linux/arch/x86/kvm/vmx/nested.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/frame.h>
   4#include <linux/percpu.h>
   5
   6#include <asm/debugreg.h>
   7#include <asm/mmu_context.h>
   8
   9#include "cpuid.h"
  10#include "hyperv.h"
  11#include "mmu.h"
  12#include "nested.h"
  13#include "pmu.h"
  14#include "trace.h"
  15#include "x86.h"
  16
  17static bool __read_mostly enable_shadow_vmcs = 1;
  18module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  19
  20static bool __read_mostly nested_early_check = 0;
  21module_param(nested_early_check, bool, S_IRUGO);
  22
  23#define CC(consistency_check)                                           \
  24({                                                                      \
  25        bool failed = (consistency_check);                              \
  26        if (failed)                                                     \
  27                trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
  28        failed;                                                         \
  29})
  30
  31/*
  32 * Hyper-V requires all of these, so mark them as supported even though
  33 * they are just treated the same as all-context.
  34 */
  35#define VMX_VPID_EXTENT_SUPPORTED_MASK          \
  36        (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
  37        VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
  38        VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
  39        VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
  40
  41#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
  42
  43enum {
  44        VMX_VMREAD_BITMAP,
  45        VMX_VMWRITE_BITMAP,
  46        VMX_BITMAP_NR
  47};
  48static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
  49
  50#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
  51#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
  52
  53struct shadow_vmcs_field {
  54        u16     encoding;
  55        u16     offset;
  56};
  57static struct shadow_vmcs_field shadow_read_only_fields[] = {
  58#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
  59#include "vmcs_shadow_fields.h"
  60};
  61static int max_shadow_read_only_fields =
  62        ARRAY_SIZE(shadow_read_only_fields);
  63
  64static struct shadow_vmcs_field shadow_read_write_fields[] = {
  65#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
  66#include "vmcs_shadow_fields.h"
  67};
  68static int max_shadow_read_write_fields =
  69        ARRAY_SIZE(shadow_read_write_fields);
  70
  71static void init_vmcs_shadow_fields(void)
  72{
  73        int i, j;
  74
  75        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
  76        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
  77
  78        for (i = j = 0; i < max_shadow_read_only_fields; i++) {
  79                struct shadow_vmcs_field entry = shadow_read_only_fields[i];
  80                u16 field = entry.encoding;
  81
  82                if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
  83                    (i + 1 == max_shadow_read_only_fields ||
  84                     shadow_read_only_fields[i + 1].encoding != field + 1))
  85                        pr_err("Missing field from shadow_read_only_field %x\n",
  86                               field + 1);
  87
  88                clear_bit(field, vmx_vmread_bitmap);
  89                if (field & 1)
  90#ifdef CONFIG_X86_64
  91                        continue;
  92#else
  93                        entry.offset += sizeof(u32);
  94#endif
  95                shadow_read_only_fields[j++] = entry;
  96        }
  97        max_shadow_read_only_fields = j;
  98
  99        for (i = j = 0; i < max_shadow_read_write_fields; i++) {
 100                struct shadow_vmcs_field entry = shadow_read_write_fields[i];
 101                u16 field = entry.encoding;
 102
 103                if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 104                    (i + 1 == max_shadow_read_write_fields ||
 105                     shadow_read_write_fields[i + 1].encoding != field + 1))
 106                        pr_err("Missing field from shadow_read_write_field %x\n",
 107                               field + 1);
 108
 109                WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
 110                          field <= GUEST_TR_AR_BYTES,
 111                          "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
 112
 113                /*
 114                 * PML and the preemption timer can be emulated, but the
 115                 * processor cannot vmwrite to fields that don't exist
 116                 * on bare metal.
 117                 */
 118                switch (field) {
 119                case GUEST_PML_INDEX:
 120                        if (!cpu_has_vmx_pml())
 121                                continue;
 122                        break;
 123                case VMX_PREEMPTION_TIMER_VALUE:
 124                        if (!cpu_has_vmx_preemption_timer())
 125                                continue;
 126                        break;
 127                case GUEST_INTR_STATUS:
 128                        if (!cpu_has_vmx_apicv())
 129                                continue;
 130                        break;
 131                default:
 132                        break;
 133                }
 134
 135                clear_bit(field, vmx_vmwrite_bitmap);
 136                clear_bit(field, vmx_vmread_bitmap);
 137                if (field & 1)
 138#ifdef CONFIG_X86_64
 139                        continue;
 140#else
 141                        entry.offset += sizeof(u32);
 142#endif
 143                shadow_read_write_fields[j++] = entry;
 144        }
 145        max_shadow_read_write_fields = j;
 146}
 147
 148/*
 149 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 150 * set the success or error code of an emulated VMX instruction (as specified
 151 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 152 * instruction.
 153 */
 154static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
 155{
 156        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
 157                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 158                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
 159        return kvm_skip_emulated_instruction(vcpu);
 160}
 161
 162static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
 163{
 164        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 165                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
 166                            X86_EFLAGS_SF | X86_EFLAGS_OF))
 167                        | X86_EFLAGS_CF);
 168        return kvm_skip_emulated_instruction(vcpu);
 169}
 170
 171static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
 172                                u32 vm_instruction_error)
 173{
 174        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 175                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 176                            X86_EFLAGS_SF | X86_EFLAGS_OF))
 177                        | X86_EFLAGS_ZF);
 178        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
 179        /*
 180         * We don't need to force a shadow sync because
 181         * VM_INSTRUCTION_ERROR is not shadowed
 182         */
 183        return kvm_skip_emulated_instruction(vcpu);
 184}
 185
 186static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
 187{
 188        struct vcpu_vmx *vmx = to_vmx(vcpu);
 189
 190        /*
 191         * failValid writes the error number to the current VMCS, which
 192         * can't be done if there isn't a current VMCS.
 193         */
 194        if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
 195                return nested_vmx_failInvalid(vcpu);
 196
 197        return nested_vmx_failValid(vcpu, vm_instruction_error);
 198}
 199
 200static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
 201{
 202        /* TODO: not to reset guest simply here. */
 203        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 204        pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
 205}
 206
 207static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
 208{
 209        return fixed_bits_valid(control, low, high);
 210}
 211
 212static inline u64 vmx_control_msr(u32 low, u32 high)
 213{
 214        return low | ((u64)high << 32);
 215}
 216
 217static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
 218{
 219        secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
 220        vmcs_write64(VMCS_LINK_POINTER, -1ull);
 221        vmx->nested.need_vmcs12_to_shadow_sync = false;
 222}
 223
 224static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
 225{
 226        struct vcpu_vmx *vmx = to_vmx(vcpu);
 227
 228        if (!vmx->nested.hv_evmcs)
 229                return;
 230
 231        kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
 232        vmx->nested.hv_evmcs_vmptr = 0;
 233        vmx->nested.hv_evmcs = NULL;
 234}
 235
 236/*
 237 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 238 * just stops using VMX.
 239 */
 240static void free_nested(struct kvm_vcpu *vcpu)
 241{
 242        struct vcpu_vmx *vmx = to_vmx(vcpu);
 243
 244        if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
 245                return;
 246
 247        kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
 248
 249        vmx->nested.vmxon = false;
 250        vmx->nested.smm.vmxon = false;
 251        free_vpid(vmx->nested.vpid02);
 252        vmx->nested.posted_intr_nv = -1;
 253        vmx->nested.current_vmptr = -1ull;
 254        if (enable_shadow_vmcs) {
 255                vmx_disable_shadow_vmcs(vmx);
 256                vmcs_clear(vmx->vmcs01.shadow_vmcs);
 257                free_vmcs(vmx->vmcs01.shadow_vmcs);
 258                vmx->vmcs01.shadow_vmcs = NULL;
 259        }
 260        kfree(vmx->nested.cached_vmcs12);
 261        vmx->nested.cached_vmcs12 = NULL;
 262        kfree(vmx->nested.cached_shadow_vmcs12);
 263        vmx->nested.cached_shadow_vmcs12 = NULL;
 264        /* Unpin physical memory we referred to in the vmcs02 */
 265        if (vmx->nested.apic_access_page) {
 266                kvm_release_page_clean(vmx->nested.apic_access_page);
 267                vmx->nested.apic_access_page = NULL;
 268        }
 269        kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
 270        kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
 271        vmx->nested.pi_desc = NULL;
 272
 273        kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 274
 275        nested_release_evmcs(vcpu);
 276
 277        free_loaded_vmcs(&vmx->nested.vmcs02);
 278}
 279
 280static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
 281                                     struct loaded_vmcs *prev)
 282{
 283        struct vmcs_host_state *dest, *src;
 284
 285        if (unlikely(!vmx->guest_state_loaded))
 286                return;
 287
 288        src = &prev->host_state;
 289        dest = &vmx->loaded_vmcs->host_state;
 290
 291        vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
 292        dest->ldt_sel = src->ldt_sel;
 293#ifdef CONFIG_X86_64
 294        dest->ds_sel = src->ds_sel;
 295        dest->es_sel = src->es_sel;
 296#endif
 297}
 298
 299static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
 300{
 301        struct vcpu_vmx *vmx = to_vmx(vcpu);
 302        struct loaded_vmcs *prev;
 303        int cpu;
 304
 305        if (vmx->loaded_vmcs == vmcs)
 306                return;
 307
 308        cpu = get_cpu();
 309        prev = vmx->loaded_vmcs;
 310        vmx->loaded_vmcs = vmcs;
 311        vmx_vcpu_load_vmcs(vcpu, cpu, prev);
 312        vmx_sync_vmcs_host_state(vmx, prev);
 313        put_cpu();
 314
 315        vmx_register_cache_reset(vcpu);
 316}
 317
 318/*
 319 * Ensure that the current vmcs of the logical processor is the
 320 * vmcs01 of the vcpu before calling free_nested().
 321 */
 322void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
 323{
 324        vcpu_load(vcpu);
 325        vmx_leave_nested(vcpu);
 326        vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
 327        free_nested(vcpu);
 328        vcpu_put(vcpu);
 329}
 330
 331static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
 332                struct x86_exception *fault)
 333{
 334        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 335        struct vcpu_vmx *vmx = to_vmx(vcpu);
 336        u32 vm_exit_reason;
 337        unsigned long exit_qualification = vcpu->arch.exit_qualification;
 338
 339        if (vmx->nested.pml_full) {
 340                vm_exit_reason = EXIT_REASON_PML_FULL;
 341                vmx->nested.pml_full = false;
 342                exit_qualification &= INTR_INFO_UNBLOCK_NMI;
 343        } else if (fault->error_code & PFERR_RSVD_MASK)
 344                vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
 345        else
 346                vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
 347
 348        nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
 349        vmcs12->guest_physical_address = fault->address;
 350}
 351
 352static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
 353{
 354        WARN_ON(mmu_is_nested(vcpu));
 355
 356        vcpu->arch.mmu = &vcpu->arch.guest_mmu;
 357        kvm_init_shadow_ept_mmu(vcpu,
 358                        to_vmx(vcpu)->nested.msrs.ept_caps &
 359                        VMX_EPT_EXECUTE_ONLY_BIT,
 360                        nested_ept_ad_enabled(vcpu),
 361                        nested_ept_get_eptp(vcpu));
 362        vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
 363        vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
 364        vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
 365
 366        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 367}
 368
 369static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
 370{
 371        vcpu->arch.mmu = &vcpu->arch.root_mmu;
 372        vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 373}
 374
 375static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 376                                            u16 error_code)
 377{
 378        bool inequality, bit;
 379
 380        bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
 381        inequality =
 382                (error_code & vmcs12->page_fault_error_code_mask) !=
 383                 vmcs12->page_fault_error_code_match;
 384        return inequality ^ bit;
 385}
 386
 387
 388/*
 389 * KVM wants to inject page-faults which it got to the guest. This function
 390 * checks whether in a nested guest, we need to inject them to L1 or L2.
 391 */
 392static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
 393{
 394        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 395        unsigned int nr = vcpu->arch.exception.nr;
 396        bool has_payload = vcpu->arch.exception.has_payload;
 397        unsigned long payload = vcpu->arch.exception.payload;
 398
 399        if (nr == PF_VECTOR) {
 400                if (vcpu->arch.exception.nested_apf) {
 401                        *exit_qual = vcpu->arch.apf.nested_apf_token;
 402                        return 1;
 403                }
 404                if (nested_vmx_is_page_fault_vmexit(vmcs12,
 405                                                    vcpu->arch.exception.error_code)) {
 406                        *exit_qual = has_payload ? payload : vcpu->arch.cr2;
 407                        return 1;
 408                }
 409        } else if (vmcs12->exception_bitmap & (1u << nr)) {
 410                if (nr == DB_VECTOR) {
 411                        if (!has_payload) {
 412                                payload = vcpu->arch.dr6;
 413                                payload &= ~(DR6_FIXED_1 | DR6_BT);
 414                                payload ^= DR6_RTM;
 415                        }
 416                        *exit_qual = payload;
 417                } else
 418                        *exit_qual = 0;
 419                return 1;
 420        }
 421
 422        return 0;
 423}
 424
 425
 426static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
 427                struct x86_exception *fault)
 428{
 429        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 430
 431        WARN_ON(!is_guest_mode(vcpu));
 432
 433        if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
 434                !to_vmx(vcpu)->nested.nested_run_pending) {
 435                vmcs12->vm_exit_intr_error_code = fault->error_code;
 436                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
 437                                  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
 438                                  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
 439                                  fault->address);
 440        } else {
 441                kvm_inject_page_fault(vcpu, fault);
 442        }
 443}
 444
 445static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
 446                                               struct vmcs12 *vmcs12)
 447{
 448        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 449                return 0;
 450
 451        if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
 452            CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
 453                return -EINVAL;
 454
 455        return 0;
 456}
 457
 458static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
 459                                                struct vmcs12 *vmcs12)
 460{
 461        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 462                return 0;
 463
 464        if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
 465                return -EINVAL;
 466
 467        return 0;
 468}
 469
 470static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
 471                                                struct vmcs12 *vmcs12)
 472{
 473        if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 474                return 0;
 475
 476        if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
 477                return -EINVAL;
 478
 479        return 0;
 480}
 481
 482/*
 483 * Check if MSR is intercepted for L01 MSR bitmap.
 484 */
 485static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
 486{
 487        unsigned long *msr_bitmap;
 488        int f = sizeof(unsigned long);
 489
 490        if (!cpu_has_vmx_msr_bitmap())
 491                return true;
 492
 493        msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
 494
 495        if (msr <= 0x1fff) {
 496                return !!test_bit(msr, msr_bitmap + 0x800 / f);
 497        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 498                msr &= 0x1fff;
 499                return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 500        }
 501
 502        return true;
 503}
 504
 505/*
 506 * If a msr is allowed by L0, we should check whether it is allowed by L1.
 507 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
 508 */
 509static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
 510                                               unsigned long *msr_bitmap_nested,
 511                                               u32 msr, int type)
 512{
 513        int f = sizeof(unsigned long);
 514
 515        /*
 516         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
 517         * have the write-low and read-high bitmap offsets the wrong way round.
 518         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
 519         */
 520        if (msr <= 0x1fff) {
 521                if (type & MSR_TYPE_R &&
 522                   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
 523                        /* read-low */
 524                        __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
 525
 526                if (type & MSR_TYPE_W &&
 527                   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
 528                        /* write-low */
 529                        __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
 530
 531        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 532                msr &= 0x1fff;
 533                if (type & MSR_TYPE_R &&
 534                   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
 535                        /* read-high */
 536                        __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
 537
 538                if (type & MSR_TYPE_W &&
 539                   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
 540                        /* write-high */
 541                        __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
 542
 543        }
 544}
 545
 546static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
 547{
 548        int msr;
 549
 550        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 551                unsigned word = msr / BITS_PER_LONG;
 552
 553                msr_bitmap[word] = ~0;
 554                msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
 555        }
 556}
 557
 558/*
 559 * Merge L0's and L1's MSR bitmap, return false to indicate that
 560 * we do not use the hardware.
 561 */
 562static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
 563                                                 struct vmcs12 *vmcs12)
 564{
 565        int msr;
 566        unsigned long *msr_bitmap_l1;
 567        unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
 568        struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
 569
 570        /* Nothing to do if the MSR bitmap is not in use.  */
 571        if (!cpu_has_vmx_msr_bitmap() ||
 572            !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 573                return false;
 574
 575        if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
 576                return false;
 577
 578        msr_bitmap_l1 = (unsigned long *)map->hva;
 579
 580        /*
 581         * To keep the control flow simple, pay eight 8-byte writes (sixteen
 582         * 4-byte writes on 32-bit systems) up front to enable intercepts for
 583         * the x2APIC MSR range and selectively disable them below.
 584         */
 585        enable_x2apic_msr_intercepts(msr_bitmap_l0);
 586
 587        if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
 588                if (nested_cpu_has_apic_reg_virt(vmcs12)) {
 589                        /*
 590                         * L0 need not intercept reads for MSRs between 0x800
 591                         * and 0x8ff, it just lets the processor take the value
 592                         * from the virtual-APIC page; take those 256 bits
 593                         * directly from the L1 bitmap.
 594                         */
 595                        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 596                                unsigned word = msr / BITS_PER_LONG;
 597
 598                                msr_bitmap_l0[word] = msr_bitmap_l1[word];
 599                        }
 600                }
 601
 602                nested_vmx_disable_intercept_for_msr(
 603                        msr_bitmap_l1, msr_bitmap_l0,
 604                        X2APIC_MSR(APIC_TASKPRI),
 605                        MSR_TYPE_R | MSR_TYPE_W);
 606
 607                if (nested_cpu_has_vid(vmcs12)) {
 608                        nested_vmx_disable_intercept_for_msr(
 609                                msr_bitmap_l1, msr_bitmap_l0,
 610                                X2APIC_MSR(APIC_EOI),
 611                                MSR_TYPE_W);
 612                        nested_vmx_disable_intercept_for_msr(
 613                                msr_bitmap_l1, msr_bitmap_l0,
 614                                X2APIC_MSR(APIC_SELF_IPI),
 615                                MSR_TYPE_W);
 616                }
 617        }
 618
 619        /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
 620        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 621                                             MSR_FS_BASE, MSR_TYPE_RW);
 622
 623        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 624                                             MSR_GS_BASE, MSR_TYPE_RW);
 625
 626        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 627                                             MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
 628
 629        /*
 630         * Checking the L0->L1 bitmap is trying to verify two things:
 631         *
 632         * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
 633         *    ensures that we do not accidentally generate an L02 MSR bitmap
 634         *    from the L12 MSR bitmap that is too permissive.
 635         * 2. That L1 or L2s have actually used the MSR. This avoids
 636         *    unnecessarily merging of the bitmap if the MSR is unused. This
 637         *    works properly because we only update the L01 MSR bitmap lazily.
 638         *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
 639         *    updated to reflect this when L1 (or its L2s) actually write to
 640         *    the MSR.
 641         */
 642        if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
 643                nested_vmx_disable_intercept_for_msr(
 644                                        msr_bitmap_l1, msr_bitmap_l0,
 645                                        MSR_IA32_SPEC_CTRL,
 646                                        MSR_TYPE_R | MSR_TYPE_W);
 647
 648        if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
 649                nested_vmx_disable_intercept_for_msr(
 650                                        msr_bitmap_l1, msr_bitmap_l0,
 651                                        MSR_IA32_PRED_CMD,
 652                                        MSR_TYPE_W);
 653
 654        kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
 655
 656        return true;
 657}
 658
 659static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
 660                                       struct vmcs12 *vmcs12)
 661{
 662        struct kvm_host_map map;
 663        struct vmcs12 *shadow;
 664
 665        if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 666            vmcs12->vmcs_link_pointer == -1ull)
 667                return;
 668
 669        shadow = get_shadow_vmcs12(vcpu);
 670
 671        if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
 672                return;
 673
 674        memcpy(shadow, map.hva, VMCS12_SIZE);
 675        kvm_vcpu_unmap(vcpu, &map, false);
 676}
 677
 678static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
 679                                              struct vmcs12 *vmcs12)
 680{
 681        struct vcpu_vmx *vmx = to_vmx(vcpu);
 682
 683        if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 684            vmcs12->vmcs_link_pointer == -1ull)
 685                return;
 686
 687        kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
 688                        get_shadow_vmcs12(vcpu), VMCS12_SIZE);
 689}
 690
 691/*
 692 * In nested virtualization, check if L1 has set
 693 * VM_EXIT_ACK_INTR_ON_EXIT
 694 */
 695static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
 696{
 697        return get_vmcs12(vcpu)->vm_exit_controls &
 698                VM_EXIT_ACK_INTR_ON_EXIT;
 699}
 700
 701static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
 702                                          struct vmcs12 *vmcs12)
 703{
 704        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
 705            CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
 706                return -EINVAL;
 707        else
 708                return 0;
 709}
 710
 711static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
 712                                           struct vmcs12 *vmcs12)
 713{
 714        if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 715            !nested_cpu_has_apic_reg_virt(vmcs12) &&
 716            !nested_cpu_has_vid(vmcs12) &&
 717            !nested_cpu_has_posted_intr(vmcs12))
 718                return 0;
 719
 720        /*
 721         * If virtualize x2apic mode is enabled,
 722         * virtualize apic access must be disabled.
 723         */
 724        if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 725               nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
 726                return -EINVAL;
 727
 728        /*
 729         * If virtual interrupt delivery is enabled,
 730         * we must exit on external interrupts.
 731         */
 732        if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
 733                return -EINVAL;
 734
 735        /*
 736         * bits 15:8 should be zero in posted_intr_nv,
 737         * the descriptor address has been already checked
 738         * in nested_get_vmcs12_pages.
 739         *
 740         * bits 5:0 of posted_intr_desc_addr should be zero.
 741         */
 742        if (nested_cpu_has_posted_intr(vmcs12) &&
 743           (CC(!nested_cpu_has_vid(vmcs12)) ||
 744            CC(!nested_exit_intr_ack_set(vcpu)) ||
 745            CC((vmcs12->posted_intr_nv & 0xff00)) ||
 746            CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
 747            CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
 748                return -EINVAL;
 749
 750        /* tpr shadow is needed by all apicv features. */
 751        if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
 752                return -EINVAL;
 753
 754        return 0;
 755}
 756
 757static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
 758                                       u32 count, u64 addr)
 759{
 760        int maxphyaddr;
 761
 762        if (count == 0)
 763                return 0;
 764        maxphyaddr = cpuid_maxphyaddr(vcpu);
 765        if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
 766            (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
 767                return -EINVAL;
 768
 769        return 0;
 770}
 771
 772static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
 773                                                     struct vmcs12 *vmcs12)
 774{
 775        if (CC(nested_vmx_check_msr_switch(vcpu,
 776                                           vmcs12->vm_exit_msr_load_count,
 777                                           vmcs12->vm_exit_msr_load_addr)) ||
 778            CC(nested_vmx_check_msr_switch(vcpu,
 779                                           vmcs12->vm_exit_msr_store_count,
 780                                           vmcs12->vm_exit_msr_store_addr)))
 781                return -EINVAL;
 782
 783        return 0;
 784}
 785
 786static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
 787                                                      struct vmcs12 *vmcs12)
 788{
 789        if (CC(nested_vmx_check_msr_switch(vcpu,
 790                                           vmcs12->vm_entry_msr_load_count,
 791                                           vmcs12->vm_entry_msr_load_addr)))
 792                return -EINVAL;
 793
 794        return 0;
 795}
 796
 797static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
 798                                         struct vmcs12 *vmcs12)
 799{
 800        if (!nested_cpu_has_pml(vmcs12))
 801                return 0;
 802
 803        if (CC(!nested_cpu_has_ept(vmcs12)) ||
 804            CC(!page_address_valid(vcpu, vmcs12->pml_address)))
 805                return -EINVAL;
 806
 807        return 0;
 808}
 809
 810static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
 811                                                        struct vmcs12 *vmcs12)
 812{
 813        if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
 814               !nested_cpu_has_ept(vmcs12)))
 815                return -EINVAL;
 816        return 0;
 817}
 818
 819static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
 820                                                         struct vmcs12 *vmcs12)
 821{
 822        if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
 823               !nested_cpu_has_ept(vmcs12)))
 824                return -EINVAL;
 825        return 0;
 826}
 827
 828static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
 829                                                 struct vmcs12 *vmcs12)
 830{
 831        if (!nested_cpu_has_shadow_vmcs(vmcs12))
 832                return 0;
 833
 834        if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
 835            CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
 836                return -EINVAL;
 837
 838        return 0;
 839}
 840
 841static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
 842                                       struct vmx_msr_entry *e)
 843{
 844        /* x2APIC MSR accesses are not allowed */
 845        if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
 846                return -EINVAL;
 847        if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
 848            CC(e->index == MSR_IA32_UCODE_REV))
 849                return -EINVAL;
 850        if (CC(e->reserved != 0))
 851                return -EINVAL;
 852        return 0;
 853}
 854
 855static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
 856                                     struct vmx_msr_entry *e)
 857{
 858        if (CC(e->index == MSR_FS_BASE) ||
 859            CC(e->index == MSR_GS_BASE) ||
 860            CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
 861            nested_vmx_msr_check_common(vcpu, e))
 862                return -EINVAL;
 863        return 0;
 864}
 865
 866static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
 867                                      struct vmx_msr_entry *e)
 868{
 869        if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
 870            nested_vmx_msr_check_common(vcpu, e))
 871                return -EINVAL;
 872        return 0;
 873}
 874
 875static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
 876{
 877        struct vcpu_vmx *vmx = to_vmx(vcpu);
 878        u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
 879                                       vmx->nested.msrs.misc_high);
 880
 881        return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
 882}
 883
 884/*
 885 * Load guest's/host's msr at nested entry/exit.
 886 * return 0 for success, entry index for failure.
 887 *
 888 * One of the failure modes for MSR load/store is when a list exceeds the
 889 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
 890 * as possible, process all valid entries before failing rather than precheck
 891 * for a capacity violation.
 892 */
 893static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 894{
 895        u32 i;
 896        struct vmx_msr_entry e;
 897        u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 898
 899        for (i = 0; i < count; i++) {
 900                if (unlikely(i >= max_msr_list_size))
 901                        goto fail;
 902
 903                if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
 904                                        &e, sizeof(e))) {
 905                        pr_debug_ratelimited(
 906                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
 907                                __func__, i, gpa + i * sizeof(e));
 908                        goto fail;
 909                }
 910                if (nested_vmx_load_msr_check(vcpu, &e)) {
 911                        pr_debug_ratelimited(
 912                                "%s check failed (%u, 0x%x, 0x%x)\n",
 913                                __func__, i, e.index, e.reserved);
 914                        goto fail;
 915                }
 916                if (kvm_set_msr(vcpu, e.index, e.value)) {
 917                        pr_debug_ratelimited(
 918                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 919                                __func__, i, e.index, e.value);
 920                        goto fail;
 921                }
 922        }
 923        return 0;
 924fail:
 925        /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
 926        return i + 1;
 927}
 928
 929static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
 930                                            u32 msr_index,
 931                                            u64 *data)
 932{
 933        struct vcpu_vmx *vmx = to_vmx(vcpu);
 934
 935        /*
 936         * If the L0 hypervisor stored a more accurate value for the TSC that
 937         * does not include the time taken for emulation of the L2->L1
 938         * VM-exit in L0, use the more accurate value.
 939         */
 940        if (msr_index == MSR_IA32_TSC) {
 941                int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
 942                                               MSR_IA32_TSC);
 943
 944                if (index >= 0) {
 945                        u64 val = vmx->msr_autostore.guest.val[index].value;
 946
 947                        *data = kvm_read_l1_tsc(vcpu, val);
 948                        return true;
 949                }
 950        }
 951
 952        if (kvm_get_msr(vcpu, msr_index, data)) {
 953                pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
 954                        msr_index);
 955                return false;
 956        }
 957        return true;
 958}
 959
 960static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
 961                                     struct vmx_msr_entry *e)
 962{
 963        if (kvm_vcpu_read_guest(vcpu,
 964                                gpa + i * sizeof(*e),
 965                                e, 2 * sizeof(u32))) {
 966                pr_debug_ratelimited(
 967                        "%s cannot read MSR entry (%u, 0x%08llx)\n",
 968                        __func__, i, gpa + i * sizeof(*e));
 969                return false;
 970        }
 971        if (nested_vmx_store_msr_check(vcpu, e)) {
 972                pr_debug_ratelimited(
 973                        "%s check failed (%u, 0x%x, 0x%x)\n",
 974                        __func__, i, e->index, e->reserved);
 975                return false;
 976        }
 977        return true;
 978}
 979
 980static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 981{
 982        u64 data;
 983        u32 i;
 984        struct vmx_msr_entry e;
 985        u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 986
 987        for (i = 0; i < count; i++) {
 988                if (unlikely(i >= max_msr_list_size))
 989                        return -EINVAL;
 990
 991                if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
 992                        return -EINVAL;
 993
 994                if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
 995                        return -EINVAL;
 996
 997                if (kvm_vcpu_write_guest(vcpu,
 998                                         gpa + i * sizeof(e) +
 999                                             offsetof(struct vmx_msr_entry, value),
1000                                         &data, sizeof(data))) {
1001                        pr_debug_ratelimited(
1002                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1003                                __func__, i, e.index, data);
1004                        return -EINVAL;
1005                }
1006        }
1007        return 0;
1008}
1009
1010static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1011{
1012        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1013        u32 count = vmcs12->vm_exit_msr_store_count;
1014        u64 gpa = vmcs12->vm_exit_msr_store_addr;
1015        struct vmx_msr_entry e;
1016        u32 i;
1017
1018        for (i = 0; i < count; i++) {
1019                if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1020                        return false;
1021
1022                if (e.index == msr_index)
1023                        return true;
1024        }
1025        return false;
1026}
1027
1028static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1029                                           u32 msr_index)
1030{
1031        struct vcpu_vmx *vmx = to_vmx(vcpu);
1032        struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1033        bool in_vmcs12_store_list;
1034        int msr_autostore_index;
1035        bool in_autostore_list;
1036        int last;
1037
1038        msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1039        in_autostore_list = msr_autostore_index >= 0;
1040        in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1041
1042        if (in_vmcs12_store_list && !in_autostore_list) {
1043                if (autostore->nr == NR_LOADSTORE_MSRS) {
1044                        /*
1045                         * Emulated VMEntry does not fail here.  Instead a less
1046                         * accurate value will be returned by
1047                         * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1048                         * instead of reading the value from the vmcs02 VMExit
1049                         * MSR-store area.
1050                         */
1051                        pr_warn_ratelimited(
1052                                "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1053                                msr_index);
1054                        return;
1055                }
1056                last = autostore->nr++;
1057                autostore->val[last].index = msr_index;
1058        } else if (!in_vmcs12_store_list && in_autostore_list) {
1059                last = --autostore->nr;
1060                autostore->val[msr_autostore_index] = autostore->val[last];
1061        }
1062}
1063
1064static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1065{
1066        unsigned long invalid_mask;
1067
1068        invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1069        return (val & invalid_mask) == 0;
1070}
1071
1072/*
1073 * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1074 * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1075 * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1076 * Here's why.
1077 *
1078 * If EPT is enabled by L0 a sync is never needed:
1079 * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1080 *   cannot be unsync'd SPTEs for either L1 or L2.
1081 *
1082 * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1083 *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1084 *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1085 *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1086 *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1087 *
1088 * If EPT is disabled by L0:
1089 * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1090 *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1091 *   required to invalidate linear mappings (EPT is disabled so there are
1092 *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1093 *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1094 *
1095 * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1096 *   linear mappings (EPT is disabled so there are no combined or guest-physical
1097 *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1098 *
1099 * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1100 * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1101 * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1102 * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1103 * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1104 * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1105 * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1106 * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1107 * stale TLB entries, at which point L0 will sync L2's MMU.
1108 */
1109static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1110{
1111        return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1112}
1113
1114/*
1115 * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1116 * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1117 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1118 * @entry_failure_code.
1119 */
1120static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1121                               enum vm_entry_failure_code *entry_failure_code)
1122{
1123        if (CC(!nested_cr3_valid(vcpu, cr3))) {
1124                *entry_failure_code = ENTRY_FAIL_DEFAULT;
1125                return -EINVAL;
1126        }
1127
1128        /*
1129         * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1130         * must not be dereferenced.
1131         */
1132        if (!nested_ept && is_pae_paging(vcpu) &&
1133            (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1134                if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1135                        *entry_failure_code = ENTRY_FAIL_PDPTE;
1136                        return -EINVAL;
1137                }
1138        }
1139
1140        /*
1141         * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1142         * flushes are handled by nested_vmx_transition_tlb_flush().  See
1143         * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1144         */
1145        if (!nested_ept)
1146                kvm_mmu_new_pgd(vcpu, cr3, true,
1147                                !nested_vmx_transition_mmu_sync(vcpu));
1148
1149        vcpu->arch.cr3 = cr3;
1150        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1151
1152        kvm_init_mmu(vcpu, false);
1153
1154        return 0;
1155}
1156
1157/*
1158 * Returns if KVM is able to config CPU to tag TLB entries
1159 * populated by L2 differently than TLB entries populated
1160 * by L1.
1161 *
1162 * If L0 uses EPT, L1 and L2 run with different EPTP because
1163 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1164 * are tagged with different EPTP.
1165 *
1166 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1167 * with different VPID (L1 entries are tagged with vmx->vpid
1168 * while L2 entries are tagged with vmx->nested.vpid02).
1169 */
1170static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1171{
1172        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1173
1174        return enable_ept ||
1175               (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1176}
1177
1178static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1179                                            struct vmcs12 *vmcs12,
1180                                            bool is_vmenter)
1181{
1182        struct vcpu_vmx *vmx = to_vmx(vcpu);
1183
1184        /*
1185         * If VPID is disabled, linear and combined mappings are flushed on
1186         * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1187         * their associated EPTP.
1188         */
1189        if (!enable_vpid)
1190                return;
1191
1192        /*
1193         * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1194         * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1195         *
1196         * If VPID is enabled and used by vmc12, but L2 does not have a unique
1197         * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1198         * a VPID for L2, flush the current context as the effective ASID is
1199         * common to both L1 and L2.
1200         *
1201         * Defer the flush so that it runs after vmcs02.EPTP has been set by
1202         * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1203         * redundant flushes further down the nested pipeline.
1204         *
1205         * If a TLB flush isn't required due to any of the above, and vpid12 is
1206         * changing then the new "virtual" VPID (vpid12) will reuse the same
1207         * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1208         * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1209         * all nested vCPUs.
1210         */
1211        if (!nested_cpu_has_vpid(vmcs12)) {
1212                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1213        } else if (!nested_has_guest_tlb_tag(vcpu)) {
1214                kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1215        } else if (is_vmenter &&
1216                   vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1217                vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1218                vpid_sync_context(nested_get_vpid02(vcpu));
1219        }
1220}
1221
1222static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1223{
1224        superset &= mask;
1225        subset &= mask;
1226
1227        return (superset | subset) == superset;
1228}
1229
1230static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1231{
1232        const u64 feature_and_reserved =
1233                /* feature (except bit 48; see below) */
1234                BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1235                /* reserved */
1236                BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1237        u64 vmx_basic = vmx->nested.msrs.basic;
1238
1239        if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1240                return -EINVAL;
1241
1242        /*
1243         * KVM does not emulate a version of VMX that constrains physical
1244         * addresses of VMX structures (e.g. VMCS) to 32-bits.
1245         */
1246        if (data & BIT_ULL(48))
1247                return -EINVAL;
1248
1249        if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1250            vmx_basic_vmcs_revision_id(data))
1251                return -EINVAL;
1252
1253        if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1254                return -EINVAL;
1255
1256        vmx->nested.msrs.basic = data;
1257        return 0;
1258}
1259
1260static int
1261vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1262{
1263        u64 supported;
1264        u32 *lowp, *highp;
1265
1266        switch (msr_index) {
1267        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1268                lowp = &vmx->nested.msrs.pinbased_ctls_low;
1269                highp = &vmx->nested.msrs.pinbased_ctls_high;
1270                break;
1271        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1272                lowp = &vmx->nested.msrs.procbased_ctls_low;
1273                highp = &vmx->nested.msrs.procbased_ctls_high;
1274                break;
1275        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1276                lowp = &vmx->nested.msrs.exit_ctls_low;
1277                highp = &vmx->nested.msrs.exit_ctls_high;
1278                break;
1279        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1280                lowp = &vmx->nested.msrs.entry_ctls_low;
1281                highp = &vmx->nested.msrs.entry_ctls_high;
1282                break;
1283        case MSR_IA32_VMX_PROCBASED_CTLS2:
1284                lowp = &vmx->nested.msrs.secondary_ctls_low;
1285                highp = &vmx->nested.msrs.secondary_ctls_high;
1286                break;
1287        default:
1288                BUG();
1289        }
1290
1291        supported = vmx_control_msr(*lowp, *highp);
1292
1293        /* Check must-be-1 bits are still 1. */
1294        if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1295                return -EINVAL;
1296
1297        /* Check must-be-0 bits are still 0. */
1298        if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1299                return -EINVAL;
1300
1301        *lowp = data;
1302        *highp = data >> 32;
1303        return 0;
1304}
1305
1306static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1307{
1308        const u64 feature_and_reserved_bits =
1309                /* feature */
1310                BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1311                BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1312                /* reserved */
1313                GENMASK_ULL(13, 9) | BIT_ULL(31);
1314        u64 vmx_misc;
1315
1316        vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1317                                   vmx->nested.msrs.misc_high);
1318
1319        if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1320                return -EINVAL;
1321
1322        if ((vmx->nested.msrs.pinbased_ctls_high &
1323             PIN_BASED_VMX_PREEMPTION_TIMER) &&
1324            vmx_misc_preemption_timer_rate(data) !=
1325            vmx_misc_preemption_timer_rate(vmx_misc))
1326                return -EINVAL;
1327
1328        if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1329                return -EINVAL;
1330
1331        if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1332                return -EINVAL;
1333
1334        if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1335                return -EINVAL;
1336
1337        vmx->nested.msrs.misc_low = data;
1338        vmx->nested.msrs.misc_high = data >> 32;
1339
1340        return 0;
1341}
1342
1343static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1344{
1345        u64 vmx_ept_vpid_cap;
1346
1347        vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1348                                           vmx->nested.msrs.vpid_caps);
1349
1350        /* Every bit is either reserved or a feature bit. */
1351        if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1352                return -EINVAL;
1353
1354        vmx->nested.msrs.ept_caps = data;
1355        vmx->nested.msrs.vpid_caps = data >> 32;
1356        return 0;
1357}
1358
1359static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1360{
1361        u64 *msr;
1362
1363        switch (msr_index) {
1364        case MSR_IA32_VMX_CR0_FIXED0:
1365                msr = &vmx->nested.msrs.cr0_fixed0;
1366                break;
1367        case MSR_IA32_VMX_CR4_FIXED0:
1368                msr = &vmx->nested.msrs.cr4_fixed0;
1369                break;
1370        default:
1371                BUG();
1372        }
1373
1374        /*
1375         * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1376         * must be 1 in the restored value.
1377         */
1378        if (!is_bitwise_subset(data, *msr, -1ULL))
1379                return -EINVAL;
1380
1381        *msr = data;
1382        return 0;
1383}
1384
1385/*
1386 * Called when userspace is restoring VMX MSRs.
1387 *
1388 * Returns 0 on success, non-0 otherwise.
1389 */
1390int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1391{
1392        struct vcpu_vmx *vmx = to_vmx(vcpu);
1393
1394        /*
1395         * Don't allow changes to the VMX capability MSRs while the vCPU
1396         * is in VMX operation.
1397         */
1398        if (vmx->nested.vmxon)
1399                return -EBUSY;
1400
1401        switch (msr_index) {
1402        case MSR_IA32_VMX_BASIC:
1403                return vmx_restore_vmx_basic(vmx, data);
1404        case MSR_IA32_VMX_PINBASED_CTLS:
1405        case MSR_IA32_VMX_PROCBASED_CTLS:
1406        case MSR_IA32_VMX_EXIT_CTLS:
1407        case MSR_IA32_VMX_ENTRY_CTLS:
1408                /*
1409                 * The "non-true" VMX capability MSRs are generated from the
1410                 * "true" MSRs, so we do not support restoring them directly.
1411                 *
1412                 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1413                 * should restore the "true" MSRs with the must-be-1 bits
1414                 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1415                 * DEFAULT SETTINGS".
1416                 */
1417                return -EINVAL;
1418        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1419        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1420        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1421        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1422        case MSR_IA32_VMX_PROCBASED_CTLS2:
1423                return vmx_restore_control_msr(vmx, msr_index, data);
1424        case MSR_IA32_VMX_MISC:
1425                return vmx_restore_vmx_misc(vmx, data);
1426        case MSR_IA32_VMX_CR0_FIXED0:
1427        case MSR_IA32_VMX_CR4_FIXED0:
1428                return vmx_restore_fixed0_msr(vmx, msr_index, data);
1429        case MSR_IA32_VMX_CR0_FIXED1:
1430        case MSR_IA32_VMX_CR4_FIXED1:
1431                /*
1432                 * These MSRs are generated based on the vCPU's CPUID, so we
1433                 * do not support restoring them directly.
1434                 */
1435                return -EINVAL;
1436        case MSR_IA32_VMX_EPT_VPID_CAP:
1437                return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1438        case MSR_IA32_VMX_VMCS_ENUM:
1439                vmx->nested.msrs.vmcs_enum = data;
1440                return 0;
1441        case MSR_IA32_VMX_VMFUNC:
1442                if (data & ~vmx->nested.msrs.vmfunc_controls)
1443                        return -EINVAL;
1444                vmx->nested.msrs.vmfunc_controls = data;
1445                return 0;
1446        default:
1447                /*
1448                 * The rest of the VMX capability MSRs do not support restore.
1449                 */
1450                return -EINVAL;
1451        }
1452}
1453
1454/* Returns 0 on success, non-0 otherwise. */
1455int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1456{
1457        switch (msr_index) {
1458        case MSR_IA32_VMX_BASIC:
1459                *pdata = msrs->basic;
1460                break;
1461        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1462        case MSR_IA32_VMX_PINBASED_CTLS:
1463                *pdata = vmx_control_msr(
1464                        msrs->pinbased_ctls_low,
1465                        msrs->pinbased_ctls_high);
1466                if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1467                        *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1468                break;
1469        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1470        case MSR_IA32_VMX_PROCBASED_CTLS:
1471                *pdata = vmx_control_msr(
1472                        msrs->procbased_ctls_low,
1473                        msrs->procbased_ctls_high);
1474                if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1475                        *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1476                break;
1477        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1478        case MSR_IA32_VMX_EXIT_CTLS:
1479                *pdata = vmx_control_msr(
1480                        msrs->exit_ctls_low,
1481                        msrs->exit_ctls_high);
1482                if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1483                        *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1484                break;
1485        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1486        case MSR_IA32_VMX_ENTRY_CTLS:
1487                *pdata = vmx_control_msr(
1488                        msrs->entry_ctls_low,
1489                        msrs->entry_ctls_high);
1490                if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1491                        *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1492                break;
1493        case MSR_IA32_VMX_MISC:
1494                *pdata = vmx_control_msr(
1495                        msrs->misc_low,
1496                        msrs->misc_high);
1497                break;
1498        case MSR_IA32_VMX_CR0_FIXED0:
1499                *pdata = msrs->cr0_fixed0;
1500                break;
1501        case MSR_IA32_VMX_CR0_FIXED1:
1502                *pdata = msrs->cr0_fixed1;
1503                break;
1504        case MSR_IA32_VMX_CR4_FIXED0:
1505                *pdata = msrs->cr4_fixed0;
1506                break;
1507        case MSR_IA32_VMX_CR4_FIXED1:
1508                *pdata = msrs->cr4_fixed1;
1509                break;
1510        case MSR_IA32_VMX_VMCS_ENUM:
1511                *pdata = msrs->vmcs_enum;
1512                break;
1513        case MSR_IA32_VMX_PROCBASED_CTLS2:
1514                *pdata = vmx_control_msr(
1515                        msrs->secondary_ctls_low,
1516                        msrs->secondary_ctls_high);
1517                break;
1518        case MSR_IA32_VMX_EPT_VPID_CAP:
1519                *pdata = msrs->ept_caps |
1520                        ((u64)msrs->vpid_caps << 32);
1521                break;
1522        case MSR_IA32_VMX_VMFUNC:
1523                *pdata = msrs->vmfunc_controls;
1524                break;
1525        default:
1526                return 1;
1527        }
1528
1529        return 0;
1530}
1531
1532/*
1533 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1534 * been modified by the L1 guest.  Note, "writable" in this context means
1535 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1536 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1537 * VM-exit information fields (which are actually writable if the vCPU is
1538 * configured to support "VMWRITE to any supported field in the VMCS").
1539 */
1540static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1541{
1542        struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1543        struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1544        struct shadow_vmcs_field field;
1545        unsigned long val;
1546        int i;
1547
1548        if (WARN_ON(!shadow_vmcs))
1549                return;
1550
1551        preempt_disable();
1552
1553        vmcs_load(shadow_vmcs);
1554
1555        for (i = 0; i < max_shadow_read_write_fields; i++) {
1556                field = shadow_read_write_fields[i];
1557                val = __vmcs_readl(field.encoding);
1558                vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1559        }
1560
1561        vmcs_clear(shadow_vmcs);
1562        vmcs_load(vmx->loaded_vmcs->vmcs);
1563
1564        preempt_enable();
1565}
1566
1567static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1568{
1569        const struct shadow_vmcs_field *fields[] = {
1570                shadow_read_write_fields,
1571                shadow_read_only_fields
1572        };
1573        const int max_fields[] = {
1574                max_shadow_read_write_fields,
1575                max_shadow_read_only_fields
1576        };
1577        struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1578        struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1579        struct shadow_vmcs_field field;
1580        unsigned long val;
1581        int i, q;
1582
1583        if (WARN_ON(!shadow_vmcs))
1584                return;
1585
1586        vmcs_load(shadow_vmcs);
1587
1588        for (q = 0; q < ARRAY_SIZE(fields); q++) {
1589                for (i = 0; i < max_fields[q]; i++) {
1590                        field = fields[q][i];
1591                        val = vmcs12_read_any(vmcs12, field.encoding,
1592                                              field.offset);
1593                        __vmcs_writel(field.encoding, val);
1594                }
1595        }
1596
1597        vmcs_clear(shadow_vmcs);
1598        vmcs_load(vmx->loaded_vmcs->vmcs);
1599}
1600
1601static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1602{
1603        struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1604        struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1605
1606        /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1607        vmcs12->tpr_threshold = evmcs->tpr_threshold;
1608        vmcs12->guest_rip = evmcs->guest_rip;
1609
1610        if (unlikely(!(evmcs->hv_clean_fields &
1611                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1612                vmcs12->guest_rsp = evmcs->guest_rsp;
1613                vmcs12->guest_rflags = evmcs->guest_rflags;
1614                vmcs12->guest_interruptibility_info =
1615                        evmcs->guest_interruptibility_info;
1616        }
1617
1618        if (unlikely(!(evmcs->hv_clean_fields &
1619                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1620                vmcs12->cpu_based_vm_exec_control =
1621                        evmcs->cpu_based_vm_exec_control;
1622        }
1623
1624        if (unlikely(!(evmcs->hv_clean_fields &
1625                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1626                vmcs12->exception_bitmap = evmcs->exception_bitmap;
1627        }
1628
1629        if (unlikely(!(evmcs->hv_clean_fields &
1630                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1631                vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1632        }
1633
1634        if (unlikely(!(evmcs->hv_clean_fields &
1635                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1636                vmcs12->vm_entry_intr_info_field =
1637                        evmcs->vm_entry_intr_info_field;
1638                vmcs12->vm_entry_exception_error_code =
1639                        evmcs->vm_entry_exception_error_code;
1640                vmcs12->vm_entry_instruction_len =
1641                        evmcs->vm_entry_instruction_len;
1642        }
1643
1644        if (unlikely(!(evmcs->hv_clean_fields &
1645                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1646                vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1647                vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1648                vmcs12->host_cr0 = evmcs->host_cr0;
1649                vmcs12->host_cr3 = evmcs->host_cr3;
1650                vmcs12->host_cr4 = evmcs->host_cr4;
1651                vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1652                vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1653                vmcs12->host_rip = evmcs->host_rip;
1654                vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1655                vmcs12->host_es_selector = evmcs->host_es_selector;
1656                vmcs12->host_cs_selector = evmcs->host_cs_selector;
1657                vmcs12->host_ss_selector = evmcs->host_ss_selector;
1658                vmcs12->host_ds_selector = evmcs->host_ds_selector;
1659                vmcs12->host_fs_selector = evmcs->host_fs_selector;
1660                vmcs12->host_gs_selector = evmcs->host_gs_selector;
1661                vmcs12->host_tr_selector = evmcs->host_tr_selector;
1662        }
1663
1664        if (unlikely(!(evmcs->hv_clean_fields &
1665                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1666                vmcs12->pin_based_vm_exec_control =
1667                        evmcs->pin_based_vm_exec_control;
1668                vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1669                vmcs12->secondary_vm_exec_control =
1670                        evmcs->secondary_vm_exec_control;
1671        }
1672
1673        if (unlikely(!(evmcs->hv_clean_fields &
1674                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1675                vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1676                vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1677        }
1678
1679        if (unlikely(!(evmcs->hv_clean_fields &
1680                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1681                vmcs12->msr_bitmap = evmcs->msr_bitmap;
1682        }
1683
1684        if (unlikely(!(evmcs->hv_clean_fields &
1685                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1686                vmcs12->guest_es_base = evmcs->guest_es_base;
1687                vmcs12->guest_cs_base = evmcs->guest_cs_base;
1688                vmcs12->guest_ss_base = evmcs->guest_ss_base;
1689                vmcs12->guest_ds_base = evmcs->guest_ds_base;
1690                vmcs12->guest_fs_base = evmcs->guest_fs_base;
1691                vmcs12->guest_gs_base = evmcs->guest_gs_base;
1692                vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1693                vmcs12->guest_tr_base = evmcs->guest_tr_base;
1694                vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1695                vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1696                vmcs12->guest_es_limit = evmcs->guest_es_limit;
1697                vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1698                vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1699                vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1700                vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1701                vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1702                vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1703                vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1704                vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1705                vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1706                vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1707                vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1708                vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1709                vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1710                vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1711                vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1712                vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1713                vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1714                vmcs12->guest_es_selector = evmcs->guest_es_selector;
1715                vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1716                vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1717                vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1718                vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1719                vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1720                vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1721                vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1722        }
1723
1724        if (unlikely(!(evmcs->hv_clean_fields &
1725                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1726                vmcs12->tsc_offset = evmcs->tsc_offset;
1727                vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1728                vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1729        }
1730
1731        if (unlikely(!(evmcs->hv_clean_fields &
1732                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1733                vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1734                vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1735                vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1736                vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1737                vmcs12->guest_cr0 = evmcs->guest_cr0;
1738                vmcs12->guest_cr3 = evmcs->guest_cr3;
1739                vmcs12->guest_cr4 = evmcs->guest_cr4;
1740                vmcs12->guest_dr7 = evmcs->guest_dr7;
1741        }
1742
1743        if (unlikely(!(evmcs->hv_clean_fields &
1744                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1745                vmcs12->host_fs_base = evmcs->host_fs_base;
1746                vmcs12->host_gs_base = evmcs->host_gs_base;
1747                vmcs12->host_tr_base = evmcs->host_tr_base;
1748                vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1749                vmcs12->host_idtr_base = evmcs->host_idtr_base;
1750                vmcs12->host_rsp = evmcs->host_rsp;
1751        }
1752
1753        if (unlikely(!(evmcs->hv_clean_fields &
1754                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1755                vmcs12->ept_pointer = evmcs->ept_pointer;
1756                vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1757        }
1758
1759        if (unlikely(!(evmcs->hv_clean_fields &
1760                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1761                vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1762                vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1763                vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1764                vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1765                vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1766                vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1767                vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1768                vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1769                vmcs12->guest_pending_dbg_exceptions =
1770                        evmcs->guest_pending_dbg_exceptions;
1771                vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1772                vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1773                vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1774                vmcs12->guest_activity_state = evmcs->guest_activity_state;
1775                vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1776        }
1777
1778        /*
1779         * Not used?
1780         * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1781         * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1782         * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1783         * vmcs12->page_fault_error_code_mask =
1784         *              evmcs->page_fault_error_code_mask;
1785         * vmcs12->page_fault_error_code_match =
1786         *              evmcs->page_fault_error_code_match;
1787         * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1788         * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1789         * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1790         * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1791         */
1792
1793        /*
1794         * Read only fields:
1795         * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1796         * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1797         * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1798         * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1799         * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1800         * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1801         * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1802         * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1803         * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1804         * vmcs12->exit_qualification = evmcs->exit_qualification;
1805         * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1806         *
1807         * Not present in struct vmcs12:
1808         * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1809         * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1810         * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1811         * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1812         */
1813
1814        return 0;
1815}
1816
1817static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1818{
1819        struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1820        struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1821
1822        /*
1823         * Should not be changed by KVM:
1824         *
1825         * evmcs->host_es_selector = vmcs12->host_es_selector;
1826         * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1827         * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1828         * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1829         * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1830         * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1831         * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1832         * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1833         * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1834         * evmcs->host_cr0 = vmcs12->host_cr0;
1835         * evmcs->host_cr3 = vmcs12->host_cr3;
1836         * evmcs->host_cr4 = vmcs12->host_cr4;
1837         * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1838         * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1839         * evmcs->host_rip = vmcs12->host_rip;
1840         * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1841         * evmcs->host_fs_base = vmcs12->host_fs_base;
1842         * evmcs->host_gs_base = vmcs12->host_gs_base;
1843         * evmcs->host_tr_base = vmcs12->host_tr_base;
1844         * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1845         * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1846         * evmcs->host_rsp = vmcs12->host_rsp;
1847         * sync_vmcs02_to_vmcs12() doesn't read these:
1848         * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1849         * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1850         * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1851         * evmcs->ept_pointer = vmcs12->ept_pointer;
1852         * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1853         * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1854         * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1855         * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1856         * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1857         * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1858         * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1859         * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1860         * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1861         * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1862         * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1863         * evmcs->page_fault_error_code_mask =
1864         *              vmcs12->page_fault_error_code_mask;
1865         * evmcs->page_fault_error_code_match =
1866         *              vmcs12->page_fault_error_code_match;
1867         * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1868         * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1869         * evmcs->tsc_offset = vmcs12->tsc_offset;
1870         * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1871         * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1872         * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1873         * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1874         * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1875         * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1876         * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1877         * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1878         *
1879         * Not present in struct vmcs12:
1880         * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1881         * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1882         * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1883         * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1884         */
1885
1886        evmcs->guest_es_selector = vmcs12->guest_es_selector;
1887        evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1888        evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1889        evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1890        evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1891        evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1892        evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1893        evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1894
1895        evmcs->guest_es_limit = vmcs12->guest_es_limit;
1896        evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1897        evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1898        evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1899        evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1900        evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1901        evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1902        evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1903        evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1904        evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1905
1906        evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1907        evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1908        evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1909        evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1910        evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1911        evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1912        evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1913        evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1914
1915        evmcs->guest_es_base = vmcs12->guest_es_base;
1916        evmcs->guest_cs_base = vmcs12->guest_cs_base;
1917        evmcs->guest_ss_base = vmcs12->guest_ss_base;
1918        evmcs->guest_ds_base = vmcs12->guest_ds_base;
1919        evmcs->guest_fs_base = vmcs12->guest_fs_base;
1920        evmcs->guest_gs_base = vmcs12->guest_gs_base;
1921        evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1922        evmcs->guest_tr_base = vmcs12->guest_tr_base;
1923        evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1924        evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1925
1926        evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1927        evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1928
1929        evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1930        evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1931        evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1932        evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1933
1934        evmcs->guest_pending_dbg_exceptions =
1935                vmcs12->guest_pending_dbg_exceptions;
1936        evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1937        evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1938
1939        evmcs->guest_activity_state = vmcs12->guest_activity_state;
1940        evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1941
1942        evmcs->guest_cr0 = vmcs12->guest_cr0;
1943        evmcs->guest_cr3 = vmcs12->guest_cr3;
1944        evmcs->guest_cr4 = vmcs12->guest_cr4;
1945        evmcs->guest_dr7 = vmcs12->guest_dr7;
1946
1947        evmcs->guest_physical_address = vmcs12->guest_physical_address;
1948
1949        evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1950        evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1951        evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1952        evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1953        evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1954        evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1955        evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1956        evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1957
1958        evmcs->exit_qualification = vmcs12->exit_qualification;
1959
1960        evmcs->guest_linear_address = vmcs12->guest_linear_address;
1961        evmcs->guest_rsp = vmcs12->guest_rsp;
1962        evmcs->guest_rflags = vmcs12->guest_rflags;
1963
1964        evmcs->guest_interruptibility_info =
1965                vmcs12->guest_interruptibility_info;
1966        evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1967        evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1968        evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1969        evmcs->vm_entry_exception_error_code =
1970                vmcs12->vm_entry_exception_error_code;
1971        evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1972
1973        evmcs->guest_rip = vmcs12->guest_rip;
1974
1975        evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1976
1977        return 0;
1978}
1979
1980/*
1981 * This is an equivalent of the nested hypervisor executing the vmptrld
1982 * instruction.
1983 */
1984static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1985        struct kvm_vcpu *vcpu, bool from_launch)
1986{
1987        struct vcpu_vmx *vmx = to_vmx(vcpu);
1988        bool evmcs_gpa_changed = false;
1989        u64 evmcs_gpa;
1990
1991        if (likely(!vmx->nested.enlightened_vmcs_enabled))
1992                return EVMPTRLD_DISABLED;
1993
1994        if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1995                return EVMPTRLD_DISABLED;
1996
1997        if (unlikely(!vmx->nested.hv_evmcs ||
1998                     evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1999                if (!vmx->nested.hv_evmcs)
2000                        vmx->nested.current_vmptr = -1ull;
2001
2002                nested_release_evmcs(vcpu);
2003
2004                if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2005                                 &vmx->nested.hv_evmcs_map))
2006                        return EVMPTRLD_ERROR;
2007
2008                vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2009
2010                /*
2011                 * Currently, KVM only supports eVMCS version 1
2012                 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2013                 * value to first u32 field of eVMCS which should specify eVMCS
2014                 * VersionNumber.
2015                 *
2016                 * Guest should be aware of supported eVMCS versions by host by
2017                 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2018                 * expected to set this CPUID leaf according to the value
2019                 * returned in vmcs_version from nested_enable_evmcs().
2020                 *
2021                 * However, it turns out that Microsoft Hyper-V fails to comply
2022                 * to their own invented interface: When Hyper-V use eVMCS, it
2023                 * just sets first u32 field of eVMCS to revision_id specified
2024                 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2025                 * which is one of the supported versions specified in
2026                 * CPUID.0x4000000A.EAX[0:15].
2027                 *
2028                 * To overcome Hyper-V bug, we accept here either a supported
2029                 * eVMCS version or VMCS12 revision_id as valid values for first
2030                 * u32 field of eVMCS.
2031                 */
2032                if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2033                    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2034                        nested_release_evmcs(vcpu);
2035                        return EVMPTRLD_VMFAIL;
2036                }
2037
2038                vmx->nested.dirty_vmcs12 = true;
2039                vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2040
2041                evmcs_gpa_changed = true;
2042                /*
2043                 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2044                 * reloaded from guest's memory (read only fields, fields not
2045                 * present in struct hv_enlightened_vmcs, ...). Make sure there
2046                 * are no leftovers.
2047                 */
2048                if (from_launch) {
2049                        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2050                        memset(vmcs12, 0, sizeof(*vmcs12));
2051                        vmcs12->hdr.revision_id = VMCS12_REVISION;
2052                }
2053
2054        }
2055
2056        /*
2057         * Clean fields data can't be used on VMLAUNCH and when we switch
2058         * between different L2 guests as KVM keeps a single VMCS12 per L1.
2059         */
2060        if (from_launch || evmcs_gpa_changed)
2061                vmx->nested.hv_evmcs->hv_clean_fields &=
2062                        ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2063
2064        return EVMPTRLD_SUCCEEDED;
2065}
2066
2067void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2068{
2069        struct vcpu_vmx *vmx = to_vmx(vcpu);
2070
2071        if (vmx->nested.hv_evmcs) {
2072                copy_vmcs12_to_enlightened(vmx);
2073                /* All fields are clean */
2074                vmx->nested.hv_evmcs->hv_clean_fields |=
2075                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2076        } else {
2077                copy_vmcs12_to_shadow(vmx);
2078        }
2079
2080        vmx->nested.need_vmcs12_to_shadow_sync = false;
2081}
2082
2083static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2084{
2085        struct vcpu_vmx *vmx =
2086                container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2087
2088        vmx->nested.preemption_timer_expired = true;
2089        kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2090        kvm_vcpu_kick(&vmx->vcpu);
2091
2092        return HRTIMER_NORESTART;
2093}
2094
2095static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2096{
2097        struct vcpu_vmx *vmx = to_vmx(vcpu);
2098        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2099
2100        u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2101                            VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2102
2103        if (!vmx->nested.has_preemption_timer_deadline) {
2104                vmx->nested.preemption_timer_deadline =
2105                        vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2106                vmx->nested.has_preemption_timer_deadline = true;
2107        }
2108        return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2109}
2110
2111static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2112                                        u64 preemption_timeout)
2113{
2114        struct vcpu_vmx *vmx = to_vmx(vcpu);
2115
2116        /*
2117         * A timer value of zero is architecturally guaranteed to cause
2118         * a VMExit prior to executing any instructions in the guest.
2119         */
2120        if (preemption_timeout == 0) {
2121                vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2122                return;
2123        }
2124
2125        if (vcpu->arch.virtual_tsc_khz == 0)
2126                return;
2127
2128        preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2129        preemption_timeout *= 1000000;
2130        do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2131        hrtimer_start(&vmx->nested.preemption_timer,
2132                      ktime_add_ns(ktime_get(), preemption_timeout),
2133                      HRTIMER_MODE_ABS_PINNED);
2134}
2135
2136static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2137{
2138        if (vmx->nested.nested_run_pending &&
2139            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2140                return vmcs12->guest_ia32_efer;
2141        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2142                return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2143        else
2144                return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2145}
2146
2147static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2148{
2149        /*
2150         * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2151         * according to L0's settings (vmcs12 is irrelevant here).  Host
2152         * fields that come from L0 and are not constant, e.g. HOST_CR3,
2153         * will be set as needed prior to VMLAUNCH/VMRESUME.
2154         */
2155        if (vmx->nested.vmcs02_initialized)
2156                return;
2157        vmx->nested.vmcs02_initialized = true;
2158
2159        /*
2160         * We don't care what the EPTP value is we just need to guarantee
2161         * it's valid so we don't get a false positive when doing early
2162         * consistency checks.
2163         */
2164        if (enable_ept && nested_early_check)
2165                vmcs_write64(EPT_POINTER,
2166                             construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2167
2168        /* All VMFUNCs are currently emulated through L0 vmexits.  */
2169        if (cpu_has_vmx_vmfunc())
2170                vmcs_write64(VM_FUNCTION_CONTROL, 0);
2171
2172        if (cpu_has_vmx_posted_intr())
2173                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2174
2175        if (cpu_has_vmx_msr_bitmap())
2176                vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2177
2178        /*
2179         * The PML address never changes, so it is constant in vmcs02.
2180         * Conceptually we want to copy the PML index from vmcs01 here,
2181         * and then back to vmcs01 on nested vmexit.  But since we flush
2182         * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2183         * index is also effectively constant in vmcs02.
2184         */
2185        if (enable_pml) {
2186                vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2187                vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2188        }
2189
2190        if (cpu_has_vmx_encls_vmexit())
2191                vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2192
2193        /*
2194         * Set the MSR load/store lists to match L0's settings.  Only the
2195         * addresses are constant (for vmcs02), the counts can change based
2196         * on L2's behavior, e.g. switching to/from long mode.
2197         */
2198        vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2199        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2200        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2201
2202        vmx_set_constant_host_state(vmx);
2203}
2204
2205static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2206                                      struct vmcs12 *vmcs12)
2207{
2208        prepare_vmcs02_constant_state(vmx);
2209
2210        vmcs_write64(VMCS_LINK_POINTER, -1ull);
2211
2212        if (enable_vpid) {
2213                if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2214                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2215                else
2216                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2217        }
2218}
2219
2220static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2221{
2222        u32 exec_control, vmcs12_exec_ctrl;
2223        u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2224
2225        if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2226                prepare_vmcs02_early_rare(vmx, vmcs12);
2227
2228        /*
2229         * PIN CONTROLS
2230         */
2231        exec_control = vmx_pin_based_exec_ctrl(vmx);
2232        exec_control |= (vmcs12->pin_based_vm_exec_control &
2233                         ~PIN_BASED_VMX_PREEMPTION_TIMER);
2234
2235        /* Posted interrupts setting is only taken from vmcs12.  */
2236        if (nested_cpu_has_posted_intr(vmcs12)) {
2237                vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2238                vmx->nested.pi_pending = false;
2239        } else {
2240                exec_control &= ~PIN_BASED_POSTED_INTR;
2241        }
2242        pin_controls_set(vmx, exec_control);
2243
2244        /*
2245         * EXEC CONTROLS
2246         */
2247        exec_control = vmx_exec_control(vmx); /* L0's desires */
2248        exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2249        exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2250        exec_control &= ~CPU_BASED_TPR_SHADOW;
2251        exec_control |= vmcs12->cpu_based_vm_exec_control;
2252
2253        vmx->nested.l1_tpr_threshold = -1;
2254        if (exec_control & CPU_BASED_TPR_SHADOW)
2255                vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2256#ifdef CONFIG_X86_64
2257        else
2258                exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2259                                CPU_BASED_CR8_STORE_EXITING;
2260#endif
2261
2262        /*
2263         * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2264         * for I/O port accesses.
2265         */
2266        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2267        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2268
2269        /*
2270         * This bit will be computed in nested_get_vmcs12_pages, because
2271         * we do not have access to L1's MSR bitmap yet.  For now, keep
2272         * the same bit as before, hoping to avoid multiple VMWRITEs that
2273         * only set/clear this bit.
2274         */
2275        exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2276        exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2277
2278        exec_controls_set(vmx, exec_control);
2279
2280        /*
2281         * SECONDARY EXEC CONTROLS
2282         */
2283        if (cpu_has_secondary_exec_ctrls()) {
2284                exec_control = vmx->secondary_exec_control;
2285
2286                /* Take the following fields only from vmcs12 */
2287                exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2288                                  SECONDARY_EXEC_ENABLE_INVPCID |
2289                                  SECONDARY_EXEC_RDTSCP |
2290                                  SECONDARY_EXEC_XSAVES |
2291                                  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2292                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2293                                  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2294                                  SECONDARY_EXEC_ENABLE_VMFUNC);
2295                if (nested_cpu_has(vmcs12,
2296                                   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2297                        vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2298                                ~SECONDARY_EXEC_ENABLE_PML;
2299                        exec_control |= vmcs12_exec_ctrl;
2300                }
2301
2302                /* VMCS shadowing for L2 is emulated for now */
2303                exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2304
2305                /*
2306                 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2307                 * will not have to rewrite the controls just for this bit.
2308                 */
2309                if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2310                    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2311                        exec_control |= SECONDARY_EXEC_DESC;
2312
2313                if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2314                        vmcs_write16(GUEST_INTR_STATUS,
2315                                vmcs12->guest_intr_status);
2316
2317                secondary_exec_controls_set(vmx, exec_control);
2318        }
2319
2320        /*
2321         * ENTRY CONTROLS
2322         *
2323         * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2324         * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2325         * on the related bits (if supported by the CPU) in the hope that
2326         * we can avoid VMWrites during vmx_set_efer().
2327         */
2328        exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2329                        ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2330        if (cpu_has_load_ia32_efer()) {
2331                if (guest_efer & EFER_LMA)
2332                        exec_control |= VM_ENTRY_IA32E_MODE;
2333                if (guest_efer != host_efer)
2334                        exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2335        }
2336        vm_entry_controls_set(vmx, exec_control);
2337
2338        /*
2339         * EXIT CONTROLS
2340         *
2341         * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2342         * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2343         * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2344         */
2345        exec_control = vmx_vmexit_ctrl();
2346        if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2347                exec_control |= VM_EXIT_LOAD_IA32_EFER;
2348        vm_exit_controls_set(vmx, exec_control);
2349
2350        /*
2351         * Interrupt/Exception Fields
2352         */
2353        if (vmx->nested.nested_run_pending) {
2354                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2355                             vmcs12->vm_entry_intr_info_field);
2356                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2357                             vmcs12->vm_entry_exception_error_code);
2358                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2359                             vmcs12->vm_entry_instruction_len);
2360                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2361                             vmcs12->guest_interruptibility_info);
2362                vmx->loaded_vmcs->nmi_known_unmasked =
2363                        !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2364        } else {
2365                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2366        }
2367}
2368
2369static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2370{
2371        struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2372
2373        if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2374                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2375                vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2376                vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2377                vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2378                vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2379                vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2380                vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2381                vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2382                vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2383                vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2384                vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2385                vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2386                vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2387                vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2388                vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2389                vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2390                vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2391                vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2392                vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2393                vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2394                vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2395                vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2396                vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2397                vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2398                vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2399                vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2400                vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2401                vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2402                vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2403                vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2404                vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2405                vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2406                vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2407                vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2408                vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2409                vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2410                vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2411        }
2412
2413        if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2414                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2415                vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2416                vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2417                            vmcs12->guest_pending_dbg_exceptions);
2418                vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2419                vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2420
2421                /*
2422                 * L1 may access the L2's PDPTR, so save them to construct
2423                 * vmcs12
2424                 */
2425                if (enable_ept) {
2426                        vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2427                        vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2428                        vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2429                        vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2430                }
2431
2432                if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2433                    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2434                        vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2435        }
2436
2437        if (nested_cpu_has_xsaves(vmcs12))
2438                vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2439
2440        /*
2441         * Whether page-faults are trapped is determined by a combination of
2442         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2443         * doesn't care about page faults then we should set all of these to
2444         * L1's desires. However, if L0 does care about (some) page faults, it
2445         * is not easy (if at all possible?) to merge L0 and L1's desires, we
2446         * simply ask to exit on each and every L2 page fault. This is done by
2447         * setting MASK=MATCH=0 and (see below) EB.PF=1.
2448         * Note that below we don't need special code to set EB.PF beyond the
2449         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2450         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2451         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2452         */
2453        if (vmx_need_pf_intercept(&vmx->vcpu)) {
2454                /*
2455                 * TODO: if both L0 and L1 need the same MASK and MATCH,
2456                 * go ahead and use it?
2457                 */
2458                vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2459                vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2460        } else {
2461                vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2462                vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2463        }
2464
2465        if (cpu_has_vmx_apicv()) {
2466                vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2467                vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2468                vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2469                vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2470        }
2471
2472        /*
2473         * Make sure the msr_autostore list is up to date before we set the
2474         * count in the vmcs02.
2475         */
2476        prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2477
2478        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2479        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2480        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2481
2482        set_cr4_guest_host_mask(vmx);
2483}
2484
2485/*
2486 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2487 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2488 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2489 * guest in a way that will both be appropriate to L1's requests, and our
2490 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2491 * function also has additional necessary side-effects, like setting various
2492 * vcpu->arch fields.
2493 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2494 * is assigned to entry_failure_code on failure.
2495 */
2496static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2497                          enum vm_entry_failure_code *entry_failure_code)
2498{
2499        struct vcpu_vmx *vmx = to_vmx(vcpu);
2500        struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2501        bool load_guest_pdptrs_vmcs12 = false;
2502
2503        if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2504                prepare_vmcs02_rare(vmx, vmcs12);
2505                vmx->nested.dirty_vmcs12 = false;
2506
2507                load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2508                        !(hv_evmcs->hv_clean_fields &
2509                          HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2510        }
2511
2512        if (vmx->nested.nested_run_pending &&
2513            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2514                kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2515                vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2516        } else {
2517                kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2518                vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2519        }
2520        if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2521            !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2522                vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2523        vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2524
2525        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2526         * bitwise-or of what L1 wants to trap for L2, and what we want to
2527         * trap. Note that CR0.TS also needs updating - we do this later.
2528         */
2529        update_exception_bitmap(vcpu);
2530        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2531        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2532
2533        if (vmx->nested.nested_run_pending &&
2534            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2535                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2536                vcpu->arch.pat = vmcs12->guest_ia32_pat;
2537        } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2538                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2539        }
2540
2541        vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2542
2543        if (kvm_has_tsc_control)
2544                decache_tsc_multiplier(vmx);
2545
2546        nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2547
2548        if (nested_cpu_has_ept(vmcs12))
2549                nested_ept_init_mmu_context(vcpu);
2550
2551        /*
2552         * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2553         * bits which we consider mandatory enabled.
2554         * The CR0_READ_SHADOW is what L2 should have expected to read given
2555         * the specifications by L1; It's not enough to take
2556         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2557         * have more bits than L1 expected.
2558         */
2559        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2560        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2561
2562        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2563        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2564
2565        vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2566        /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2567        vmx_set_efer(vcpu, vcpu->arch.efer);
2568
2569        /*
2570         * Guest state is invalid and unrestricted guest is disabled,
2571         * which means L1 attempted VMEntry to L2 with invalid state.
2572         * Fail the VMEntry.
2573         */
2574        if (vmx->emulation_required) {
2575                *entry_failure_code = ENTRY_FAIL_DEFAULT;
2576                return -EINVAL;
2577        }
2578
2579        /* Shadow page tables on either EPT or shadow page tables. */
2580        if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2581                                entry_failure_code))
2582                return -EINVAL;
2583
2584        /*
2585         * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2586         * on nested VM-Exit, which can occur without actually running L2 and
2587         * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2588         * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2589         * transition to HLT instead of running L2.
2590         */
2591        if (enable_ept)
2592                vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2593
2594        /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2595        if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2596            is_pae_paging(vcpu)) {
2597                vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2598                vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2599                vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2600                vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2601        }
2602
2603        if (!enable_ept)
2604                vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2605
2606        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2607            WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2608                                     vmcs12->guest_ia32_perf_global_ctrl)))
2609                return -EINVAL;
2610
2611        kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2612        kvm_rip_write(vcpu, vmcs12->guest_rip);
2613        return 0;
2614}
2615
2616static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2617{
2618        if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2619               nested_cpu_has_virtual_nmis(vmcs12)))
2620                return -EINVAL;
2621
2622        if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2623               nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2624                return -EINVAL;
2625
2626        return 0;
2627}
2628
2629static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2630{
2631        struct vcpu_vmx *vmx = to_vmx(vcpu);
2632        int maxphyaddr = cpuid_maxphyaddr(vcpu);
2633
2634        /* Check for memory type validity */
2635        switch (new_eptp & VMX_EPTP_MT_MASK) {
2636        case VMX_EPTP_MT_UC:
2637                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2638                        return false;
2639                break;
2640        case VMX_EPTP_MT_WB:
2641                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2642                        return false;
2643                break;
2644        default:
2645                return false;
2646        }
2647
2648        /* Page-walk levels validity. */
2649        switch (new_eptp & VMX_EPTP_PWL_MASK) {
2650        case VMX_EPTP_PWL_5:
2651                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2652                        return false;
2653                break;
2654        case VMX_EPTP_PWL_4:
2655                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2656                        return false;
2657                break;
2658        default:
2659                return false;
2660        }
2661
2662        /* Reserved bits should not be set */
2663        if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2664                return false;
2665
2666        /* AD, if set, should be supported */
2667        if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2668                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2669                        return false;
2670        }
2671
2672        return true;
2673}
2674
2675/*
2676 * Checks related to VM-Execution Control Fields
2677 */
2678static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2679                                              struct vmcs12 *vmcs12)
2680{
2681        struct vcpu_vmx *vmx = to_vmx(vcpu);
2682
2683        if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2684                                   vmx->nested.msrs.pinbased_ctls_low,
2685                                   vmx->nested.msrs.pinbased_ctls_high)) ||
2686            CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2687                                   vmx->nested.msrs.procbased_ctls_low,
2688                                   vmx->nested.msrs.procbased_ctls_high)))
2689                return -EINVAL;
2690
2691        if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2692            CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2693                                   vmx->nested.msrs.secondary_ctls_low,
2694                                   vmx->nested.msrs.secondary_ctls_high)))
2695                return -EINVAL;
2696
2697        if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2698            nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2699            nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2700            nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2701            nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2702            nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2703            nested_vmx_check_nmi_controls(vmcs12) ||
2704            nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2705            nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2706            nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2707            nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2708            CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2709                return -EINVAL;
2710
2711        if (!nested_cpu_has_preemption_timer(vmcs12) &&
2712            nested_cpu_has_save_preemption_timer(vmcs12))
2713                return -EINVAL;
2714
2715        if (nested_cpu_has_ept(vmcs12) &&
2716            CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2717                return -EINVAL;
2718
2719        if (nested_cpu_has_vmfunc(vmcs12)) {
2720                if (CC(vmcs12->vm_function_control &
2721                       ~vmx->nested.msrs.vmfunc_controls))
2722                        return -EINVAL;
2723
2724                if (nested_cpu_has_eptp_switching(vmcs12)) {
2725                        if (CC(!nested_cpu_has_ept(vmcs12)) ||
2726                            CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2727                                return -EINVAL;
2728                }
2729        }
2730
2731        return 0;
2732}
2733
2734/*
2735 * Checks related to VM-Exit Control Fields
2736 */
2737static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2738                                         struct vmcs12 *vmcs12)
2739{
2740        struct vcpu_vmx *vmx = to_vmx(vcpu);
2741
2742        if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2743                                    vmx->nested.msrs.exit_ctls_low,
2744                                    vmx->nested.msrs.exit_ctls_high)) ||
2745            CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2746                return -EINVAL;
2747
2748        return 0;
2749}
2750
2751/*
2752 * Checks related to VM-Entry Control Fields
2753 */
2754static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2755                                          struct vmcs12 *vmcs12)
2756{
2757        struct vcpu_vmx *vmx = to_vmx(vcpu);
2758
2759        if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2760                                    vmx->nested.msrs.entry_ctls_low,
2761                                    vmx->nested.msrs.entry_ctls_high)))
2762                return -EINVAL;
2763
2764        /*
2765         * From the Intel SDM, volume 3:
2766         * Fields relevant to VM-entry event injection must be set properly.
2767         * These fields are the VM-entry interruption-information field, the
2768         * VM-entry exception error code, and the VM-entry instruction length.
2769         */
2770        if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2771                u32 intr_info = vmcs12->vm_entry_intr_info_field;
2772                u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2773                u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2774                bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2775                bool should_have_error_code;
2776                bool urg = nested_cpu_has2(vmcs12,
2777                                           SECONDARY_EXEC_UNRESTRICTED_GUEST);
2778                bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2779
2780                /* VM-entry interruption-info field: interruption type */
2781                if (CC(intr_type == INTR_TYPE_RESERVED) ||
2782                    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2783                       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2784                        return -EINVAL;
2785
2786                /* VM-entry interruption-info field: vector */
2787                if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2788                    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2789                    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2790                        return -EINVAL;
2791
2792                /* VM-entry interruption-info field: deliver error code */
2793                should_have_error_code =
2794                        intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2795                        x86_exception_has_error_code(vector);
2796                if (CC(has_error_code != should_have_error_code))
2797                        return -EINVAL;
2798
2799                /* VM-entry exception error code */
2800                if (CC(has_error_code &&
2801                       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2802                        return -EINVAL;
2803
2804                /* VM-entry interruption-info field: reserved bits */
2805                if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2806                        return -EINVAL;
2807
2808                /* VM-entry instruction length */
2809                switch (intr_type) {
2810                case INTR_TYPE_SOFT_EXCEPTION:
2811                case INTR_TYPE_SOFT_INTR:
2812                case INTR_TYPE_PRIV_SW_EXCEPTION:
2813                        if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2814                            CC(vmcs12->vm_entry_instruction_len == 0 &&
2815                            CC(!nested_cpu_has_zero_length_injection(vcpu))))
2816                                return -EINVAL;
2817                }
2818        }
2819
2820        if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2821                return -EINVAL;
2822
2823        return 0;
2824}
2825
2826static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2827                                     struct vmcs12 *vmcs12)
2828{
2829        if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2830            nested_check_vm_exit_controls(vcpu, vmcs12) ||
2831            nested_check_vm_entry_controls(vcpu, vmcs12))
2832                return -EINVAL;
2833
2834        if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2835                return nested_evmcs_check_controls(vmcs12);
2836
2837        return 0;
2838}
2839
2840static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2841                                       struct vmcs12 *vmcs12)
2842{
2843        bool ia32e;
2844
2845        if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2846            CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2847            CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2848                return -EINVAL;
2849
2850        if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2851            CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2852                return -EINVAL;
2853
2854        if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2855            CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2856                return -EINVAL;
2857
2858        if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2859            CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2860                                           vmcs12->host_ia32_perf_global_ctrl)))
2861                return -EINVAL;
2862
2863#ifdef CONFIG_X86_64
2864        ia32e = !!(vcpu->arch.efer & EFER_LMA);
2865#else
2866        ia32e = false;
2867#endif
2868
2869        if (ia32e) {
2870                if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2871                    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2872                        return -EINVAL;
2873        } else {
2874                if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2875                    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2876                    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2877                    CC((vmcs12->host_rip) >> 32))
2878                        return -EINVAL;
2879        }
2880
2881        if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2882            CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2883            CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2884            CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2885            CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2886            CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2887            CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2888            CC(vmcs12->host_cs_selector == 0) ||
2889            CC(vmcs12->host_tr_selector == 0) ||
2890            CC(vmcs12->host_ss_selector == 0 && !ia32e))
2891                return -EINVAL;
2892
2893        if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2894            CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2895            CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2896            CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2897            CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2898            CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2899                return -EINVAL;
2900
2901        /*
2902         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2903         * IA32_EFER MSR must be 0 in the field for that register. In addition,
2904         * the values of the LMA and LME bits in the field must each be that of
2905         * the host address-space size VM-exit control.
2906         */
2907        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2908                if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2909                    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2910                    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2911                        return -EINVAL;
2912        }
2913
2914        return 0;
2915}
2916
2917static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2918                                          struct vmcs12 *vmcs12)
2919{
2920        int r = 0;
2921        struct vmcs12 *shadow;
2922        struct kvm_host_map map;
2923
2924        if (vmcs12->vmcs_link_pointer == -1ull)
2925                return 0;
2926
2927        if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2928                return -EINVAL;
2929
2930        if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2931                return -EINVAL;
2932
2933        shadow = map.hva;
2934
2935        if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2936            CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2937                r = -EINVAL;
2938
2939        kvm_vcpu_unmap(vcpu, &map, false);
2940        return r;
2941}
2942
2943/*
2944 * Checks related to Guest Non-register State
2945 */
2946static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2947{
2948        if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2949               vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2950                return -EINVAL;
2951
2952        return 0;
2953}
2954
2955static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2956                                        struct vmcs12 *vmcs12,
2957                                        enum vm_entry_failure_code *entry_failure_code)
2958{
2959        bool ia32e;
2960
2961        *entry_failure_code = ENTRY_FAIL_DEFAULT;
2962
2963        if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2964            CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2965                return -EINVAL;
2966
2967        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2968            CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2969                return -EINVAL;
2970
2971        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2972            CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2973                return -EINVAL;
2974
2975        if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2976                *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2977                return -EINVAL;
2978        }
2979
2980        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2981            CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2982                                           vmcs12->guest_ia32_perf_global_ctrl)))
2983                return -EINVAL;
2984
2985        /*
2986         * If the load IA32_EFER VM-entry control is 1, the following checks
2987         * are performed on the field for the IA32_EFER MSR:
2988         * - Bits reserved in the IA32_EFER MSR must be 0.
2989         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2990         *   the IA-32e mode guest VM-exit control. It must also be identical
2991         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2992         *   CR0.PG) is 1.
2993         */
2994        if (to_vmx(vcpu)->nested.nested_run_pending &&
2995            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2996                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2997                if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2998                    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2999                    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3000                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3001                        return -EINVAL;
3002        }
3003
3004        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3005            (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3006             CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3007                return -EINVAL;
3008
3009        if (nested_check_guest_non_reg_state(vmcs12))
3010                return -EINVAL;
3011
3012        return 0;
3013}
3014
3015static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3016{
3017        struct vcpu_vmx *vmx = to_vmx(vcpu);
3018        unsigned long cr3, cr4;
3019        bool vm_fail;
3020
3021        if (!nested_early_check)
3022                return 0;
3023
3024        if (vmx->msr_autoload.host.nr)
3025                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3026        if (vmx->msr_autoload.guest.nr)
3027                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3028
3029        preempt_disable();
3030
3031        vmx_prepare_switch_to_guest(vcpu);
3032
3033        /*
3034         * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3035         * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3036         * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3037         * there is no need to preserve other bits or save/restore the field.
3038         */
3039        vmcs_writel(GUEST_RFLAGS, 0);
3040
3041        cr3 = __get_current_cr3_fast();
3042        if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3043                vmcs_writel(HOST_CR3, cr3);
3044                vmx->loaded_vmcs->host_state.cr3 = cr3;
3045        }
3046
3047        cr4 = cr4_read_shadow();
3048        if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3049                vmcs_writel(HOST_CR4, cr4);
3050                vmx->loaded_vmcs->host_state.cr4 = cr4;
3051        }
3052
3053        asm(
3054                "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
3055                "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3056                "je 1f \n\t"
3057                __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
3058                "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3059                "1: \n\t"
3060                "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
3061
3062                /* Check if vmlaunch or vmresume is needed */
3063                "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
3064
3065                /*
3066                 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
3067                 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
3068                 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
3069                 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
3070                 */
3071                "call vmx_vmenter\n\t"
3072
3073                CC_SET(be)
3074              : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3075              : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3076                [loaded_vmcs]"r"(vmx->loaded_vmcs),
3077                [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3078                [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3079                [wordsize]"i"(sizeof(ulong))
3080              : "memory"
3081        );
3082
3083        if (vmx->msr_autoload.host.nr)
3084                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3085        if (vmx->msr_autoload.guest.nr)
3086                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3087
3088        if (vm_fail) {
3089                u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3090
3091                preempt_enable();
3092
3093                trace_kvm_nested_vmenter_failed(
3094                        "early hardware check VM-instruction error: ", error);
3095                WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3096                return 1;
3097        }
3098
3099        /*
3100         * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3101         */
3102        if (hw_breakpoint_active())
3103                set_debugreg(__this_cpu_read(cpu_dr7), 7);
3104        local_irq_enable();
3105        preempt_enable();
3106
3107        /*
3108         * A non-failing VMEntry means we somehow entered guest mode with
3109         * an illegal RIP, and that's just the tip of the iceberg.  There
3110         * is no telling what memory has been modified or what state has
3111         * been exposed to unknown code.  Hitting this all but guarantees
3112         * a (very critical) hardware issue.
3113         */
3114        WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3115                VMX_EXIT_REASONS_FAILED_VMENTRY));
3116
3117        return 0;
3118}
3119
3120static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3121{
3122        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3123        struct vcpu_vmx *vmx = to_vmx(vcpu);
3124        struct kvm_host_map *map;
3125        struct page *page;
3126        u64 hpa;
3127
3128        /*
3129         * hv_evmcs may end up being not mapped after migration (when
3130         * L2 was running), map it here to make sure vmcs12 changes are
3131         * properly reflected.
3132         */
3133        if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3134                enum nested_evmptrld_status evmptrld_status =
3135                        nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3136
3137                if (evmptrld_status == EVMPTRLD_VMFAIL ||
3138                    evmptrld_status == EVMPTRLD_ERROR) {
3139                        pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3140                                             __func__);
3141                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3142                        vcpu->run->internal.suberror =
3143                                KVM_INTERNAL_ERROR_EMULATION;
3144                        vcpu->run->internal.ndata = 0;
3145                        return false;
3146                }
3147        }
3148
3149        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3150                /*
3151                 * Translate L1 physical address to host physical
3152                 * address for vmcs02. Keep the page pinned, so this
3153                 * physical address remains valid. We keep a reference
3154                 * to it so we can release it later.
3155                 */
3156                if (vmx->nested.apic_access_page) { /* shouldn't happen */
3157                        kvm_release_page_clean(vmx->nested.apic_access_page);
3158                        vmx->nested.apic_access_page = NULL;
3159                }
3160                page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3161                if (!is_error_page(page)) {
3162                        vmx->nested.apic_access_page = page;
3163                        hpa = page_to_phys(vmx->nested.apic_access_page);
3164                        vmcs_write64(APIC_ACCESS_ADDR, hpa);
3165                } else {
3166                        pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3167                                             __func__);
3168                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3169                        vcpu->run->internal.suberror =
3170                                KVM_INTERNAL_ERROR_EMULATION;
3171                        vcpu->run->internal.ndata = 0;
3172                        return false;
3173                }
3174        }
3175
3176        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3177                map = &vmx->nested.virtual_apic_map;
3178
3179                if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3180                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3181                } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3182                           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3183                           !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3184                        /*
3185                         * The processor will never use the TPR shadow, simply
3186                         * clear the bit from the execution control.  Such a
3187                         * configuration is useless, but it happens in tests.
3188                         * For any other configuration, failing the vm entry is
3189                         * _not_ what the processor does but it's basically the
3190                         * only possibility we have.
3191                         */
3192                        exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3193                } else {
3194                        /*
3195                         * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3196                         * force VM-Entry to fail.
3197                         */
3198                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3199                }
3200        }
3201
3202        if (nested_cpu_has_posted_intr(vmcs12)) {
3203                map = &vmx->nested.pi_desc_map;
3204
3205                if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3206                        vmx->nested.pi_desc =
3207                                (struct pi_desc *)(((void *)map->hva) +
3208                                offset_in_page(vmcs12->posted_intr_desc_addr));
3209                        vmcs_write64(POSTED_INTR_DESC_ADDR,
3210                                     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3211                }
3212        }
3213        if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3214                exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3215        else
3216                exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3217        return true;
3218}
3219
3220static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3221{
3222        struct vmcs12 *vmcs12;
3223        struct vcpu_vmx *vmx = to_vmx(vcpu);
3224        gpa_t dst;
3225
3226        if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3227                return 0;
3228
3229        if (WARN_ON_ONCE(vmx->nested.pml_full))
3230                return 1;
3231
3232        /*
3233         * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3234         * set is already checked as part of A/D emulation.
3235         */
3236        vmcs12 = get_vmcs12(vcpu);
3237        if (!nested_cpu_has_pml(vmcs12))
3238                return 0;
3239
3240        if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3241                vmx->nested.pml_full = true;
3242                return 1;
3243        }
3244
3245        gpa &= ~0xFFFull;
3246        dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3247
3248        if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3249                                 offset_in_page(dst), sizeof(gpa)))
3250                return 0;
3251
3252        vmcs12->guest_pml_index--;
3253
3254        return 0;
3255}
3256
3257/*
3258 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3259 * for running VMX instructions (except VMXON, whose prerequisites are
3260 * slightly different). It also specifies what exception to inject otherwise.
3261 * Note that many of these exceptions have priority over VM exits, so they
3262 * don't have to be checked again here.
3263 */
3264static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3265{
3266        if (!to_vmx(vcpu)->nested.vmxon) {
3267                kvm_queue_exception(vcpu, UD_VECTOR);
3268                return 0;
3269        }
3270
3271        if (vmx_get_cpl(vcpu)) {
3272                kvm_inject_gp(vcpu, 0);
3273                return 0;
3274        }
3275
3276        return 1;
3277}
3278
3279static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3280{
3281        u8 rvi = vmx_get_rvi();
3282        u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3283
3284        return ((rvi & 0xf0) > (vppr & 0xf0));
3285}
3286
3287static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3288                                   struct vmcs12 *vmcs12);
3289
3290/*
3291 * If from_vmentry is false, this is being called from state restore (either RSM
3292 * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3293 *
3294 * Returns:
3295 *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3296 *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3297 *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3298 *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3299 */
3300enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3301                                                        bool from_vmentry)
3302{
3303        struct vcpu_vmx *vmx = to_vmx(vcpu);
3304        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3305        enum vm_entry_failure_code entry_failure_code;
3306        bool evaluate_pending_interrupts;
3307        u32 exit_reason, failed_index;
3308
3309        if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3310                kvm_vcpu_flush_tlb_current(vcpu);
3311
3312        evaluate_pending_interrupts = exec_controls_get(vmx) &
3313                (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3314        if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3315                evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3316
3317        if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3318                vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3319        if (kvm_mpx_supported() &&
3320                !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3321                vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3322
3323        /*
3324         * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3325         * nested early checks are disabled.  In the event of a "late" VM-Fail,
3326         * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3327         * software model to the pre-VMEntry host state.  When EPT is disabled,
3328         * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3329         * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3330         * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3331         * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3332         * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3333         * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3334         * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3335         * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3336         * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3337         * path would need to manually save/restore vmcs01.GUEST_CR3.
3338         */
3339        if (!enable_ept && !nested_early_check)
3340                vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3341
3342        vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3343
3344        prepare_vmcs02_early(vmx, vmcs12);
3345
3346        if (from_vmentry) {
3347                if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3348                        return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3349
3350                if (nested_vmx_check_vmentry_hw(vcpu)) {
3351                        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3352                        return NVMX_VMENTRY_VMFAIL;
3353                }
3354
3355                if (nested_vmx_check_guest_state(vcpu, vmcs12,
3356                                                 &entry_failure_code)) {
3357                        exit_reason = EXIT_REASON_INVALID_STATE;
3358                        vmcs12->exit_qualification = entry_failure_code;
3359                        goto vmentry_fail_vmexit;
3360                }
3361        }
3362
3363        enter_guest_mode(vcpu);
3364        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3365                vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3366
3367        if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3368                exit_reason = EXIT_REASON_INVALID_STATE;
3369                vmcs12->exit_qualification = entry_failure_code;
3370                goto vmentry_fail_vmexit_guest_mode;
3371        }
3372
3373        if (from_vmentry) {
3374                failed_index = nested_vmx_load_msr(vcpu,
3375                                                   vmcs12->vm_entry_msr_load_addr,
3376                                                   vmcs12->vm_entry_msr_load_count);
3377                if (failed_index) {
3378                        exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3379                        vmcs12->exit_qualification = failed_index;
3380                        goto vmentry_fail_vmexit_guest_mode;
3381                }
3382        } else {
3383                /*
3384                 * The MMU is not initialized to point at the right entities yet and
3385                 * "get pages" would need to read data from the guest (i.e. we will
3386                 * need to perform gpa to hpa translation). Request a call
3387                 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3388                 * have already been set at vmentry time and should not be reset.
3389                 */
3390                kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3391        }
3392
3393        /*
3394         * If L1 had a pending IRQ/NMI until it executed
3395         * VMLAUNCH/VMRESUME which wasn't delivered because it was
3396         * disallowed (e.g. interrupts disabled), L0 needs to
3397         * evaluate if this pending event should cause an exit from L2
3398         * to L1 or delivered directly to L2 (e.g. In case L1 don't
3399         * intercept EXTERNAL_INTERRUPT).
3400         *
3401         * Usually this would be handled by the processor noticing an
3402         * IRQ/NMI window request, or checking RVI during evaluation of
3403         * pending virtual interrupts.  However, this setting was done
3404         * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3405         * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3406         */
3407        if (unlikely(evaluate_pending_interrupts))
3408                kvm_make_request(KVM_REQ_EVENT, vcpu);
3409
3410        /*
3411         * Do not start the preemption timer hrtimer until after we know
3412         * we are successful, so that only nested_vmx_vmexit needs to cancel
3413         * the timer.
3414         */
3415        vmx->nested.preemption_timer_expired = false;
3416        if (nested_cpu_has_preemption_timer(vmcs12)) {
3417                u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3418                vmx_start_preemption_timer(vcpu, timer_value);
3419        }
3420
3421        /*
3422         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3423         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3424         * returned as far as L1 is concerned. It will only return (and set
3425         * the success flag) when L2 exits (see nested_vmx_vmexit()).
3426         */
3427        return NVMX_VMENTRY_SUCCESS;
3428
3429        /*
3430         * A failed consistency check that leads to a VMExit during L1's
3431         * VMEnter to L2 is a variation of a normal VMexit, as explained in
3432         * 26.7 "VM-entry failures during or after loading guest state".
3433         */
3434vmentry_fail_vmexit_guest_mode:
3435        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3436                vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3437        leave_guest_mode(vcpu);
3438
3439vmentry_fail_vmexit:
3440        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3441
3442        if (!from_vmentry)
3443                return NVMX_VMENTRY_VMEXIT;
3444
3445        load_vmcs12_host_state(vcpu, vmcs12);
3446        vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3447        if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3448                vmx->nested.need_vmcs12_to_shadow_sync = true;
3449        return NVMX_VMENTRY_VMEXIT;
3450}
3451
3452/*
3453 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3454 * for running an L2 nested guest.
3455 */
3456static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3457{
3458        struct vmcs12 *vmcs12;
3459        enum nvmx_vmentry_status status;
3460        struct vcpu_vmx *vmx = to_vmx(vcpu);
3461        u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3462        enum nested_evmptrld_status evmptrld_status;
3463
3464        if (!nested_vmx_check_permission(vcpu))
3465                return 1;
3466
3467        evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3468        if (evmptrld_status == EVMPTRLD_ERROR) {
3469                kvm_queue_exception(vcpu, UD_VECTOR);
3470                return 1;
3471        } else if (evmptrld_status == EVMPTRLD_VMFAIL) {
3472                return nested_vmx_failInvalid(vcpu);
3473        }
3474
3475        if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3476                return nested_vmx_failInvalid(vcpu);
3477
3478        vmcs12 = get_vmcs12(vcpu);
3479
3480        /*
3481         * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3482         * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3483         * rather than RFLAGS.ZF, and no error number is stored to the
3484         * VM-instruction error field.
3485         */
3486        if (vmcs12->hdr.shadow_vmcs)
3487                return nested_vmx_failInvalid(vcpu);
3488
3489        if (vmx->nested.hv_evmcs) {
3490                copy_enlightened_to_vmcs12(vmx);
3491                /* Enlightened VMCS doesn't have launch state */
3492                vmcs12->launch_state = !launch;
3493        } else if (enable_shadow_vmcs) {
3494                copy_shadow_to_vmcs12(vmx);
3495        }
3496
3497        /*
3498         * The nested entry process starts with enforcing various prerequisites
3499         * on vmcs12 as required by the Intel SDM, and act appropriately when
3500         * they fail: As the SDM explains, some conditions should cause the
3501         * instruction to fail, while others will cause the instruction to seem
3502         * to succeed, but return an EXIT_REASON_INVALID_STATE.
3503         * To speed up the normal (success) code path, we should avoid checking
3504         * for misconfigurations which will anyway be caught by the processor
3505         * when using the merged vmcs02.
3506         */
3507        if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3508                return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3509
3510        if (vmcs12->launch_state == launch)
3511                return nested_vmx_fail(vcpu,
3512                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3513                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3514
3515        if (nested_vmx_check_controls(vcpu, vmcs12))
3516                return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3517
3518        if (nested_vmx_check_host_state(vcpu, vmcs12))
3519                return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3520
3521        /*
3522         * We're finally done with prerequisite checking, and can start with
3523         * the nested entry.
3524         */
3525        vmx->nested.nested_run_pending = 1;
3526        vmx->nested.has_preemption_timer_deadline = false;
3527        status = nested_vmx_enter_non_root_mode(vcpu, true);
3528        if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3529                goto vmentry_failed;
3530
3531        /* Hide L1D cache contents from the nested guest.  */
3532        vmx->vcpu.arch.l1tf_flush_l1d = true;
3533
3534        /*
3535         * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3536         * also be used as part of restoring nVMX state for
3537         * snapshot restore (migration).
3538         *
3539         * In this flow, it is assumed that vmcs12 cache was
3540         * trasferred as part of captured nVMX state and should
3541         * therefore not be read from guest memory (which may not
3542         * exist on destination host yet).
3543         */
3544        nested_cache_shadow_vmcs12(vcpu, vmcs12);
3545
3546        /*
3547         * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3548         * awakened by event injection or by an NMI-window VM-exit or
3549         * by an interrupt-window VM-exit, halt the vcpu.
3550         */
3551        if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3552            !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3553            !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3554            !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3555              (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3556                vmx->nested.nested_run_pending = 0;
3557                return kvm_vcpu_halt(vcpu);
3558        }
3559        return 1;
3560
3561vmentry_failed:
3562        vmx->nested.nested_run_pending = 0;
3563        if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3564                return 0;
3565        if (status == NVMX_VMENTRY_VMEXIT)
3566                return 1;
3567        WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3568        return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3569}
3570
3571/*
3572 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3573 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3574 * This function returns the new value we should put in vmcs12.guest_cr0.
3575 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3576 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3577 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3578 *     didn't trap the bit, because if L1 did, so would L0).
3579 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3580 *     been modified by L2, and L1 knows it. So just leave the old value of
3581 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3582 *     isn't relevant, because if L0 traps this bit it can set it to anything.
3583 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3584 *     changed these bits, and therefore they need to be updated, but L0
3585 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3586 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3587 */
3588static inline unsigned long
3589vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3590{
3591        return
3592        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3593        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3594        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3595                        vcpu->arch.cr0_guest_owned_bits));
3596}
3597
3598static inline unsigned long
3599vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3600{
3601        return
3602        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3603        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3604        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3605                        vcpu->arch.cr4_guest_owned_bits));
3606}
3607
3608static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3609                                      struct vmcs12 *vmcs12)
3610{
3611        u32 idt_vectoring;
3612        unsigned int nr;
3613
3614        if (vcpu->arch.exception.injected) {
3615                nr = vcpu->arch.exception.nr;
3616                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3617
3618                if (kvm_exception_is_soft(nr)) {
3619                        vmcs12->vm_exit_instruction_len =
3620                                vcpu->arch.event_exit_inst_len;
3621                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3622                } else
3623                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3624
3625                if (vcpu->arch.exception.has_error_code) {
3626                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3627                        vmcs12->idt_vectoring_error_code =
3628                                vcpu->arch.exception.error_code;
3629                }
3630
3631                vmcs12->idt_vectoring_info_field = idt_vectoring;
3632        } else if (vcpu->arch.nmi_injected) {
3633                vmcs12->idt_vectoring_info_field =
3634                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3635        } else if (vcpu->arch.interrupt.injected) {
3636                nr = vcpu->arch.interrupt.nr;
3637                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3638
3639                if (vcpu->arch.interrupt.soft) {
3640                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
3641                        vmcs12->vm_entry_instruction_len =
3642                                vcpu->arch.event_exit_inst_len;
3643                } else
3644                        idt_vectoring |= INTR_TYPE_EXT_INTR;
3645
3646                vmcs12->idt_vectoring_info_field = idt_vectoring;
3647        }
3648}
3649
3650
3651void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3652{
3653        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3654        gfn_t gfn;
3655
3656        /*
3657         * Don't need to mark the APIC access page dirty; it is never
3658         * written to by the CPU during APIC virtualization.
3659         */
3660
3661        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3662                gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3663                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3664        }
3665
3666        if (nested_cpu_has_posted_intr(vmcs12)) {
3667                gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3668                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3669        }
3670}
3671
3672static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3673{
3674        struct vcpu_vmx *vmx = to_vmx(vcpu);
3675        int max_irr;
3676        void *vapic_page;
3677        u16 status;
3678
3679        if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3680                return;
3681
3682        vmx->nested.pi_pending = false;
3683        if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3684                return;
3685
3686        max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3687        if (max_irr != 256) {
3688                vapic_page = vmx->nested.virtual_apic_map.hva;
3689                if (!vapic_page)
3690                        return;
3691
3692                __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3693                        vapic_page, &max_irr);
3694                status = vmcs_read16(GUEST_INTR_STATUS);
3695                if ((u8)max_irr > ((u8)status & 0xff)) {
3696                        status &= ~0xff;
3697                        status |= (u8)max_irr;
3698                        vmcs_write16(GUEST_INTR_STATUS, status);
3699                }
3700        }
3701
3702        nested_mark_vmcs12_pages_dirty(vcpu);
3703}
3704
3705static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3706                                               unsigned long exit_qual)
3707{
3708        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3709        unsigned int nr = vcpu->arch.exception.nr;
3710        u32 intr_info = nr | INTR_INFO_VALID_MASK;
3711
3712        if (vcpu->arch.exception.has_error_code) {
3713                vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3714                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3715        }
3716
3717        if (kvm_exception_is_soft(nr))
3718                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3719        else
3720                intr_info |= INTR_TYPE_HARD_EXCEPTION;
3721
3722        if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3723            vmx_get_nmi_mask(vcpu))
3724                intr_info |= INTR_INFO_UNBLOCK_NMI;
3725
3726        nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3727}
3728
3729/*
3730 * Returns true if a debug trap is pending delivery.
3731 *
3732 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3733 * exception may be inferred from the presence of an exception payload.
3734 */
3735static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3736{
3737        return vcpu->arch.exception.pending &&
3738                        vcpu->arch.exception.nr == DB_VECTOR &&
3739                        vcpu->arch.exception.payload;
3740}
3741
3742/*
3743 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3744 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3745 * represents these debug traps with a payload that is said to be compatible
3746 * with the 'pending debug exceptions' field, write the payload to the VMCS
3747 * field if a VM-exit is delivered before the debug trap.
3748 */
3749static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3750{
3751        if (vmx_pending_dbg_trap(vcpu))
3752                vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3753                            vcpu->arch.exception.payload);
3754}
3755
3756static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3757{
3758        return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3759               to_vmx(vcpu)->nested.preemption_timer_expired;
3760}
3761
3762static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3763{
3764        struct vcpu_vmx *vmx = to_vmx(vcpu);
3765        unsigned long exit_qual;
3766        bool block_nested_events =
3767            vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3768        bool mtf_pending = vmx->nested.mtf_pending;
3769        struct kvm_lapic *apic = vcpu->arch.apic;
3770
3771        /*
3772         * Clear the MTF state. If a higher priority VM-exit is delivered first,
3773         * this state is discarded.
3774         */
3775        if (!block_nested_events)
3776                vmx->nested.mtf_pending = false;
3777
3778        if (lapic_in_kernel(vcpu) &&
3779                test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3780                if (block_nested_events)
3781                        return -EBUSY;
3782                nested_vmx_update_pending_dbg(vcpu);
3783                clear_bit(KVM_APIC_INIT, &apic->pending_events);
3784                nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3785                return 0;
3786        }
3787
3788        /*
3789         * Process any exceptions that are not debug traps before MTF.
3790         */
3791        if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3792                if (block_nested_events)
3793                        return -EBUSY;
3794                if (!nested_vmx_check_exception(vcpu, &exit_qual))
3795                        goto no_vmexit;
3796                nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3797                return 0;
3798        }
3799
3800        if (mtf_pending) {
3801                if (block_nested_events)
3802                        return -EBUSY;
3803                nested_vmx_update_pending_dbg(vcpu);
3804                nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3805                return 0;
3806        }
3807
3808        if (vcpu->arch.exception.pending) {
3809                if (block_nested_events)
3810                        return -EBUSY;
3811                if (!nested_vmx_check_exception(vcpu, &exit_qual))
3812                        goto no_vmexit;
3813                nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3814                return 0;
3815        }
3816
3817        if (nested_vmx_preemption_timer_pending(vcpu)) {
3818                if (block_nested_events)
3819                        return -EBUSY;
3820                nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3821                return 0;
3822        }
3823
3824        if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3825                if (block_nested_events)
3826                        return -EBUSY;
3827                goto no_vmexit;
3828        }
3829
3830        if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3831                if (block_nested_events)
3832                        return -EBUSY;
3833                if (!nested_exit_on_nmi(vcpu))
3834                        goto no_vmexit;
3835
3836                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3837                                  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3838                                  INTR_INFO_VALID_MASK, 0);
3839                /*
3840                 * The NMI-triggered VM exit counts as injection:
3841                 * clear this one and block further NMIs.
3842                 */
3843                vcpu->arch.nmi_pending = 0;
3844                vmx_set_nmi_mask(vcpu, true);
3845                return 0;
3846        }
3847
3848        if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3849                if (block_nested_events)
3850                        return -EBUSY;
3851                if (!nested_exit_on_intr(vcpu))
3852                        goto no_vmexit;
3853                nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3854                return 0;
3855        }
3856
3857no_vmexit:
3858        vmx_complete_nested_posted_interrupt(vcpu);
3859        return 0;
3860}
3861
3862static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3863{
3864        ktime_t remaining =
3865                hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3866        u64 value;
3867
3868        if (ktime_to_ns(remaining) <= 0)
3869                return 0;
3870
3871        value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3872        do_div(value, 1000000);
3873        return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3874}
3875
3876static bool is_vmcs12_ext_field(unsigned long field)
3877{
3878        switch (field) {
3879        case GUEST_ES_SELECTOR:
3880        case GUEST_CS_SELECTOR:
3881        case GUEST_SS_SELECTOR:
3882        case GUEST_DS_SELECTOR:
3883        case GUEST_FS_SELECTOR:
3884        case GUEST_GS_SELECTOR:
3885        case GUEST_LDTR_SELECTOR:
3886        case GUEST_TR_SELECTOR:
3887        case GUEST_ES_LIMIT:
3888        case GUEST_CS_LIMIT:
3889        case GUEST_SS_LIMIT:
3890        case GUEST_DS_LIMIT:
3891        case GUEST_FS_LIMIT:
3892        case GUEST_GS_LIMIT:
3893        case GUEST_LDTR_LIMIT:
3894        case GUEST_TR_LIMIT:
3895        case GUEST_GDTR_LIMIT:
3896        case GUEST_IDTR_LIMIT:
3897        case GUEST_ES_AR_BYTES:
3898        case GUEST_DS_AR_BYTES:
3899        case GUEST_FS_AR_BYTES:
3900        case GUEST_GS_AR_BYTES:
3901        case GUEST_LDTR_AR_BYTES:
3902        case GUEST_TR_AR_BYTES:
3903        case GUEST_ES_BASE:
3904        case GUEST_CS_BASE:
3905        case GUEST_SS_BASE:
3906        case GUEST_DS_BASE:
3907        case GUEST_FS_BASE:
3908        case GUEST_GS_BASE:
3909        case GUEST_LDTR_BASE:
3910        case GUEST_TR_BASE:
3911        case GUEST_GDTR_BASE:
3912        case GUEST_IDTR_BASE:
3913        case GUEST_PENDING_DBG_EXCEPTIONS:
3914        case GUEST_BNDCFGS:
3915                return true;
3916        default:
3917                break;
3918        }
3919
3920        return false;
3921}
3922
3923static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3924                                       struct vmcs12 *vmcs12)
3925{
3926        struct vcpu_vmx *vmx = to_vmx(vcpu);
3927
3928        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3929        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3930        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3931        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3932        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3933        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3934        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3935        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3936        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3937        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3938        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3939        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3940        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3941        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3942        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3943        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3944        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3945        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3946        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3947        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3948        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3949        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3950        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3951        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3952        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3953        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3954        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3955        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3956        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3957        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3958        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3959        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3960        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3961        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3962        vmcs12->guest_pending_dbg_exceptions =
3963                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3964        if (kvm_mpx_supported())
3965                vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3966
3967        vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3968}
3969
3970static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3971                                       struct vmcs12 *vmcs12)
3972{
3973        struct vcpu_vmx *vmx = to_vmx(vcpu);
3974        int cpu;
3975
3976        if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3977                return;
3978
3979
3980        WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3981
3982        cpu = get_cpu();
3983        vmx->loaded_vmcs = &vmx->nested.vmcs02;
3984        vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
3985
3986        sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3987
3988        vmx->loaded_vmcs = &vmx->vmcs01;
3989        vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
3990        put_cpu();
3991}
3992
3993/*
3994 * Update the guest state fields of vmcs12 to reflect changes that
3995 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3996 * VM-entry controls is also updated, since this is really a guest
3997 * state bit.)
3998 */
3999static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4000{
4001        struct vcpu_vmx *vmx = to_vmx(vcpu);
4002
4003        if (vmx->nested.hv_evmcs)
4004                sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4005
4006        vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4007
4008        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4009        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4010
4011        vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4012        vmcs12->guest_rip = kvm_rip_read(vcpu);
4013        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4014
4015        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4016        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4017
4018        vmcs12->guest_interruptibility_info =
4019                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4020
4021        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4022                vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4023        else
4024                vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4025
4026        if (nested_cpu_has_preemption_timer(vmcs12) &&
4027            vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4028            !vmx->nested.nested_run_pending)
4029                vmcs12->vmx_preemption_timer_value =
4030                        vmx_get_preemption_timer_value(vcpu);
4031
4032        /*
4033         * In some cases (usually, nested EPT), L2 is allowed to change its
4034         * own CR3 without exiting. If it has changed it, we must keep it.
4035         * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4036         * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4037         *
4038         * Additionally, restore L2's PDPTR to vmcs12.
4039         */
4040        if (enable_ept) {
4041                vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4042                if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4043                        vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4044                        vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4045                        vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4046                        vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4047                }
4048        }
4049
4050        vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4051
4052        if (nested_cpu_has_vid(vmcs12))
4053                vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4054
4055        vmcs12->vm_entry_controls =
4056                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4057                (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4058
4059        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4060                kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4061
4062        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4063                vmcs12->guest_ia32_efer = vcpu->arch.efer;
4064}
4065
4066/*
4067 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4068 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4069 * and this function updates it to reflect the changes to the guest state while
4070 * L2 was running (and perhaps made some exits which were handled directly by L0
4071 * without going back to L1), and to reflect the exit reason.
4072 * Note that we do not have to copy here all VMCS fields, just those that
4073 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4074 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4075 * which already writes to vmcs12 directly.
4076 */
4077static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4078                           u32 vm_exit_reason, u32 exit_intr_info,
4079                           unsigned long exit_qualification)
4080{
4081        /* update exit information fields: */
4082        vmcs12->vm_exit_reason = vm_exit_reason;
4083        vmcs12->exit_qualification = exit_qualification;
4084        vmcs12->vm_exit_intr_info = exit_intr_info;
4085
4086        vmcs12->idt_vectoring_info_field = 0;
4087        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4088        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4089
4090        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4091                vmcs12->launch_state = 1;
4092
4093                /* vm_entry_intr_info_field is cleared on exit. Emulate this
4094                 * instead of reading the real value. */
4095                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4096
4097                /*
4098                 * Transfer the event that L0 or L1 may wanted to inject into
4099                 * L2 to IDT_VECTORING_INFO_FIELD.
4100                 */
4101                vmcs12_save_pending_event(vcpu, vmcs12);
4102
4103                /*
4104                 * According to spec, there's no need to store the guest's
4105                 * MSRs if the exit is due to a VM-entry failure that occurs
4106                 * during or after loading the guest state. Since this exit
4107                 * does not fall in that category, we need to save the MSRs.
4108                 */
4109                if (nested_vmx_store_msr(vcpu,
4110                                         vmcs12->vm_exit_msr_store_addr,
4111                                         vmcs12->vm_exit_msr_store_count))
4112                        nested_vmx_abort(vcpu,
4113                                         VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4114        }
4115
4116        /*
4117         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4118         * preserved above and would only end up incorrectly in L1.
4119         */
4120        vcpu->arch.nmi_injected = false;
4121        kvm_clear_exception_queue(vcpu);
4122        kvm_clear_interrupt_queue(vcpu);
4123}
4124
4125/*
4126 * A part of what we need to when the nested L2 guest exits and we want to
4127 * run its L1 parent, is to reset L1's guest state to the host state specified
4128 * in vmcs12.
4129 * This function is to be called not only on normal nested exit, but also on
4130 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4131 * Failures During or After Loading Guest State").
4132 * This function should be called when the active VMCS is L1's (vmcs01).
4133 */
4134static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4135                                   struct vmcs12 *vmcs12)
4136{
4137        enum vm_entry_failure_code ignored;
4138        struct kvm_segment seg;
4139
4140        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4141                vcpu->arch.efer = vmcs12->host_ia32_efer;
4142        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4143                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4144        else
4145                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4146        vmx_set_efer(vcpu, vcpu->arch.efer);
4147
4148        kvm_rsp_write(vcpu, vmcs12->host_rsp);
4149        kvm_rip_write(vcpu, vmcs12->host_rip);
4150        vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4151        vmx_set_interrupt_shadow(vcpu, 0);
4152
4153        /*
4154         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4155         * actually changed, because vmx_set_cr0 refers to efer set above.
4156         *
4157         * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4158         * (KVM doesn't change it);
4159         */
4160        vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4161        vmx_set_cr0(vcpu, vmcs12->host_cr0);
4162
4163        /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4164        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4165        vmx_set_cr4(vcpu, vmcs12->host_cr4);
4166
4167        nested_ept_uninit_mmu_context(vcpu);
4168
4169        /*
4170         * Only PDPTE load can fail as the value of cr3 was checked on entry and
4171         * couldn't have changed.
4172         */
4173        if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4174                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4175
4176        if (!enable_ept)
4177                vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4178
4179        nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4180
4181        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4182        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4183        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4184        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4185        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4186        vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4187        vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4188
4189        /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4190        if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4191                vmcs_write64(GUEST_BNDCFGS, 0);
4192
4193        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4194                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4195                vcpu->arch.pat = vmcs12->host_ia32_pat;
4196        }
4197        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4198                WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4199                                         vmcs12->host_ia32_perf_global_ctrl));
4200
4201        /* Set L1 segment info according to Intel SDM
4202            27.5.2 Loading Host Segment and Descriptor-Table Registers */
4203        seg = (struct kvm_segment) {
4204                .base = 0,
4205                .limit = 0xFFFFFFFF,
4206                .selector = vmcs12->host_cs_selector,
4207                .type = 11,
4208                .present = 1,
4209                .s = 1,
4210                .g = 1
4211        };
4212        if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4213                seg.l = 1;
4214        else
4215                seg.db = 1;
4216        vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4217        seg = (struct kvm_segment) {
4218                .base = 0,
4219                .limit = 0xFFFFFFFF,
4220                .type = 3,
4221                .present = 1,
4222                .s = 1,
4223                .db = 1,
4224                .g = 1
4225        };
4226        seg.selector = vmcs12->host_ds_selector;
4227        vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4228        seg.selector = vmcs12->host_es_selector;
4229        vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4230        seg.selector = vmcs12->host_ss_selector;
4231        vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4232        seg.selector = vmcs12->host_fs_selector;
4233        seg.base = vmcs12->host_fs_base;
4234        vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4235        seg.selector = vmcs12->host_gs_selector;
4236        seg.base = vmcs12->host_gs_base;
4237        vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4238        seg = (struct kvm_segment) {
4239                .base = vmcs12->host_tr_base,
4240                .limit = 0x67,
4241                .selector = vmcs12->host_tr_selector,
4242                .type = 11,
4243                .present = 1
4244        };
4245        vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4246
4247        kvm_set_dr(vcpu, 7, 0x400);
4248        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4249
4250        if (cpu_has_vmx_msr_bitmap())
4251                vmx_update_msr_bitmap(vcpu);
4252
4253        if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4254                                vmcs12->vm_exit_msr_load_count))
4255                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4256}
4257
4258static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4259{
4260        struct shared_msr_entry *efer_msr;
4261        unsigned int i;
4262
4263        if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4264                return vmcs_read64(GUEST_IA32_EFER);
4265
4266        if (cpu_has_load_ia32_efer())
4267                return host_efer;
4268
4269        for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4270                if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4271                        return vmx->msr_autoload.guest.val[i].value;
4272        }
4273
4274        efer_msr = find_msr_entry(vmx, MSR_EFER);
4275        if (efer_msr)
4276                return efer_msr->data;
4277
4278        return host_efer;
4279}
4280
4281static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4282{
4283        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4284        struct vcpu_vmx *vmx = to_vmx(vcpu);
4285        struct vmx_msr_entry g, h;
4286        gpa_t gpa;
4287        u32 i, j;
4288
4289        vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4290
4291        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4292                /*
4293                 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4294                 * as vmcs01.GUEST_DR7 contains a userspace defined value
4295                 * and vcpu->arch.dr7 is not squirreled away before the
4296                 * nested VMENTER (not worth adding a variable in nested_vmx).
4297                 */
4298                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4299                        kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4300                else
4301                        WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4302        }
4303
4304        /*
4305         * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4306         * handle a variety of side effects to KVM's software model.
4307         */
4308        vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4309
4310        vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4311        vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4312
4313        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4314        vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4315
4316        nested_ept_uninit_mmu_context(vcpu);
4317        vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4318        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4319
4320        /*
4321         * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4322         * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4323         * VMFail, like everything else we just need to ensure our
4324         * software model is up-to-date.
4325         */
4326        if (enable_ept && is_pae_paging(vcpu))
4327                ept_save_pdptrs(vcpu);
4328
4329        kvm_mmu_reset_context(vcpu);
4330
4331        if (cpu_has_vmx_msr_bitmap())
4332                vmx_update_msr_bitmap(vcpu);
4333
4334        /*
4335         * This nasty bit of open coding is a compromise between blindly
4336         * loading L1's MSRs using the exit load lists (incorrect emulation
4337         * of VMFail), leaving the nested VM's MSRs in the software model
4338         * (incorrect behavior) and snapshotting the modified MSRs (too
4339         * expensive since the lists are unbound by hardware).  For each
4340         * MSR that was (prematurely) loaded from the nested VMEntry load
4341         * list, reload it from the exit load list if it exists and differs
4342         * from the guest value.  The intent is to stuff host state as
4343         * silently as possible, not to fully process the exit load list.
4344         */
4345        for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4346                gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4347                if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4348                        pr_debug_ratelimited(
4349                                "%s read MSR index failed (%u, 0x%08llx)\n",
4350                                __func__, i, gpa);
4351                        goto vmabort;
4352                }
4353
4354                for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4355                        gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4356                        if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4357                                pr_debug_ratelimited(
4358                                        "%s read MSR failed (%u, 0x%08llx)\n",
4359                                        __func__, j, gpa);
4360                                goto vmabort;
4361                        }
4362                        if (h.index != g.index)
4363                                continue;
4364                        if (h.value == g.value)
4365                                break;
4366
4367                        if (nested_vmx_load_msr_check(vcpu, &h)) {
4368                                pr_debug_ratelimited(
4369                                        "%s check failed (%u, 0x%x, 0x%x)\n",
4370                                        __func__, j, h.index, h.reserved);
4371                                goto vmabort;
4372                        }
4373
4374                        if (kvm_set_msr(vcpu, h.index, h.value)) {
4375                                pr_debug_ratelimited(
4376                                        "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4377                                        __func__, j, h.index, h.value);
4378                                goto vmabort;
4379                        }
4380                }
4381        }
4382
4383        return;
4384
4385vmabort:
4386        nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4387}
4388
4389/*
4390 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4391 * and modify vmcs12 to make it see what it would expect to see there if
4392 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4393 */
4394void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4395                       u32 exit_intr_info, unsigned long exit_qualification)
4396{
4397        struct vcpu_vmx *vmx = to_vmx(vcpu);
4398        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4399
4400        /* trying to cancel vmlaunch/vmresume is a bug */
4401        WARN_ON_ONCE(vmx->nested.nested_run_pending);
4402
4403        /* Service the TLB flush request for L2 before switching to L1. */
4404        if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4405                kvm_vcpu_flush_tlb_current(vcpu);
4406
4407        /*
4408         * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4409         * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4410         * up-to-date before switching to L1.
4411         */
4412        if (enable_ept && is_pae_paging(vcpu))
4413                vmx_ept_load_pdptrs(vcpu);
4414
4415        leave_guest_mode(vcpu);
4416
4417        if (nested_cpu_has_preemption_timer(vmcs12))
4418                hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4419
4420        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4421                vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4422
4423        if (likely(!vmx->fail)) {
4424                sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4425
4426                if (vm_exit_reason != -1)
4427                        prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4428                                       exit_intr_info, exit_qualification);
4429
4430                /*
4431                 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4432                 * also be used to capture vmcs12 cache as part of
4433                 * capturing nVMX state for snapshot (migration).
4434                 *
4435                 * Otherwise, this flush will dirty guest memory at a
4436                 * point it is already assumed by user-space to be
4437                 * immutable.
4438                 */
4439                nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4440        } else {
4441                /*
4442                 * The only expected VM-instruction error is "VM entry with
4443                 * invalid control field(s)." Anything else indicates a
4444                 * problem with L0.  And we should never get here with a
4445                 * VMFail of any type if early consistency checks are enabled.
4446                 */
4447                WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4448                             VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4449                WARN_ON_ONCE(nested_early_check);
4450        }
4451
4452        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4453
4454        /* Update any VMCS fields that might have changed while L2 ran */
4455        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4456        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4457        vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4458        if (vmx->nested.l1_tpr_threshold != -1)
4459                vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4460
4461        if (kvm_has_tsc_control)
4462                decache_tsc_multiplier(vmx);
4463
4464        if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4465                vmx->nested.change_vmcs01_virtual_apic_mode = false;
4466                vmx_set_virtual_apic_mode(vcpu);
4467        }
4468
4469        /* Unpin physical memory we referred to in vmcs02 */
4470        if (vmx->nested.apic_access_page) {
4471                kvm_release_page_clean(vmx->nested.apic_access_page);
4472                vmx->nested.apic_access_page = NULL;
4473        }
4474        kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4475        kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4476        vmx->nested.pi_desc = NULL;
4477
4478        if (vmx->nested.reload_vmcs01_apic_access_page) {
4479                vmx->nested.reload_vmcs01_apic_access_page = false;
4480                kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4481        }
4482
4483        if ((vm_exit_reason != -1) &&
4484            (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4485                vmx->nested.need_vmcs12_to_shadow_sync = true;
4486
4487        /* in case we halted in L2 */
4488        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4489
4490        if (likely(!vmx->fail)) {
4491                if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4492                    nested_exit_intr_ack_set(vcpu)) {
4493                        int irq = kvm_cpu_get_interrupt(vcpu);
4494                        WARN_ON(irq < 0);
4495                        vmcs12->vm_exit_intr_info = irq |
4496                                INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4497                }
4498
4499                if (vm_exit_reason != -1)
4500                        trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4501                                                       vmcs12->exit_qualification,
4502                                                       vmcs12->idt_vectoring_info_field,
4503                                                       vmcs12->vm_exit_intr_info,
4504                                                       vmcs12->vm_exit_intr_error_code,
4505                                                       KVM_ISA_VMX);
4506
4507                load_vmcs12_host_state(vcpu, vmcs12);
4508
4509                return;
4510        }
4511
4512        /*
4513         * After an early L2 VM-entry failure, we're now back
4514         * in L1 which thinks it just finished a VMLAUNCH or
4515         * VMRESUME instruction, so we need to set the failure
4516         * flag and the VM-instruction error field of the VMCS
4517         * accordingly, and skip the emulated instruction.
4518         */
4519        (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4520
4521        /*
4522         * Restore L1's host state to KVM's software model.  We're here
4523         * because a consistency check was caught by hardware, which
4524         * means some amount of guest state has been propagated to KVM's
4525         * model and needs to be unwound to the host's state.
4526         */
4527        nested_vmx_restore_host_state(vcpu);
4528
4529        vmx->fail = 0;
4530}
4531
4532/*
4533 * Decode the memory-address operand of a vmx instruction, as recorded on an
4534 * exit caused by such an instruction (run by a guest hypervisor).
4535 * On success, returns 0. When the operand is invalid, returns 1 and throws
4536 * #UD, #GP, or #SS.
4537 */
4538int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4539                        u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4540{
4541        gva_t off;
4542        bool exn;
4543        struct kvm_segment s;
4544
4545        /*
4546         * According to Vol. 3B, "Information for VM Exits Due to Instruction
4547         * Execution", on an exit, vmx_instruction_info holds most of the
4548         * addressing components of the operand. Only the displacement part
4549         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4550         * For how an actual address is calculated from all these components,
4551         * refer to Vol. 1, "Operand Addressing".
4552         */
4553        int  scaling = vmx_instruction_info & 3;
4554        int  addr_size = (vmx_instruction_info >> 7) & 7;
4555        bool is_reg = vmx_instruction_info & (1u << 10);
4556        int  seg_reg = (vmx_instruction_info >> 15) & 7;
4557        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4558        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4559        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4560        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4561
4562        if (is_reg) {
4563                kvm_queue_exception(vcpu, UD_VECTOR);
4564                return 1;
4565        }
4566
4567        /* Addr = segment_base + offset */
4568        /* offset = base + [index * scale] + displacement */
4569        off = exit_qualification; /* holds the displacement */
4570        if (addr_size == 1)
4571                off = (gva_t)sign_extend64(off, 31);
4572        else if (addr_size == 0)
4573                off = (gva_t)sign_extend64(off, 15);
4574        if (base_is_valid)
4575                off += kvm_register_read(vcpu, base_reg);
4576        if (index_is_valid)
4577                off += kvm_register_read(vcpu, index_reg) << scaling;
4578        vmx_get_segment(vcpu, &s, seg_reg);
4579
4580        /*
4581         * The effective address, i.e. @off, of a memory operand is truncated
4582         * based on the address size of the instruction.  Note that this is
4583         * the *effective address*, i.e. the address prior to accounting for
4584         * the segment's base.
4585         */
4586        if (addr_size == 1) /* 32 bit */
4587                off &= 0xffffffff;
4588        else if (addr_size == 0) /* 16 bit */
4589                off &= 0xffff;
4590
4591        /* Checks for #GP/#SS exceptions. */
4592        exn = false;
4593        if (is_long_mode(vcpu)) {
4594                /*
4595                 * The virtual/linear address is never truncated in 64-bit
4596                 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4597                 * address when using FS/GS with a non-zero base.
4598                 */
4599                if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4600                        *ret = s.base + off;
4601                else
4602                        *ret = off;
4603
4604                /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4605                 * non-canonical form. This is the only check on the memory
4606                 * destination for long mode!
4607                 */
4608                exn = is_noncanonical_address(*ret, vcpu);
4609        } else {
4610                /*
4611                 * When not in long mode, the virtual/linear address is
4612                 * unconditionally truncated to 32 bits regardless of the
4613                 * address size.
4614                 */
4615                *ret = (s.base + off) & 0xffffffff;
4616
4617                /* Protected mode: apply checks for segment validity in the
4618                 * following order:
4619                 * - segment type check (#GP(0) may be thrown)
4620                 * - usability check (#GP(0)/#SS(0))
4621                 * - limit check (#GP(0)/#SS(0))
4622                 */
4623                if (wr)
4624                        /* #GP(0) if the destination operand is located in a
4625                         * read-only data segment or any code segment.
4626                         */
4627                        exn = ((s.type & 0xa) == 0 || (s.type & 8));
4628                else
4629                        /* #GP(0) if the source operand is located in an
4630                         * execute-only code segment
4631                         */
4632                        exn = ((s.type & 0xa) == 8);
4633                if (exn) {
4634                        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4635                        return 1;
4636                }
4637                /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4638                 */
4639                exn = (s.unusable != 0);
4640
4641                /*
4642                 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4643                 * outside the segment limit.  All CPUs that support VMX ignore
4644                 * limit checks for flat segments, i.e. segments with base==0,
4645                 * limit==0xffffffff and of type expand-up data or code.
4646                 */
4647                if (!(s.base == 0 && s.limit == 0xffffffff &&
4648                     ((s.type & 8) || !(s.type & 4))))
4649                        exn = exn || ((u64)off + len - 1 > s.limit);
4650        }
4651        if (exn) {
4652                kvm_queue_exception_e(vcpu,
4653                                      seg_reg == VCPU_SREG_SS ?
4654                                                SS_VECTOR : GP_VECTOR,
4655                                      0);
4656                return 1;
4657        }
4658
4659        return 0;
4660}
4661
4662void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4663{
4664        struct vcpu_vmx *vmx;
4665
4666        if (!nested_vmx_allowed(vcpu))
4667                return;
4668
4669        vmx = to_vmx(vcpu);
4670        if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4671                vmx->nested.msrs.entry_ctls_high |=
4672                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4673                vmx->nested.msrs.exit_ctls_high |=
4674                                VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4675        } else {
4676                vmx->nested.msrs.entry_ctls_high &=
4677                                ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4678                vmx->nested.msrs.exit_ctls_high &=
4679                                ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4680        }
4681}
4682
4683static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4684                                int *ret)
4685{
4686        gva_t gva;
4687        struct x86_exception e;
4688        int r;
4689
4690        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4691                                vmcs_read32(VMX_INSTRUCTION_INFO), false,
4692                                sizeof(*vmpointer), &gva)) {
4693                *ret = 1;
4694                return -EINVAL;
4695        }
4696
4697        r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4698        if (r != X86EMUL_CONTINUE) {
4699                *ret = vmx_handle_memory_failure(vcpu, r, &e);
4700                return -EINVAL;
4701        }
4702
4703        return 0;
4704}
4705
4706/*
4707 * Allocate a shadow VMCS and associate it with the currently loaded
4708 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4709 * VMCS is also VMCLEARed, so that it is ready for use.
4710 */
4711static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4712{
4713        struct vcpu_vmx *vmx = to_vmx(vcpu);
4714        struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4715
4716        /*
4717         * We should allocate a shadow vmcs for vmcs01 only when L1
4718         * executes VMXON and free it when L1 executes VMXOFF.
4719         * As it is invalid to execute VMXON twice, we shouldn't reach
4720         * here when vmcs01 already have an allocated shadow vmcs.
4721         */
4722        WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4723
4724        if (!loaded_vmcs->shadow_vmcs) {
4725                loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4726                if (loaded_vmcs->shadow_vmcs)
4727                        vmcs_clear(loaded_vmcs->shadow_vmcs);
4728        }
4729        return loaded_vmcs->shadow_vmcs;
4730}
4731
4732static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4733{
4734        struct vcpu_vmx *vmx = to_vmx(vcpu);
4735        int r;
4736
4737        r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4738        if (r < 0)
4739                goto out_vmcs02;
4740
4741        vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4742        if (!vmx->nested.cached_vmcs12)
4743                goto out_cached_vmcs12;
4744
4745        vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4746        if (!vmx->nested.cached_shadow_vmcs12)
4747                goto out_cached_shadow_vmcs12;
4748
4749        if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4750                goto out_shadow_vmcs;
4751
4752        hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4753                     HRTIMER_MODE_ABS_PINNED);
4754        vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4755
4756        vmx->nested.vpid02 = allocate_vpid();
4757
4758        vmx->nested.vmcs02_initialized = false;
4759        vmx->nested.vmxon = true;
4760
4761        if (vmx_pt_mode_is_host_guest()) {
4762                vmx->pt_desc.guest.ctl = 0;
4763                pt_update_intercept_for_msr(vmx);
4764        }
4765
4766        return 0;
4767
4768out_shadow_vmcs:
4769        kfree(vmx->nested.cached_shadow_vmcs12);
4770
4771out_cached_shadow_vmcs12:
4772        kfree(vmx->nested.cached_vmcs12);
4773
4774out_cached_vmcs12:
4775        free_loaded_vmcs(&vmx->nested.vmcs02);
4776
4777out_vmcs02:
4778        return -ENOMEM;
4779}
4780
4781/*
4782 * Emulate the VMXON instruction.
4783 * Currently, we just remember that VMX is active, and do not save or even
4784 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4785 * do not currently need to store anything in that guest-allocated memory
4786 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4787 * argument is different from the VMXON pointer (which the spec says they do).
4788 */
4789static int handle_vmon(struct kvm_vcpu *vcpu)
4790{
4791        int ret;
4792        gpa_t vmptr;
4793        uint32_t revision;
4794        struct vcpu_vmx *vmx = to_vmx(vcpu);
4795        const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4796                | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4797
4798        /*
4799         * The Intel VMX Instruction Reference lists a bunch of bits that are
4800         * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4801         * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4802         * Otherwise, we should fail with #UD.  But most faulting conditions
4803         * have already been checked by hardware, prior to the VM-exit for
4804         * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4805         * that bit set to 1 in non-root mode.
4806         */
4807        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4808                kvm_queue_exception(vcpu, UD_VECTOR);
4809                return 1;
4810        }
4811
4812        /* CPL=0 must be checked manually. */
4813        if (vmx_get_cpl(vcpu)) {
4814                kvm_inject_gp(vcpu, 0);
4815                return 1;
4816        }
4817
4818        if (vmx->nested.vmxon)
4819                return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4820
4821        if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4822                        != VMXON_NEEDED_FEATURES) {
4823                kvm_inject_gp(vcpu, 0);
4824                return 1;
4825        }
4826
4827        if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4828                return ret;
4829
4830        /*
4831         * SDM 3: 24.11.5
4832         * The first 4 bytes of VMXON region contain the supported
4833         * VMCS revision identifier
4834         *
4835         * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4836         * which replaces physical address width with 32
4837         */
4838        if (!page_address_valid(vcpu, vmptr))
4839                return nested_vmx_failInvalid(vcpu);
4840
4841        if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4842            revision != VMCS12_REVISION)
4843                return nested_vmx_failInvalid(vcpu);
4844
4845        vmx->nested.vmxon_ptr = vmptr;
4846        ret = enter_vmx_operation(vcpu);
4847        if (ret)
4848                return ret;
4849
4850        return nested_vmx_succeed(vcpu);
4851}
4852
4853static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4854{
4855        struct vcpu_vmx *vmx = to_vmx(vcpu);
4856
4857        if (vmx->nested.current_vmptr == -1ull)
4858                return;
4859
4860        copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4861
4862        if (enable_shadow_vmcs) {
4863                /* copy to memory all shadowed fields in case
4864                   they were modified */
4865                copy_shadow_to_vmcs12(vmx);
4866                vmx_disable_shadow_vmcs(vmx);
4867        }
4868        vmx->nested.posted_intr_nv = -1;
4869
4870        /* Flush VMCS12 to guest memory */
4871        kvm_vcpu_write_guest_page(vcpu,
4872                                  vmx->nested.current_vmptr >> PAGE_SHIFT,
4873                                  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4874
4875        kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4876
4877        vmx->nested.current_vmptr = -1ull;
4878}
4879
4880/* Emulate the VMXOFF instruction */
4881static int handle_vmoff(struct kvm_vcpu *vcpu)
4882{
4883        if (!nested_vmx_check_permission(vcpu))
4884                return 1;
4885
4886        free_nested(vcpu);
4887
4888        /* Process a latched INIT during time CPU was in VMX operation */
4889        kvm_make_request(KVM_REQ_EVENT, vcpu);
4890
4891        return nested_vmx_succeed(vcpu);
4892}
4893
4894/* Emulate the VMCLEAR instruction */
4895static int handle_vmclear(struct kvm_vcpu *vcpu)
4896{
4897        struct vcpu_vmx *vmx = to_vmx(vcpu);
4898        u32 zero = 0;
4899        gpa_t vmptr;
4900        u64 evmcs_gpa;
4901        int r;
4902
4903        if (!nested_vmx_check_permission(vcpu))
4904                return 1;
4905
4906        if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4907                return r;
4908
4909        if (!page_address_valid(vcpu, vmptr))
4910                return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4911
4912        if (vmptr == vmx->nested.vmxon_ptr)
4913                return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4914
4915        /*
4916         * When Enlightened VMEntry is enabled on the calling CPU we treat
4917         * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4918         * way to distinguish it from VMCS12) and we must not corrupt it by
4919         * writing to the non-existent 'launch_state' field. The area doesn't
4920         * have to be the currently active EVMCS on the calling CPU and there's
4921         * nothing KVM has to do to transition it from 'active' to 'non-active'
4922         * state. It is possible that the area will stay mapped as
4923         * vmx->nested.hv_evmcs but this shouldn't be a problem.
4924         */
4925        if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4926                   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4927                if (vmptr == vmx->nested.current_vmptr)
4928                        nested_release_vmcs12(vcpu);
4929
4930                kvm_vcpu_write_guest(vcpu,
4931                                     vmptr + offsetof(struct vmcs12,
4932                                                      launch_state),
4933                                     &zero, sizeof(zero));
4934        }
4935
4936        return nested_vmx_succeed(vcpu);
4937}
4938
4939/* Emulate the VMLAUNCH instruction */
4940static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4941{
4942        return nested_vmx_run(vcpu, true);
4943}
4944
4945/* Emulate the VMRESUME instruction */
4946static int handle_vmresume(struct kvm_vcpu *vcpu)
4947{
4948
4949        return nested_vmx_run(vcpu, false);
4950}
4951
4952static int handle_vmread(struct kvm_vcpu *vcpu)
4953{
4954        struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4955                                                    : get_vmcs12(vcpu);
4956        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
4957        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4958        struct vcpu_vmx *vmx = to_vmx(vcpu);
4959        struct x86_exception e;
4960        unsigned long field;
4961        u64 value;
4962        gva_t gva = 0;
4963        short offset;
4964        int len, r;
4965
4966        if (!nested_vmx_check_permission(vcpu))
4967                return 1;
4968
4969        /*
4970         * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4971         * any VMREAD sets the ALU flags for VMfailInvalid.
4972         */
4973        if (vmx->nested.current_vmptr == -1ull ||
4974            (is_guest_mode(vcpu) &&
4975             get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4976                return nested_vmx_failInvalid(vcpu);
4977
4978        /* Decode instruction info and find the field to read */
4979        field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4980
4981        offset = vmcs_field_to_offset(field);
4982        if (offset < 0)
4983                return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4984
4985        if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4986                copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4987
4988        /* Read the field, zero-extended to a u64 value */
4989        value = vmcs12_read_any(vmcs12, field, offset);
4990
4991        /*
4992         * Now copy part of this value to register or memory, as requested.
4993         * Note that the number of bits actually copied is 32 or 64 depending
4994         * on the guest's mode (32 or 64 bit), not on the given field's length.
4995         */
4996        if (instr_info & BIT(10)) {
4997                kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4998        } else {
4999                len = is_64_bit_mode(vcpu) ? 8 : 4;
5000                if (get_vmx_mem_address(vcpu, exit_qualification,
5001                                        instr_info, true, len, &gva))
5002                        return 1;
5003                /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5004                r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5005                if (r != X86EMUL_CONTINUE)
5006                        return vmx_handle_memory_failure(vcpu, r, &e);
5007        }
5008
5009        return nested_vmx_succeed(vcpu);
5010}
5011
5012static bool is_shadow_field_rw(unsigned long field)
5013{
5014        switch (field) {
5015#define SHADOW_FIELD_RW(x, y) case x:
5016#include "vmcs_shadow_fields.h"
5017                return true;
5018        default:
5019                break;
5020        }
5021        return false;
5022}
5023
5024static bool is_shadow_field_ro(unsigned long field)
5025{
5026        switch (field) {
5027#define SHADOW_FIELD_RO(x, y) case x:
5028#include "vmcs_shadow_fields.h"
5029                return true;
5030        default:
5031                break;
5032        }
5033        return false;
5034}
5035
5036static int handle_vmwrite(struct kvm_vcpu *vcpu)
5037{
5038        struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5039                                                    : get_vmcs12(vcpu);
5040        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5041        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5042        struct vcpu_vmx *vmx = to_vmx(vcpu);
5043        struct x86_exception e;
5044        unsigned long field;
5045        short offset;
5046        gva_t gva;
5047        int len, r;
5048
5049        /*
5050         * The value to write might be 32 or 64 bits, depending on L1's long
5051         * mode, and eventually we need to write that into a field of several
5052         * possible lengths. The code below first zero-extends the value to 64
5053         * bit (value), and then copies only the appropriate number of
5054         * bits into the vmcs12 field.
5055         */
5056        u64 value = 0;
5057
5058        if (!nested_vmx_check_permission(vcpu))
5059                return 1;
5060
5061        /*
5062         * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5063         * any VMWRITE sets the ALU flags for VMfailInvalid.
5064         */
5065        if (vmx->nested.current_vmptr == -1ull ||
5066            (is_guest_mode(vcpu) &&
5067             get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5068                return nested_vmx_failInvalid(vcpu);
5069
5070        if (instr_info & BIT(10))
5071                value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5072        else {
5073                len = is_64_bit_mode(vcpu) ? 8 : 4;
5074                if (get_vmx_mem_address(vcpu, exit_qualification,
5075                                        instr_info, false, len, &gva))
5076                        return 1;
5077                r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5078                if (r != X86EMUL_CONTINUE)
5079                        return vmx_handle_memory_failure(vcpu, r, &e);
5080        }
5081
5082        field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5083
5084        offset = vmcs_field_to_offset(field);
5085        if (offset < 0)
5086                return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5087
5088        /*
5089         * If the vCPU supports "VMWRITE to any supported field in the
5090         * VMCS," then the "read-only" fields are actually read/write.
5091         */
5092        if (vmcs_field_readonly(field) &&
5093            !nested_cpu_has_vmwrite_any_field(vcpu))
5094                return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5095
5096        /*
5097         * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5098         * vmcs12, else we may crush a field or consume a stale value.
5099         */
5100        if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5101                copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5102
5103        /*
5104         * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5105         * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5106         * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5107         * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5108         * from L1 will return a different value than VMREAD from L2 (L1 sees
5109         * the stripped down value, L2 sees the full value as stored by KVM).
5110         */
5111        if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5112                value &= 0x1f0ff;
5113
5114        vmcs12_write_any(vmcs12, field, offset, value);
5115
5116        /*
5117         * Do not track vmcs12 dirty-state if in guest-mode as we actually
5118         * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5119         * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5120         * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5121         */
5122        if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5123                /*
5124                 * L1 can read these fields without exiting, ensure the
5125                 * shadow VMCS is up-to-date.
5126                 */
5127                if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5128                        preempt_disable();
5129                        vmcs_load(vmx->vmcs01.shadow_vmcs);
5130
5131                        __vmcs_writel(field, value);
5132
5133                        vmcs_clear(vmx->vmcs01.shadow_vmcs);
5134                        vmcs_load(vmx->loaded_vmcs->vmcs);
5135                        preempt_enable();
5136                }
5137                vmx->nested.dirty_vmcs12 = true;
5138        }
5139
5140        return nested_vmx_succeed(vcpu);
5141}
5142
5143static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5144{
5145        vmx->nested.current_vmptr = vmptr;
5146        if (enable_shadow_vmcs) {
5147                secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5148                vmcs_write64(VMCS_LINK_POINTER,
5149                             __pa(vmx->vmcs01.shadow_vmcs));
5150                vmx->nested.need_vmcs12_to_shadow_sync = true;
5151        }
5152        vmx->nested.dirty_vmcs12 = true;
5153}
5154
5155/* Emulate the VMPTRLD instruction */
5156static int handle_vmptrld(struct kvm_vcpu *vcpu)
5157{
5158        struct vcpu_vmx *vmx = to_vmx(vcpu);
5159        gpa_t vmptr;
5160        int r;
5161
5162        if (!nested_vmx_check_permission(vcpu))
5163                return 1;
5164
5165        if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5166                return r;
5167
5168        if (!page_address_valid(vcpu, vmptr))
5169                return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5170
5171        if (vmptr == vmx->nested.vmxon_ptr)
5172                return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5173
5174        /* Forbid normal VMPTRLD if Enlightened version was used */
5175        if (vmx->nested.hv_evmcs)
5176                return 1;
5177
5178        if (vmx->nested.current_vmptr != vmptr) {
5179                struct kvm_host_map map;
5180                struct vmcs12 *new_vmcs12;
5181
5182                if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5183                        /*
5184                         * Reads from an unbacked page return all 1s,
5185                         * which means that the 32 bits located at the
5186                         * given physical address won't match the required
5187                         * VMCS12_REVISION identifier.
5188                         */
5189                        return nested_vmx_fail(vcpu,
5190                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5191                }
5192
5193                new_vmcs12 = map.hva;
5194
5195                if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5196                    (new_vmcs12->hdr.shadow_vmcs &&
5197                     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5198                        kvm_vcpu_unmap(vcpu, &map, false);
5199                        return nested_vmx_fail(vcpu,
5200                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5201                }
5202
5203                nested_release_vmcs12(vcpu);
5204
5205                /*
5206                 * Load VMCS12 from guest memory since it is not already
5207                 * cached.
5208                 */
5209                memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5210                kvm_vcpu_unmap(vcpu, &map, false);
5211
5212                set_current_vmptr(vmx, vmptr);
5213        }
5214
5215        return nested_vmx_succeed(vcpu);
5216}
5217
5218/* Emulate the VMPTRST instruction */
5219static int handle_vmptrst(struct kvm_vcpu *vcpu)
5220{
5221        unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5222        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5223        gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5224        struct x86_exception e;
5225        gva_t gva;
5226        int r;
5227
5228        if (!nested_vmx_check_permission(vcpu))
5229                return 1;
5230
5231        if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5232                return 1;
5233
5234        if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5235                                true, sizeof(gpa_t), &gva))
5236                return 1;
5237        /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5238        r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5239                                        sizeof(gpa_t), &e);
5240        if (r != X86EMUL_CONTINUE)
5241                return vmx_handle_memory_failure(vcpu, r, &e);
5242
5243        return nested_vmx_succeed(vcpu);
5244}
5245
5246#define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5247
5248static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5249{
5250        return VALID_PAGE(root_hpa) &&
5251                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5252}
5253
5254/* Emulate the INVEPT instruction */
5255static int handle_invept(struct kvm_vcpu *vcpu)
5256{
5257        struct vcpu_vmx *vmx = to_vmx(vcpu);
5258        u32 vmx_instruction_info, types;
5259        unsigned long type, roots_to_free;
5260        struct kvm_mmu *mmu;
5261        gva_t gva;
5262        struct x86_exception e;
5263        struct {
5264                u64 eptp, gpa;
5265        } operand;
5266        int i, r;
5267
5268        if (!(vmx->nested.msrs.secondary_ctls_high &
5269              SECONDARY_EXEC_ENABLE_EPT) ||
5270            !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5271                kvm_queue_exception(vcpu, UD_VECTOR);
5272                return 1;
5273        }
5274
5275        if (!nested_vmx_check_permission(vcpu))
5276                return 1;
5277
5278        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5279        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5280
5281        types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5282
5283        if (type >= 32 || !(types & (1 << type)))
5284                return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5285
5286        /* According to the Intel VMX instruction reference, the memory
5287         * operand is read even if it isn't needed (e.g., for type==global)
5288         */
5289        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5290                        vmx_instruction_info, false, sizeof(operand), &gva))
5291                return 1;
5292        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5293        if (r != X86EMUL_CONTINUE)
5294                return vmx_handle_memory_failure(vcpu, r, &e);
5295
5296        /*
5297         * Nested EPT roots are always held through guest_mmu,
5298         * not root_mmu.
5299         */
5300        mmu = &vcpu->arch.guest_mmu;
5301
5302        switch (type) {
5303        case VMX_EPT_EXTENT_CONTEXT:
5304                if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5305                        return nested_vmx_fail(vcpu,
5306                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5307
5308                roots_to_free = 0;
5309                if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5310                                            operand.eptp))
5311                        roots_to_free |= KVM_MMU_ROOT_CURRENT;
5312
5313                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5314                        if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5315                                                    mmu->prev_roots[i].pgd,
5316                                                    operand.eptp))
5317                                roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5318                }
5319                break;
5320        case VMX_EPT_EXTENT_GLOBAL:
5321                roots_to_free = KVM_MMU_ROOTS_ALL;
5322                break;
5323        default:
5324                BUG();
5325                break;
5326        }
5327
5328        if (roots_to_free)
5329                kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5330
5331        return nested_vmx_succeed(vcpu);
5332}
5333
5334static int handle_invvpid(struct kvm_vcpu *vcpu)
5335{
5336        struct vcpu_vmx *vmx = to_vmx(vcpu);
5337        u32 vmx_instruction_info;
5338        unsigned long type, types;
5339        gva_t gva;
5340        struct x86_exception e;
5341        struct {
5342                u64 vpid;
5343                u64 gla;
5344        } operand;
5345        u16 vpid02;
5346        int r;
5347
5348        if (!(vmx->nested.msrs.secondary_ctls_high &
5349              SECONDARY_EXEC_ENABLE_VPID) ||
5350                        !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5351                kvm_queue_exception(vcpu, UD_VECTOR);
5352                return 1;
5353        }
5354
5355        if (!nested_vmx_check_permission(vcpu))
5356                return 1;
5357
5358        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5359        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5360
5361        types = (vmx->nested.msrs.vpid_caps &
5362                        VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5363
5364        if (type >= 32 || !(types & (1 << type)))
5365                return nested_vmx_fail(vcpu,
5366                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5367
5368        /* according to the intel vmx instruction reference, the memory
5369         * operand is read even if it isn't needed (e.g., for type==global)
5370         */
5371        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5372                        vmx_instruction_info, false, sizeof(operand), &gva))
5373                return 1;
5374        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5375        if (r != X86EMUL_CONTINUE)
5376                return vmx_handle_memory_failure(vcpu, r, &e);
5377
5378        if (operand.vpid >> 16)
5379                return nested_vmx_fail(vcpu,
5380                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5381
5382        vpid02 = nested_get_vpid02(vcpu);
5383        switch (type) {
5384        case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5385                if (!operand.vpid ||
5386                    is_noncanonical_address(operand.gla, vcpu))
5387                        return nested_vmx_fail(vcpu,
5388                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5389                vpid_sync_vcpu_addr(vpid02, operand.gla);
5390                break;
5391        case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5392        case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5393                if (!operand.vpid)
5394                        return nested_vmx_fail(vcpu,
5395                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5396                vpid_sync_context(vpid02);
5397                break;
5398        case VMX_VPID_EXTENT_ALL_CONTEXT:
5399                vpid_sync_context(vpid02);
5400                break;
5401        default:
5402                WARN_ON_ONCE(1);
5403                return kvm_skip_emulated_instruction(vcpu);
5404        }
5405
5406        /*
5407         * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5408         * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5409         * VPIDs are not tracked in the MMU role.
5410         *
5411         * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5412         * an MMU when EPT is disabled.
5413         *
5414         * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5415         */
5416        if (!enable_ept)
5417                kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5418                                   KVM_MMU_ROOTS_ALL);
5419
5420        return nested_vmx_succeed(vcpu);
5421}
5422
5423static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5424                                     struct vmcs12 *vmcs12)
5425{
5426        u32 index = kvm_rcx_read(vcpu);
5427        u64 new_eptp;
5428        bool accessed_dirty;
5429        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5430
5431        if (!nested_cpu_has_eptp_switching(vmcs12) ||
5432            !nested_cpu_has_ept(vmcs12))
5433                return 1;
5434
5435        if (index >= VMFUNC_EPTP_ENTRIES)
5436                return 1;
5437
5438
5439        if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5440                                     &new_eptp, index * 8, 8))
5441                return 1;
5442
5443        accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5444
5445        /*
5446         * If the (L2) guest does a vmfunc to the currently
5447         * active ept pointer, we don't have to do anything else
5448         */
5449        if (vmcs12->ept_pointer != new_eptp) {
5450                if (!nested_vmx_check_eptp(vcpu, new_eptp))
5451                        return 1;
5452
5453                kvm_mmu_unload(vcpu);
5454                mmu->ept_ad = accessed_dirty;
5455                mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5456                vmcs12->ept_pointer = new_eptp;
5457                /*
5458                 * TODO: Check what's the correct approach in case
5459                 * mmu reload fails. Currently, we just let the next
5460                 * reload potentially fail
5461                 */
5462                kvm_mmu_reload(vcpu);
5463        }
5464
5465        return 0;
5466}
5467
5468static int handle_vmfunc(struct kvm_vcpu *vcpu)
5469{
5470        struct vcpu_vmx *vmx = to_vmx(vcpu);
5471        struct vmcs12 *vmcs12;
5472        u32 function = kvm_rax_read(vcpu);
5473
5474        /*
5475         * VMFUNC is only supported for nested guests, but we always enable the
5476         * secondary control for simplicity; for non-nested mode, fake that we
5477         * didn't by injecting #UD.
5478         */
5479        if (!is_guest_mode(vcpu)) {
5480                kvm_queue_exception(vcpu, UD_VECTOR);
5481                return 1;
5482        }
5483
5484        vmcs12 = get_vmcs12(vcpu);
5485        if ((vmcs12->vm_function_control & (1 << function)) == 0)
5486                goto fail;
5487
5488        switch (function) {
5489        case 0:
5490                if (nested_vmx_eptp_switching(vcpu, vmcs12))
5491                        goto fail;
5492                break;
5493        default:
5494                goto fail;
5495        }
5496        return kvm_skip_emulated_instruction(vcpu);
5497
5498fail:
5499        nested_vmx_vmexit(vcpu, vmx->exit_reason,
5500                          vmx_get_intr_info(vcpu),
5501                          vmx_get_exit_qual(vcpu));
5502        return 1;
5503}
5504
5505/*
5506 * Return true if an IO instruction with the specified port and size should cause
5507 * a VM-exit into L1.
5508 */
5509bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5510                                 int size)
5511{
5512        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5513        gpa_t bitmap, last_bitmap;
5514        u8 b;
5515
5516        last_bitmap = (gpa_t)-1;
5517        b = -1;
5518
5519        while (size > 0) {
5520                if (port < 0x8000)
5521                        bitmap = vmcs12->io_bitmap_a;
5522                else if (port < 0x10000)
5523                        bitmap = vmcs12->io_bitmap_b;
5524                else
5525                        return true;
5526                bitmap += (port & 0x7fff) / 8;
5527
5528                if (last_bitmap != bitmap)
5529                        if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5530                                return true;
5531                if (b & (1 << (port & 7)))
5532                        return true;
5533
5534                port++;
5535                size--;
5536                last_bitmap = bitmap;
5537        }
5538
5539        return false;
5540}
5541
5542static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5543                                       struct vmcs12 *vmcs12)
5544{
5545        unsigned long exit_qualification;
5546        unsigned short port;
5547        int size;
5548
5549        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5550                return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5551
5552        exit_qualification = vmx_get_exit_qual(vcpu);
5553
5554        port = exit_qualification >> 16;
5555        size = (exit_qualification & 7) + 1;
5556
5557        return nested_vmx_check_io_bitmaps(vcpu, port, size);
5558}
5559
5560/*
5561 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5562 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5563 * disinterest in the current event (read or write a specific MSR) by using an
5564 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5565 */
5566static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5567        struct vmcs12 *vmcs12, u32 exit_reason)
5568{
5569        u32 msr_index = kvm_rcx_read(vcpu);
5570        gpa_t bitmap;
5571
5572        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5573                return true;
5574
5575        /*
5576         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5577         * for the four combinations of read/write and low/high MSR numbers.
5578         * First we need to figure out which of the four to use:
5579         */
5580        bitmap = vmcs12->msr_bitmap;
5581        if (exit_reason == EXIT_REASON_MSR_WRITE)
5582                bitmap += 2048;
5583        if (msr_index >= 0xc0000000) {
5584                msr_index -= 0xc0000000;
5585                bitmap += 1024;
5586        }
5587
5588        /* Then read the msr_index'th bit from this bitmap: */
5589        if (msr_index < 1024*8) {
5590                unsigned char b;
5591                if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5592                        return true;
5593                return 1 & (b >> (msr_index & 7));
5594        } else
5595                return true; /* let L1 handle the wrong parameter */
5596}
5597
5598/*
5599 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5600 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5601 * intercept (via guest_host_mask etc.) the current event.
5602 */
5603static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5604        struct vmcs12 *vmcs12)
5605{
5606        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5607        int cr = exit_qualification & 15;
5608        int reg;
5609        unsigned long val;
5610
5611        switch ((exit_qualification >> 4) & 3) {
5612        case 0: /* mov to cr */
5613                reg = (exit_qualification >> 8) & 15;
5614                val = kvm_register_readl(vcpu, reg);
5615                switch (cr) {
5616                case 0:
5617                        if (vmcs12->cr0_guest_host_mask &
5618                            (val ^ vmcs12->cr0_read_shadow))
5619                                return true;
5620                        break;
5621                case 3:
5622                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5623                                return true;
5624                        break;
5625                case 4:
5626                        if (vmcs12->cr4_guest_host_mask &
5627                            (vmcs12->cr4_read_shadow ^ val))
5628                                return true;
5629                        break;
5630                case 8:
5631                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5632                                return true;
5633                        break;
5634                }
5635                break;
5636        case 2: /* clts */
5637                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5638                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5639                        return true;
5640                break;
5641        case 1: /* mov from cr */
5642                switch (cr) {
5643                case 3:
5644                        if (vmcs12->cpu_based_vm_exec_control &
5645                            CPU_BASED_CR3_STORE_EXITING)
5646                                return true;
5647                        break;
5648                case 8:
5649                        if (vmcs12->cpu_based_vm_exec_control &
5650                            CPU_BASED_CR8_STORE_EXITING)
5651                                return true;
5652                        break;
5653                }
5654                break;
5655        case 3: /* lmsw */
5656                /*
5657                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5658                 * cr0. Other attempted changes are ignored, with no exit.
5659                 */
5660                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5661                if (vmcs12->cr0_guest_host_mask & 0xe &
5662                    (val ^ vmcs12->cr0_read_shadow))
5663                        return true;
5664                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5665                    !(vmcs12->cr0_read_shadow & 0x1) &&
5666                    (val & 0x1))
5667                        return true;
5668                break;
5669        }
5670        return false;
5671}
5672
5673static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5674        struct vmcs12 *vmcs12, gpa_t bitmap)
5675{
5676        u32 vmx_instruction_info;
5677        unsigned long field;
5678        u8 b;
5679
5680        if (!nested_cpu_has_shadow_vmcs(vmcs12))
5681                return true;
5682
5683        /* Decode instruction info and find the field to access */
5684        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5685        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5686
5687        /* Out-of-range fields always cause a VM exit from L2 to L1 */
5688        if (field >> 15)
5689                return true;
5690
5691        if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5692                return true;
5693
5694        return 1 & (b >> (field & 7));
5695}
5696
5697static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5698{
5699        u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5700
5701        if (nested_cpu_has_mtf(vmcs12))
5702                return true;
5703
5704        /*
5705         * An MTF VM-exit may be injected into the guest by setting the
5706         * interruption-type to 7 (other event) and the vector field to 0. Such
5707         * is the case regardless of the 'monitor trap flag' VM-execution
5708         * control.
5709         */
5710        return entry_intr_info == (INTR_INFO_VALID_MASK
5711                                   | INTR_TYPE_OTHER_EVENT);
5712}
5713
5714/*
5715 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5716 * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5717 */
5718static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5719{
5720        u32 intr_info;
5721
5722        switch ((u16)exit_reason) {
5723        case EXIT_REASON_EXCEPTION_NMI:
5724                intr_info = vmx_get_intr_info(vcpu);
5725                if (is_nmi(intr_info))
5726                        return true;
5727                else if (is_page_fault(intr_info))
5728                        return vcpu->arch.apf.host_apf_flags || !enable_ept;
5729                else if (is_debug(intr_info) &&
5730                         vcpu->guest_debug &
5731                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5732                        return true;
5733                else if (is_breakpoint(intr_info) &&
5734                         vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5735                        return true;
5736                return false;
5737        case EXIT_REASON_EXTERNAL_INTERRUPT:
5738                return true;
5739        case EXIT_REASON_MCE_DURING_VMENTRY:
5740                return true;
5741        case EXIT_REASON_EPT_VIOLATION:
5742                /*
5743                 * L0 always deals with the EPT violation. If nested EPT is
5744                 * used, and the nested mmu code discovers that the address is
5745                 * missing in the guest EPT table (EPT12), the EPT violation
5746                 * will be injected with nested_ept_inject_page_fault()
5747                 */
5748                return true;
5749        case EXIT_REASON_EPT_MISCONFIG:
5750                /*
5751                 * L2 never uses directly L1's EPT, but rather L0's own EPT
5752                 * table (shadow on EPT) or a merged EPT table that L0 built
5753                 * (EPT on EPT). So any problems with the structure of the
5754                 * table is L0's fault.
5755                 */
5756                return true;
5757        case EXIT_REASON_PREEMPTION_TIMER:
5758                return true;
5759        case EXIT_REASON_PML_FULL:
5760                /* We emulate PML support to L1. */
5761                return true;
5762        case EXIT_REASON_VMFUNC:
5763                /* VM functions are emulated through L2->L0 vmexits. */
5764                return true;
5765        case EXIT_REASON_ENCLS:
5766                /* SGX is never exposed to L1 */
5767                return true;
5768        default:
5769                break;
5770        }
5771        return false;
5772}
5773
5774/*
5775 * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5776 * is_guest_mode (L2).
5777 */
5778static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5779{
5780        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5781        u32 intr_info;
5782
5783        switch ((u16)exit_reason) {
5784        case EXIT_REASON_EXCEPTION_NMI:
5785                intr_info = vmx_get_intr_info(vcpu);
5786                if (is_nmi(intr_info))
5787                        return true;
5788                else if (is_page_fault(intr_info))
5789                        return true;
5790                return vmcs12->exception_bitmap &
5791                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5792        case EXIT_REASON_EXTERNAL_INTERRUPT:
5793                return nested_exit_on_intr(vcpu);
5794        case EXIT_REASON_TRIPLE_FAULT:
5795                return true;
5796        case EXIT_REASON_INTERRUPT_WINDOW:
5797                return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5798        case EXIT_REASON_NMI_WINDOW:
5799                return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5800        case EXIT_REASON_TASK_SWITCH:
5801                return true;
5802        case EXIT_REASON_CPUID:
5803                return true;
5804        case EXIT_REASON_HLT:
5805                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5806        case EXIT_REASON_INVD:
5807                return true;
5808        case EXIT_REASON_INVLPG:
5809                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5810        case EXIT_REASON_RDPMC:
5811                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5812        case EXIT_REASON_RDRAND:
5813                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5814        case EXIT_REASON_RDSEED:
5815                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5816        case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5817                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5818        case EXIT_REASON_VMREAD:
5819                return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5820                        vmcs12->vmread_bitmap);
5821        case EXIT_REASON_VMWRITE:
5822                return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5823                        vmcs12->vmwrite_bitmap);
5824        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5825        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5826        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5827        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5828        case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5829                /*
5830                 * VMX instructions trap unconditionally. This allows L1 to
5831                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5832                 */
5833                return true;
5834        case EXIT_REASON_CR_ACCESS:
5835                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5836        case EXIT_REASON_DR_ACCESS:
5837                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5838        case EXIT_REASON_IO_INSTRUCTION:
5839                return nested_vmx_exit_handled_io(vcpu, vmcs12);
5840        case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5841                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5842        case EXIT_REASON_MSR_READ:
5843        case EXIT_REASON_MSR_WRITE:
5844                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5845        case EXIT_REASON_INVALID_STATE:
5846                return true;
5847        case EXIT_REASON_MWAIT_INSTRUCTION:
5848                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5849        case EXIT_REASON_MONITOR_TRAP_FLAG:
5850                return nested_vmx_exit_handled_mtf(vmcs12);
5851        case EXIT_REASON_MONITOR_INSTRUCTION:
5852                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5853        case EXIT_REASON_PAUSE_INSTRUCTION:
5854                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5855                        nested_cpu_has2(vmcs12,
5856                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5857        case EXIT_REASON_MCE_DURING_VMENTRY:
5858                return true;
5859        case EXIT_REASON_TPR_BELOW_THRESHOLD:
5860                return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5861        case EXIT_REASON_APIC_ACCESS:
5862        case EXIT_REASON_APIC_WRITE:
5863        case EXIT_REASON_EOI_INDUCED:
5864                /*
5865                 * The controls for "virtualize APIC accesses," "APIC-
5866                 * register virtualization," and "virtual-interrupt
5867                 * delivery" only come from vmcs12.
5868                 */
5869                return true;
5870        case EXIT_REASON_INVPCID:
5871                return
5872                        nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5873                        nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5874        case EXIT_REASON_WBINVD:
5875                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5876        case EXIT_REASON_XSETBV:
5877                return true;
5878        case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5879                /*
5880                 * This should never happen, since it is not possible to
5881                 * set XSS to a non-zero value---neither in L1 nor in L2.
5882                 * If if it were, XSS would have to be checked against
5883                 * the XSS exit bitmap in vmcs12.
5884                 */
5885                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5886        case EXIT_REASON_UMWAIT:
5887        case EXIT_REASON_TPAUSE:
5888                return nested_cpu_has2(vmcs12,
5889                        SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5890        default:
5891                return true;
5892        }
5893}
5894
5895/*
5896 * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
5897 * reflected into L1.
5898 */
5899bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5900{
5901        struct vcpu_vmx *vmx = to_vmx(vcpu);
5902        u32 exit_reason = vmx->exit_reason;
5903        unsigned long exit_qual;
5904        u32 exit_intr_info;
5905
5906        WARN_ON_ONCE(vmx->nested.nested_run_pending);
5907
5908        /*
5909         * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5910         * has already loaded L2's state.
5911         */
5912        if (unlikely(vmx->fail)) {
5913                trace_kvm_nested_vmenter_failed(
5914                        "hardware VM-instruction error: ",
5915                        vmcs_read32(VM_INSTRUCTION_ERROR));
5916                exit_intr_info = 0;
5917                exit_qual = 0;
5918                goto reflect_vmexit;
5919        }
5920
5921        exit_intr_info = vmx_get_intr_info(vcpu);
5922        exit_qual = vmx_get_exit_qual(vcpu);
5923
5924        trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, exit_qual,
5925                                vmx->idt_vectoring_info, exit_intr_info,
5926                                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5927                                KVM_ISA_VMX);
5928
5929        /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5930        if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5931                return false;
5932
5933        /* If L1 doesn't want the exit, handle it in L0. */
5934        if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5935                return false;
5936
5937        /*
5938         * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
5939         * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5940         * need to be synthesized by querying the in-kernel LAPIC, but external
5941         * interrupts are never reflected to L1 so it's a non-issue.
5942         */
5943        if ((exit_intr_info &
5944             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
5945            (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
5946                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5947
5948                vmcs12->vm_exit_intr_error_code =
5949                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5950        }
5951
5952reflect_vmexit:
5953        nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
5954        return true;
5955}
5956
5957static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5958                                struct kvm_nested_state __user *user_kvm_nested_state,
5959                                u32 user_data_size)
5960{
5961        struct vcpu_vmx *vmx;
5962        struct vmcs12 *vmcs12;
5963        struct kvm_nested_state kvm_state = {
5964                .flags = 0,
5965                .format = KVM_STATE_NESTED_FORMAT_VMX,
5966                .size = sizeof(kvm_state),
5967                .hdr.vmx.flags = 0,
5968                .hdr.vmx.vmxon_pa = -1ull,
5969                .hdr.vmx.vmcs12_pa = -1ull,
5970                .hdr.vmx.preemption_timer_deadline = 0,
5971        };
5972        struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5973                &user_kvm_nested_state->data.vmx[0];
5974
5975        if (!vcpu)
5976                return kvm_state.size + sizeof(*user_vmx_nested_state);
5977
5978        vmx = to_vmx(vcpu);
5979        vmcs12 = get_vmcs12(vcpu);
5980
5981        if (nested_vmx_allowed(vcpu) &&
5982            (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5983                kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5984                kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5985
5986                if (vmx_has_valid_vmcs12(vcpu)) {
5987                        kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5988
5989                        if (vmx->nested.hv_evmcs)
5990                                kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5991
5992                        if (is_guest_mode(vcpu) &&
5993                            nested_cpu_has_shadow_vmcs(vmcs12) &&
5994                            vmcs12->vmcs_link_pointer != -1ull)
5995                                kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5996                }
5997
5998                if (vmx->nested.smm.vmxon)
5999                        kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6000
6001                if (vmx->nested.smm.guest_mode)
6002                        kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6003
6004                if (is_guest_mode(vcpu)) {
6005                        kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6006
6007                        if (vmx->nested.nested_run_pending)
6008                                kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6009
6010                        if (vmx->nested.mtf_pending)
6011                                kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6012
6013                        if (nested_cpu_has_preemption_timer(vmcs12) &&
6014                            vmx->nested.has_preemption_timer_deadline) {
6015                                kvm_state.hdr.vmx.flags |=
6016                                        KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6017                                kvm_state.hdr.vmx.preemption_timer_deadline =
6018                                        vmx->nested.preemption_timer_deadline;
6019                        }
6020                }
6021        }
6022
6023        if (user_data_size < kvm_state.size)
6024                goto out;
6025
6026        if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6027                return -EFAULT;
6028
6029        if (!vmx_has_valid_vmcs12(vcpu))
6030                goto out;
6031
6032        /*
6033         * When running L2, the authoritative vmcs12 state is in the
6034         * vmcs02. When running L1, the authoritative vmcs12 state is
6035         * in the shadow or enlightened vmcs linked to vmcs01, unless
6036         * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6037         * vmcs12 state is in the vmcs12 already.
6038         */
6039        if (is_guest_mode(vcpu)) {
6040                sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6041                sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6042        } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6043                if (vmx->nested.hv_evmcs)
6044                        copy_enlightened_to_vmcs12(vmx);
6045                else if (enable_shadow_vmcs)
6046                        copy_shadow_to_vmcs12(vmx);
6047        }
6048
6049        BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6050        BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6051
6052        /*
6053         * Copy over the full allocated size of vmcs12 rather than just the size
6054         * of the struct.
6055         */
6056        if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6057                return -EFAULT;
6058
6059        if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6060            vmcs12->vmcs_link_pointer != -1ull) {
6061                if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6062                                 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6063                        return -EFAULT;
6064        }
6065out:
6066        return kvm_state.size;
6067}
6068
6069/*
6070 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6071 */
6072void vmx_leave_nested(struct kvm_vcpu *vcpu)
6073{
6074        if (is_guest_mode(vcpu)) {
6075                to_vmx(vcpu)->nested.nested_run_pending = 0;
6076                nested_vmx_vmexit(vcpu, -1, 0, 0);
6077        }
6078        free_nested(vcpu);
6079}
6080
6081static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6082                                struct kvm_nested_state __user *user_kvm_nested_state,
6083                                struct kvm_nested_state *kvm_state)
6084{
6085        struct vcpu_vmx *vmx = to_vmx(vcpu);
6086        struct vmcs12 *vmcs12;
6087        enum vm_entry_failure_code ignored;
6088        struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6089                &user_kvm_nested_state->data.vmx[0];
6090        int ret;
6091
6092        if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6093                return -EINVAL;
6094
6095        if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6096                if (kvm_state->hdr.vmx.smm.flags)
6097                        return -EINVAL;
6098
6099                if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6100                        return -EINVAL;
6101
6102                /*
6103                 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6104                 * enable eVMCS capability on vCPU. However, since then
6105                 * code was changed such that flag signals vmcs12 should
6106                 * be copied into eVMCS in guest memory.
6107                 *
6108                 * To preserve backwards compatability, allow user
6109                 * to set this flag even when there is no VMXON region.
6110                 */
6111                if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6112                        return -EINVAL;
6113        } else {
6114                if (!nested_vmx_allowed(vcpu))
6115                        return -EINVAL;
6116
6117                if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6118                        return -EINVAL;
6119        }
6120
6121        if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6122            (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6123                return -EINVAL;
6124
6125        if (kvm_state->hdr.vmx.smm.flags &
6126            ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6127                return -EINVAL;
6128
6129        if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6130                return -EINVAL;
6131
6132        /*
6133         * SMM temporarily disables VMX, so we cannot be in guest mode,
6134         * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6135         * must be zero.
6136         */
6137        if (is_smm(vcpu) ?
6138                (kvm_state->flags &
6139                 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6140                : kvm_state->hdr.vmx.smm.flags)
6141                return -EINVAL;
6142
6143        if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6144            !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6145                return -EINVAL;
6146
6147        if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6148                (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6149                        return -EINVAL;
6150
6151        vmx_leave_nested(vcpu);
6152
6153        if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6154                return 0;
6155
6156        vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6157        ret = enter_vmx_operation(vcpu);
6158        if (ret)
6159                return ret;
6160
6161        /* Empty 'VMXON' state is permitted if no VMCS loaded */
6162        if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6163                /* See vmx_has_valid_vmcs12.  */
6164                if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6165                    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6166                    (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6167                        return -EINVAL;
6168                else
6169                        return 0;
6170        }
6171
6172        if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6173                if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6174                    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6175                        return -EINVAL;
6176
6177                set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6178        } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6179                /*
6180                 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6181                 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6182                 * restored yet. EVMCS will be mapped from
6183                 * nested_get_vmcs12_pages().
6184                 */
6185                kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
6186        } else {
6187                return -EINVAL;
6188        }
6189
6190        if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6191                vmx->nested.smm.vmxon = true;
6192                vmx->nested.vmxon = false;
6193
6194                if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6195                        vmx->nested.smm.guest_mode = true;
6196        }
6197
6198        vmcs12 = get_vmcs12(vcpu);
6199        if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6200                return -EFAULT;
6201
6202        if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6203                return -EINVAL;
6204
6205        if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6206                return 0;
6207
6208        vmx->nested.nested_run_pending =
6209                !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6210
6211        vmx->nested.mtf_pending =
6212                !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6213
6214        ret = -EINVAL;
6215        if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6216            vmcs12->vmcs_link_pointer != -1ull) {
6217                struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6218
6219                if (kvm_state->size <
6220                    sizeof(*kvm_state) +
6221                    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6222                        goto error_guest_mode;
6223
6224                if (copy_from_user(shadow_vmcs12,
6225                                   user_vmx_nested_state->shadow_vmcs12,
6226                                   sizeof(*shadow_vmcs12))) {
6227                        ret = -EFAULT;
6228                        goto error_guest_mode;
6229                }
6230
6231                if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6232                    !shadow_vmcs12->hdr.shadow_vmcs)
6233                        goto error_guest_mode;
6234        }
6235
6236        vmx->nested.has_preemption_timer_deadline = false;
6237        if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6238                vmx->nested.has_preemption_timer_deadline = true;
6239                vmx->nested.preemption_timer_deadline =
6240                        kvm_state->hdr.vmx.preemption_timer_deadline;
6241        }
6242
6243        if (nested_vmx_check_controls(vcpu, vmcs12) ||
6244            nested_vmx_check_host_state(vcpu, vmcs12) ||
6245            nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6246                goto error_guest_mode;
6247
6248        vmx->nested.dirty_vmcs12 = true;
6249        ret = nested_vmx_enter_non_root_mode(vcpu, false);
6250        if (ret)
6251                goto error_guest_mode;
6252
6253        return 0;
6254
6255error_guest_mode:
6256        vmx->nested.nested_run_pending = 0;
6257        return ret;
6258}
6259
6260void nested_vmx_set_vmcs_shadowing_bitmap(void)
6261{
6262        if (enable_shadow_vmcs) {
6263                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6264                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6265        }
6266}
6267
6268/*
6269 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6270 * returned for the various VMX controls MSRs when nested VMX is enabled.
6271 * The same values should also be used to verify that vmcs12 control fields are
6272 * valid during nested entry from L1 to L2.
6273 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6274 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6275 * bit in the high half is on if the corresponding bit in the control field
6276 * may be on. See also vmx_control_verify().
6277 */
6278void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6279{
6280        /*
6281         * Note that as a general rule, the high half of the MSRs (bits in
6282         * the control fields which may be 1) should be initialized by the
6283         * intersection of the underlying hardware's MSR (i.e., features which
6284         * can be supported) and the list of features we want to expose -
6285         * because they are known to be properly supported in our code.
6286         * Also, usually, the low half of the MSRs (bits which must be 1) can
6287         * be set to 0, meaning that L1 may turn off any of these bits. The
6288         * reason is that if one of these bits is necessary, it will appear
6289         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6290         * fields of vmcs01 and vmcs02, will turn these bits off - and
6291         * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6292         * These rules have exceptions below.
6293         */
6294
6295        /* pin-based controls */
6296        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6297                msrs->pinbased_ctls_low,
6298                msrs->pinbased_ctls_high);
6299        msrs->pinbased_ctls_low |=
6300                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6301        msrs->pinbased_ctls_high &=
6302                PIN_BASED_EXT_INTR_MASK |
6303                PIN_BASED_NMI_EXITING |
6304                PIN_BASED_VIRTUAL_NMIS |
6305                (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6306        msrs->pinbased_ctls_high |=
6307                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6308                PIN_BASED_VMX_PREEMPTION_TIMER;
6309
6310        /* exit controls */
6311        rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6312                msrs->exit_ctls_low,
6313                msrs->exit_ctls_high);
6314        msrs->exit_ctls_low =
6315                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6316
6317        msrs->exit_ctls_high &=
6318#ifdef CONFIG_X86_64
6319                VM_EXIT_HOST_ADDR_SPACE_SIZE |
6320#endif
6321                VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6322        msrs->exit_ctls_high |=
6323                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6324                VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6325                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6326
6327        /* We support free control of debug control saving. */
6328        msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6329
6330        /* entry controls */
6331        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6332                msrs->entry_ctls_low,
6333                msrs->entry_ctls_high);
6334        msrs->entry_ctls_low =
6335                VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6336        msrs->entry_ctls_high &=
6337#ifdef CONFIG_X86_64
6338                VM_ENTRY_IA32E_MODE |
6339#endif
6340                VM_ENTRY_LOAD_IA32_PAT;
6341        msrs->entry_ctls_high |=
6342                (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6343
6344        /* We support free control of debug control loading. */
6345        msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6346
6347        /* cpu-based controls */
6348        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6349                msrs->procbased_ctls_low,
6350                msrs->procbased_ctls_high);
6351        msrs->procbased_ctls_low =
6352                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6353        msrs->procbased_ctls_high &=
6354                CPU_BASED_INTR_WINDOW_EXITING |
6355                CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6356                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6357                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6358                CPU_BASED_CR3_STORE_EXITING |
6359#ifdef CONFIG_X86_64
6360                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6361#endif
6362                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6363                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6364                CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6365                CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6366                CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6367        /*
6368         * We can allow some features even when not supported by the
6369         * hardware. For example, L1 can specify an MSR bitmap - and we
6370         * can use it to avoid exits to L1 - even when L0 runs L2
6371         * without MSR bitmaps.
6372         */
6373        msrs->procbased_ctls_high |=
6374                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6375                CPU_BASED_USE_MSR_BITMAPS;
6376
6377        /* We support free control of CR3 access interception. */
6378        msrs->procbased_ctls_low &=
6379                ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6380
6381        /*
6382         * secondary cpu-based controls.  Do not include those that
6383         * depend on CPUID bits, they are added later by
6384         * vmx_vcpu_after_set_cpuid.
6385         */
6386        if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6387                rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6388                      msrs->secondary_ctls_low,
6389                      msrs->secondary_ctls_high);
6390
6391        msrs->secondary_ctls_low = 0;
6392        msrs->secondary_ctls_high &=
6393                SECONDARY_EXEC_DESC |
6394                SECONDARY_EXEC_RDTSCP |
6395                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6396                SECONDARY_EXEC_WBINVD_EXITING |
6397                SECONDARY_EXEC_APIC_REGISTER_VIRT |
6398                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6399                SECONDARY_EXEC_RDRAND_EXITING |
6400                SECONDARY_EXEC_ENABLE_INVPCID |
6401                SECONDARY_EXEC_RDSEED_EXITING |
6402                SECONDARY_EXEC_XSAVES;
6403
6404        /*
6405         * We can emulate "VMCS shadowing," even if the hardware
6406         * doesn't support it.
6407         */
6408        msrs->secondary_ctls_high |=
6409                SECONDARY_EXEC_SHADOW_VMCS;
6410
6411        if (enable_ept) {
6412                /* nested EPT: emulate EPT also to L1 */
6413                msrs->secondary_ctls_high |=
6414                        SECONDARY_EXEC_ENABLE_EPT;
6415                msrs->ept_caps =
6416                        VMX_EPT_PAGE_WALK_4_BIT |
6417                        VMX_EPT_PAGE_WALK_5_BIT |
6418                        VMX_EPTP_WB_BIT |
6419                        VMX_EPT_INVEPT_BIT |
6420                        VMX_EPT_EXECUTE_ONLY_BIT;
6421
6422                msrs->ept_caps &= ept_caps;
6423                msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6424                        VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6425                        VMX_EPT_1GB_PAGE_BIT;
6426                if (enable_ept_ad_bits) {
6427                        msrs->secondary_ctls_high |=
6428                                SECONDARY_EXEC_ENABLE_PML;
6429                        msrs->ept_caps |= VMX_EPT_AD_BIT;
6430                }
6431        }
6432
6433        if (cpu_has_vmx_vmfunc()) {
6434                msrs->secondary_ctls_high |=
6435                        SECONDARY_EXEC_ENABLE_VMFUNC;
6436                /*
6437                 * Advertise EPTP switching unconditionally
6438                 * since we emulate it
6439                 */
6440                if (enable_ept)
6441                        msrs->vmfunc_controls =
6442                                VMX_VMFUNC_EPTP_SWITCHING;
6443        }
6444
6445        /*
6446         * Old versions of KVM use the single-context version without
6447         * checking for support, so declare that it is supported even
6448         * though it is treated as global context.  The alternative is
6449         * not failing the single-context invvpid, and it is worse.
6450         */
6451        if (enable_vpid) {
6452                msrs->secondary_ctls_high |=
6453                        SECONDARY_EXEC_ENABLE_VPID;
6454                msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6455                        VMX_VPID_EXTENT_SUPPORTED_MASK;
6456        }
6457
6458        if (enable_unrestricted_guest)
6459                msrs->secondary_ctls_high |=
6460                        SECONDARY_EXEC_UNRESTRICTED_GUEST;
6461
6462        if (flexpriority_enabled)
6463                msrs->secondary_ctls_high |=
6464                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6465
6466        /* miscellaneous data */
6467        rdmsr(MSR_IA32_VMX_MISC,
6468                msrs->misc_low,
6469                msrs->misc_high);
6470        msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6471        msrs->misc_low |=
6472                MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6473                VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6474                VMX_MISC_ACTIVITY_HLT;
6475        msrs->misc_high = 0;
6476
6477        /*
6478         * This MSR reports some information about VMX support. We
6479         * should return information about the VMX we emulate for the
6480         * guest, and the VMCS structure we give it - not about the
6481         * VMX support of the underlying hardware.
6482         */
6483        msrs->basic =
6484                VMCS12_REVISION |
6485                VMX_BASIC_TRUE_CTLS |
6486                ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6487                (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6488
6489        if (cpu_has_vmx_basic_inout())
6490                msrs->basic |= VMX_BASIC_INOUT;
6491
6492        /*
6493         * These MSRs specify bits which the guest must keep fixed on
6494         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6495         * We picked the standard core2 setting.
6496         */
6497#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6498#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6499        msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6500        msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6501
6502        /* These MSRs specify bits which the guest must keep fixed off. */
6503        rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6504        rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6505
6506        /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6507        msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6508}
6509
6510void nested_vmx_hardware_unsetup(void)
6511{
6512        int i;
6513
6514        if (enable_shadow_vmcs) {
6515                for (i = 0; i < VMX_BITMAP_NR; i++)
6516                        free_page((unsigned long)vmx_bitmap[i]);
6517        }
6518}
6519
6520__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6521{
6522        int i;
6523
6524        if (!cpu_has_vmx_shadow_vmcs())
6525                enable_shadow_vmcs = 0;
6526        if (enable_shadow_vmcs) {
6527                for (i = 0; i < VMX_BITMAP_NR; i++) {
6528                        /*
6529                         * The vmx_bitmap is not tied to a VM and so should
6530                         * not be charged to a memcg.
6531                         */
6532                        vmx_bitmap[i] = (unsigned long *)
6533                                __get_free_page(GFP_KERNEL);
6534                        if (!vmx_bitmap[i]) {
6535                                nested_vmx_hardware_unsetup();
6536                                return -ENOMEM;
6537                        }
6538                }
6539
6540                init_vmcs_shadow_fields();
6541        }
6542
6543        exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6544        exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6545        exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6546        exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6547        exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6548        exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6549        exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6550        exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6551        exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6552        exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6553        exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6554        exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6555
6556        return 0;
6557}
6558
6559struct kvm_x86_nested_ops vmx_nested_ops = {
6560        .check_events = vmx_check_nested_events,
6561        .hv_timer_pending = nested_vmx_preemption_timer_pending,
6562        .get_state = vmx_get_nested_state,
6563        .set_state = vmx_set_nested_state,
6564        .get_vmcs12_pages = nested_get_vmcs12_pages,
6565        .write_log_dirty = nested_vmx_write_pml_buffer,
6566        .enable_evmcs = nested_enable_evmcs,
6567        .get_evmcs_version = nested_get_evmcs_version,
6568};
6569