
 147}
 148
 149static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
 150                                            unsigned int x86_feature)
 151{
 152        u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
 153
 154        *reg |= __feature_bit(x86_feature);
 155}
 156
 157static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
 158                                               unsigned int x86_feature,
 159                                               bool set)
 160{
 161        u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
 162
 163        /*
 164         * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
 165         * compiler into using CMOV instead of Jcc when possible.
 166         */
 167        if (set)
 168                *reg |= __feature_bit(x86_feature);
 169        else
 170                *reg &= ~__feature_bit(x86_feature);
 171}
 172
 173static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
 174                                                 enum cpuid_leafs leaf)
 175{
 176        u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
 177
 178        BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
 179        *reg = kvm_cpu_caps[leaf];
 180}
 181
 182static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
 183                                                     unsigned int x86_feature)
 184{
 185        const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
 186        struct kvm_cpuid_entry2 *entry;
 187
 188        entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index);
 189        if (!entry)
 190                return NULL;
 191
 192        return __cpuid_entry_get_reg(entry, cpuid.reg);
 193}
 194
 195static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
 196                                            unsigned int x86_feature)
 197{
 198        u32 *reg;
 199
 200        reg = guest_cpuid_get_register(vcpu, x86_feature);
 201        if (!reg)
 202                return false;
 203
 204        return *reg & __feature_bit(x86_feature);
 205}
 206
 207static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
 208                                              unsigned int x86_feature)
 209{
 210        u32 *reg;
 211
 212        reg = guest_cpuid_get_register(vcpu, x86_feature);
 213        if (reg)
 214                *reg &= ~__feature_bit(x86_feature);
 215}
 216
 217static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
 218{
 219        struct kvm_cpuid_entry2 *best;
 220
 221        best = kvm_find_cpuid_entry(vcpu, 0, 0);
 222        return best &&
 223               (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
 224                is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
 225}
 226
 227static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
 228{
 229        struct kvm_cpuid_entry2 *best;
 230
 231        best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 232        if (!best)
 233                return -1;
 234
 235        return x86_family(best->eax);
 236}
 237
 238static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
 239{
 240        struct kvm_cpuid_entry2 *best;
 241
 242        best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 243        if (!best)
 244                return -1;
 245
 246        return x86_model(best->eax);
 247}
 248
 249static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
 250{
 251        struct kvm_cpuid_entry2 *best;
 252
 253        best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 254        if (!best)
 255                return -1;
 256
 257        return x86_stepping(best->eax);
 258}
 259
 260static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
 261{
 262        return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
 263}
 264
 265static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
 266{
 267        return vcpu->arch.msr_misc_features_enables &
 268                  MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 269}
 270
 271static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
 272{
 273        unsigned int x86_leaf = x86_feature / 32;
 274
 275        reverse_cpuid_check(x86_leaf);
 276        kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
 277}
 278
 279static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
 280{
 281        unsigned int x86_leaf = x86_feature / 32;
 282
 283        reverse_cpuid_check(x86_leaf);
 284        kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
 285}
 286
 287static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
 288{
 289        unsigned int x86_leaf = x86_feature / 32;
 290
 291        reverse_cpuid_check(x86_leaf);
 292        return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
 293}
 294
 295static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
 296{
 297        return !!kvm_cpu_cap_get(x86_feature);
 298}
 299
 300static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
 301{
 302        if (boot_cpu_has(x86_feature))
 303                kvm_cpu_cap_set(x86_feature);
 304}
 305
 306static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
 307{
 308        return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
 309}
 310
 311#endif
 312