linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * derived from drivers/kvm/kvm_main.c
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright (C) 2008 Qumranet, Inc.
   9 * Copyright IBM Corporation, 2008
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Avi Kivity   <avi@qumranet.com>
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Amit Shah    <amit.shah@qumranet.com>
  16 *   Ben-Ami Yassour <benami@il.ibm.com>
  17 */
  18
  19#include <linux/kvm_host.h>
  20#include "irq.h"
  21#include "ioapic.h"
  22#include "mmu.h"
  23#include "i8254.h"
  24#include "tss.h"
  25#include "kvm_cache_regs.h"
  26#include "kvm_emulate.h"
  27#include "x86.h"
  28#include "cpuid.h"
  29#include "pmu.h"
  30#include "hyperv.h"
  31#include "lapic.h"
  32
  33#include <linux/clocksource.h>
  34#include <linux/interrupt.h>
  35#include <linux/kvm.h>
  36#include <linux/fs.h>
  37#include <linux/vmalloc.h>
  38#include <linux/export.h>
  39#include <linux/moduleparam.h>
  40#include <linux/mman.h>
  41#include <linux/highmem.h>
  42#include <linux/iommu.h>
  43#include <linux/intel-iommu.h>
  44#include <linux/cpufreq.h>
  45#include <linux/user-return-notifier.h>
  46#include <linux/srcu.h>
  47#include <linux/slab.h>
  48#include <linux/perf_event.h>
  49#include <linux/uaccess.h>
  50#include <linux/hash.h>
  51#include <linux/pci.h>
  52#include <linux/timekeeper_internal.h>
  53#include <linux/pvclock_gtod.h>
  54#include <linux/kvm_irqfd.h>
  55#include <linux/irqbypass.h>
  56#include <linux/sched/stat.h>
  57#include <linux/sched/isolation.h>
  58#include <linux/mem_encrypt.h>
  59#include <linux/entry-kvm.h>
  60
  61#include <trace/events/kvm.h>
  62
  63#include <asm/debugreg.h>
  64#include <asm/msr.h>
  65#include <asm/desc.h>
  66#include <asm/mce.h>
  67#include <linux/kernel_stat.h>
  68#include <asm/fpu/internal.h> /* Ugh! */
  69#include <asm/pvclock.h>
  70#include <asm/div64.h>
  71#include <asm/irq_remapping.h>
  72#include <asm/mshyperv.h>
  73#include <asm/hypervisor.h>
  74#include <asm/intel_pt.h>
  75#include <asm/emulate_prefix.h>
  76#include <clocksource/hyperv_timer.h>
  77
  78#define CREATE_TRACE_POINTS
  79#include "trace.h"
  80
  81#define MAX_IO_MSRS 256
  82#define KVM_MAX_MCE_BANKS 32
  83u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  84EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  85
  86#define emul_to_vcpu(ctxt) \
  87        ((struct kvm_vcpu *)(ctxt)->vcpu)
  88
  89/* EFER defaults:
  90 * - enable syscall per default because its emulated by KVM
  91 * - enable LME and LMA per default on 64 bit KVM
  92 */
  93#ifdef CONFIG_X86_64
  94static
  95u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  96#else
  97static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  98#endif
  99
 100static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
 101
 102#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
 103                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 104
 105static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 106static void process_nmi(struct kvm_vcpu *vcpu);
 107static void enter_smm(struct kvm_vcpu *vcpu);
 108static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 109static void store_regs(struct kvm_vcpu *vcpu);
 110static int sync_regs(struct kvm_vcpu *vcpu);
 111
 112struct kvm_x86_ops kvm_x86_ops __read_mostly;
 113EXPORT_SYMBOL_GPL(kvm_x86_ops);
 114
 115static bool __read_mostly ignore_msrs = 0;
 116module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 117
 118static bool __read_mostly report_ignored_msrs = true;
 119module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
 120
 121unsigned int min_timer_period_us = 200;
 122module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 123
 124static bool __read_mostly kvmclock_periodic_sync = true;
 125module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 126
 127bool __read_mostly kvm_has_tsc_control;
 128EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 129u32  __read_mostly kvm_max_guest_tsc_khz;
 130EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 131u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 132EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 133u64  __read_mostly kvm_max_tsc_scaling_ratio;
 134EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 135u64 __read_mostly kvm_default_tsc_scaling_ratio;
 136EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 137
 138/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 139static u32 __read_mostly tsc_tolerance_ppm = 250;
 140module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 141
 142/*
 143 * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
 144 * adaptive tuning starting from default advancment of 1000ns.  '0' disables
 145 * advancement entirely.  Any other value is used as-is and disables adaptive
 146 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
 147 */
 148static int __read_mostly lapic_timer_advance_ns = -1;
 149module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
 150
 151static bool __read_mostly vector_hashing = true;
 152module_param(vector_hashing, bool, S_IRUGO);
 153
 154bool __read_mostly enable_vmware_backdoor = false;
 155module_param(enable_vmware_backdoor, bool, S_IRUGO);
 156EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
 157
 158static bool __read_mostly force_emulation_prefix = false;
 159module_param(force_emulation_prefix, bool, S_IRUGO);
 160
 161int __read_mostly pi_inject_timer = -1;
 162module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
 163
 164#define KVM_NR_SHARED_MSRS 16
 165
 166struct kvm_shared_msrs_global {
 167        int nr;
 168        u32 msrs[KVM_NR_SHARED_MSRS];
 169};
 170
 171struct kvm_shared_msrs {
 172        struct user_return_notifier urn;
 173        bool registered;
 174        struct kvm_shared_msr_values {
 175                u64 host;
 176                u64 curr;
 177        } values[KVM_NR_SHARED_MSRS];
 178};
 179
 180static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 181static struct kvm_shared_msrs __percpu *shared_msrs;
 182
 183#define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
 184                                | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
 185                                | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
 186                                | XFEATURE_MASK_PKRU)
 187
 188u64 __read_mostly host_efer;
 189EXPORT_SYMBOL_GPL(host_efer);
 190
 191bool __read_mostly allow_smaller_maxphyaddr = 0;
 192EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
 193
 194static u64 __read_mostly host_xss;
 195u64 __read_mostly supported_xss;
 196EXPORT_SYMBOL_GPL(supported_xss);
 197
 198struct kvm_stats_debugfs_item debugfs_entries[] = {
 199        VCPU_STAT("pf_fixed", pf_fixed),
 200        VCPU_STAT("pf_guest", pf_guest),
 201        VCPU_STAT("tlb_flush", tlb_flush),
 202        VCPU_STAT("invlpg", invlpg),
 203        VCPU_STAT("exits", exits),
 204        VCPU_STAT("io_exits", io_exits),
 205        VCPU_STAT("mmio_exits", mmio_exits),
 206        VCPU_STAT("signal_exits", signal_exits),
 207        VCPU_STAT("irq_window", irq_window_exits),
 208        VCPU_STAT("nmi_window", nmi_window_exits),
 209        VCPU_STAT("halt_exits", halt_exits),
 210        VCPU_STAT("halt_successful_poll", halt_successful_poll),
 211        VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
 212        VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
 213        VCPU_STAT("halt_wakeup", halt_wakeup),
 214        VCPU_STAT("hypercalls", hypercalls),
 215        VCPU_STAT("request_irq", request_irq_exits),
 216        VCPU_STAT("irq_exits", irq_exits),
 217        VCPU_STAT("host_state_reload", host_state_reload),
 218        VCPU_STAT("fpu_reload", fpu_reload),
 219        VCPU_STAT("insn_emulation", insn_emulation),
 220        VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
 221        VCPU_STAT("irq_injections", irq_injections),
 222        VCPU_STAT("nmi_injections", nmi_injections),
 223        VCPU_STAT("req_event", req_event),
 224        VCPU_STAT("l1d_flush", l1d_flush),
 225        VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
 226        VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
 227        VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
 228        VM_STAT("mmu_pte_write", mmu_pte_write),
 229        VM_STAT("mmu_pte_updated", mmu_pte_updated),
 230        VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
 231        VM_STAT("mmu_flooded", mmu_flooded),
 232        VM_STAT("mmu_recycled", mmu_recycled),
 233        VM_STAT("mmu_cache_miss", mmu_cache_miss),
 234        VM_STAT("mmu_unsync", mmu_unsync),
 235        VM_STAT("remote_tlb_flush", remote_tlb_flush),
 236        VM_STAT("largepages", lpages, .mode = 0444),
 237        VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
 238        VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
 239        { NULL }
 240};
 241
 242u64 __read_mostly host_xcr0;
 243u64 __read_mostly supported_xcr0;
 244EXPORT_SYMBOL_GPL(supported_xcr0);
 245
 246static struct kmem_cache *x86_fpu_cache;
 247
 248static struct kmem_cache *x86_emulator_cache;
 249
 250/*
 251 * When called, it means the previous get/set msr reached an invalid msr.
 252 * Return 0 if we want to ignore/silent this failed msr access, or 1 if we want
 253 * to fail the caller.
 254 */
 255static int kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
 256                                 u64 data, bool write)
 257{
 258        const char *op = write ? "wrmsr" : "rdmsr";
 259
 260        if (ignore_msrs) {
 261                if (report_ignored_msrs)
 262                        vcpu_unimpl(vcpu, "ignored %s: 0x%x data 0x%llx\n",
 263                                    op, msr, data);
 264                /* Mask the error */
 265                return 0;
 266        } else {
 267                vcpu_debug_ratelimited(vcpu, "unhandled %s: 0x%x data 0x%llx\n",
 268                                       op, msr, data);
 269                return 1;
 270        }
 271}
 272
 273static struct kmem_cache *kvm_alloc_emulator_cache(void)
 274{
 275        unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
 276        unsigned int size = sizeof(struct x86_emulate_ctxt);
 277
 278        return kmem_cache_create_usercopy("x86_emulator", size,
 279                                          __alignof__(struct x86_emulate_ctxt),
 280                                          SLAB_ACCOUNT, useroffset,
 281                                          size - useroffset, NULL);
 282}
 283
 284static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 285
 286static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 287{
 288        int i;
 289        for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
 290                vcpu->arch.apf.gfns[i] = ~0;
 291}
 292
 293static void kvm_on_user_return(struct user_return_notifier *urn)
 294{
 295        unsigned slot;
 296        struct kvm_shared_msrs *locals
 297                = container_of(urn, struct kvm_shared_msrs, urn);
 298        struct kvm_shared_msr_values *values;
 299        unsigned long flags;
 300
 301        /*
 302         * Disabling irqs at this point since the following code could be
 303         * interrupted and executed through kvm_arch_hardware_disable()
 304         */
 305        local_irq_save(flags);
 306        if (locals->registered) {
 307                locals->registered = false;
 308                user_return_notifier_unregister(urn);
 309        }
 310        local_irq_restore(flags);
 311        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 312                values = &locals->values[slot];
 313                if (values->host != values->curr) {
 314                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 315                        values->curr = values->host;
 316                }
 317        }
 318}
 319
 320void kvm_define_shared_msr(unsigned slot, u32 msr)
 321{
 322        BUG_ON(slot >= KVM_NR_SHARED_MSRS);
 323        shared_msrs_global.msrs[slot] = msr;
 324        if (slot >= shared_msrs_global.nr)
 325                shared_msrs_global.nr = slot + 1;
 326}
 327EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 328
 329static void kvm_shared_msr_cpu_online(void)
 330{
 331        unsigned int cpu = smp_processor_id();
 332        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 333        u64 value;
 334        int i;
 335
 336        for (i = 0; i < shared_msrs_global.nr; ++i) {
 337                rdmsrl_safe(shared_msrs_global.msrs[i], &value);
 338                smsr->values[i].host = value;
 339                smsr->values[i].curr = value;
 340        }
 341}
 342
 343int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 344{
 345        unsigned int cpu = smp_processor_id();
 346        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 347        int err;
 348
 349        value = (value & mask) | (smsr->values[slot].host & ~mask);
 350        if (value == smsr->values[slot].curr)
 351                return 0;
 352        err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
 353        if (err)
 354                return 1;
 355
 356        smsr->values[slot].curr = value;
 357        if (!smsr->registered) {
 358                smsr->urn.on_user_return = kvm_on_user_return;
 359                user_return_notifier_register(&smsr->urn);
 360                smsr->registered = true;
 361        }
 362        return 0;
 363}
 364EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 365
 366static void drop_user_return_notifiers(void)
 367{
 368        unsigned int cpu = smp_processor_id();
 369        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 370
 371        if (smsr->registered)
 372                kvm_on_user_return(&smsr->urn);
 373}
 374
 375u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 376{
 377        return vcpu->arch.apic_base;
 378}
 379EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 380
 381enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
 382{
 383        return kvm_apic_mode(kvm_get_apic_base(vcpu));
 384}
 385EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
 386
 387int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 388{
 389        enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
 390        enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
 391        u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
 392                (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 393
 394        if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
 395                return 1;
 396        if (!msr_info->host_initiated) {
 397                if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
 398                        return 1;
 399                if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
 400                        return 1;
 401        }
 402
 403        kvm_lapic_set_base(vcpu, msr_info->data);
 404        kvm_recalculate_apic_map(vcpu->kvm);
 405        return 0;
 406}
 407EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 408
 409asmlinkage __visible noinstr void kvm_spurious_fault(void)
 410{
 411        /* Fault while not rebooting.  We want the trace. */
 412        BUG_ON(!kvm_rebooting);
 413}
 414EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 415
 416#define EXCPT_BENIGN            0
 417#define EXCPT_CONTRIBUTORY      1
 418#define EXCPT_PF                2
 419
 420static int exception_class(int vector)
 421{
 422        switch (vector) {
 423        case PF_VECTOR:
 424                return EXCPT_PF;
 425        case DE_VECTOR:
 426        case TS_VECTOR:
 427        case NP_VECTOR:
 428        case SS_VECTOR:
 429        case GP_VECTOR:
 430                return EXCPT_CONTRIBUTORY;
 431        default:
 432                break;
 433        }
 434        return EXCPT_BENIGN;
 435}
 436
 437#define EXCPT_FAULT             0
 438#define EXCPT_TRAP              1
 439#define EXCPT_ABORT             2
 440#define EXCPT_INTERRUPT         3
 441
 442static int exception_type(int vector)
 443{
 444        unsigned int mask;
 445
 446        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 447                return EXCPT_INTERRUPT;
 448
 449        mask = 1 << vector;
 450
 451        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 452        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 453                return EXCPT_TRAP;
 454
 455        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 456                return EXCPT_ABORT;
 457
 458        /* Reserved exceptions will result in fault */
 459        return EXCPT_FAULT;
 460}
 461
 462void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
 463{
 464        unsigned nr = vcpu->arch.exception.nr;
 465        bool has_payload = vcpu->arch.exception.has_payload;
 466        unsigned long payload = vcpu->arch.exception.payload;
 467
 468        if (!has_payload)
 469                return;
 470
 471        switch (nr) {
 472        case DB_VECTOR:
 473                /*
 474                 * "Certain debug exceptions may clear bit 0-3.  The
 475                 * remaining contents of the DR6 register are never
 476                 * cleared by the processor".
 477                 */
 478                vcpu->arch.dr6 &= ~DR_TRAP_BITS;
 479                /*
 480                 * DR6.RTM is set by all #DB exceptions that don't clear it.
 481                 */
 482                vcpu->arch.dr6 |= DR6_RTM;
 483                vcpu->arch.dr6 |= payload;
 484                /*
 485                 * Bit 16 should be set in the payload whenever the #DB
 486                 * exception should clear DR6.RTM. This makes the payload
 487                 * compatible with the pending debug exceptions under VMX.
 488                 * Though not currently documented in the SDM, this also
 489                 * makes the payload compatible with the exit qualification
 490                 * for #DB exceptions under VMX.
 491                 */
 492                vcpu->arch.dr6 ^= payload & DR6_RTM;
 493
 494                /*
 495                 * The #DB payload is defined as compatible with the 'pending
 496                 * debug exceptions' field under VMX, not DR6. While bit 12 is
 497                 * defined in the 'pending debug exceptions' field (enabled
 498                 * breakpoint), it is reserved and must be zero in DR6.
 499                 */
 500                vcpu->arch.dr6 &= ~BIT(12);
 501                break;
 502        case PF_VECTOR:
 503                vcpu->arch.cr2 = payload;
 504                break;
 505        }
 506
 507        vcpu->arch.exception.has_payload = false;
 508        vcpu->arch.exception.payload = 0;
 509}
 510EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
 511
 512static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 513                unsigned nr, bool has_error, u32 error_code,
 514                bool has_payload, unsigned long payload, bool reinject)
 515{
 516        u32 prev_nr;
 517        int class1, class2;
 518
 519        kvm_make_request(KVM_REQ_EVENT, vcpu);
 520
 521        if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 522        queue:
 523                if (has_error && !is_protmode(vcpu))
 524                        has_error = false;
 525                if (reinject) {
 526                        /*
 527                         * On vmentry, vcpu->arch.exception.pending is only
 528                         * true if an event injection was blocked by
 529                         * nested_run_pending.  In that case, however,
 530                         * vcpu_enter_guest requests an immediate exit,
 531                         * and the guest shouldn't proceed far enough to
 532                         * need reinjection.
 533                         */
 534                        WARN_ON_ONCE(vcpu->arch.exception.pending);
 535                        vcpu->arch.exception.injected = true;
 536                        if (WARN_ON_ONCE(has_payload)) {
 537                                /*
 538                                 * A reinjected event has already
 539                                 * delivered its payload.
 540                                 */
 541                                has_payload = false;
 542                                payload = 0;
 543                        }
 544                } else {
 545                        vcpu->arch.exception.pending = true;
 546                        vcpu->arch.exception.injected = false;
 547                }
 548                vcpu->arch.exception.has_error_code = has_error;
 549                vcpu->arch.exception.nr = nr;
 550                vcpu->arch.exception.error_code = error_code;
 551                vcpu->arch.exception.has_payload = has_payload;
 552                vcpu->arch.exception.payload = payload;
 553                if (!is_guest_mode(vcpu))
 554                        kvm_deliver_exception_payload(vcpu);
 555                return;
 556        }
 557
 558        /* to check exception */
 559        prev_nr = vcpu->arch.exception.nr;
 560        if (prev_nr == DF_VECTOR) {
 561                /* triple fault -> shutdown */
 562                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 563                return;
 564        }
 565        class1 = exception_class(prev_nr);
 566        class2 = exception_class(nr);
 567        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 568                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 569                /*
 570                 * Generate double fault per SDM Table 5-5.  Set
 571                 * exception.pending = true so that the double fault
 572                 * can trigger a nested vmexit.
 573                 */
 574                vcpu->arch.exception.pending = true;
 575                vcpu->arch.exception.injected = false;
 576                vcpu->arch.exception.has_error_code = true;
 577                vcpu->arch.exception.nr = DF_VECTOR;
 578                vcpu->arch.exception.error_code = 0;
 579                vcpu->arch.exception.has_payload = false;
 580                vcpu->arch.exception.payload = 0;
 581        } else
 582                /* replace previous exception with a new one in a hope
 583                   that instruction re-execution will regenerate lost
 584                   exception */
 585                goto queue;
 586}
 587
 588void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 589{
 590        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
 591}
 592EXPORT_SYMBOL_GPL(kvm_queue_exception);
 593
 594void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 595{
 596        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
 597}
 598EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 599
 600void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
 601                           unsigned long payload)
 602{
 603        kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
 604}
 605EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
 606
 607static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
 608                                    u32 error_code, unsigned long payload)
 609{
 610        kvm_multiple_exception(vcpu, nr, true, error_code,
 611                               true, payload, false);
 612}
 613
 614int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 615{
 616        if (err)
 617                kvm_inject_gp(vcpu, 0);
 618        else
 619                return kvm_skip_emulated_instruction(vcpu);
 620
 621        return 1;
 622}
 623EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 624
 625void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 626{
 627        ++vcpu->stat.pf_guest;
 628        vcpu->arch.exception.nested_apf =
 629                is_guest_mode(vcpu) && fault->async_page_fault;
 630        if (vcpu->arch.exception.nested_apf) {
 631                vcpu->arch.apf.nested_apf_token = fault->address;
 632                kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 633        } else {
 634                kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
 635                                        fault->address);
 636        }
 637}
 638EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 639
 640bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
 641                                    struct x86_exception *fault)
 642{
 643        struct kvm_mmu *fault_mmu;
 644        WARN_ON_ONCE(fault->vector != PF_VECTOR);
 645
 646        fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
 647                                               vcpu->arch.walk_mmu;
 648
 649        /*
 650         * Invalidate the TLB entry for the faulting address, if it exists,
 651         * else the access will fault indefinitely (and to emulate hardware).
 652         */
 653        if ((fault->error_code & PFERR_PRESENT_MASK) &&
 654            !(fault->error_code & PFERR_RSVD_MASK))
 655                kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
 656                                       fault_mmu->root_hpa);
 657
 658        fault_mmu->inject_page_fault(vcpu, fault);
 659        return fault->nested_page_fault;
 660}
 661EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
 662
 663void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 664{
 665        atomic_inc(&vcpu->arch.nmi_queued);
 666        kvm_make_request(KVM_REQ_NMI, vcpu);
 667}
 668EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 669
 670void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 671{
 672        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
 673}
 674EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 675
 676void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 677{
 678        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
 679}
 680EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 681
 682/*
 683 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 684 * a #GP and return false.
 685 */
 686bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 687{
 688        if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
 689                return true;
 690        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 691        return false;
 692}
 693EXPORT_SYMBOL_GPL(kvm_require_cpl);
 694
 695bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 696{
 697        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 698                return true;
 699
 700        kvm_queue_exception(vcpu, UD_VECTOR);
 701        return false;
 702}
 703EXPORT_SYMBOL_GPL(kvm_require_dr);
 704
 705/*
 706 * This function will be used to read from the physical memory of the currently
 707 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
 708 * can read from guest physical or from the guest's guest physical memory.
 709 */
 710int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 711                            gfn_t ngfn, void *data, int offset, int len,
 712                            u32 access)
 713{
 714        struct x86_exception exception;
 715        gfn_t real_gfn;
 716        gpa_t ngpa;
 717
 718        ngpa     = gfn_to_gpa(ngfn);
 719        real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
 720        if (real_gfn == UNMAPPED_GVA)
 721                return -EFAULT;
 722
 723        real_gfn = gpa_to_gfn(real_gfn);
 724
 725        return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
 726}
 727EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 728
 729static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 730                               void *data, int offset, int len, u32 access)
 731{
 732        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 733                                       data, offset, len, access);
 734}
 735
 736static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
 737{
 738        return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
 739               rsvd_bits(1, 2);
 740}
 741
 742/*
 743 * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
 744 */
 745int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 746{
 747        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 748        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 749        int i;
 750        int ret;
 751        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 752
 753        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 754                                      offset * sizeof(u64), sizeof(pdpte),
 755                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 756        if (ret < 0) {
 757                ret = 0;
 758                goto out;
 759        }
 760        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 761                if ((pdpte[i] & PT_PRESENT_MASK) &&
 762                    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
 763                        ret = 0;
 764                        goto out;
 765                }
 766        }
 767        ret = 1;
 768
 769        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 770        kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 771
 772out:
 773
 774        return ret;
 775}
 776EXPORT_SYMBOL_GPL(load_pdptrs);
 777
 778bool pdptrs_changed(struct kvm_vcpu *vcpu)
 779{
 780        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 781        int offset;
 782        gfn_t gfn;
 783        int r;
 784
 785        if (!is_pae_paging(vcpu))
 786                return false;
 787
 788        if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
 789                return true;
 790
 791        gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
 792        offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
 793        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 794                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 795        if (r < 0)
 796                return true;
 797
 798        return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 799}
 800EXPORT_SYMBOL_GPL(pdptrs_changed);
 801
 802int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 803{
 804        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 805        unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
 806        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
 807
 808        cr0 |= X86_CR0_ET;
 809
 810#ifdef CONFIG_X86_64
 811        if (cr0 & 0xffffffff00000000UL)
 812                return 1;
 813#endif
 814
 815        cr0 &= ~CR0_RESERVED_BITS;
 816
 817        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 818                return 1;
 819
 820        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 821                return 1;
 822
 823#ifdef CONFIG_X86_64
 824        if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
 825            (cr0 & X86_CR0_PG)) {
 826                int cs_db, cs_l;
 827
 828                if (!is_pae(vcpu))
 829                        return 1;
 830                kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 831                if (cs_l)
 832                        return 1;
 833        }
 834#endif
 835        if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
 836            is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
 837            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
 838                return 1;
 839
 840        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 841                return 1;
 842
 843        kvm_x86_ops.set_cr0(vcpu, cr0);
 844
 845        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 846                kvm_clear_async_pf_completion_queue(vcpu);
 847                kvm_async_pf_hash_reset(vcpu);
 848        }
 849
 850        if ((cr0 ^ old_cr0) & update_bits)
 851                kvm_mmu_reset_context(vcpu);
 852
 853        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 854            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 855            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 856                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 857
 858        return 0;
 859}
 860EXPORT_SYMBOL_GPL(kvm_set_cr0);
 861
 862void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 863{
 864        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 865}
 866EXPORT_SYMBOL_GPL(kvm_lmsw);
 867
 868void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
 869{
 870        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 871
 872                if (vcpu->arch.xcr0 != host_xcr0)
 873                        xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 874
 875                if (vcpu->arch.xsaves_enabled &&
 876                    vcpu->arch.ia32_xss != host_xss)
 877                        wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
 878        }
 879
 880        if (static_cpu_has(X86_FEATURE_PKU) &&
 881            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 882             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
 883            vcpu->arch.pkru != vcpu->arch.host_pkru)
 884                __write_pkru(vcpu->arch.pkru);
 885}
 886EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
 887
 888void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
 889{
 890        if (static_cpu_has(X86_FEATURE_PKU) &&
 891            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 892             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
 893                vcpu->arch.pkru = rdpkru();
 894                if (vcpu->arch.pkru != vcpu->arch.host_pkru)
 895                        __write_pkru(vcpu->arch.host_pkru);
 896        }
 897
 898        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 899
 900                if (vcpu->arch.xcr0 != host_xcr0)
 901                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 902
 903                if (vcpu->arch.xsaves_enabled &&
 904                    vcpu->arch.ia32_xss != host_xss)
 905                        wrmsrl(MSR_IA32_XSS, host_xss);
 906        }
 907
 908}
 909EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
 910
 911static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 912{
 913        u64 xcr0 = xcr;
 914        u64 old_xcr0 = vcpu->arch.xcr0;
 915        u64 valid_bits;
 916
 917        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 918        if (index != XCR_XFEATURE_ENABLED_MASK)
 919                return 1;
 920        if (!(xcr0 & XFEATURE_MASK_FP))
 921                return 1;
 922        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 923                return 1;
 924
 925        /*
 926         * Do not allow the guest to set bits that we do not support
 927         * saving.  However, xcr0 bit 0 is always set, even if the
 928         * emulated CPU does not support XSAVE (see fx_init).
 929         */
 930        valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 931        if (xcr0 & ~valid_bits)
 932                return 1;
 933
 934        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
 935            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
 936                return 1;
 937
 938        if (xcr0 & XFEATURE_MASK_AVX512) {
 939                if (!(xcr0 & XFEATURE_MASK_YMM))
 940                        return 1;
 941                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
 942                        return 1;
 943        }
 944        vcpu->arch.xcr0 = xcr0;
 945
 946        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
 947                kvm_update_cpuid_runtime(vcpu);
 948        return 0;
 949}
 950
 951int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 952{
 953        if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
 954            __kvm_set_xcr(vcpu, index, xcr)) {
 955                kvm_inject_gp(vcpu, 0);
 956                return 1;
 957        }
 958        return 0;
 959}
 960EXPORT_SYMBOL_GPL(kvm_set_xcr);
 961
 962int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 963{
 964        if (cr4 & cr4_reserved_bits)
 965                return -EINVAL;
 966
 967        if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
 968                return -EINVAL;
 969
 970        return 0;
 971}
 972EXPORT_SYMBOL_GPL(kvm_valid_cr4);
 973
 974int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 975{
 976        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 977        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
 978                                   X86_CR4_SMEP;
 979        unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
 980
 981        if (kvm_valid_cr4(vcpu, cr4))
 982                return 1;
 983
 984        if (is_long_mode(vcpu)) {
 985                if (!(cr4 & X86_CR4_PAE))
 986                        return 1;
 987                if ((cr4 ^ old_cr4) & X86_CR4_LA57)
 988                        return 1;
 989        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 990                   && ((cr4 ^ old_cr4) & pdptr_bits)
 991                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 992                                   kvm_read_cr3(vcpu)))
 993                return 1;
 994
 995        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 996                if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
 997                        return 1;
 998
 999                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1000                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1001                        return 1;
1002        }
1003
1004        if (kvm_x86_ops.set_cr4(vcpu, cr4))
1005                return 1;
1006
1007        if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1008            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1009                kvm_mmu_reset_context(vcpu);
1010
1011        if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1012                kvm_update_cpuid_runtime(vcpu);
1013
1014        return 0;
1015}
1016EXPORT_SYMBOL_GPL(kvm_set_cr4);
1017
1018int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1019{
1020        bool skip_tlb_flush = false;
1021#ifdef CONFIG_X86_64
1022        bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1023
1024        if (pcid_enabled) {
1025                skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1026                cr3 &= ~X86_CR3_PCID_NOFLUSH;
1027        }
1028#endif
1029
1030        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1031                if (!skip_tlb_flush) {
1032                        kvm_mmu_sync_roots(vcpu);
1033                        kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1034                }
1035                return 0;
1036        }
1037
1038        if (is_long_mode(vcpu) &&
1039            (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1040                return 1;
1041        else if (is_pae_paging(vcpu) &&
1042                 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1043                return 1;
1044
1045        kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1046        vcpu->arch.cr3 = cr3;
1047        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1048
1049        return 0;
1050}
1051EXPORT_SYMBOL_GPL(kvm_set_cr3);
1052
1053int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1054{
1055        if (cr8 & CR8_RESERVED_BITS)
1056                return 1;
1057        if (lapic_in_kernel(vcpu))
1058                kvm_lapic_set_tpr(vcpu, cr8);
1059        else
1060                vcpu->arch.cr8 = cr8;
1061        return 0;
1062}
1063EXPORT_SYMBOL_GPL(kvm_set_cr8);
1064
1065unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1066{
1067        if (lapic_in_kernel(vcpu))
1068                return kvm_lapic_get_cr8(vcpu);
1069        else
1070                return vcpu->arch.cr8;
1071}
1072EXPORT_SYMBOL_GPL(kvm_get_cr8);
1073
1074static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1075{
1076        int i;
1077
1078        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1079                for (i = 0; i < KVM_NR_DB_REGS; i++)
1080                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1081                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1082        }
1083}
1084
1085void kvm_update_dr7(struct kvm_vcpu *vcpu)
1086{
1087        unsigned long dr7;
1088
1089        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1090                dr7 = vcpu->arch.guest_debug_dr7;
1091        else
1092                dr7 = vcpu->arch.dr7;
1093        kvm_x86_ops.set_dr7(vcpu, dr7);
1094        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1095        if (dr7 & DR7_BP_EN_MASK)
1096                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1097}
1098EXPORT_SYMBOL_GPL(kvm_update_dr7);
1099
1100static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1101{
1102        u64 fixed = DR6_FIXED_1;
1103
1104        if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1105                fixed |= DR6_RTM;
1106        return fixed;
1107}
1108
1109static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1110{
1111        size_t size = ARRAY_SIZE(vcpu->arch.db);
1112
1113        switch (dr) {
1114        case 0 ... 3:
1115                vcpu->arch.db[array_index_nospec(dr, size)] = val;
1116                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1117                        vcpu->arch.eff_db[dr] = val;
1118                break;
1119        case 4:
1120        case 6:
1121                if (!kvm_dr6_valid(val))
1122                        return -1; /* #GP */
1123                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1124                break;
1125        case 5:
1126        default: /* 7 */
1127                if (!kvm_dr7_valid(val))
1128                        return -1; /* #GP */
1129                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1130                kvm_update_dr7(vcpu);
1131                break;
1132        }
1133
1134        return 0;
1135}
1136
1137int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1138{
1139        if (__kvm_set_dr(vcpu, dr, val)) {
1140                kvm_inject_gp(vcpu, 0);
1141                return 1;
1142        }
1143        return 0;
1144}
1145EXPORT_SYMBOL_GPL(kvm_set_dr);
1146
1147int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1148{
1149        size_t size = ARRAY_SIZE(vcpu->arch.db);
1150
1151        switch (dr) {
1152        case 0 ... 3:
1153                *val = vcpu->arch.db[array_index_nospec(dr, size)];
1154                break;
1155        case 4:
1156        case 6:
1157                *val = vcpu->arch.dr6;
1158                break;
1159        case 5:
1160        default: /* 7 */
1161                *val = vcpu->arch.dr7;
1162                break;
1163        }
1164        return 0;
1165}
1166EXPORT_SYMBOL_GPL(kvm_get_dr);
1167
1168bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1169{
1170        u32 ecx = kvm_rcx_read(vcpu);
1171        u64 data;
1172        int err;
1173
1174        err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1175        if (err)
1176                return err;
1177        kvm_rax_write(vcpu, (u32)data);
1178        kvm_rdx_write(vcpu, data >> 32);
1179        return err;
1180}
1181EXPORT_SYMBOL_GPL(kvm_rdpmc);
1182
1183/*
1184 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1185 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1186 *
1187 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1188 * extract the supported MSRs from the related const lists.
1189 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1190 * capabilities of the host cpu. This capabilities test skips MSRs that are
1191 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1192 * may depend on host virtualization features rather than host cpu features.
1193 */
1194
1195static const u32 msrs_to_save_all[] = {
1196        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1197        MSR_STAR,
1198#ifdef CONFIG_X86_64
1199        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1200#endif
1201        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1202        MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1203        MSR_IA32_SPEC_CTRL,
1204        MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1205        MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1206        MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1207        MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1208        MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1209        MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1210        MSR_IA32_UMWAIT_CONTROL,
1211
1212        MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1213        MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1214        MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1215        MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1216        MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1217        MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1218        MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1219        MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1220        MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1221        MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1222        MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1223        MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1224        MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1225        MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1226        MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1227        MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1228        MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1229        MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1230        MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1231        MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1232        MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1233        MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1234};
1235
1236static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1237static unsigned num_msrs_to_save;
1238
1239static const u32 emulated_msrs_all[] = {
1240        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1241        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1242        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1243        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1244        HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1245        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1246        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1247        HV_X64_MSR_RESET,
1248        HV_X64_MSR_VP_INDEX,
1249        HV_X64_MSR_VP_RUNTIME,
1250        HV_X64_MSR_SCONTROL,
1251        HV_X64_MSR_STIMER0_CONFIG,
1252        HV_X64_MSR_VP_ASSIST_PAGE,
1253        HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1254        HV_X64_MSR_TSC_EMULATION_STATUS,
1255        HV_X64_MSR_SYNDBG_OPTIONS,
1256        HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1257        HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1258        HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1259
1260        MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1261        MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1262
1263        MSR_IA32_TSC_ADJUST,
1264        MSR_IA32_TSCDEADLINE,
1265        MSR_IA32_ARCH_CAPABILITIES,
1266        MSR_IA32_PERF_CAPABILITIES,
1267        MSR_IA32_MISC_ENABLE,
1268        MSR_IA32_MCG_STATUS,
1269        MSR_IA32_MCG_CTL,
1270        MSR_IA32_MCG_EXT_CTL,
1271        MSR_IA32_SMBASE,
1272        MSR_SMI_COUNT,
1273        MSR_PLATFORM_INFO,
1274        MSR_MISC_FEATURES_ENABLES,
1275        MSR_AMD64_VIRT_SPEC_CTRL,
1276        MSR_IA32_POWER_CTL,
1277        MSR_IA32_UCODE_REV,
1278
1279        /*
1280         * The following list leaves out MSRs whose values are determined
1281         * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1282         * We always support the "true" VMX control MSRs, even if the host
1283         * processor does not, so I am putting these registers here rather
1284         * than in msrs_to_save_all.
1285         */
1286        MSR_IA32_VMX_BASIC,
1287        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1288        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1289        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1290        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1291        MSR_IA32_VMX_MISC,
1292        MSR_IA32_VMX_CR0_FIXED0,
1293        MSR_IA32_VMX_CR4_FIXED0,
1294        MSR_IA32_VMX_VMCS_ENUM,
1295        MSR_IA32_VMX_PROCBASED_CTLS2,
1296        MSR_IA32_VMX_EPT_VPID_CAP,
1297        MSR_IA32_VMX_VMFUNC,
1298
1299        MSR_K7_HWCR,
1300        MSR_KVM_POLL_CONTROL,
1301};
1302
1303static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1304static unsigned num_emulated_msrs;
1305
1306/*
1307 * List of msr numbers which are used to expose MSR-based features that
1308 * can be used by a hypervisor to validate requested CPU features.
1309 */
1310static const u32 msr_based_features_all[] = {
1311        MSR_IA32_VMX_BASIC,
1312        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1313        MSR_IA32_VMX_PINBASED_CTLS,
1314        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1315        MSR_IA32_VMX_PROCBASED_CTLS,
1316        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1317        MSR_IA32_VMX_EXIT_CTLS,
1318        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1319        MSR_IA32_VMX_ENTRY_CTLS,
1320        MSR_IA32_VMX_MISC,
1321        MSR_IA32_VMX_CR0_FIXED0,
1322        MSR_IA32_VMX_CR0_FIXED1,
1323        MSR_IA32_VMX_CR4_FIXED0,
1324        MSR_IA32_VMX_CR4_FIXED1,
1325        MSR_IA32_VMX_VMCS_ENUM,
1326        MSR_IA32_VMX_PROCBASED_CTLS2,
1327        MSR_IA32_VMX_EPT_VPID_CAP,
1328        MSR_IA32_VMX_VMFUNC,
1329
1330        MSR_F10H_DECFG,
1331        MSR_IA32_UCODE_REV,
1332        MSR_IA32_ARCH_CAPABILITIES,
1333        MSR_IA32_PERF_CAPABILITIES,
1334};
1335
1336static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1337static unsigned int num_msr_based_features;
1338
1339static u64 kvm_get_arch_capabilities(void)
1340{
1341        u64 data = 0;
1342
1343        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1344                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1345
1346        /*
1347         * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1348         * the nested hypervisor runs with NX huge pages.  If it is not,
1349         * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1350         * L1 guests, so it need not worry about its own (L2) guests.
1351         */
1352        data |= ARCH_CAP_PSCHANGE_MC_NO;
1353
1354        /*
1355         * If we're doing cache flushes (either "always" or "cond")
1356         * we will do one whenever the guest does a vmlaunch/vmresume.
1357         * If an outer hypervisor is doing the cache flush for us
1358         * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1359         * capability to the guest too, and if EPT is disabled we're not
1360         * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1361         * require a nested hypervisor to do a flush of its own.
1362         */
1363        if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1364                data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1365
1366        if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1367                data |= ARCH_CAP_RDCL_NO;
1368        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1369                data |= ARCH_CAP_SSB_NO;
1370        if (!boot_cpu_has_bug(X86_BUG_MDS))
1371                data |= ARCH_CAP_MDS_NO;
1372
1373        /*
1374         * On TAA affected systems:
1375         *      - nothing to do if TSX is disabled on the host.
1376         *      - we emulate TSX_CTRL if present on the host.
1377         *        This lets the guest use VERW to clear CPU buffers.
1378         */
1379        if (!boot_cpu_has(X86_FEATURE_RTM))
1380                data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1381        else if (!boot_cpu_has_bug(X86_BUG_TAA))
1382                data |= ARCH_CAP_TAA_NO;
1383
1384        return data;
1385}
1386
1387static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1388{
1389        switch (msr->index) {
1390        case MSR_IA32_ARCH_CAPABILITIES:
1391                msr->data = kvm_get_arch_capabilities();
1392                break;
1393        case MSR_IA32_UCODE_REV:
1394                rdmsrl_safe(msr->index, &msr->data);
1395                break;
1396        default:
1397                return kvm_x86_ops.get_msr_feature(msr);
1398        }
1399        return 0;
1400}
1401
1402static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1403{
1404        struct kvm_msr_entry msr;
1405        int r;
1406
1407        msr.index = index;
1408        r = kvm_get_msr_feature(&msr);
1409
1410        if (r == KVM_MSR_RET_INVALID) {
1411                /* Unconditionally clear the output for simplicity */
1412                *data = 0;
1413                r = kvm_msr_ignored_check(vcpu, index, 0, false);
1414        }
1415
1416        if (r)
1417                return r;
1418
1419        *data = msr.data;
1420
1421        return 0;
1422}
1423
1424static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1425{
1426        if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1427                return false;
1428
1429        if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1430                return false;
1431
1432        if (efer & (EFER_LME | EFER_LMA) &&
1433            !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1434                return false;
1435
1436        if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1437                return false;
1438
1439        return true;
1440
1441}
1442bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1443{
1444        if (efer & efer_reserved_bits)
1445                return false;
1446
1447        return __kvm_valid_efer(vcpu, efer);
1448}
1449EXPORT_SYMBOL_GPL(kvm_valid_efer);
1450
1451static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1452{
1453        u64 old_efer = vcpu->arch.efer;
1454        u64 efer = msr_info->data;
1455
1456        if (efer & efer_reserved_bits)
1457                return 1;
1458
1459        if (!msr_info->host_initiated) {
1460                if (!__kvm_valid_efer(vcpu, efer))
1461                        return 1;
1462
1463                if (is_paging(vcpu) &&
1464                    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1465                        return 1;
1466        }
1467
1468        efer &= ~EFER_LMA;
1469        efer |= vcpu->arch.efer & EFER_LMA;
1470
1471        kvm_x86_ops.set_efer(vcpu, efer);
1472
1473        /* Update reserved bits */
1474        if ((efer ^ old_efer) & EFER_NX)
1475                kvm_mmu_reset_context(vcpu);
1476
1477        return 0;
1478}
1479
1480void kvm_enable_efer_bits(u64 mask)
1481{
1482       efer_reserved_bits &= ~mask;
1483}
1484EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1485
1486/*
1487 * Write @data into the MSR specified by @index.  Select MSR specific fault
1488 * checks are bypassed if @host_initiated is %true.
1489 * Returns 0 on success, non-0 otherwise.
1490 * Assumes vcpu_load() was already called.
1491 */
1492static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1493                         bool host_initiated)
1494{
1495        struct msr_data msr;
1496
1497        switch (index) {
1498        case MSR_FS_BASE:
1499        case MSR_GS_BASE:
1500        case MSR_KERNEL_GS_BASE:
1501        case MSR_CSTAR:
1502        case MSR_LSTAR:
1503                if (is_noncanonical_address(data, vcpu))
1504                        return 1;
1505                break;
1506        case MSR_IA32_SYSENTER_EIP:
1507        case MSR_IA32_SYSENTER_ESP:
1508                /*
1509                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1510                 * non-canonical address is written on Intel but not on
1511                 * AMD (which ignores the top 32-bits, because it does
1512                 * not implement 64-bit SYSENTER).
1513                 *
1514                 * 64-bit code should hence be able to write a non-canonical
1515                 * value on AMD.  Making the address canonical ensures that
1516                 * vmentry does not fail on Intel after writing a non-canonical
1517                 * value, and that something deterministic happens if the guest
1518                 * invokes 64-bit SYSENTER.
1519                 */
1520                data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1521        }
1522
1523        msr.data = data;
1524        msr.index = index;
1525        msr.host_initiated = host_initiated;
1526
1527        return kvm_x86_ops.set_msr(vcpu, &msr);
1528}
1529
1530static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1531                                     u32 index, u64 data, bool host_initiated)
1532{
1533        int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1534
1535        if (ret == KVM_MSR_RET_INVALID)
1536                ret = kvm_msr_ignored_check(vcpu, index, data, true);
1537
1538        return ret;
1539}
1540
1541/*
1542 * Read the MSR specified by @index into @data.  Select MSR specific fault
1543 * checks are bypassed if @host_initiated is %true.
1544 * Returns 0 on success, non-0 otherwise.
1545 * Assumes vcpu_load() was already called.
1546 */
1547int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1548                  bool host_initiated)
1549{
1550        struct msr_data msr;
1551        int ret;
1552
1553        msr.index = index;
1554        msr.host_initiated = host_initiated;
1555
1556        ret = kvm_x86_ops.get_msr(vcpu, &msr);
1557        if (!ret)
1558                *data = msr.data;
1559        return ret;
1560}
1561
1562static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1563                                     u32 index, u64 *data, bool host_initiated)
1564{
1565        int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1566
1567        if (ret == KVM_MSR_RET_INVALID) {
1568                /* Unconditionally clear *data for simplicity */
1569                *data = 0;
1570                ret = kvm_msr_ignored_check(vcpu, index, 0, false);
1571        }
1572
1573        return ret;
1574}
1575
1576int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1577{
1578        return kvm_get_msr_ignored_check(vcpu, index, data, false);
1579}
1580EXPORT_SYMBOL_GPL(kvm_get_msr);
1581
1582int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1583{
1584        return kvm_set_msr_ignored_check(vcpu, index, data, false);
1585}
1586EXPORT_SYMBOL_GPL(kvm_set_msr);
1587
1588int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1589{
1590        u32 ecx = kvm_rcx_read(vcpu);
1591        u64 data;
1592
1593        if (kvm_get_msr(vcpu, ecx, &data)) {
1594                trace_kvm_msr_read_ex(ecx);
1595                kvm_inject_gp(vcpu, 0);
1596                return 1;
1597        }
1598
1599        trace_kvm_msr_read(ecx, data);
1600
1601        kvm_rax_write(vcpu, data & -1u);
1602        kvm_rdx_write(vcpu, (data >> 32) & -1u);
1603        return kvm_skip_emulated_instruction(vcpu);
1604}
1605EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1606
1607int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1608{
1609        u32 ecx = kvm_rcx_read(vcpu);
1610        u64 data = kvm_read_edx_eax(vcpu);
1611
1612        if (kvm_set_msr(vcpu, ecx, data)) {
1613                trace_kvm_msr_write_ex(ecx, data);
1614                kvm_inject_gp(vcpu, 0);
1615                return 1;
1616        }
1617
1618        trace_kvm_msr_write(ecx, data);
1619        return kvm_skip_emulated_instruction(vcpu);
1620}
1621EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1622
1623bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1624{
1625        return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1626                xfer_to_guest_mode_work_pending();
1627}
1628EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1629
1630/*
1631 * The fast path for frequent and performance sensitive wrmsr emulation,
1632 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1633 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1634 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1635 * other cases which must be called after interrupts are enabled on the host.
1636 */
1637static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1638{
1639        if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1640                return 1;
1641
1642        if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1643                ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1644                ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1645                ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1646
1647                data &= ~(1 << 12);
1648                kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1649                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1650                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1651                trace_kvm_apic_write(APIC_ICR, (u32)data);
1652                return 0;
1653        }
1654
1655        return 1;
1656}
1657
1658static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1659{
1660        if (!kvm_can_use_hv_timer(vcpu))
1661                return 1;
1662
1663        kvm_set_lapic_tscdeadline_msr(vcpu, data);
1664        return 0;
1665}
1666
1667fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1668{
1669        u32 msr = kvm_rcx_read(vcpu);
1670        u64 data;
1671        fastpath_t ret = EXIT_FASTPATH_NONE;
1672
1673        switch (msr) {
1674        case APIC_BASE_MSR + (APIC_ICR >> 4):
1675                data = kvm_read_edx_eax(vcpu);
1676                if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1677                        kvm_skip_emulated_instruction(vcpu);
1678                        ret = EXIT_FASTPATH_EXIT_HANDLED;
1679                }
1680                break;
1681        case MSR_IA32_TSCDEADLINE:
1682                data = kvm_read_edx_eax(vcpu);
1683                if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1684                        kvm_skip_emulated_instruction(vcpu);
1685                        ret = EXIT_FASTPATH_REENTER_GUEST;
1686                }
1687                break;
1688        default:
1689                break;
1690        }
1691
1692        if (ret != EXIT_FASTPATH_NONE)
1693                trace_kvm_msr_write(msr, data);
1694
1695        return ret;
1696}
1697EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1698
1699/*
1700 * Adapt set_msr() to msr_io()'s calling convention
1701 */
1702static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703{
1704        return kvm_get_msr_ignored_check(vcpu, index, data, true);
1705}
1706
1707static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1708{
1709        return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1710}
1711
1712#ifdef CONFIG_X86_64
1713struct pvclock_clock {
1714        int vclock_mode;
1715        u64 cycle_last;
1716        u64 mask;
1717        u32 mult;
1718        u32 shift;
1719        u64 base_cycles;
1720        u64 offset;
1721};
1722
1723struct pvclock_gtod_data {
1724        seqcount_t      seq;
1725
1726        struct pvclock_clock clock; /* extract of a clocksource struct */
1727        struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1728
1729        ktime_t         offs_boot;
1730        u64             wall_time_sec;
1731};
1732
1733static struct pvclock_gtod_data pvclock_gtod_data;
1734
1735static void update_pvclock_gtod(struct timekeeper *tk)
1736{
1737        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1738
1739        write_seqcount_begin(&vdata->seq);
1740
1741        /* copy pvclock gtod data */
1742        vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1743        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1744        vdata->clock.mask               = tk->tkr_mono.mask;
1745        vdata->clock.mult               = tk->tkr_mono.mult;
1746        vdata->clock.shift              = tk->tkr_mono.shift;
1747        vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1748        vdata->clock.offset             = tk->tkr_mono.base;
1749
1750        vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1751        vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1752        vdata->raw_clock.mask           = tk->tkr_raw.mask;
1753        vdata->raw_clock.mult           = tk->tkr_raw.mult;
1754        vdata->raw_clock.shift          = tk->tkr_raw.shift;
1755        vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1756        vdata->raw_clock.offset         = tk->tkr_raw.base;
1757
1758        vdata->wall_time_sec            = tk->xtime_sec;
1759
1760        vdata->offs_boot                = tk->offs_boot;
1761
1762        write_seqcount_end(&vdata->seq);
1763}
1764
1765static s64 get_kvmclock_base_ns(void)
1766{
1767        /* Count up from boot time, but with the frequency of the raw clock.  */
1768        return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1769}
1770#else
1771static s64 get_kvmclock_base_ns(void)
1772{
1773        /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1774        return ktime_get_boottime_ns();
1775}
1776#endif
1777
1778void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1779{
1780        kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1781        kvm_vcpu_kick(vcpu);
1782}
1783
1784static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1785{
1786        int version;
1787        int r;
1788        struct pvclock_wall_clock wc;
1789        u64 wall_nsec;
1790
1791        if (!wall_clock)
1792                return;
1793
1794        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1795        if (r)
1796                return;
1797
1798        if (version & 1)
1799                ++version;  /* first time write, random junk */
1800
1801        ++version;
1802
1803        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1804                return;
1805
1806        /*
1807         * The guest calculates current wall clock time by adding
1808         * system time (updated by kvm_guest_time_update below) to the
1809         * wall clock specified here.  We do the reverse here.
1810         */
1811        wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1812
1813        wc.nsec = do_div(wall_nsec, 1000000000);
1814        wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1815        wc.version = version;
1816
1817        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1818
1819        version++;
1820        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1821}
1822
1823static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1824{
1825        do_shl32_div32(dividend, divisor);
1826        return dividend;
1827}
1828
1829static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1830                               s8 *pshift, u32 *pmultiplier)
1831{
1832        uint64_t scaled64;
1833        int32_t  shift = 0;
1834        uint64_t tps64;
1835        uint32_t tps32;
1836
1837        tps64 = base_hz;
1838        scaled64 = scaled_hz;
1839        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1840                tps64 >>= 1;
1841                shift--;
1842        }
1843
1844        tps32 = (uint32_t)tps64;
1845        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1846                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1847                        scaled64 >>= 1;
1848                else
1849                        tps32 <<= 1;
1850                shift++;
1851        }
1852
1853        *pshift = shift;
1854        *pmultiplier = div_frac(scaled64, tps32);
1855}
1856
1857#ifdef CONFIG_X86_64
1858static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1859#endif
1860
1861static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1862static unsigned long max_tsc_khz;
1863
1864static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1865{
1866        u64 v = (u64)khz * (1000000 + ppm);
1867        do_div(v, 1000000);
1868        return v;
1869}
1870
1871static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1872{
1873        u64 ratio;
1874
1875        /* Guest TSC same frequency as host TSC? */
1876        if (!scale) {
1877                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1878                return 0;
1879        }
1880
1881        /* TSC scaling supported? */
1882        if (!kvm_has_tsc_control) {
1883                if (user_tsc_khz > tsc_khz) {
1884                        vcpu->arch.tsc_catchup = 1;
1885                        vcpu->arch.tsc_always_catchup = 1;
1886                        return 0;
1887                } else {
1888                        pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1889                        return -1;
1890                }
1891        }
1892
1893        /* TSC scaling required  - calculate ratio */
1894        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1895                                user_tsc_khz, tsc_khz);
1896
1897        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1898                pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1899                                    user_tsc_khz);
1900                return -1;
1901        }
1902
1903        vcpu->arch.tsc_scaling_ratio = ratio;
1904        return 0;
1905}
1906
1907static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1908{
1909        u32 thresh_lo, thresh_hi;
1910        int use_scaling = 0;
1911
1912        /* tsc_khz can be zero if TSC calibration fails */
1913        if (user_tsc_khz == 0) {
1914                /* set tsc_scaling_ratio to a safe value */
1915                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1916                return -1;
1917        }
1918
1919        /* Compute a scale to convert nanoseconds in TSC cycles */
1920        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1921                           &vcpu->arch.virtual_tsc_shift,
1922                           &vcpu->arch.virtual_tsc_mult);
1923        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1924
1925        /*
1926         * Compute the variation in TSC rate which is acceptable
1927         * within the range of tolerance and decide if the
1928         * rate being applied is within that bounds of the hardware
1929         * rate.  If so, no scaling or compensation need be done.
1930         */
1931        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1932        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1933        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1934                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1935                use_scaling = 1;
1936        }
1937        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1938}
1939
1940static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1941{
1942        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1943                                      vcpu->arch.virtual_tsc_mult,
1944                                      vcpu->arch.virtual_tsc_shift);
1945        tsc += vcpu->arch.this_tsc_write;
1946        return tsc;
1947}
1948
1949static inline int gtod_is_based_on_tsc(int mode)
1950{
1951        return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1952}
1953
1954static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1955{
1956#ifdef CONFIG_X86_64
1957        bool vcpus_matched;
1958        struct kvm_arch *ka = &vcpu->kvm->arch;
1959        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1960
1961        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1962                         atomic_read(&vcpu->kvm->online_vcpus));
1963
1964        /*
1965         * Once the masterclock is enabled, always perform request in
1966         * order to update it.
1967         *
1968         * In order to enable masterclock, the host clocksource must be TSC
1969         * and the vcpus need to have matched TSCs.  When that happens,
1970         * perform request to enable masterclock.
1971         */
1972        if (ka->use_master_clock ||
1973            (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1974                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1975
1976        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1977                            atomic_read(&vcpu->kvm->online_vcpus),
1978                            ka->use_master_clock, gtod->clock.vclock_mode);
1979#endif
1980}
1981
1982static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1983{
1984        u64 curr_offset = vcpu->arch.l1_tsc_offset;
1985        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1986}
1987
1988/*
1989 * Multiply tsc by a fixed point number represented by ratio.
1990 *
1991 * The most significant 64-N bits (mult) of ratio represent the
1992 * integral part of the fixed point number; the remaining N bits
1993 * (frac) represent the fractional part, ie. ratio represents a fixed
1994 * point number (mult + frac * 2^(-N)).
1995 *
1996 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1997 */
1998static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1999{
2000        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2001}
2002
2003u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2004{
2005        u64 _tsc = tsc;
2006        u64 ratio = vcpu->arch.tsc_scaling_ratio;
2007
2008        if (ratio != kvm_default_tsc_scaling_ratio)
2009                _tsc = __scale_tsc(ratio, tsc);
2010
2011        return _tsc;
2012}
2013EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2014
2015static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2016{
2017        u64 tsc;
2018
2019        tsc = kvm_scale_tsc(vcpu, rdtsc());
2020
2021        return target_tsc - tsc;
2022}
2023
2024u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2025{
2026        return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2027}
2028EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2029
2030static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2031{
2032        vcpu->arch.l1_tsc_offset = offset;
2033        vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2034}
2035
2036static inline bool kvm_check_tsc_unstable(void)
2037{
2038#ifdef CONFIG_X86_64
2039        /*
2040         * TSC is marked unstable when we're running on Hyper-V,
2041         * 'TSC page' clocksource is good.
2042         */
2043        if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2044                return false;
2045#endif
2046        return check_tsc_unstable();
2047}
2048
2049void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
2050{
2051        struct kvm *kvm = vcpu->kvm;
2052        u64 offset, ns, elapsed;
2053        unsigned long flags;
2054        bool matched;
2055        bool already_matched;
2056        u64 data = msr->data;
2057        bool synchronizing = false;
2058
2059        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2060        offset = kvm_compute_tsc_offset(vcpu, data);
2061        ns = get_kvmclock_base_ns();
2062        elapsed = ns - kvm->arch.last_tsc_nsec;
2063
2064        if (vcpu->arch.virtual_tsc_khz) {
2065                if (data == 0 && msr->host_initiated) {
2066                        /*
2067                         * detection of vcpu initialization -- need to sync
2068                         * with other vCPUs. This particularly helps to keep
2069                         * kvm_clock stable after CPU hotplug
2070                         */
2071                        synchronizing = true;
2072                } else {
2073                        u64 tsc_exp = kvm->arch.last_tsc_write +
2074                                                nsec_to_cycles(vcpu, elapsed);
2075                        u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2076                        /*
2077                         * Special case: TSC write with a small delta (1 second)
2078                         * of virtual cycle time against real time is
2079                         * interpreted as an attempt to synchronize the CPU.
2080                         */
2081                        synchronizing = data < tsc_exp + tsc_hz &&
2082                                        data + tsc_hz > tsc_exp;
2083                }
2084        }
2085
2086        /*
2087         * For a reliable TSC, we can match TSC offsets, and for an unstable
2088         * TSC, we add elapsed time in this computation.  We could let the
2089         * compensation code attempt to catch up if we fall behind, but
2090         * it's better to try to match offsets from the beginning.
2091         */
2092        if (synchronizing &&
2093            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2094                if (!kvm_check_tsc_unstable()) {
2095                        offset = kvm->arch.cur_tsc_offset;
2096                } else {
2097                        u64 delta = nsec_to_cycles(vcpu, elapsed);
2098                        data += delta;
2099                        offset = kvm_compute_tsc_offset(vcpu, data);
2100                }
2101                matched = true;
2102                already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2103        } else {
2104                /*
2105                 * We split periods of matched TSC writes into generations.
2106                 * For each generation, we track the original measured
2107                 * nanosecond time, offset, and write, so if TSCs are in
2108                 * sync, we can match exact offset, and if not, we can match
2109                 * exact software computation in compute_guest_tsc()
2110                 *
2111                 * These values are tracked in kvm->arch.cur_xxx variables.
2112                 */
2113                kvm->arch.cur_tsc_generation++;
2114                kvm->arch.cur_tsc_nsec = ns;
2115                kvm->arch.cur_tsc_write = data;
2116                kvm->arch.cur_tsc_offset = offset;
2117                matched = false;
2118        }
2119
2120        /*
2121         * We also track th most recent recorded KHZ, write and time to
2122         * allow the matching interval to be extended at each write.
2123         */
2124        kvm->arch.last_tsc_nsec = ns;
2125        kvm->arch.last_tsc_write = data;
2126        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2127
2128        vcpu->arch.last_guest_tsc = data;
2129
2130        /* Keep track of which generation this VCPU has synchronized to */
2131        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2132        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2133        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2134
2135        if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2136                update_ia32_tsc_adjust_msr(vcpu, offset);
2137
2138        kvm_vcpu_write_tsc_offset(vcpu, offset);
2139        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2140
2141        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2142        if (!matched) {
2143                kvm->arch.nr_vcpus_matched_tsc = 0;
2144        } else if (!already_matched) {
2145                kvm->arch.nr_vcpus_matched_tsc++;
2146        }
2147
2148        kvm_track_tsc_matching(vcpu);
2149        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2150}
2151
2152EXPORT_SYMBOL_GPL(kvm_write_tsc);
2153
2154static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2155                                           s64 adjustment)
2156{
2157        u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2158        kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2159}
2160
2161static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2162{
2163        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2164                WARN_ON(adjustment < 0);
2165        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2166        adjust_tsc_offset_guest(vcpu, adjustment);
2167}
2168
2169#ifdef CONFIG_X86_64
2170
2171static u64 read_tsc(void)
2172{
2173        u64 ret = (u64)rdtsc_ordered();
2174        u64 last = pvclock_gtod_data.clock.cycle_last;
2175
2176        if (likely(ret >= last))
2177                return ret;
2178
2179        /*
2180         * GCC likes to generate cmov here, but this branch is extremely
2181         * predictable (it's just a function of time and the likely is
2182         * very likely) and there's a data dependence, so force GCC
2183         * to generate a branch instead.  I don't barrier() because
2184         * we don't actually need a barrier, and if this function
2185         * ever gets inlined it will generate worse code.
2186         */
2187        asm volatile ("");
2188        return last;
2189}
2190
2191static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2192                          int *mode)
2193{
2194        long v;
2195        u64 tsc_pg_val;
2196
2197        switch (clock->vclock_mode) {
2198        case VDSO_CLOCKMODE_HVCLOCK:
2199                tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2200                                                  tsc_timestamp);
2201                if (tsc_pg_val != U64_MAX) {
2202                        /* TSC page valid */
2203                        *mode = VDSO_CLOCKMODE_HVCLOCK;
2204                        v = (tsc_pg_val - clock->cycle_last) &
2205                                clock->mask;
2206                } else {
2207                        /* TSC page invalid */
2208                        *mode = VDSO_CLOCKMODE_NONE;
2209                }
2210                break;
2211        case VDSO_CLOCKMODE_TSC:
2212                *mode = VDSO_CLOCKMODE_TSC;
2213                *tsc_timestamp = read_tsc();
2214                v = (*tsc_timestamp - clock->cycle_last) &
2215                        clock->mask;
2216                break;
2217        default:
2218                *mode = VDSO_CLOCKMODE_NONE;
2219        }
2220
2221        if (*mode == VDSO_CLOCKMODE_NONE)
2222                *tsc_timestamp = v = 0;
2223
2224        return v * clock->mult;
2225}
2226
2227static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2228{
2229        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2230        unsigned long seq;
2231        int mode;
2232        u64 ns;
2233
2234        do {
2235                seq = read_seqcount_begin(&gtod->seq);
2236                ns = gtod->raw_clock.base_cycles;
2237                ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2238                ns >>= gtod->raw_clock.shift;
2239                ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2240        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2241        *t = ns;
2242
2243        return mode;
2244}
2245
2246static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2247{
2248        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2249        unsigned long seq;
2250        int mode;
2251        u64 ns;
2252
2253        do {
2254                seq = read_seqcount_begin(&gtod->seq);
2255                ts->tv_sec = gtod->wall_time_sec;
2256                ns = gtod->clock.base_cycles;
2257                ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2258                ns >>= gtod->clock.shift;
2259        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2260
2261        ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2262        ts->tv_nsec = ns;
2263
2264        return mode;
2265}
2266
2267/* returns true if host is using TSC based clocksource */
2268static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2269{
2270        /* checked again under seqlock below */
2271        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2272                return false;
2273
2274        return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2275                                                      tsc_timestamp));
2276}
2277
2278/* returns true if host is using TSC based clocksource */
2279static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2280                                           u64 *tsc_timestamp)
2281{
2282        /* checked again under seqlock below */
2283        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2284                return false;
2285
2286        return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2287}
2288#endif
2289
2290/*
2291 *
2292 * Assuming a stable TSC across physical CPUS, and a stable TSC
2293 * across virtual CPUs, the following condition is possible.
2294 * Each numbered line represents an event visible to both
2295 * CPUs at the next numbered event.
2296 *
2297 * "timespecX" represents host monotonic time. "tscX" represents
2298 * RDTSC value.
2299 *
2300 *              VCPU0 on CPU0           |       VCPU1 on CPU1
2301 *
2302 * 1.  read timespec0,tsc0
2303 * 2.                                   | timespec1 = timespec0 + N
2304 *                                      | tsc1 = tsc0 + M
2305 * 3. transition to guest               | transition to guest
2306 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2307 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2308 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2309 *
2310 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2311 *
2312 *      - ret0 < ret1
2313 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2314 *              ...
2315 *      - 0 < N - M => M < N
2316 *
2317 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2318 * always the case (the difference between two distinct xtime instances
2319 * might be smaller then the difference between corresponding TSC reads,
2320 * when updating guest vcpus pvclock areas).
2321 *
2322 * To avoid that problem, do not allow visibility of distinct
2323 * system_timestamp/tsc_timestamp values simultaneously: use a master
2324 * copy of host monotonic time values. Update that master copy
2325 * in lockstep.
2326 *
2327 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2328 *
2329 */
2330
2331static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2332{
2333#ifdef CONFIG_X86_64
2334        struct kvm_arch *ka = &kvm->arch;
2335        int vclock_mode;
2336        bool host_tsc_clocksource, vcpus_matched;
2337
2338        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2339                        atomic_read(&kvm->online_vcpus));
2340
2341        /*
2342         * If the host uses TSC clock, then passthrough TSC as stable
2343         * to the guest.
2344         */
2345        host_tsc_clocksource = kvm_get_time_and_clockread(
2346                                        &ka->master_kernel_ns,
2347                                        &ka->master_cycle_now);
2348
2349        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2350                                && !ka->backwards_tsc_observed
2351                                && !ka->boot_vcpu_runs_old_kvmclock;
2352
2353        if (ka->use_master_clock)
2354                atomic_set(&kvm_guest_has_master_clock, 1);
2355
2356        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2357        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2358                                        vcpus_matched);
2359#endif
2360}
2361
2362void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2363{
2364        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2365}
2366
2367static void kvm_gen_update_masterclock(struct kvm *kvm)
2368{
2369#ifdef CONFIG_X86_64
2370        int i;
2371        struct kvm_vcpu *vcpu;
2372        struct kvm_arch *ka = &kvm->arch;
2373
2374        spin_lock(&ka->pvclock_gtod_sync_lock);
2375        kvm_make_mclock_inprogress_request(kvm);
2376        /* no guest entries from this point */
2377        pvclock_update_vm_gtod_copy(kvm);
2378
2379        kvm_for_each_vcpu(i, vcpu, kvm)
2380                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2381
2382        /* guest entries allowed */
2383        kvm_for_each_vcpu(i, vcpu, kvm)
2384                kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2385
2386        spin_unlock(&ka->pvclock_gtod_sync_lock);
2387#endif
2388}
2389
2390u64 get_kvmclock_ns(struct kvm *kvm)
2391{
2392        struct kvm_arch *ka = &kvm->arch;
2393        struct pvclock_vcpu_time_info hv_clock;
2394        u64 ret;
2395
2396        spin_lock(&ka->pvclock_gtod_sync_lock);
2397        if (!ka->use_master_clock) {
2398                spin_unlock(&ka->pvclock_gtod_sync_lock);
2399                return get_kvmclock_base_ns() + ka->kvmclock_offset;
2400        }
2401
2402        hv_clock.tsc_timestamp = ka->master_cycle_now;
2403        hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2404        spin_unlock(&ka->pvclock_gtod_sync_lock);
2405
2406        /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2407        get_cpu();
2408
2409        if (__this_cpu_read(cpu_tsc_khz)) {
2410                kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2411                                   &hv_clock.tsc_shift,
2412                                   &hv_clock.tsc_to_system_mul);
2413                ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2414        } else
2415                ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2416
2417        put_cpu();
2418
2419        return ret;
2420}
2421
2422static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2423{
2424        struct kvm_vcpu_arch *vcpu = &v->arch;
2425        struct pvclock_vcpu_time_info guest_hv_clock;
2426
2427        if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2428                &guest_hv_clock, sizeof(guest_hv_clock))))
2429                return;
2430
2431        /* This VCPU is paused, but it's legal for a guest to read another
2432         * VCPU's kvmclock, so we really have to follow the specification where
2433         * it says that version is odd if data is being modified, and even after
2434         * it is consistent.
2435         *
2436         * Version field updates must be kept separate.  This is because
2437         * kvm_write_guest_cached might use a "rep movs" instruction, and
2438         * writes within a string instruction are weakly ordered.  So there
2439         * are three writes overall.
2440         *
2441         * As a small optimization, only write the version field in the first
2442         * and third write.  The vcpu->pv_time cache is still valid, because the
2443         * version field is the first in the struct.
2444         */
2445        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2446
2447        if (guest_hv_clock.version & 1)
2448                ++guest_hv_clock.version;  /* first time write, random junk */
2449
2450        vcpu->hv_clock.version = guest_hv_clock.version + 1;
2451        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2452                                &vcpu->hv_clock,
2453                                sizeof(vcpu->hv_clock.version));
2454
2455        smp_wmb();
2456
2457        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2458        vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2459
2460        if (vcpu->pvclock_set_guest_stopped_request) {
2461                vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2462                vcpu->pvclock_set_guest_stopped_request = false;
2463        }
2464
2465        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2466
2467        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2468                                &vcpu->hv_clock,
2469                                sizeof(vcpu->hv_clock));
2470
2471        smp_wmb();
2472
2473        vcpu->hv_clock.version++;
2474        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2475                                &vcpu->hv_clock,
2476                                sizeof(vcpu->hv_clock.version));
2477}
2478
2479static int kvm_guest_time_update(struct kvm_vcpu *v)
2480{
2481        unsigned long flags, tgt_tsc_khz;
2482        struct kvm_vcpu_arch *vcpu = &v->arch;
2483        struct kvm_arch *ka = &v->kvm->arch;
2484        s64 kernel_ns;
2485        u64 tsc_timestamp, host_tsc;
2486        u8 pvclock_flags;
2487        bool use_master_clock;
2488
2489        kernel_ns = 0;
2490        host_tsc = 0;
2491
2492        /*
2493         * If the host uses TSC clock, then passthrough TSC as stable
2494         * to the guest.
2495         */
2496        spin_lock(&ka->pvclock_gtod_sync_lock);
2497        use_master_clock = ka->use_master_clock;
2498        if (use_master_clock) {
2499                host_tsc = ka->master_cycle_now;
2500                kernel_ns = ka->master_kernel_ns;
2501        }
2502        spin_unlock(&ka->pvclock_gtod_sync_lock);
2503
2504        /* Keep irq disabled to prevent changes to the clock */
2505        local_irq_save(flags);
2506        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2507        if (unlikely(tgt_tsc_khz == 0)) {
2508                local_irq_restore(flags);
2509                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2510                return 1;
2511        }
2512        if (!use_master_clock) {
2513                host_tsc = rdtsc();
2514                kernel_ns = get_kvmclock_base_ns();
2515        }
2516
2517        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2518
2519        /*
2520         * We may have to catch up the TSC to match elapsed wall clock
2521         * time for two reasons, even if kvmclock is used.
2522         *   1) CPU could have been running below the maximum TSC rate
2523         *   2) Broken TSC compensation resets the base at each VCPU
2524         *      entry to avoid unknown leaps of TSC even when running
2525         *      again on the same CPU.  This may cause apparent elapsed
2526         *      time to disappear, and the guest to stand still or run
2527         *      very slowly.
2528         */
2529        if (vcpu->tsc_catchup) {
2530                u64 tsc = compute_guest_tsc(v, kernel_ns);
2531                if (tsc > tsc_timestamp) {
2532                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2533                        tsc_timestamp = tsc;
2534                }
2535        }
2536
2537        local_irq_restore(flags);
2538
2539        /* With all the info we got, fill in the values */
2540
2541        if (kvm_has_tsc_control)
2542                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2543
2544        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2545                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2546                                   &vcpu->hv_clock.tsc_shift,
2547                                   &vcpu->hv_clock.tsc_to_system_mul);
2548                vcpu->hw_tsc_khz = tgt_tsc_khz;
2549        }
2550
2551        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2552        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2553        vcpu->last_guest_tsc = tsc_timestamp;
2554
2555        /* If the host uses TSC clocksource, then it is stable */
2556        pvclock_flags = 0;
2557        if (use_master_clock)
2558                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2559
2560        vcpu->hv_clock.flags = pvclock_flags;
2561
2562        if (vcpu->pv_time_enabled)
2563                kvm_setup_pvclock_page(v);
2564        if (v == kvm_get_vcpu(v->kvm, 0))
2565                kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2566        return 0;
2567}
2568
2569/*
2570 * kvmclock updates which are isolated to a given vcpu, such as
2571 * vcpu->cpu migration, should not allow system_timestamp from
2572 * the rest of the vcpus to remain static. Otherwise ntp frequency
2573 * correction applies to one vcpu's system_timestamp but not
2574 * the others.
2575 *
2576 * So in those cases, request a kvmclock update for all vcpus.
2577 * We need to rate-limit these requests though, as they can
2578 * considerably slow guests that have a large number of vcpus.
2579 * The time for a remote vcpu to update its kvmclock is bound
2580 * by the delay we use to rate-limit the updates.
2581 */
2582
2583#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2584
2585static void kvmclock_update_fn(struct work_struct *work)
2586{
2587        int i;
2588        struct delayed_work *dwork = to_delayed_work(work);
2589        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2590                                           kvmclock_update_work);
2591        struct kvm *kvm = container_of(ka, struct kvm, arch);
2592        struct kvm_vcpu *vcpu;
2593
2594        kvm_for_each_vcpu(i, vcpu, kvm) {
2595                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2596                kvm_vcpu_kick(vcpu);
2597        }
2598}
2599
2600static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2601{
2602        struct kvm *kvm = v->kvm;
2603
2604        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2605        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2606                                        KVMCLOCK_UPDATE_DELAY);
2607}
2608
2609#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2610
2611static void kvmclock_sync_fn(struct work_struct *work)
2612{
2613        struct delayed_work *dwork = to_delayed_work(work);
2614        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2615                                           kvmclock_sync_work);
2616        struct kvm *kvm = container_of(ka, struct kvm, arch);
2617
2618        if (!kvmclock_periodic_sync)
2619                return;
2620
2621        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2622        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2623                                        KVMCLOCK_SYNC_PERIOD);
2624}
2625
2626/*
2627 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2628 */
2629static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2630{
2631        /* McStatusWrEn enabled? */
2632        if (guest_cpuid_is_amd_or_hygon(vcpu))
2633                return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2634
2635        return false;
2636}
2637
2638static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2639{
2640        u64 mcg_cap = vcpu->arch.mcg_cap;
2641        unsigned bank_num = mcg_cap & 0xff;
2642        u32 msr = msr_info->index;
2643        u64 data = msr_info->data;
2644
2645        switch (msr) {
2646        case MSR_IA32_MCG_STATUS:
2647                vcpu->arch.mcg_status = data;
2648                break;
2649        case MSR_IA32_MCG_CTL:
2650                if (!(mcg_cap & MCG_CTL_P) &&
2651                    (data || !msr_info->host_initiated))
2652                        return 1;
2653                if (data != 0 && data != ~(u64)0)
2654                        return 1;
2655                vcpu->arch.mcg_ctl = data;
2656                break;
2657        default:
2658                if (msr >= MSR_IA32_MC0_CTL &&
2659                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2660                        u32 offset = array_index_nospec(
2661                                msr - MSR_IA32_MC0_CTL,
2662                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2663
2664                        /* only 0 or all 1s can be written to IA32_MCi_CTL
2665                         * some Linux kernels though clear bit 10 in bank 4 to
2666                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2667                         * this to avoid an uncatched #GP in the guest
2668                         */
2669                        if ((offset & 0x3) == 0 &&
2670                            data != 0 && (data | (1 << 10)) != ~(u64)0)
2671                                return -1;
2672
2673                        /* MCi_STATUS */
2674                        if (!msr_info->host_initiated &&
2675                            (offset & 0x3) == 1 && data != 0) {
2676                                if (!can_set_mci_status(vcpu))
2677                                        return -1;
2678                        }
2679
2680                        vcpu->arch.mce_banks[offset] = data;
2681                        break;
2682                }
2683                return 1;
2684        }
2685        return 0;
2686}
2687
2688static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2689{
2690        struct kvm *kvm = vcpu->kvm;
2691        int lm = is_long_mode(vcpu);
2692        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2693                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2694        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2695                : kvm->arch.xen_hvm_config.blob_size_32;
2696        u32 page_num = data & ~PAGE_MASK;
2697        u64 page_addr = data & PAGE_MASK;
2698        u8 *page;
2699        int r;
2700
2701        r = -E2BIG;
2702        if (page_num >= blob_size)
2703                goto out;
2704        r = -ENOMEM;
2705        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2706        if (IS_ERR(page)) {
2707                r = PTR_ERR(page);
2708                goto out;
2709        }
2710        if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2711                goto out_free;
2712        r = 0;
2713out_free:
2714        kfree(page);
2715out:
2716        return r;
2717}
2718
2719static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2720{
2721        u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2722
2723        return (vcpu->arch.apf.msr_en_val & mask) == mask;
2724}
2725
2726static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2727{
2728        gpa_t gpa = data & ~0x3f;
2729
2730        /* Bits 4:5 are reserved, Should be zero */
2731        if (data & 0x30)
2732                return 1;
2733
2734        if (!lapic_in_kernel(vcpu))
2735                return data ? 1 : 0;
2736
2737        vcpu->arch.apf.msr_en_val = data;
2738
2739        if (!kvm_pv_async_pf_enabled(vcpu)) {
2740                kvm_clear_async_pf_completion_queue(vcpu);
2741                kvm_async_pf_hash_reset(vcpu);
2742                return 0;
2743        }
2744
2745        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2746                                        sizeof(u64)))
2747                return 1;
2748
2749        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2750        vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2751
2752        kvm_async_pf_wakeup_all(vcpu);
2753
2754        return 0;
2755}
2756
2757static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2758{
2759        /* Bits 8-63 are reserved */
2760        if (data >> 8)
2761                return 1;
2762
2763        if (!lapic_in_kernel(vcpu))
2764                return 1;
2765
2766        vcpu->arch.apf.msr_int_val = data;
2767
2768        vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2769
2770        return 0;
2771}
2772
2773static void kvmclock_reset(struct kvm_vcpu *vcpu)
2774{
2775        vcpu->arch.pv_time_enabled = false;
2776        vcpu->arch.time = 0;
2777}
2778
2779static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2780{
2781        ++vcpu->stat.tlb_flush;
2782        kvm_x86_ops.tlb_flush_all(vcpu);
2783}
2784
2785static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2786{
2787        ++vcpu->stat.tlb_flush;
2788        kvm_x86_ops.tlb_flush_guest(vcpu);
2789}
2790
2791static void record_steal_time(struct kvm_vcpu *vcpu)
2792{
2793        struct kvm_host_map map;
2794        struct kvm_steal_time *st;
2795
2796        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2797                return;
2798
2799        /* -EAGAIN is returned in atomic context so we can just return. */
2800        if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2801                        &map, &vcpu->arch.st.cache, false))
2802                return;
2803
2804        st = map.hva +
2805                offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2806
2807        /*
2808         * Doing a TLB flush here, on the guest's behalf, can avoid
2809         * expensive IPIs.
2810         */
2811        trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2812                st->preempted & KVM_VCPU_FLUSH_TLB);
2813        if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2814                kvm_vcpu_flush_tlb_guest(vcpu);
2815
2816        vcpu->arch.st.preempted = 0;
2817
2818        if (st->version & 1)
2819                st->version += 1;  /* first time write, random junk */
2820
2821        st->version += 1;
2822
2823        smp_wmb();
2824
2825        st->steal += current->sched_info.run_delay -
2826                vcpu->arch.st.last_steal;
2827        vcpu->arch.st.last_steal = current->sched_info.run_delay;
2828
2829        smp_wmb();
2830
2831        st->version += 1;
2832
2833        kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2834}
2835
2836int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2837{
2838        bool pr = false;
2839        u32 msr = msr_info->index;
2840        u64 data = msr_info->data;
2841
2842        switch (msr) {
2843        case MSR_AMD64_NB_CFG:
2844        case MSR_IA32_UCODE_WRITE:
2845        case MSR_VM_HSAVE_PA:
2846        case MSR_AMD64_PATCH_LOADER:
2847        case MSR_AMD64_BU_CFG2:
2848        case MSR_AMD64_DC_CFG:
2849        case MSR_F15H_EX_CFG:
2850                break;
2851
2852        case MSR_IA32_UCODE_REV:
2853                if (msr_info->host_initiated)
2854                        vcpu->arch.microcode_version = data;
2855                break;
2856        case MSR_IA32_ARCH_CAPABILITIES:
2857                if (!msr_info->host_initiated)
2858                        return 1;
2859                vcpu->arch.arch_capabilities = data;
2860                break;
2861        case MSR_IA32_PERF_CAPABILITIES: {
2862                struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
2863
2864                if (!msr_info->host_initiated)
2865                        return 1;
2866                if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
2867                        return 1;
2868                if (data & ~msr_ent.data)
2869                        return 1;
2870
2871                vcpu->arch.perf_capabilities = data;
2872
2873                return 0;
2874                }
2875        case MSR_EFER:
2876                return set_efer(vcpu, msr_info);
2877        case MSR_K7_HWCR:
2878                data &= ~(u64)0x40;     /* ignore flush filter disable */
2879                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2880                data &= ~(u64)0x8;      /* ignore TLB cache disable */
2881
2882                /* Handle McStatusWrEn */
2883                if (data == BIT_ULL(18)) {
2884                        vcpu->arch.msr_hwcr = data;
2885                } else if (data != 0) {
2886                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2887                                    data);
2888                        return 1;
2889                }
2890                break;
2891        case MSR_FAM10H_MMIO_CONF_BASE:
2892                if (data != 0) {
2893                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2894                                    "0x%llx\n", data);
2895                        return 1;
2896                }
2897                break;
2898        case MSR_IA32_DEBUGCTLMSR:
2899                if (!data) {
2900                        /* We support the non-activated case already */
2901                        break;
2902                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2903                        /* Values other than LBR and BTF are vendor-specific,
2904                           thus reserved and should throw a #GP */
2905                        return 1;
2906                }
2907                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2908                            __func__, data);
2909                break;
2910        case 0x200 ... 0x2ff:
2911                return kvm_mtrr_set_msr(vcpu, msr, data);
2912        case MSR_IA32_APICBASE:
2913                return kvm_set_apic_base(vcpu, msr_info);
2914        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2915                return kvm_x2apic_msr_write(vcpu, msr, data);
2916        case MSR_IA32_TSCDEADLINE:
2917                kvm_set_lapic_tscdeadline_msr(vcpu, data);
2918                break;
2919        case MSR_IA32_TSC_ADJUST:
2920                if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2921                        if (!msr_info->host_initiated) {
2922                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2923                                adjust_tsc_offset_guest(vcpu, adj);
2924                        }
2925                        vcpu->arch.ia32_tsc_adjust_msr = data;
2926                }
2927                break;
2928        case MSR_IA32_MISC_ENABLE:
2929                if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2930                    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2931                        if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2932                                return 1;
2933                        vcpu->arch.ia32_misc_enable_msr = data;
2934                        kvm_update_cpuid_runtime(vcpu);
2935                } else {
2936                        vcpu->arch.ia32_misc_enable_msr = data;
2937                }
2938                break;
2939        case MSR_IA32_SMBASE:
2940                if (!msr_info->host_initiated)
2941                        return 1;
2942                vcpu->arch.smbase = data;
2943                break;
2944        case MSR_IA32_POWER_CTL:
2945                vcpu->arch.msr_ia32_power_ctl = data;
2946                break;
2947        case MSR_IA32_TSC:
2948                kvm_write_tsc(vcpu, msr_info);
2949                break;
2950        case MSR_IA32_XSS:
2951                if (!msr_info->host_initiated &&
2952                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2953                        return 1;
2954                /*
2955                 * KVM supports exposing PT to the guest, but does not support
2956                 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2957                 * XSAVES/XRSTORS to save/restore PT MSRs.
2958                 */
2959                if (data & ~supported_xss)
2960                        return 1;
2961                vcpu->arch.ia32_xss = data;
2962                break;
2963        case MSR_SMI_COUNT:
2964                if (!msr_info->host_initiated)
2965                        return 1;
2966                vcpu->arch.smi_count = data;
2967                break;
2968        case MSR_KVM_WALL_CLOCK_NEW:
2969        case MSR_KVM_WALL_CLOCK:
2970                vcpu->kvm->arch.wall_clock = data;
2971                kvm_write_wall_clock(vcpu->kvm, data);
2972                break;
2973        case MSR_KVM_SYSTEM_TIME_NEW:
2974        case MSR_KVM_SYSTEM_TIME: {
2975                struct kvm_arch *ka = &vcpu->kvm->arch;
2976
2977                if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2978                        bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2979
2980                        if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2981                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2982
2983                        ka->boot_vcpu_runs_old_kvmclock = tmp;
2984                }
2985
2986                vcpu->arch.time = data;
2987                kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2988
2989                /* we verify if the enable bit is set... */
2990                vcpu->arch.pv_time_enabled = false;
2991                if (!(data & 1))
2992                        break;
2993
2994                if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2995                     &vcpu->arch.pv_time, data & ~1ULL,
2996                     sizeof(struct pvclock_vcpu_time_info)))
2997                        vcpu->arch.pv_time_enabled = true;
2998
2999                break;
3000        }
3001        case MSR_KVM_ASYNC_PF_EN:
3002                if (kvm_pv_enable_async_pf(vcpu, data))
3003                        return 1;
3004                break;
3005        case MSR_KVM_ASYNC_PF_INT:
3006                if (kvm_pv_enable_async_pf_int(vcpu, data))
3007                        return 1;
3008                break;
3009        case MSR_KVM_ASYNC_PF_ACK:
3010                if (data & 0x1) {
3011                        vcpu->arch.apf.pageready_pending = false;
3012                        kvm_check_async_pf_completion(vcpu);
3013                }
3014                break;
3015        case MSR_KVM_STEAL_TIME:
3016
3017                if (unlikely(!sched_info_on()))
3018                        return 1;
3019
3020                if (data & KVM_STEAL_RESERVED_MASK)
3021                        return 1;
3022
3023                vcpu->arch.st.msr_val = data;
3024
3025                if (!(data & KVM_MSR_ENABLED))
3026                        break;
3027
3028                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3029
3030                break;
3031        case MSR_KVM_PV_EOI_EN:
3032                if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3033                        return 1;
3034                break;
3035
3036        case MSR_KVM_POLL_CONTROL:
3037                /* only enable bit supported */
3038                if (data & (-1ULL << 1))
3039                        return 1;
3040
3041                vcpu->arch.msr_kvm_poll_control = data;
3042                break;
3043
3044        case MSR_IA32_MCG_CTL:
3045        case MSR_IA32_MCG_STATUS:
3046        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3047                return set_msr_mce(vcpu, msr_info);
3048
3049        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3050        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3051                pr = true;
3052                fallthrough;
3053        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3054        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3055                if (kvm_pmu_is_valid_msr(vcpu, msr))
3056                        return kvm_pmu_set_msr(vcpu, msr_info);
3057
3058                if (pr || data != 0)
3059                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3060                                    "0x%x data 0x%llx\n", msr, data);
3061                break;
3062        case MSR_K7_CLK_CTL:
3063                /*
3064                 * Ignore all writes to this no longer documented MSR.
3065                 * Writes are only relevant for old K7 processors,
3066                 * all pre-dating SVM, but a recommended workaround from
3067                 * AMD for these chips. It is possible to specify the
3068                 * affected processor models on the command line, hence
3069                 * the need to ignore the workaround.
3070                 */
3071                break;
3072        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3073        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3074        case HV_X64_MSR_SYNDBG_OPTIONS:
3075        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3076        case HV_X64_MSR_CRASH_CTL:
3077        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3078        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3079        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3080        case HV_X64_MSR_TSC_EMULATION_STATUS:
3081                return kvm_hv_set_msr_common(vcpu, msr, data,
3082                                             msr_info->host_initiated);
3083        case MSR_IA32_BBL_CR_CTL3:
3084                /* Drop writes to this legacy MSR -- see rdmsr
3085                 * counterpart for further detail.
3086                 */
3087                if (report_ignored_msrs)
3088                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3089                                msr, data);
3090                break;
3091        case MSR_AMD64_OSVW_ID_LENGTH:
3092                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3093                        return 1;
3094                vcpu->arch.osvw.length = data;
3095                break;
3096        case MSR_AMD64_OSVW_STATUS:
3097                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3098                        return 1;
3099                vcpu->arch.osvw.status = data;
3100                break;
3101        case MSR_PLATFORM_INFO:
3102                if (!msr_info->host_initiated ||
3103                    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3104                     cpuid_fault_enabled(vcpu)))
3105                        return 1;
3106                vcpu->arch.msr_platform_info = data;
3107                break;
3108        case MSR_MISC_FEATURES_ENABLES:
3109                if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3110                    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3111                     !supports_cpuid_fault(vcpu)))
3112                        return 1;
3113                vcpu->arch.msr_misc_features_enables = data;
3114                break;
3115        default:
3116                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3117                        return xen_hvm_config(vcpu, data);
3118                if (kvm_pmu_is_valid_msr(vcpu, msr))
3119                        return kvm_pmu_set_msr(vcpu, msr_info);
3120                return KVM_MSR_RET_INVALID;
3121        }
3122        return 0;
3123}
3124EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3125
3126static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3127{
3128        u64 data;
3129        u64 mcg_cap = vcpu->arch.mcg_cap;
3130        unsigned bank_num = mcg_cap & 0xff;
3131
3132        switch (msr) {
3133        case MSR_IA32_P5_MC_ADDR:
3134        case MSR_IA32_P5_MC_TYPE:
3135                data = 0;
3136                break;
3137        case MSR_IA32_MCG_CAP:
3138                data = vcpu->arch.mcg_cap;
3139                break;
3140        case MSR_IA32_MCG_CTL:
3141                if (!(mcg_cap & MCG_CTL_P) && !host)
3142                        return 1;
3143                data = vcpu->arch.mcg_ctl;
3144                break;
3145        case MSR_IA32_MCG_STATUS:
3146                data = vcpu->arch.mcg_status;
3147                break;
3148        default:
3149                if (msr >= MSR_IA32_MC0_CTL &&
3150                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3151                        u32 offset = array_index_nospec(
3152                                msr - MSR_IA32_MC0_CTL,
3153                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3154
3155                        data = vcpu->arch.mce_banks[offset];
3156                        break;
3157                }
3158                return 1;
3159        }
3160        *pdata = data;
3161        return 0;
3162}
3163
3164int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3165{
3166        switch (msr_info->index) {
3167        case MSR_IA32_PLATFORM_ID:
3168        case MSR_IA32_EBL_CR_POWERON:
3169        case MSR_IA32_DEBUGCTLMSR:
3170        case MSR_IA32_LASTBRANCHFROMIP:
3171        case MSR_IA32_LASTBRANCHTOIP:
3172        case MSR_IA32_LASTINTFROMIP:
3173        case MSR_IA32_LASTINTTOIP:
3174        case MSR_K8_SYSCFG:
3175        case MSR_K8_TSEG_ADDR:
3176        case MSR_K8_TSEG_MASK:
3177        case MSR_VM_HSAVE_PA:
3178        case MSR_K8_INT_PENDING_MSG:
3179        case MSR_AMD64_NB_CFG:
3180        case MSR_FAM10H_MMIO_CONF_BASE:
3181        case MSR_AMD64_BU_CFG2:
3182        case MSR_IA32_PERF_CTL:
3183        case MSR_AMD64_DC_CFG:
3184        case MSR_F15H_EX_CFG:
3185        /*
3186         * Intel Sandy Bridge CPUs must support the RAPL (running average power
3187         * limit) MSRs. Just return 0, as we do not want to expose the host
3188         * data here. Do not conditionalize this on CPUID, as KVM does not do
3189         * so for existing CPU-specific MSRs.
3190         */
3191        case MSR_RAPL_POWER_UNIT:
3192        case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3193        case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3194        case MSR_PKG_ENERGY_STATUS:     /* Total package */
3195        case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3196                msr_info->data = 0;
3197                break;
3198        case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3199        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3200        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3201        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3202        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3203                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3204                        return kvm_pmu_get_msr(vcpu, msr_info);
3205                msr_info->data = 0;
3206                break;
3207        case MSR_IA32_UCODE_REV:
3208                msr_info->data = vcpu->arch.microcode_version;
3209                break;
3210        case MSR_IA32_ARCH_CAPABILITIES:
3211                if (!msr_info->host_initiated &&
3212                    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3213                        return 1;
3214                msr_info->data = vcpu->arch.arch_capabilities;
3215                break;
3216        case MSR_IA32_PERF_CAPABILITIES:
3217                if (!msr_info->host_initiated &&
3218                    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3219                        return 1;
3220                msr_info->data = vcpu->arch.perf_capabilities;
3221                break;
3222        case MSR_IA32_POWER_CTL:
3223                msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3224                break;
3225        case MSR_IA32_TSC: {
3226                /*
3227                 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3228                 * even when not intercepted. AMD manual doesn't explicitly
3229                 * state this but appears to behave the same.
3230                 *
3231                 * On userspace reads and writes, however, we unconditionally
3232                 * operate L1's TSC value to ensure backwards-compatible
3233                 * behavior for migration.
3234                 */
3235                u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3236                                                            vcpu->arch.tsc_offset;
3237
3238                msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3239                break;
3240        }
3241        case MSR_MTRRcap:
3242        case 0x200 ... 0x2ff:
3243                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3244        case 0xcd: /* fsb frequency */
3245                msr_info->data = 3;
3246                break;
3247                /*
3248                 * MSR_EBC_FREQUENCY_ID
3249                 * Conservative value valid for even the basic CPU models.
3250                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3251                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3252                 * and 266MHz for model 3, or 4. Set Core Clock
3253                 * Frequency to System Bus Frequency Ratio to 1 (bits
3254                 * 31:24) even though these are only valid for CPU
3255                 * models > 2, however guests may end up dividing or
3256                 * multiplying by zero otherwise.
3257                 */
3258        case MSR_EBC_FREQUENCY_ID:
3259                msr_info->data = 1 << 24;
3260                break;
3261        case MSR_IA32_APICBASE:
3262                msr_info->data = kvm_get_apic_base(vcpu);
3263                break;
3264        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3265                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3266        case MSR_IA32_TSCDEADLINE:
3267                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3268                break;
3269        case MSR_IA32_TSC_ADJUST:
3270                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3271                break;
3272        case MSR_IA32_MISC_ENABLE:
3273                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3274                break;
3275        case MSR_IA32_SMBASE:
3276                if (!msr_info->host_initiated)
3277                        return 1;
3278                msr_info->data = vcpu->arch.smbase;
3279                break;
3280        case MSR_SMI_COUNT:
3281                msr_info->data = vcpu->arch.smi_count;
3282                break;
3283        case MSR_IA32_PERF_STATUS:
3284                /* TSC increment by tick */
3285                msr_info->data = 1000ULL;
3286                /* CPU multiplier */
3287                msr_info->data |= (((uint64_t)4ULL) << 40);
3288                break;
3289        case MSR_EFER:
3290                msr_info->data = vcpu->arch.efer;
3291                break;
3292        case MSR_KVM_WALL_CLOCK:
3293        case MSR_KVM_WALL_CLOCK_NEW:
3294                msr_info->data = vcpu->kvm->arch.wall_clock;
3295                break;
3296        case MSR_KVM_SYSTEM_TIME:
3297        case MSR_KVM_SYSTEM_TIME_NEW:
3298                msr_info->data = vcpu->arch.time;
3299                break;
3300        case MSR_KVM_ASYNC_PF_EN:
3301                msr_info->data = vcpu->arch.apf.msr_en_val;
3302                break;
3303        case MSR_KVM_ASYNC_PF_INT:
3304                msr_info->data = vcpu->arch.apf.msr_int_val;
3305                break;
3306        case MSR_KVM_ASYNC_PF_ACK:
3307                msr_info->data = 0;
3308                break;
3309        case MSR_KVM_STEAL_TIME:
3310                msr_info->data = vcpu->arch.st.msr_val;
3311                break;
3312        case MSR_KVM_PV_EOI_EN:
3313                msr_info->data = vcpu->arch.pv_eoi.msr_val;
3314                break;
3315        case MSR_KVM_POLL_CONTROL:
3316                msr_info->data = vcpu->arch.msr_kvm_poll_control;
3317                break;
3318        case MSR_IA32_P5_MC_ADDR:
3319        case MSR_IA32_P5_MC_TYPE:
3320        case MSR_IA32_MCG_CAP:
3321        case MSR_IA32_MCG_CTL:
3322        case MSR_IA32_MCG_STATUS:
3323        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3324                return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3325                                   msr_info->host_initiated);
3326        case MSR_IA32_XSS:
3327                if (!msr_info->host_initiated &&
3328                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3329                        return 1;
3330                msr_info->data = vcpu->arch.ia32_xss;
3331                break;
3332        case MSR_K7_CLK_CTL:
3333                /*
3334                 * Provide expected ramp-up count for K7. All other
3335                 * are set to zero, indicating minimum divisors for
3336                 * every field.
3337                 *
3338                 * This prevents guest kernels on AMD host with CPU
3339                 * type 6, model 8 and higher from exploding due to
3340                 * the rdmsr failing.
3341                 */
3342                msr_info->data = 0x20000000;
3343                break;
3344        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3345        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3346        case HV_X64_MSR_SYNDBG_OPTIONS:
3347        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3348        case HV_X64_MSR_CRASH_CTL:
3349        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3350        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3351        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3352        case HV_X64_MSR_TSC_EMULATION_STATUS:
3353                return kvm_hv_get_msr_common(vcpu,
3354                                             msr_info->index, &msr_info->data,
3355                                             msr_info->host_initiated);
3356        case MSR_IA32_BBL_CR_CTL3:
3357                /* This legacy MSR exists but isn't fully documented in current
3358                 * silicon.  It is however accessed by winxp in very narrow
3359                 * scenarios where it sets bit #19, itself documented as
3360                 * a "reserved" bit.  Best effort attempt to source coherent
3361                 * read data here should the balance of the register be
3362                 * interpreted by the guest:
3363                 *
3364                 * L2 cache control register 3: 64GB range, 256KB size,
3365                 * enabled, latency 0x1, configured
3366                 */
3367                msr_info->data = 0xbe702111;
3368                break;
3369        case MSR_AMD64_OSVW_ID_LENGTH:
3370                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3371                        return 1;
3372                msr_info->data = vcpu->arch.osvw.length;
3373                break;
3374        case MSR_AMD64_OSVW_STATUS:
3375                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3376                        return 1;
3377                msr_info->data = vcpu->arch.osvw.status;
3378                break;
3379        case MSR_PLATFORM_INFO:
3380                if (!msr_info->host_initiated &&
3381                    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3382                        return 1;
3383                msr_info->data = vcpu->arch.msr_platform_info;
3384                break;
3385        case MSR_MISC_FEATURES_ENABLES:
3386                msr_info->data = vcpu->arch.msr_misc_features_enables;
3387                break;
3388        case MSR_K7_HWCR:
3389                msr_info->data = vcpu->arch.msr_hwcr;
3390                break;
3391        default:
3392                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3393                        return kvm_pmu_get_msr(vcpu, msr_info);
3394                return KVM_MSR_RET_INVALID;
3395        }
3396        return 0;
3397}
3398EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3399
3400/*
3401 * Read or write a bunch of msrs. All parameters are kernel addresses.
3402 *
3403 * @return number of msrs set successfully.
3404 */
3405static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3406                    struct kvm_msr_entry *entries,
3407                    int (*do_msr)(struct kvm_vcpu *vcpu,
3408                                  unsigned index, u64 *data))
3409{
3410        int i;
3411
3412        for (i = 0; i < msrs->nmsrs; ++i)
3413                if (do_msr(vcpu, entries[i].index, &entries[i].data))
3414                        break;
3415
3416        return i;
3417}
3418
3419/*
3420 * Read or write a bunch of msrs. Parameters are user addresses.
3421 *
3422 * @return number of msrs set successfully.
3423 */
3424static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3425                  int (*do_msr)(struct kvm_vcpu *vcpu,
3426                                unsigned index, u64 *data),
3427                  int writeback)
3428{
3429        struct kvm_msrs msrs;
3430        struct kvm_msr_entry *entries;
3431        int r, n;
3432        unsigned size;
3433
3434        r = -EFAULT;
3435        if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3436                goto out;
3437
3438        r = -E2BIG;
3439        if (msrs.nmsrs >= MAX_IO_MSRS)
3440                goto out;
3441
3442        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3443        entries = memdup_user(user_msrs->entries, size);
3444        if (IS_ERR(entries)) {
3445                r = PTR_ERR(entries);
3446                goto out;
3447        }
3448
3449        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3450        if (r < 0)
3451                goto out_free;
3452
3453        r = -EFAULT;
3454        if (writeback && copy_to_user(user_msrs->entries, entries, size))
3455                goto out_free;
3456
3457        r = n;
3458
3459out_free:
3460        kfree(entries);
3461out:
3462        return r;
3463}
3464
3465static inline bool kvm_can_mwait_in_guest(void)
3466{
3467        return boot_cpu_has(X86_FEATURE_MWAIT) &&
3468                !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3469                boot_cpu_has(X86_FEATURE_ARAT);
3470}
3471
3472int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3473{
3474        int r = 0;
3475
3476        switch (ext) {
3477        case KVM_CAP_IRQCHIP:
3478        case KVM_CAP_HLT:
3479        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3480        case KVM_CAP_SET_TSS_ADDR:
3481        case KVM_CAP_EXT_CPUID:
3482        case KVM_CAP_EXT_EMUL_CPUID:
3483        case KVM_CAP_CLOCKSOURCE:
3484        case KVM_CAP_PIT:
3485        case KVM_CAP_NOP_IO_DELAY:
3486        case KVM_CAP_MP_STATE:
3487        case KVM_CAP_SYNC_MMU:
3488        case KVM_CAP_USER_NMI:
3489        case KVM_CAP_REINJECT_CONTROL:
3490        case KVM_CAP_IRQ_INJECT_STATUS:
3491        case KVM_CAP_IOEVENTFD:
3492        case KVM_CAP_IOEVENTFD_NO_LENGTH:
3493        case KVM_CAP_PIT2:
3494        case KVM_CAP_PIT_STATE2:
3495        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3496        case KVM_CAP_XEN_HVM:
3497        case KVM_CAP_VCPU_EVENTS:
3498        case KVM_CAP_HYPERV:
3499        case KVM_CAP_HYPERV_VAPIC:
3500        case KVM_CAP_HYPERV_SPIN:
3501        case KVM_CAP_HYPERV_SYNIC:
3502        case KVM_CAP_HYPERV_SYNIC2:
3503        case KVM_CAP_HYPERV_VP_INDEX:
3504        case KVM_CAP_HYPERV_EVENTFD:
3505        case KVM_CAP_HYPERV_TLBFLUSH:
3506        case KVM_CAP_HYPERV_SEND_IPI:
3507        case KVM_CAP_HYPERV_CPUID:
3508        case KVM_CAP_PCI_SEGMENT:
3509        case KVM_CAP_DEBUGREGS:
3510        case KVM_CAP_X86_ROBUST_SINGLESTEP:
3511        case KVM_CAP_XSAVE:
3512        case KVM_CAP_ASYNC_PF:
3513        case KVM_CAP_ASYNC_PF_INT:
3514        case KVM_CAP_GET_TSC_KHZ:
3515        case KVM_CAP_KVMCLOCK_CTRL:
3516        case KVM_CAP_READONLY_MEM:
3517        case KVM_CAP_HYPERV_TIME:
3518        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3519        case KVM_CAP_TSC_DEADLINE_TIMER:
3520        case KVM_CAP_DISABLE_QUIRKS:
3521        case KVM_CAP_SET_BOOT_CPU_ID:
3522        case KVM_CAP_SPLIT_IRQCHIP:
3523        case KVM_CAP_IMMEDIATE_EXIT:
3524        case KVM_CAP_PMU_EVENT_FILTER:
3525        case KVM_CAP_GET_MSR_FEATURES:
3526        case KVM_CAP_MSR_PLATFORM_INFO:
3527        case KVM_CAP_EXCEPTION_PAYLOAD:
3528        case KVM_CAP_SET_GUEST_DEBUG:
3529        case KVM_CAP_LAST_CPU:
3530                r = 1;
3531                break;
3532        case KVM_CAP_SYNC_REGS:
3533                r = KVM_SYNC_X86_VALID_FIELDS;
3534                break;
3535        case KVM_CAP_ADJUST_CLOCK:
3536                r = KVM_CLOCK_TSC_STABLE;
3537                break;
3538        case KVM_CAP_X86_DISABLE_EXITS:
3539                r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3540                      KVM_X86_DISABLE_EXITS_CSTATE;
3541                if(kvm_can_mwait_in_guest())
3542                        r |= KVM_X86_DISABLE_EXITS_MWAIT;
3543                break;
3544        case KVM_CAP_X86_SMM:
3545                /* SMBASE is usually relocated above 1M on modern chipsets,
3546                 * and SMM handlers might indeed rely on 4G segment limits,
3547                 * so do not report SMM to be available if real mode is
3548                 * emulated via vm86 mode.  Still, do not go to great lengths
3549                 * to avoid userspace's usage of the feature, because it is a
3550                 * fringe case that is not enabled except via specific settings
3551                 * of the module parameters.
3552                 */
3553                r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3554                break;
3555        case KVM_CAP_VAPIC:
3556                r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3557                break;
3558        case KVM_CAP_NR_VCPUS:
3559                r = KVM_SOFT_MAX_VCPUS;
3560                break;
3561        case KVM_CAP_MAX_VCPUS:
3562                r = KVM_MAX_VCPUS;
3563                break;
3564        case KVM_CAP_MAX_VCPU_ID:
3565                r = KVM_MAX_VCPU_ID;
3566                break;
3567        case KVM_CAP_PV_MMU:    /* obsolete */
3568                r = 0;
3569                break;
3570        case KVM_CAP_MCE:
3571                r = KVM_MAX_MCE_BANKS;
3572                break;
3573        case KVM_CAP_XCRS:
3574                r = boot_cpu_has(X86_FEATURE_XSAVE);
3575                break;
3576        case KVM_CAP_TSC_CONTROL:
3577                r = kvm_has_tsc_control;
3578                break;
3579        case KVM_CAP_X2APIC_API:
3580                r = KVM_X2APIC_API_VALID_FLAGS;
3581                break;
3582        case KVM_CAP_NESTED_STATE:
3583                r = kvm_x86_ops.nested_ops->get_state ?
3584                        kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3585                break;
3586        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3587                r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3588                break;
3589        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3590                r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3591                break;
3592        case KVM_CAP_SMALLER_MAXPHYADDR:
3593                r = (int) allow_smaller_maxphyaddr;
3594                break;
3595        case KVM_CAP_STEAL_TIME:
3596                r = sched_info_on();
3597                break;
3598        default:
3599                break;
3600        }
3601        return r;
3602
3603}
3604
3605long kvm_arch_dev_ioctl(struct file *filp,
3606                        unsigned int ioctl, unsigned long arg)
3607{
3608        void __user *argp = (void __user *)arg;
3609        long r;
3610
3611        switch (ioctl) {
3612        case KVM_GET_MSR_INDEX_LIST: {
3613                struct kvm_msr_list __user *user_msr_list = argp;
3614                struct kvm_msr_list msr_list;
3615                unsigned n;
3616
3617                r = -EFAULT;
3618                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3619                        goto out;
3620                n = msr_list.nmsrs;
3621                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3622                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3623                        goto out;
3624                r = -E2BIG;
3625                if (n < msr_list.nmsrs)
3626                        goto out;
3627                r = -EFAULT;
3628                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3629                                 num_msrs_to_save * sizeof(u32)))
3630                        goto out;
3631                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3632                                 &emulated_msrs,
3633                                 num_emulated_msrs * sizeof(u32)))
3634                        goto out;
3635                r = 0;
3636                break;
3637        }
3638        case KVM_GET_SUPPORTED_CPUID:
3639        case KVM_GET_EMULATED_CPUID: {
3640                struct kvm_cpuid2 __user *cpuid_arg = argp;
3641                struct kvm_cpuid2 cpuid;
3642
3643                r = -EFAULT;
3644                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3645                        goto out;
3646
3647                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3648                                            ioctl);
3649                if (r)
3650                        goto out;
3651
3652                r = -EFAULT;
3653                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3654                        goto out;
3655                r = 0;
3656                break;
3657        }
3658        case KVM_X86_GET_MCE_CAP_SUPPORTED:
3659                r = -EFAULT;
3660                if (copy_to_user(argp, &kvm_mce_cap_supported,
3661                                 sizeof(kvm_mce_cap_supported)))
3662                        goto out;
3663                r = 0;
3664                break;
3665        case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3666                struct kvm_msr_list __user *user_msr_list = argp;
3667                struct kvm_msr_list msr_list;
3668                unsigned int n;
3669
3670                r = -EFAULT;
3671                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3672                        goto out;
3673                n = msr_list.nmsrs;
3674                msr_list.nmsrs = num_msr_based_features;
3675                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3676                        goto out;
3677                r = -E2BIG;
3678                if (n < msr_list.nmsrs)
3679                        goto out;
3680                r = -EFAULT;
3681                if (copy_to_user(user_msr_list->indices, &msr_based_features,
3682                                 num_msr_based_features * sizeof(u32)))
3683                        goto out;
3684                r = 0;
3685                break;
3686        }
3687        case KVM_GET_MSRS:
3688                r = msr_io(NULL, argp, do_get_msr_feature, 1);
3689                break;
3690        default:
3691                r = -EINVAL;
3692                break;
3693        }
3694out:
3695        return r;
3696}
3697
3698static void wbinvd_ipi(void *garbage)
3699{
3700        wbinvd();
3701}
3702
3703static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3704{
3705        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3706}
3707
3708void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3709{
3710        /* Address WBINVD may be executed by guest */
3711        if (need_emulate_wbinvd(vcpu)) {
3712                if (kvm_x86_ops.has_wbinvd_exit())
3713                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3714                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3715                        smp_call_function_single(vcpu->cpu,
3716                                        wbinvd_ipi, NULL, 1);
3717        }
3718
3719        kvm_x86_ops.vcpu_load(vcpu, cpu);
3720
3721        /* Save host pkru register if supported */
3722        vcpu->arch.host_pkru = read_pkru();
3723
3724        /* Apply any externally detected TSC adjustments (due to suspend) */
3725        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3726                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3727                vcpu->arch.tsc_offset_adjustment = 0;
3728                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3729        }
3730
3731        if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3732                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3733                                rdtsc() - vcpu->arch.last_host_tsc;
3734                if (tsc_delta < 0)
3735                        mark_tsc_unstable("KVM discovered backwards TSC");
3736
3737                if (kvm_check_tsc_unstable()) {
3738                        u64 offset = kvm_compute_tsc_offset(vcpu,
3739                                                vcpu->arch.last_guest_tsc);
3740                        kvm_vcpu_write_tsc_offset(vcpu, offset);
3741                        vcpu->arch.tsc_catchup = 1;
3742                }
3743
3744                if (kvm_lapic_hv_timer_in_use(vcpu))
3745                        kvm_lapic_restart_hv_timer(vcpu);
3746
3747                /*
3748                 * On a host with synchronized TSC, there is no need to update
3749                 * kvmclock on vcpu->cpu migration
3750                 */
3751                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3752                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3753                if (vcpu->cpu != cpu)
3754                        kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3755                vcpu->cpu = cpu;
3756        }
3757
3758        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3759}
3760
3761static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3762{
3763        struct kvm_host_map map;
3764        struct kvm_steal_time *st;
3765
3766        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3767                return;
3768
3769        if (vcpu->arch.st.preempted)
3770                return;
3771
3772        if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3773                        &vcpu->arch.st.cache, true))
3774                return;
3775
3776        st = map.hva +
3777                offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3778
3779        st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3780
3781        kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3782}
3783
3784void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3785{
3786        int idx;
3787
3788        if (vcpu->preempted)
3789                vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3790
3791        /*
3792         * Disable page faults because we're in atomic context here.
3793         * kvm_write_guest_offset_cached() would call might_fault()
3794         * that relies on pagefault_disable() to tell if there's a
3795         * bug. NOTE: the write to guest memory may not go through if
3796         * during postcopy live migration or if there's heavy guest
3797         * paging.
3798         */
3799        pagefault_disable();
3800        /*
3801         * kvm_memslots() will be called by
3802         * kvm_write_guest_offset_cached() so take the srcu lock.
3803         */
3804        idx = srcu_read_lock(&vcpu->kvm->srcu);
3805        kvm_steal_time_set_preempted(vcpu);
3806        srcu_read_unlock(&vcpu->kvm->srcu, idx);
3807        pagefault_enable();
3808        kvm_x86_ops.vcpu_put(vcpu);
3809        vcpu->arch.last_host_tsc = rdtsc();
3810        /*
3811         * If userspace has set any breakpoints or watchpoints, dr6 is restored
3812         * on every vmexit, but if not, we might have a stale dr6 from the
3813         * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3814         */
3815        set_debugreg(0, 6);
3816}
3817
3818static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3819                                    struct kvm_lapic_state *s)
3820{
3821        if (vcpu->arch.apicv_active)
3822                kvm_x86_ops.sync_pir_to_irr(vcpu);
3823
3824        return kvm_apic_get_state(vcpu, s);
3825}
3826
3827static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3828                                    struct kvm_lapic_state *s)
3829{
3830        int r;
3831
3832        r = kvm_apic_set_state(vcpu, s);
3833        if (r)
3834                return r;
3835        update_cr8_intercept(vcpu);
3836
3837        return 0;
3838}
3839
3840static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3841{
3842        return (!lapic_in_kernel(vcpu) ||
3843                kvm_apic_accept_pic_intr(vcpu));
3844}
3845
3846/*
3847 * if userspace requested an interrupt window, check that the
3848 * interrupt window is open.
3849 *
3850 * No need to exit to userspace if we already have an interrupt queued.
3851 */
3852static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3853{
3854        return kvm_arch_interrupt_allowed(vcpu) &&
3855                !kvm_cpu_has_interrupt(vcpu) &&
3856                !kvm_event_needs_reinjection(vcpu) &&
3857                kvm_cpu_accept_dm_intr(vcpu);
3858}
3859
3860static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3861                                    struct kvm_interrupt *irq)
3862{
3863        if (irq->irq >= KVM_NR_INTERRUPTS)
3864                return -EINVAL;
3865
3866        if (!irqchip_in_kernel(vcpu->kvm)) {
3867                kvm_queue_interrupt(vcpu, irq->irq, false);
3868                kvm_make_request(KVM_REQ_EVENT, vcpu);
3869                return 0;
3870        }
3871
3872        /*
3873         * With in-kernel LAPIC, we only use this to inject EXTINT, so
3874         * fail for in-kernel 8259.
3875         */
3876        if (pic_in_kernel(vcpu->kvm))
3877                return -ENXIO;
3878
3879        if (vcpu->arch.pending_external_vector != -1)
3880                return -EEXIST;
3881
3882        vcpu->arch.pending_external_vector = irq->irq;
3883        kvm_make_request(KVM_REQ_EVENT, vcpu);
3884        return 0;
3885}
3886
3887static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3888{
3889        kvm_inject_nmi(vcpu);
3890
3891        return 0;
3892}
3893
3894static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3895{
3896        kvm_make_request(KVM_REQ_SMI, vcpu);
3897
3898        return 0;
3899}
3900
3901static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3902                                           struct kvm_tpr_access_ctl *tac)
3903{
3904        if (tac->flags)
3905                return -EINVAL;
3906        vcpu->arch.tpr_access_reporting = !!tac->enabled;
3907        return 0;
3908}
3909
3910static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3911                                        u64 mcg_cap)
3912{
3913        int r;
3914        unsigned bank_num = mcg_cap & 0xff, bank;
3915
3916        r = -EINVAL;
3917        if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3918                goto out;
3919        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3920                goto out;
3921        r = 0;
3922        vcpu->arch.mcg_cap = mcg_cap;
3923        /* Init IA32_MCG_CTL to all 1s */
3924        if (mcg_cap & MCG_CTL_P)
3925                vcpu->arch.mcg_ctl = ~(u64)0;
3926        /* Init IA32_MCi_CTL to all 1s */
3927        for (bank = 0; bank < bank_num; bank++)
3928                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3929
3930        kvm_x86_ops.setup_mce(vcpu);
3931out:
3932        return r;
3933}
3934
3935static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3936                                      struct kvm_x86_mce *mce)
3937{
3938        u64 mcg_cap = vcpu->arch.mcg_cap;
3939        unsigned bank_num = mcg_cap & 0xff;
3940        u64 *banks = vcpu->arch.mce_banks;
3941
3942        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3943                return -EINVAL;
3944        /*
3945         * if IA32_MCG_CTL is not all 1s, the uncorrected error
3946         * reporting is disabled
3947         */
3948        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3949            vcpu->arch.mcg_ctl != ~(u64)0)
3950                return 0;
3951        banks += 4 * mce->bank;
3952        /*
3953         * if IA32_MCi_CTL is not all 1s, the uncorrected error
3954         * reporting is disabled for the bank
3955         */
3956        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3957                return 0;
3958        if (mce->status & MCI_STATUS_UC) {
3959                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3960                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3961                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3962                        return 0;
3963                }
3964                if (banks[1] & MCI_STATUS_VAL)
3965                        mce->status |= MCI_STATUS_OVER;
3966                banks[2] = mce->addr;
3967                banks[3] = mce->misc;
3968                vcpu->arch.mcg_status = mce->mcg_status;
3969                banks[1] = mce->status;
3970                kvm_queue_exception(vcpu, MC_VECTOR);
3971        } else if (!(banks[1] & MCI_STATUS_VAL)
3972                   || !(banks[1] & MCI_STATUS_UC)) {
3973                if (banks[1] & MCI_STATUS_VAL)
3974                        mce->status |= MCI_STATUS_OVER;
3975                banks[2] = mce->addr;
3976                banks[3] = mce->misc;
3977                banks[1] = mce->status;
3978        } else
3979                banks[1] |= MCI_STATUS_OVER;
3980        return 0;
3981}
3982
3983static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3984                                               struct kvm_vcpu_events *events)
3985{
3986        process_nmi(vcpu);
3987
3988        /*
3989         * In guest mode, payload delivery should be deferred,
3990         * so that the L1 hypervisor can intercept #PF before
3991         * CR2 is modified (or intercept #DB before DR6 is
3992         * modified under nVMX). Unless the per-VM capability,
3993         * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3994         * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3995         * opportunistically defer the exception payload, deliver it if the
3996         * capability hasn't been requested before processing a
3997         * KVM_GET_VCPU_EVENTS.
3998         */
3999        if (!vcpu->kvm->arch.exception_payload_enabled &&
4000            vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4001                kvm_deliver_exception_payload(vcpu);
4002
4003        /*
4004         * The API doesn't provide the instruction length for software
4005         * exceptions, so don't report them. As long as the guest RIP
4006         * isn't advanced, we should expect to encounter the exception
4007         * again.
4008         */
4009        if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4010                events->exception.injected = 0;
4011                events->exception.pending = 0;
4012        } else {
4013                events->exception.injected = vcpu->arch.exception.injected;
4014                events->exception.pending = vcpu->arch.exception.pending;
4015                /*
4016                 * For ABI compatibility, deliberately conflate
4017                 * pending and injected exceptions when
4018                 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4019                 */
4020                if (!vcpu->kvm->arch.exception_payload_enabled)
4021                        events->exception.injected |=
4022                                vcpu->arch.exception.pending;
4023        }
4024        events->exception.nr = vcpu->arch.exception.nr;
4025        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4026        events->exception.error_code = vcpu->arch.exception.error_code;
4027        events->exception_has_payload = vcpu->arch.exception.has_payload;
4028        events->exception_payload = vcpu->arch.exception.payload;
4029
4030        events->interrupt.injected =
4031                vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4032        events->interrupt.nr = vcpu->arch.interrupt.nr;
4033        events->interrupt.soft = 0;
4034        events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4035
4036        events->nmi.injected = vcpu->arch.nmi_injected;
4037        events->nmi.pending = vcpu->arch.nmi_pending != 0;
4038        events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4039        events->nmi.pad = 0;
4040
4041        events->sipi_vector = 0; /* never valid when reporting to user space */
4042
4043        events->smi.smm = is_smm(vcpu);
4044        events->smi.pending = vcpu->arch.smi_pending;
4045        events->smi.smm_inside_nmi =
4046                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4047        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4048
4049        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4050                         | KVM_VCPUEVENT_VALID_SHADOW
4051                         | KVM_VCPUEVENT_VALID_SMM);
4052        if (vcpu->kvm->arch.exception_payload_enabled)
4053                events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4054
4055        memset(&events->reserved, 0, sizeof(events->reserved));
4056}
4057
4058static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4059
4060static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4061                                              struct kvm_vcpu_events *events)
4062{
4063        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4064                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4065                              | KVM_VCPUEVENT_VALID_SHADOW
4066                              | KVM_VCPUEVENT_VALID_SMM
4067                              | KVM_VCPUEVENT_VALID_PAYLOAD))
4068                return -EINVAL;
4069
4070        if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4071                if (!vcpu->kvm->arch.exception_payload_enabled)
4072                        return -EINVAL;
4073                if (events->exception.pending)
4074                        events->exception.injected = 0;
4075                else
4076                        events->exception_has_payload = 0;
4077        } else {
4078                events->exception.pending = 0;
4079                events->exception_has_payload = 0;
4080        }
4081
4082        if ((events->exception.injected || events->exception.pending) &&
4083            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4084                return -EINVAL;
4085
4086        /* INITs are latched while in SMM */
4087        if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4088            (events->smi.smm || events->smi.pending) &&
4089            vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4090                return -EINVAL;
4091
4092        process_nmi(vcpu);
4093        vcpu->arch.exception.injected = events->exception.injected;
4094        vcpu->arch.exception.pending = events->exception.pending;
4095        vcpu->arch.exception.nr = events->exception.nr;
4096        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4097        vcpu->arch.exception.error_code = events->exception.error_code;
4098        vcpu->arch.exception.has_payload = events->exception_has_payload;
4099        vcpu->arch.exception.payload = events->exception_payload;
4100
4101        vcpu->arch.interrupt.injected = events->interrupt.injected;
4102        vcpu->arch.interrupt.nr = events->interrupt.nr;
4103        vcpu->arch.interrupt.soft = events->interrupt.soft;
4104        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4105                kvm_x86_ops.set_interrupt_shadow(vcpu,
4106                                                  events->interrupt.shadow);
4107
4108        vcpu->arch.nmi_injected = events->nmi.injected;
4109        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4110                vcpu->arch.nmi_pending = events->nmi.pending;
4111        kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4112
4113        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4114            lapic_in_kernel(vcpu))
4115                vcpu->arch.apic->sipi_vector = events->sipi_vector;
4116
4117        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4118                if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4119                        if (events->smi.smm)
4120                                vcpu->arch.hflags |= HF_SMM_MASK;
4121                        else
4122                                vcpu->arch.hflags &= ~HF_SMM_MASK;
4123                        kvm_smm_changed(vcpu);
4124                }
4125
4126                vcpu->arch.smi_pending = events->smi.pending;
4127
4128                if (events->smi.smm) {
4129                        if (events->smi.smm_inside_nmi)
4130                                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4131                        else
4132                                vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4133                }
4134
4135                if (lapic_in_kernel(vcpu)) {
4136                        if (events->smi.latched_init)
4137                                set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4138                        else
4139                                clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4140                }
4141        }
4142
4143        kvm_make_request(KVM_REQ_EVENT, vcpu);
4144
4145        return 0;
4146}
4147
4148static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4149                                             struct kvm_debugregs *dbgregs)
4150{
4151        unsigned long val;
4152
4153        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4154        kvm_get_dr(vcpu, 6, &val);
4155        dbgregs->dr6 = val;
4156        dbgregs->dr7 = vcpu->arch.dr7;
4157        dbgregs->flags = 0;
4158        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4159}
4160
4161static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4162                                            struct kvm_debugregs *dbgregs)
4163{
4164        if (dbgregs->flags)
4165                return -EINVAL;
4166
4167        if (dbgregs->dr6 & ~0xffffffffull)
4168                return -EINVAL;
4169        if (dbgregs->dr7 & ~0xffffffffull)
4170                return -EINVAL;
4171
4172        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4173        kvm_update_dr0123(vcpu);
4174        vcpu->arch.dr6 = dbgregs->dr6;
4175        vcpu->arch.dr7 = dbgregs->dr7;
4176        kvm_update_dr7(vcpu);
4177
4178        return 0;
4179}
4180
4181#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4182
4183static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4184{
4185        struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4186        u64 xstate_bv = xsave->header.xfeatures;
4187        u64 valid;
4188
4189        /*
4190         * Copy legacy XSAVE area, to avoid complications with CPUID
4191         * leaves 0 and 1 in the loop below.
4192         */
4193        memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4194
4195        /* Set XSTATE_BV */
4196        xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4197        *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4198
4199        /*
4200         * Copy each region from the possibly compacted offset to the
4201         * non-compacted offset.
4202         */
4203        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4204        while (valid) {
4205                u64 xfeature_mask = valid & -valid;
4206                int xfeature_nr = fls64(xfeature_mask) - 1;
4207                void *src = get_xsave_addr(xsave, xfeature_nr);
4208
4209                if (src) {
4210                        u32 size, offset, ecx, edx;
4211                        cpuid_count(XSTATE_CPUID, xfeature_nr,
4212                                    &size, &offset, &ecx, &edx);
4213                        if (xfeature_nr == XFEATURE_PKRU)
4214                                memcpy(dest + offset, &vcpu->arch.pkru,
4215                                       sizeof(vcpu->arch.pkru));
4216                        else
4217                                memcpy(dest + offset, src, size);
4218
4219                }
4220
4221                valid -= xfeature_mask;
4222        }
4223}
4224
4225static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4226{
4227        struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4228        u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4229        u64 valid;
4230
4231        /*
4232         * Copy legacy XSAVE area, to avoid complications with CPUID
4233         * leaves 0 and 1 in the loop below.
4234         */
4235        memcpy(xsave, src, XSAVE_HDR_OFFSET);
4236
4237        /* Set XSTATE_BV and possibly XCOMP_BV.  */
4238        xsave->header.xfeatures = xstate_bv;
4239        if (boot_cpu_has(X86_FEATURE_XSAVES))
4240                xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4241
4242        /*
4243         * Copy each region from the non-compacted offset to the
4244         * possibly compacted offset.
4245         */
4246        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4247        while (valid) {
4248                u64 xfeature_mask = valid & -valid;
4249                int xfeature_nr = fls64(xfeature_mask) - 1;
4250                void *dest = get_xsave_addr(xsave, xfeature_nr);
4251
4252                if (dest) {
4253                        u32 size, offset, ecx, edx;
4254                        cpuid_count(XSTATE_CPUID, xfeature_nr,
4255                                    &size, &offset, &ecx, &edx);
4256                        if (xfeature_nr == XFEATURE_PKRU)
4257                                memcpy(&vcpu->arch.pkru, src + offset,
4258                                       sizeof(vcpu->arch.pkru));
4259                        else
4260                                memcpy(dest, src + offset, size);
4261                }
4262
4263                valid -= xfeature_mask;
4264        }
4265}
4266
4267static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4268                                         struct kvm_xsave *guest_xsave)
4269{
4270        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4271                memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4272                fill_xsave((u8 *) guest_xsave->region, vcpu);
4273        } else {
4274                memcpy(guest_xsave->region,
4275                        &vcpu->arch.guest_fpu->state.fxsave,
4276                        sizeof(struct fxregs_state));
4277                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4278                        XFEATURE_MASK_FPSSE;
4279        }
4280}
4281
4282#define XSAVE_MXCSR_OFFSET 24
4283
4284static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4285                                        struct kvm_xsave *guest_xsave)
4286{
4287        u64 xstate_bv =
4288                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4289        u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4290
4291        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4292                /*
4293                 * Here we allow setting states that are not present in
4294                 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4295                 * with old userspace.
4296                 */
4297                if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4298                        return -EINVAL;
4299                load_xsave(vcpu, (u8 *)guest_xsave->region);
4300        } else {
4301                if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4302                        mxcsr & ~mxcsr_feature_mask)
4303                        return -EINVAL;
4304                memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4305                        guest_xsave->region, sizeof(struct fxregs_state));
4306        }
4307        return 0;
4308}
4309
4310static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4311                                        struct kvm_xcrs *guest_xcrs)
4312{
4313        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4314                guest_xcrs->nr_xcrs = 0;
4315                return;
4316        }
4317
4318        guest_xcrs->nr_xcrs = 1;
4319        guest_xcrs->flags = 0;
4320        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4321        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4322}
4323
4324static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4325                                       struct kvm_xcrs *guest_xcrs)
4326{
4327        int i, r = 0;
4328
4329        if (!boot_cpu_has(X86_FEATURE_XSAVE))
4330                return -EINVAL;
4331
4332        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4333                return -EINVAL;
4334
4335        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4336                /* Only support XCR0 currently */
4337                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4338                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4339                                guest_xcrs->xcrs[i].value);
4340                        break;
4341                }
4342        if (r)
4343                r = -EINVAL;
4344        return r;
4345}
4346
4347/*
4348 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4349 * stopped by the hypervisor.  This function will be called from the host only.
4350 * EINVAL is returned when the host attempts to set the flag for a guest that
4351 * does not support pv clocks.
4352 */
4353static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4354{
4355        if (!vcpu->arch.pv_time_enabled)
4356                return -EINVAL;
4357        vcpu->arch.pvclock_set_guest_stopped_request = true;
4358        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4359        return 0;
4360}
4361
4362static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4363                                     struct kvm_enable_cap *cap)
4364{
4365        int r;
4366        uint16_t vmcs_version;
4367        void __user *user_ptr;
4368
4369        if (cap->flags)
4370                return -EINVAL;
4371
4372        switch (cap->cap) {
4373        case KVM_CAP_HYPERV_SYNIC2:
4374                if (cap->args[0])
4375                        return -EINVAL;
4376                fallthrough;
4377
4378        case KVM_CAP_HYPERV_SYNIC:
4379                if (!irqchip_in_kernel(vcpu->kvm))
4380                        return -EINVAL;
4381                return kvm_hv_activate_synic(vcpu, cap->cap ==
4382                                             KVM_CAP_HYPERV_SYNIC2);
4383        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4384                if (!kvm_x86_ops.nested_ops->enable_evmcs)
4385                        return -ENOTTY;
4386                r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4387                if (!r) {
4388                        user_ptr = (void __user *)(uintptr_t)cap->args[0];
4389                        if (copy_to_user(user_ptr, &vmcs_version,
4390                                         sizeof(vmcs_version)))
4391                                r = -EFAULT;
4392                }
4393                return r;
4394        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4395                if (!kvm_x86_ops.enable_direct_tlbflush)
4396                        return -ENOTTY;
4397
4398                return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4399
4400        default:
4401                return -EINVAL;
4402        }
4403}
4404
4405long kvm_arch_vcpu_ioctl(struct file *filp,
4406                         unsigned int ioctl, unsigned long arg)
4407{
4408        struct kvm_vcpu *vcpu = filp->private_data;
4409        void __user *argp = (void __user *)arg;
4410        int r;
4411        union {
4412                struct kvm_lapic_state *lapic;
4413                struct kvm_xsave *xsave;
4414                struct kvm_xcrs *xcrs;
4415                void *buffer;
4416        } u;
4417
4418        vcpu_load(vcpu);
4419
4420        u.buffer = NULL;
4421        switch (ioctl) {
4422        case KVM_GET_LAPIC: {
4423                r = -EINVAL;
4424                if (!lapic_in_kernel(vcpu))
4425                        goto out;
4426                u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4427                                GFP_KERNEL_ACCOUNT);
4428
4429                r = -ENOMEM;
4430                if (!u.lapic)
4431                        goto out;
4432                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4433                if (r)
4434                        goto out;
4435                r = -EFAULT;
4436                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4437                        goto out;
4438                r = 0;
4439                break;
4440        }
4441        case KVM_SET_LAPIC: {
4442                r = -EINVAL;
4443                if (!lapic_in_kernel(vcpu))
4444                        goto out;
4445                u.lapic = memdup_user(argp, sizeof(*u.lapic));
4446                if (IS_ERR(u.lapic)) {
4447                        r = PTR_ERR(u.lapic);
4448                        goto out_nofree;
4449                }
4450
4451                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4452                break;
4453        }
4454        case KVM_INTERRUPT: {
4455                struct kvm_interrupt irq;
4456
4457                r = -EFAULT;
4458                if (copy_from_user(&irq, argp, sizeof(irq)))
4459                        goto out;
4460                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4461                break;
4462        }
4463        case KVM_NMI: {
4464                r = kvm_vcpu_ioctl_nmi(vcpu);
4465                break;
4466        }
4467        case KVM_SMI: {
4468                r = kvm_vcpu_ioctl_smi(vcpu);
4469                break;
4470        }
4471        case KVM_SET_CPUID: {
4472                struct kvm_cpuid __user *cpuid_arg = argp;
4473                struct kvm_cpuid cpuid;
4474
4475                r = -EFAULT;
4476                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4477                        goto out;
4478                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4479                break;
4480        }
4481        case KVM_SET_CPUID2: {
4482                struct kvm_cpuid2 __user *cpuid_arg = argp;
4483                struct kvm_cpuid2 cpuid;
4484
4485                r = -EFAULT;
4486                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4487                        goto out;
4488                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4489                                              cpuid_arg->entries);
4490                break;
4491        }
4492        case KVM_GET_CPUID2: {
4493                struct kvm_cpuid2 __user *cpuid_arg = argp;
4494                struct kvm_cpuid2 cpuid;
4495
4496                r = -EFAULT;
4497                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4498                        goto out;
4499                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4500                                              cpuid_arg->entries);
4501                if (r)
4502                        goto out;
4503                r = -EFAULT;
4504                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4505                        goto out;
4506                r = 0;
4507                break;
4508        }
4509        case KVM_GET_MSRS: {
4510                int idx = srcu_read_lock(&vcpu->kvm->srcu);
4511                r = msr_io(vcpu, argp, do_get_msr, 1);
4512                srcu_read_unlock(&vcpu->kvm->srcu, idx);
4513                break;
4514        }
4515        case KVM_SET_MSRS: {
4516                int idx = srcu_read_lock(&vcpu->kvm->srcu);
4517                r = msr_io(vcpu, argp, do_set_msr, 0);
4518                srcu_read_unlock(&vcpu->kvm->srcu, idx);
4519                break;
4520        }
4521        case KVM_TPR_ACCESS_REPORTING: {
4522                struct kvm_tpr_access_ctl tac;
4523
4524                r = -EFAULT;
4525                if (copy_from_user(&tac, argp, sizeof(tac)))
4526                        goto out;
4527                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4528                if (r)
4529                        goto out;
4530                r = -EFAULT;
4531                if (copy_to_user(argp, &tac, sizeof(tac)))
4532                        goto out;
4533                r = 0;
4534                break;
4535        };
4536        case KVM_SET_VAPIC_ADDR: {
4537                struct kvm_vapic_addr va;
4538                int idx;
4539
4540                r = -EINVAL;
4541                if (!lapic_in_kernel(vcpu))
4542                        goto out;
4543                r = -EFAULT;
4544                if (copy_from_user(&va, argp, sizeof(va)))
4545                        goto out;
4546                idx = srcu_read_lock(&vcpu->kvm->srcu);
4547                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4548                srcu_read_unlock(&vcpu->kvm->srcu, idx);
4549                break;
4550        }
4551        case KVM_X86_SETUP_MCE: {
4552                u64 mcg_cap;
4553
4554                r = -EFAULT;
4555                if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4556                        goto out;
4557                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4558                break;
4559        }
4560        case KVM_X86_SET_MCE: {
4561                struct kvm_x86_mce mce;
4562
4563                r = -EFAULT;
4564                if (copy_from_user(&mce, argp, sizeof(mce)))
4565                        goto out;
4566                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4567                break;
4568        }
4569        case KVM_GET_VCPU_EVENTS: {
4570                struct kvm_vcpu_events events;
4571
4572                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4573
4574                r = -EFAULT;
4575                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4576                        break;
4577                r = 0;
4578                break;
4579        }
4580        case KVM_SET_VCPU_EVENTS: {
4581                struct kvm_vcpu_events events;
4582
4583                r = -EFAULT;
4584                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4585                        break;
4586
4587                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4588                break;
4589        }
4590        case KVM_GET_DEBUGREGS: {
4591                struct kvm_debugregs dbgregs;
4592
4593                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4594
4595                r = -EFAULT;
4596                if (copy_to_user(argp, &dbgregs,
4597                                 sizeof(struct kvm_debugregs)))
4598                        break;
4599                r = 0;
4600                break;
4601        }
4602        case KVM_SET_DEBUGREGS: {
4603                struct kvm_debugregs dbgregs;
4604
4605                r = -EFAULT;
4606                if (copy_from_user(&dbgregs, argp,
4607                                   sizeof(struct kvm_debugregs)))
4608                        break;
4609
4610                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4611                break;
4612        }
4613        case KVM_GET_XSAVE: {
4614                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4615                r = -ENOMEM;
4616                if (!u.xsave)
4617                        break;
4618
4619                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4620
4621                r = -EFAULT;
4622                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4623                        break;
4624                r = 0;
4625                break;
4626        }
4627        case KVM_SET_XSAVE: {
4628                u.xsave = memdup_user(argp, sizeof(*u.xsave));
4629                if (IS_ERR(u.xsave)) {
4630                        r = PTR_ERR(u.xsave);
4631                        goto out_nofree;
4632                }
4633
4634                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4635                break;
4636        }
4637        case KVM_GET_XCRS: {
4638                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4639                r = -ENOMEM;
4640                if (!u.xcrs)
4641                        break;
4642
4643                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4644
4645                r = -EFAULT;
4646                if (copy_to_user(argp, u.xcrs,
4647                                 sizeof(struct kvm_xcrs)))
4648                        break;
4649                r = 0;
4650                break;
4651        }
4652        case KVM_SET_XCRS: {
4653                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4654                if (IS_ERR(u.xcrs)) {
4655                        r = PTR_ERR(u.xcrs);
4656                        goto out_nofree;
4657                }
4658
4659                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4660                break;
4661        }
4662        case KVM_SET_TSC_KHZ: {
4663                u32 user_tsc_khz;
4664
4665                r = -EINVAL;
4666                user_tsc_khz = (u32)arg;
4667
4668                if (kvm_has_tsc_control &&
4669                    user_tsc_khz >= kvm_max_guest_tsc_khz)
4670                        goto out;
4671
4672                if (user_tsc_khz == 0)
4673                        user_tsc_khz = tsc_khz;
4674
4675                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4676                        r = 0;
4677
4678                goto out;
4679        }
4680        case KVM_GET_TSC_KHZ: {
4681                r = vcpu->arch.virtual_tsc_khz;
4682                goto out;
4683        }
4684        case KVM_KVMCLOCK_CTRL: {
4685                r = kvm_set_guest_paused(vcpu);
4686                goto out;
4687        }
4688        case KVM_ENABLE_CAP: {
4689                struct kvm_enable_cap cap;
4690
4691                r = -EFAULT;
4692                if (copy_from_user(&cap, argp, sizeof(cap)))
4693                        goto out;
4694                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4695                break;
4696        }
4697        case KVM_GET_NESTED_STATE: {
4698                struct kvm_nested_state __user *user_kvm_nested_state = argp;
4699                u32 user_data_size;
4700
4701                r = -EINVAL;
4702                if (!kvm_x86_ops.nested_ops->get_state)
4703                        break;
4704
4705                BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4706                r = -EFAULT;
4707                if (get_user(user_data_size, &user_kvm_nested_state->size))
4708                        break;
4709
4710                r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4711                                                     user_data_size);
4712                if (r < 0)
4713                        break;
4714
4715                if (r > user_data_size) {
4716                        if (put_user(r, &user_kvm_nested_state->size))
4717                                r = -EFAULT;
4718                        else
4719                                r = -E2BIG;
4720                        break;
4721                }
4722
4723                r = 0;
4724                break;
4725        }
4726        case KVM_SET_NESTED_STATE: {
4727                struct kvm_nested_state __user *user_kvm_nested_state = argp;
4728                struct kvm_nested_state kvm_state;
4729                int idx;
4730
4731                r = -EINVAL;
4732                if (!kvm_x86_ops.nested_ops->set_state)
4733                        break;
4734
4735                r = -EFAULT;
4736                if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4737                        break;
4738
4739                r = -EINVAL;
4740                if (kvm_state.size < sizeof(kvm_state))
4741                        break;
4742
4743                if (kvm_state.flags &
4744                    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4745                      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4746                      | KVM_STATE_NESTED_GIF_SET))
4747                        break;
4748
4749                /* nested_run_pending implies guest_mode.  */
4750                if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4751                    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4752                        break;
4753
4754                idx = srcu_read_lock(&vcpu->kvm->srcu);
4755                r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4756                srcu_read_unlock(&vcpu->kvm->srcu, idx);
4757                break;
4758        }
4759        case KVM_GET_SUPPORTED_HV_CPUID: {
4760                struct kvm_cpuid2 __user *cpuid_arg = argp;
4761                struct kvm_cpuid2 cpuid;
4762
4763                r = -EFAULT;
4764                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4765                        goto out;
4766
4767                r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4768                                                cpuid_arg->entries);
4769                if (r)
4770                        goto out;
4771
4772                r = -EFAULT;
4773                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4774                        goto out;
4775                r = 0;
4776                break;
4777        }
4778        default:
4779                r = -EINVAL;
4780        }
4781out:
4782        kfree(u.buffer);
4783out_nofree:
4784        vcpu_put(vcpu);
4785        return r;
4786}
4787
4788vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4789{
4790        return VM_FAULT_SIGBUS;
4791}
4792
4793static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4794{
4795        int ret;
4796
4797        if (addr > (unsigned int)(-3 * PAGE_SIZE))
4798                return -EINVAL;
4799        ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4800        return ret;
4801}
4802
4803static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4804                                              u64 ident_addr)
4805{
4806        return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4807}
4808
4809static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4810                                         unsigned long kvm_nr_mmu_pages)
4811{
4812        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4813                return -EINVAL;
4814
4815        mutex_lock(&kvm->slots_lock);
4816
4817        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4818        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4819
4820        mutex_unlock(&kvm->slots_lock);
4821        return 0;
4822}
4823
4824static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4825{
4826        return kvm->arch.n_max_mmu_pages;
4827}
4828
4829static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4830{
4831        struct kvm_pic *pic = kvm->arch.vpic;
4832        int r;
4833
4834        r = 0;
4835        switch (chip->chip_id) {
4836        case KVM_IRQCHIP_PIC_MASTER:
4837                memcpy(&chip->chip.pic, &pic->pics[0],
4838                        sizeof(struct kvm_pic_state));
4839                break;
4840        case KVM_IRQCHIP_PIC_SLAVE:
4841                memcpy(&chip->chip.pic, &pic->pics[1],
4842                        sizeof(struct kvm_pic_state));
4843                break;
4844        case KVM_IRQCHIP_IOAPIC:
4845                kvm_get_ioapic(kvm, &chip->chip.ioapic);
4846                break;
4847        default:
4848                r = -EINVAL;
4849                break;
4850        }
4851        return r;
4852}
4853
4854static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4855{
4856        struct kvm_pic *pic = kvm->arch.vpic;
4857        int r;
4858
4859        r = 0;
4860        switch (chip->chip_id) {
4861        case KVM_IRQCHIP_PIC_MASTER:
4862                spin_lock(&pic->lock);
4863                memcpy(&pic->pics[0], &chip->chip.pic,
4864                        sizeof(struct kvm_pic_state));
4865                spin_unlock(&pic->lock);
4866                break;
4867        case KVM_IRQCHIP_PIC_SLAVE:
4868                spin_lock(&pic->lock);
4869                memcpy(&pic->pics[1], &chip->chip.pic,
4870                        sizeof(struct kvm_pic_state));
4871                spin_unlock(&pic->lock);
4872                break;
4873        case KVM_IRQCHIP_IOAPIC:
4874                kvm_set_ioapic(kvm, &chip->chip.ioapic);
4875                break;
4876        default:
4877                r = -EINVAL;
4878                break;
4879        }
4880        kvm_pic_update_irq(pic);
4881        return r;
4882}
4883
4884static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4885{
4886        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4887
4888        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4889
4890        mutex_lock(&kps->lock);
4891        memcpy(ps, &kps->channels, sizeof(*ps));
4892        mutex_unlock(&kps->lock);
4893        return 0;
4894}
4895
4896static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4897{
4898        int i;
4899        struct kvm_pit *pit = kvm->arch.vpit;
4900
4901        mutex_lock(&pit->pit_state.lock);
4902        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4903        for (i = 0; i < 3; i++)
4904                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4905        mutex_unlock(&pit->pit_state.lock);
4906        return 0;
4907}
4908
4909static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4910{
4911        mutex_lock(&kvm->arch.vpit->pit_state.lock);
4912        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4913                sizeof(ps->channels));
4914        ps->flags = kvm->arch.vpit->pit_state.flags;
4915        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4916        memset(&ps->reserved, 0, sizeof(ps->reserved));
4917        return 0;
4918}
4919
4920static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4921{
4922        int start = 0;
4923        int i;
4924        u32 prev_legacy, cur_legacy;
4925        struct kvm_pit *pit = kvm->arch.vpit;
4926
4927        mutex_lock(&pit->pit_state.lock);
4928        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4929        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4930        if (!prev_legacy && cur_legacy)
4931                start = 1;
4932        memcpy(&pit->pit_state.channels, &ps->channels,
4933               sizeof(pit->pit_state.channels));
4934        pit->pit_state.flags = ps->flags;
4935        for (i = 0; i < 3; i++)
4936                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4937                                   start && i == 0);
4938        mutex_unlock(&pit->pit_state.lock);
4939        return 0;
4940}
4941
4942static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4943                                 struct kvm_reinject_control *control)
4944{
4945        struct kvm_pit *pit = kvm->arch.vpit;
4946
4947        /* pit->pit_state.lock was overloaded to prevent userspace from getting
4948         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4949         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4950         */
4951        mutex_lock(&pit->pit_state.lock);
4952        kvm_pit_set_reinject(pit, control->pit_reinject);
4953        mutex_unlock(&pit->pit_state.lock);
4954
4955        return 0;
4956}
4957
4958void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4959{
4960        /*
4961         * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4962         */
4963        if (kvm_x86_ops.flush_log_dirty)
4964                kvm_x86_ops.flush_log_dirty(kvm);
4965}
4966
4967int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4968                        bool line_status)
4969{
4970        if (!irqchip_in_kernel(kvm))
4971                return -ENXIO;
4972
4973        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4974                                        irq_event->irq, irq_event->level,
4975                                        line_status);
4976        return 0;
4977}
4978
4979int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4980                            struct kvm_enable_cap *cap)
4981{
4982        int r;
4983
4984        if (cap->flags)
4985                return -EINVAL;
4986
4987        switch (cap->cap) {
4988        case KVM_CAP_DISABLE_QUIRKS:
4989                kvm->arch.disabled_quirks = cap->args[0];
4990                r = 0;
4991                break;
4992        case KVM_CAP_SPLIT_IRQCHIP: {
4993                mutex_lock(&kvm->lock);
4994                r = -EINVAL;
4995                if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4996                        goto split_irqchip_unlock;
4997                r = -EEXIST;
4998                if (irqchip_in_kernel(kvm))
4999                        goto split_irqchip_unlock;
5000                if (kvm->created_vcpus)
5001                        goto split_irqchip_unlock;
5002                r = kvm_setup_empty_irq_routing(kvm);
5003                if (r)
5004                        goto split_irqchip_unlock;
5005                /* Pairs with irqchip_in_kernel. */
5006                smp_wmb();
5007                kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5008                kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5009                r = 0;
5010split_irqchip_unlock:
5011                mutex_unlock(&kvm->lock);
5012                break;
5013        }
5014        case KVM_CAP_X2APIC_API:
5015                r = -EINVAL;
5016                if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5017                        break;
5018
5019                if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5020                        kvm->arch.x2apic_format = true;
5021                if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5022                        kvm->arch.x2apic_broadcast_quirk_disabled = true;
5023
5024                r = 0;
5025                break;
5026        case KVM_CAP_X86_DISABLE_EXITS:
5027                r = -EINVAL;
5028                if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5029                        break;
5030
5031                if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5032                        kvm_can_mwait_in_guest())
5033                        kvm->arch.mwait_in_guest = true;
5034                if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5035                        kvm->arch.hlt_in_guest = true;
5036                if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5037                        kvm->arch.pause_in_guest = true;
5038                if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5039                        kvm->arch.cstate_in_guest = true;
5040                r = 0;
5041                break;
5042        case KVM_CAP_MSR_PLATFORM_INFO:
5043                kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5044                r = 0;
5045                break;
5046        case KVM_CAP_EXCEPTION_PAYLOAD:
5047                kvm->arch.exception_payload_enabled = cap->args[0];
5048                r = 0;
5049                break;
5050        default:
5051                r = -EINVAL;
5052                break;
5053        }
5054        return r;
5055}
5056
5057long kvm_arch_vm_ioctl(struct file *filp,
5058                       unsigned int ioctl, unsigned long arg)
5059{
5060        struct kvm *kvm = filp->private_data;
5061        void __user *argp = (void __user *)arg;
5062        int r = -ENOTTY;
5063        /*
5064         * This union makes it completely explicit to gcc-3.x
5065         * that these two variables' stack usage should be
5066         * combined, not added together.
5067         */
5068        union {
5069                struct kvm_pit_state ps;
5070                struct kvm_pit_state2 ps2;
5071                struct kvm_pit_config pit_config;
5072        } u;
5073
5074        switch (ioctl) {
5075        case KVM_SET_TSS_ADDR:
5076                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5077                break;
5078        case KVM_SET_IDENTITY_MAP_ADDR: {
5079                u64 ident_addr;
5080
5081                mutex_lock(&kvm->lock);
5082                r = -EINVAL;
5083                if (kvm->created_vcpus)
5084                        goto set_identity_unlock;
5085                r = -EFAULT;
5086                if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5087                        goto set_identity_unlock;
5088                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5089set_identity_unlock:
5090                mutex_unlock(&kvm->lock);
5091                break;
5092        }
5093        case KVM_SET_NR_MMU_PAGES:
5094                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5095                break;
5096        case KVM_GET_NR_MMU_PAGES:
5097                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5098                break;
5099        case KVM_CREATE_IRQCHIP: {
5100                mutex_lock(&kvm->lock);
5101
5102                r = -EEXIST;
5103                if (irqchip_in_kernel(kvm))
5104                        goto create_irqchip_unlock;
5105
5106                r = -EINVAL;
5107                if (kvm->created_vcpus)
5108                        goto create_irqchip_unlock;
5109
5110                r = kvm_pic_init(kvm);
5111                if (r)
5112                        goto create_irqchip_unlock;
5113
5114                r = kvm_ioapic_init(kvm);
5115                if (r) {
5116                        kvm_pic_destroy(kvm);
5117                        goto create_irqchip_unlock;
5118                }
5119
5120                r = kvm_setup_default_irq_routing(kvm);
5121                if (r) {
5122                        kvm_ioapic_destroy(kvm);
5123                        kvm_pic_destroy(kvm);
5124                        goto create_irqchip_unlock;
5125                }
5126                /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5127                smp_wmb();
5128                kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5129        create_irqchip_unlock:
5130                mutex_unlock(&kvm->lock);
5131                break;
5132        }
5133        case KVM_CREATE_PIT:
5134                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5135                goto create_pit;
5136        case KVM_CREATE_PIT2:
5137                r = -EFAULT;
5138                if (copy_from_user(&u.pit_config, argp,
5139                                   sizeof(struct kvm_pit_config)))
5140                        goto out;
5141        create_pit:
5142                mutex_lock(&kvm->lock);
5143                r = -EEXIST;
5144                if (kvm->arch.vpit)
5145                        goto create_pit_unlock;
5146                r = -ENOMEM;
5147                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5148                if (kvm->arch.vpit)
5149                        r = 0;
5150        create_pit_unlock:
5151                mutex_unlock(&kvm->lock);
5152                break;
5153        case KVM_GET_IRQCHIP: {
5154                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5155                struct kvm_irqchip *chip;
5156
5157                chip = memdup_user(argp, sizeof(*chip));
5158                if (IS_ERR(chip)) {
5159                        r = PTR_ERR(chip);
5160                        goto out;
5161                }
5162
5163                r = -ENXIO;
5164                if (!irqchip_kernel(kvm))
5165                        goto get_irqchip_out;
5166                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5167                if (r)
5168                        goto get_irqchip_out;
5169                r = -EFAULT;
5170                if (copy_to_user(argp, chip, sizeof(*chip)))
5171                        goto get_irqchip_out;
5172                r = 0;
5173        get_irqchip_out:
5174                kfree(chip);
5175                break;
5176        }
5177        case KVM_SET_IRQCHIP: {
5178                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5179                struct kvm_irqchip *chip;
5180
5181                chip = memdup_user(argp, sizeof(*chip));
5182                if (IS_ERR(chip)) {
5183                        r = PTR_ERR(chip);
5184                        goto out;
5185                }
5186
5187                r = -ENXIO;
5188                if (!irqchip_kernel(kvm))
5189                        goto set_irqchip_out;
5190                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5191        set_irqchip_out:
5192                kfree(chip);
5193                break;
5194        }
5195        case KVM_GET_PIT: {
5196                r = -EFAULT;
5197                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5198                        goto out;
5199                r = -ENXIO;
5200                if (!kvm->arch.vpit)
5201                        goto out;
5202                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5203                if (r)
5204                        goto out;
5205                r = -EFAULT;
5206                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5207                        goto out;
5208                r = 0;
5209                break;
5210        }
5211        case KVM_SET_PIT: {
5212                r = -EFAULT;
5213                if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5214                        goto out;
5215                mutex_lock(&kvm->lock);
5216                r = -ENXIO;
5217                if (!kvm->arch.vpit)
5218                        goto set_pit_out;
5219                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5220set_pit_out:
5221                mutex_unlock(&kvm->lock);
5222                break;
5223        }
5224        case KVM_GET_PIT2: {
5225                r = -ENXIO;
5226                if (!kvm->arch.vpit)
5227                        goto out;
5228                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5229                if (r)
5230                        goto out;
5231                r = -EFAULT;
5232                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5233                        goto out;
5234                r = 0;
5235                break;
5236        }
5237        case KVM_SET_PIT2: {
5238                r = -EFAULT;
5239                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5240                        goto out;
5241                mutex_lock(&kvm->lock);
5242                r = -ENXIO;
5243                if (!kvm->arch.vpit)
5244                        goto set_pit2_out;
5245                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5246set_pit2_out:
5247                mutex_unlock(&kvm->lock);
5248                break;
5249        }
5250        case KVM_REINJECT_CONTROL: {
5251                struct kvm_reinject_control control;
5252                r =  -EFAULT;
5253                if (copy_from_user(&control, argp, sizeof(control)))
5254                        goto out;
5255                r = -ENXIO;
5256                if (!kvm->arch.vpit)
5257                        goto out;
5258                r = kvm_vm_ioctl_reinject(kvm, &control);
5259                break;
5260        }
5261        case KVM_SET_BOOT_CPU_ID:
5262                r = 0;
5263                mutex_lock(&kvm->lock);
5264                if (kvm->created_vcpus)
5265                        r = -EBUSY;
5266                else
5267                        kvm->arch.bsp_vcpu_id = arg;
5268                mutex_unlock(&kvm->lock);
5269                break;
5270        case KVM_XEN_HVM_CONFIG: {
5271                struct kvm_xen_hvm_config xhc;
5272                r = -EFAULT;
5273                if (copy_from_user(&xhc, argp, sizeof(xhc)))
5274                        goto out;
5275                r = -EINVAL;
5276                if (xhc.flags)
5277                        goto out;
5278                memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5279                r = 0;
5280                break;
5281        }
5282        case KVM_SET_CLOCK: {
5283                struct kvm_clock_data user_ns;
5284                u64 now_ns;
5285
5286                r = -EFAULT;
5287                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5288                        goto out;
5289
5290                r = -EINVAL;
5291                if (user_ns.flags)
5292                        goto out;
5293
5294                r = 0;
5295                /*
5296                 * TODO: userspace has to take care of races with VCPU_RUN, so
5297                 * kvm_gen_update_masterclock() can be cut down to locked
5298                 * pvclock_update_vm_gtod_copy().
5299                 */
5300                kvm_gen_update_masterclock(kvm);
5301                now_ns = get_kvmclock_ns(kvm);
5302                kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5303                kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5304                break;
5305        }
5306        case KVM_GET_CLOCK: {
5307                struct kvm_clock_data user_ns;
5308                u64 now_ns;
5309
5310                now_ns = get_kvmclock_ns(kvm);
5311                user_ns.clock = now_ns;
5312                user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5313                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5314
5315                r = -EFAULT;
5316                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5317                        goto out;
5318                r = 0;
5319                break;
5320        }
5321        case KVM_MEMORY_ENCRYPT_OP: {
5322                r = -ENOTTY;
5323                if (kvm_x86_ops.mem_enc_op)
5324                        r = kvm_x86_ops.mem_enc_op(kvm, argp);
5325                break;
5326        }
5327        case KVM_MEMORY_ENCRYPT_REG_REGION: {
5328                struct kvm_enc_region region;
5329
5330                r = -EFAULT;
5331                if (copy_from_user(&region, argp, sizeof(region)))
5332                        goto out;
5333
5334                r = -ENOTTY;
5335                if (kvm_x86_ops.mem_enc_reg_region)
5336                        r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5337                break;
5338        }
5339        case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5340                struct kvm_enc_region region;
5341
5342                r = -EFAULT;
5343                if (copy_from_user(&region, argp, sizeof(region)))
5344                        goto out;
5345
5346                r = -ENOTTY;
5347                if (kvm_x86_ops.mem_enc_unreg_region)
5348                        r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5349                break;
5350        }
5351        case KVM_HYPERV_EVENTFD: {
5352                struct kvm_hyperv_eventfd hvevfd;
5353
5354                r = -EFAULT;
5355                if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5356                        goto out;
5357                r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5358                break;
5359        }
5360        case KVM_SET_PMU_EVENT_FILTER:
5361                r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5362                break;
5363        default:
5364                r = -ENOTTY;
5365        }
5366out:
5367        return r;
5368}
5369
5370static void kvm_init_msr_list(void)
5371{
5372        struct x86_pmu_capability x86_pmu;
5373        u32 dummy[2];
5374        unsigned i;
5375
5376        BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5377                         "Please update the fixed PMCs in msrs_to_saved_all[]");
5378
5379        perf_get_x86_pmu_capability(&x86_pmu);
5380
5381        num_msrs_to_save = 0;
5382        num_emulated_msrs = 0;
5383        num_msr_based_features = 0;
5384
5385        for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5386                if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5387                        continue;
5388
5389                /*
5390                 * Even MSRs that are valid in the host may not be exposed
5391                 * to the guests in some cases.
5392                 */
5393                switch (msrs_to_save_all[i]) {
5394                case MSR_IA32_BNDCFGS:
5395                        if (!kvm_mpx_supported())
5396                                continue;
5397                        break;
5398                case MSR_TSC_AUX:
5399                        if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5400                                continue;
5401                        break;
5402                case MSR_IA32_UMWAIT_CONTROL:
5403                        if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5404                                continue;
5405                        break;
5406                case MSR_IA32_RTIT_CTL:
5407                case MSR_IA32_RTIT_STATUS:
5408                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5409                                continue;
5410                        break;
5411                case MSR_IA32_RTIT_CR3_MATCH:
5412                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5413                            !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5414                                continue;
5415                        break;
5416                case MSR_IA32_RTIT_OUTPUT_BASE:
5417                case MSR_IA32_RTIT_OUTPUT_MASK:
5418                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5419                                (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5420                                 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5421                                continue;
5422                        break;
5423                case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5424                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5425                                msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5426                                intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5427                                continue;
5428                        break;
5429                case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5430                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5431                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5432                                continue;
5433                        break;
5434                case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5435                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5436                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5437                                continue;
5438                        break;
5439                default:
5440                        break;
5441                }
5442
5443                msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5444        }
5445
5446        for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5447                if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5448                        continue;
5449
5450                emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5451        }
5452
5453        for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5454                struct kvm_msr_entry msr;
5455
5456                msr.index = msr_based_features_all[i];
5457                if (kvm_get_msr_feature(&msr))
5458                        continue;
5459
5460                msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5461        }
5462}
5463
5464static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5465                           const void *v)
5466{
5467        int handled = 0;
5468        int n;
5469
5470        do {
5471                n = min(len, 8);
5472                if (!(lapic_in_kernel(vcpu) &&
5473                      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5474                    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5475                        break;
5476                handled += n;
5477                addr += n;
5478                len -= n;
5479                v += n;
5480        } while (len);
5481
5482        return handled;
5483}
5484
5485static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5486{
5487        int handled = 0;
5488        int n;
5489
5490        do {
5491                n = min(len, 8);
5492                if (!(lapic_in_kernel(vcpu) &&
5493                      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5494                                         addr, n, v))
5495                    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5496                        break;
5497                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5498                handled += n;
5499                addr += n;
5500                len -= n;
5501                v += n;
5502        } while (len);
5503
5504        return handled;
5505}
5506
5507static void kvm_set_segment(struct kvm_vcpu *vcpu,
5508                        struct kvm_segment *var, int seg)
5509{
5510        kvm_x86_ops.set_segment(vcpu, var, seg);
5511}
5512
5513void kvm_get_segment(struct kvm_vcpu *vcpu,
5514                     struct kvm_segment *var, int seg)
5515{
5516        kvm_x86_ops.get_segment(vcpu, var, seg);
5517}
5518
5519gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5520                           struct x86_exception *exception)
5521{
5522        gpa_t t_gpa;
5523
5524        BUG_ON(!mmu_is_nested(vcpu));
5525
5526        /* NPT walks are always user-walks */
5527        access |= PFERR_USER_MASK;
5528        t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5529
5530        return t_gpa;
5531}
5532
5533gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5534                              struct x86_exception *exception)
5535{
5536        u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5537        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5538}
5539
5540 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5541                                struct x86_exception *exception)
5542{
5543        u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5544        access |= PFERR_FETCH_MASK;
5545        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5546}
5547
5548gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5549                               struct x86_exception *exception)
5550{
5551        u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5552        access |= PFERR_WRITE_MASK;
5553        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5554}
5555
5556/* uses this to access any guest's mapped memory without checking CPL */
5557gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5558                                struct x86_exception *exception)
5559{
5560        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5561}
5562
5563static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5564                                      struct kvm_vcpu *vcpu, u32 access,
5565                                      struct x86_exception *exception)
5566{
5567        void *data = val;
5568        int r = X86EMUL_CONTINUE;
5569
5570        while (bytes) {
5571                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5572                                                            exception);
5573                unsigned offset = addr & (PAGE_SIZE-1);
5574                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5575                int ret;
5576
5577                if (gpa == UNMAPPED_GVA)
5578                        return X86EMUL_PROPAGATE_FAULT;
5579                ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5580                                               offset, toread);
5581                if (ret < 0) {
5582                        r = X86EMUL_IO_NEEDED;
5583                        goto out;
5584                }
5585
5586                bytes -= toread;
5587                data += toread;
5588                addr += toread;
5589        }
5590out:
5591        return r;
5592}
5593
5594/* used for instruction fetching */
5595static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5596                                gva_t addr, void *val, unsigned int bytes,
5597                                struct x86_exception *exception)
5598{
5599        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5600        u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5601        unsigned offset;
5602        int ret;
5603
5604        /* Inline kvm_read_guest_virt_helper for speed.  */
5605        gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5606                                                    exception);
5607        if (unlikely(gpa == UNMAPPED_GVA))
5608                return X86EMUL_PROPAGATE_FAULT;
5609
5610        offset = addr & (PAGE_SIZE-1);
5611        if (WARN_ON(offset + bytes > PAGE_SIZE))
5612                bytes = (unsigned)PAGE_SIZE - offset;
5613        ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5614                                       offset, bytes);
5615        if (unlikely(ret < 0))
5616                return X86EMUL_IO_NEEDED;
5617
5618        return X86EMUL_CONTINUE;
5619}
5620
5621int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5622                               gva_t addr, void *val, unsigned int bytes,
5623                               struct x86_exception *exception)
5624{
5625        u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5626
5627        /*
5628         * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5629         * is returned, but our callers are not ready for that and they blindly
5630         * call kvm_inject_page_fault.  Ensure that they at least do not leak
5631         * uninitialized kernel stack memory into cr2 and error code.
5632         */
5633        memset(exception, 0, sizeof(*exception));
5634        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5635                                          exception);
5636}
5637EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5638
5639static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5640                             gva_t addr, void *val, unsigned int bytes,
5641                             struct x86_exception *exception, bool system)
5642{
5643        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5644        u32 access = 0;
5645
5646        if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5647                access |= PFERR_USER_MASK;
5648
5649        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5650}
5651
5652static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5653                unsigned long addr, void *val, unsigned int bytes)
5654{
5655        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5656        int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5657
5658        return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5659}
5660
5661static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5662                                      struct kvm_vcpu *vcpu, u32 access,
5663                                      struct x86_exception *exception)
5664{
5665        void *data = val;
5666        int r = X86EMUL_CONTINUE;
5667
5668        while (bytes) {
5669                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5670                                                             access,
5671                                                             exception);
5672                unsigned offset = addr & (PAGE_SIZE-1);
5673                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5674                int ret;
5675
5676                if (gpa == UNMAPPED_GVA)
5677                        return X86EMUL_PROPAGATE_FAULT;
5678                ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5679                if (ret < 0) {
5680                        r = X86EMUL_IO_NEEDED;
5681                        goto out;
5682                }
5683
5684                bytes -= towrite;
5685                data += towrite;
5686                addr += towrite;
5687        }
5688out:
5689        return r;
5690}
5691
5692static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5693                              unsigned int bytes, struct x86_exception *exception,
5694                              bool system)
5695{
5696        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5697        u32 access = PFERR_WRITE_MASK;
5698
5699        if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5700                access |= PFERR_USER_MASK;
5701
5702        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5703                                           access, exception);
5704}
5705
5706int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5707                                unsigned int bytes, struct x86_exception *exception)
5708{
5709        /* kvm_write_guest_virt_system can pull in tons of pages. */
5710        vcpu->arch.l1tf_flush_l1d = true;
5711
5712        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5713                                           PFERR_WRITE_MASK, exception);
5714}
5715EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5716
5717int handle_ud(struct kvm_vcpu *vcpu)
5718{
5719        static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5720        int emul_type = EMULTYPE_TRAP_UD;
5721        char sig[5]; /* ud2; .ascii "kvm" */
5722        struct x86_exception e;
5723
5724        if (force_emulation_prefix &&
5725            kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5726                                sig, sizeof(sig), &e) == 0 &&
5727            memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5728                kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5729                emul_type = EMULTYPE_TRAP_UD_FORCED;
5730        }
5731
5732        return kvm_emulate_instruction(vcpu, emul_type);
5733}
5734EXPORT_SYMBOL_GPL(handle_ud);
5735
5736static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5737                            gpa_t gpa, bool write)
5738{
5739        /* For APIC access vmexit */
5740        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5741                return 1;
5742
5743        if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5744                trace_vcpu_match_mmio(gva, gpa, write, true);
5745                return 1;
5746        }
5747
5748        return 0;
5749}
5750
5751static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5752                                gpa_t *gpa, struct x86_exception *exception,
5753                                bool write)
5754{
5755        u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5756                | (write ? PFERR_WRITE_MASK : 0);
5757
5758        /*
5759         * currently PKRU is only applied to ept enabled guest so
5760         * there is no pkey in EPT page table for L1 guest or EPT
5761         * shadow page table for L2 guest.
5762         */
5763        if (vcpu_match_mmio_gva(vcpu, gva)
5764            && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5765                                 vcpu->arch.mmio_access, 0, access)) {
5766                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5767                                        (gva & (PAGE_SIZE - 1));
5768                trace_vcpu_match_mmio(gva, *gpa, write, false);
5769                return 1;
5770        }
5771
5772        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5773
5774        if (*gpa == UNMAPPED_GVA)
5775                return -1;
5776
5777        return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5778}
5779
5780int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5781                        const void *val, int bytes)
5782{
5783        int ret;
5784
5785        ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5786        if (ret < 0)
5787                return 0;
5788        kvm_page_track_write(vcpu, gpa, val, bytes);
5789        return 1;
5790}
5791
5792struct read_write_emulator_ops {
5793        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5794                                  int bytes);
5795        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5796                                  void *val, int bytes);
5797        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5798                               int bytes, void *val);
5799        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5800                                    void *val, int bytes);
5801        bool write;
5802};
5803
5804static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5805{
5806        if (vcpu->mmio_read_completed) {
5807                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5808                               vcpu->mmio_fragments[0].gpa, val);
5809                vcpu->mmio_read_completed = 0;
5810                return 1;
5811        }
5812
5813        return 0;
5814}
5815
5816static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5817                        void *val, int bytes)
5818{
5819        return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5820}
5821
5822static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5823                         void *val, int bytes)
5824{
5825        return emulator_write_phys(vcpu, gpa, val, bytes);
5826}
5827
5828static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5829{
5830        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5831        return vcpu_mmio_write(vcpu, gpa, bytes, val);
5832}
5833
5834static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5835                          void *val, int bytes)
5836{
5837        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5838        return X86EMUL_IO_NEEDED;
5839}
5840
5841static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5842                           void *val, int bytes)
5843{
5844        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5845
5846        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5847        return X86EMUL_CONTINUE;
5848}
5849
5850static const struct read_write_emulator_ops read_emultor = {
5851        .read_write_prepare = read_prepare,
5852        .read_write_emulate = read_emulate,
5853        .read_write_mmio = vcpu_mmio_read,
5854        .read_write_exit_mmio = read_exit_mmio,
5855};
5856
5857static const struct read_write_emulator_ops write_emultor = {
5858        .read_write_emulate = write_emulate,
5859        .read_write_mmio = write_mmio,
5860        .read_write_exit_mmio = write_exit_mmio,
5861        .write = true,
5862};
5863
5864static int emulator_read_write_onepage(unsigned long addr, void *val,
5865                                       unsigned int bytes,
5866                                       struct x86_exception *exception,
5867                                       struct kvm_vcpu *vcpu,
5868                                       const struct read_write_emulator_ops *ops)
5869{
5870        gpa_t gpa;
5871        int handled, ret;
5872        bool write = ops->write;
5873        struct kvm_mmio_fragment *frag;
5874        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5875
5876        /*
5877         * If the exit was due to a NPF we may already have a GPA.
5878         * If the GPA is present, use it to avoid the GVA to GPA table walk.
5879         * Note, this cannot be used on string operations since string
5880         * operation using rep will only have the initial GPA from the NPF
5881         * occurred.
5882         */
5883        if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5884            (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5885                gpa = ctxt->gpa_val;
5886                ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5887        } else {
5888                ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5889                if (ret < 0)
5890                        return X86EMUL_PROPAGATE_FAULT;
5891        }
5892
5893        if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5894                return X86EMUL_CONTINUE;
5895
5896        /*
5897         * Is this MMIO handled locally?
5898         */
5899        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5900        if (handled == bytes)
5901                return X86EMUL_CONTINUE;
5902
5903        gpa += handled;
5904        bytes -= handled;
5905        val += handled;
5906
5907        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5908        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5909        frag->gpa = gpa;
5910        frag->data = val;
5911        frag->len = bytes;
5912        return X86EMUL_CONTINUE;
5913}
5914
5915static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5916                        unsigned long addr,
5917                        void *val, unsigned int bytes,
5918                        struct x86_exception *exception,
5919                        const struct read_write_emulator_ops *ops)
5920{
5921        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5922        gpa_t gpa;
5923        int rc;
5924
5925        if (ops->read_write_prepare &&
5926                  ops->read_write_prepare(vcpu, val, bytes))
5927                return X86EMUL_CONTINUE;
5928
5929        vcpu->mmio_nr_fragments = 0;
5930
5931        /* Crossing a page boundary? */
5932        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5933                int now;
5934
5935                now = -addr & ~PAGE_MASK;
5936                rc = emulator_read_write_onepage(addr, val, now, exception,
5937                                                 vcpu, ops);
5938
5939                if (rc != X86EMUL_CONTINUE)
5940                        return rc;
5941                addr += now;
5942                if (ctxt->mode != X86EMUL_MODE_PROT64)
5943                        addr = (u32)addr;
5944                val += now;
5945                bytes -= now;
5946        }
5947
5948        rc = emulator_read_write_onepage(addr, val, bytes, exception,
5949                                         vcpu, ops);
5950        if (rc != X86EMUL_CONTINUE)
5951                return rc;
5952
5953        if (!vcpu->mmio_nr_fragments)
5954                return rc;
5955
5956        gpa = vcpu->mmio_fragments[0].gpa;
5957
5958        vcpu->mmio_needed = 1;
5959        vcpu->mmio_cur_fragment = 0;
5960
5961        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5962        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5963        vcpu->run->exit_reason = KVM_EXIT_MMIO;
5964        vcpu->run->mmio.phys_addr = gpa;
5965
5966        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5967}
5968
5969static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5970                                  unsigned long addr,
5971                                  void *val,
5972                                  unsigned int bytes,
5973                                  struct x86_exception *exception)
5974{
5975        return emulator_read_write(ctxt, addr, val, bytes,
5976                                   exception, &read_emultor);
5977}
5978
5979static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5980                            unsigned long addr,
5981                            const void *val,
5982                            unsigned int bytes,
5983                            struct x86_exception *exception)
5984{
5985        return emulator_read_write(ctxt, addr, (void *)val, bytes,
5986                                   exception, &write_emultor);
5987}
5988
5989#define CMPXCHG_TYPE(t, ptr, old, new) \
5990        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5991
5992#ifdef CONFIG_X86_64
5993#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5994#else
5995#  define CMPXCHG64(ptr, old, new) \
5996        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5997#endif
5998
5999static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6000                                     unsigned long addr,
6001                                     const void *old,
6002                                     const void *new,
6003                                     unsigned int bytes,
6004                                     struct x86_exception *exception)
6005{
6006        struct kvm_host_map map;
6007        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6008        u64 page_line_mask;
6009        gpa_t gpa;
6010        char *kaddr;
6011        bool exchanged;
6012
6013        /* guests cmpxchg8b have to be emulated atomically */
6014        if (bytes > 8 || (bytes & (bytes - 1)))
6015                goto emul_write;
6016
6017        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6018
6019        if (gpa == UNMAPPED_GVA ||
6020            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6021                goto emul_write;
6022
6023        /*
6024         * Emulate the atomic as a straight write to avoid #AC if SLD is
6025         * enabled in the host and the access splits a cache line.
6026         */
6027        if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6028                page_line_mask = ~(cache_line_size() - 1);
6029        else
6030                page_line_mask = PAGE_MASK;
6031
6032        if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6033                goto emul_write;
6034
6035        if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6036                goto emul_write;
6037
6038        kaddr = map.hva + offset_in_page(gpa);
6039
6040        switch (bytes) {
6041        case 1:
6042                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6043                break;
6044        case 2:
6045                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6046                break;
6047        case 4:
6048                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6049                break;
6050        case 8:
6051                exchanged = CMPXCHG64(kaddr, old, new);
6052                break;
6053        default:
6054                BUG();
6055        }
6056
6057        kvm_vcpu_unmap(vcpu, &map, true);
6058
6059        if (!exchanged)
6060                return X86EMUL_CMPXCHG_FAILED;
6061
6062        kvm_page_track_write(vcpu, gpa, new, bytes);
6063
6064        return X86EMUL_CONTINUE;
6065
6066emul_write:
6067        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6068
6069        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6070}
6071
6072static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6073{
6074        int r = 0, i;
6075
6076        for (i = 0; i < vcpu->arch.pio.count; i++) {
6077                if (vcpu->arch.pio.in)
6078                        r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6079                                            vcpu->arch.pio.size, pd);
6080                else
6081                        r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6082                                             vcpu->arch.pio.port, vcpu->arch.pio.size,
6083                                             pd);
6084                if (r)
6085                        break;
6086                pd += vcpu->arch.pio.size;
6087        }
6088        return r;
6089}
6090
6091static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6092                               unsigned short port, void *val,
6093                               unsigned int count, bool in)
6094{
6095        vcpu->arch.pio.port = port;
6096        vcpu->arch.pio.in = in;
6097        vcpu->arch.pio.count  = count;
6098        vcpu->arch.pio.size = size;
6099
6100        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6101                vcpu->arch.pio.count = 0;
6102                return 1;
6103        }
6104
6105        vcpu->run->exit_reason = KVM_EXIT_IO;
6106        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6107        vcpu->run->io.size = size;
6108        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6109        vcpu->run->io.count = count;
6110        vcpu->run->io.port = port;
6111
6112        return 0;
6113}
6114
6115static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6116                           unsigned short port, void *val, unsigned int count)
6117{
6118        int ret;
6119
6120        if (vcpu->arch.pio.count)
6121                goto data_avail;
6122
6123        memset(vcpu->arch.pio_data, 0, size * count);
6124
6125        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6126        if (ret) {
6127data_avail:
6128                memcpy(val, vcpu->arch.pio_data, size * count);
6129                trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6130                vcpu->arch.pio.count = 0;
6131                return 1;
6132        }
6133
6134        return 0;
6135}
6136
6137static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6138                                    int size, unsigned short port, void *val,
6139                                    unsigned int count)
6140{
6141        return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6142
6143}
6144
6145static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6146                            unsigned short port, const void *val,
6147                            unsigned int count)
6148{
6149        memcpy(vcpu->arch.pio_data, val, size * count);
6150        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6151        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6152}
6153
6154static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6155                                     int size, unsigned short port,
6156                                     const void *val, unsigned int count)
6157{
6158        return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6159}
6160
6161static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6162{
6163        return kvm_x86_ops.get_segment_base(vcpu, seg);
6164}
6165
6166static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6167{
6168        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6169}
6170
6171static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6172{
6173        if (!need_emulate_wbinvd(vcpu))
6174                return X86EMUL_CONTINUE;
6175
6176        if (kvm_x86_ops.has_wbinvd_exit()) {
6177                int cpu = get_cpu();
6178
6179                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6180                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6181                                wbinvd_ipi, NULL, 1);
6182                put_cpu();
6183                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6184        } else
6185                wbinvd();
6186        return X86EMUL_CONTINUE;
6187}
6188
6189int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6190{
6191        kvm_emulate_wbinvd_noskip(vcpu);
6192        return kvm_skip_emulated_instruction(vcpu);
6193}
6194EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6195
6196
6197
6198static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6199{
6200        kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6201}
6202
6203static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6204                           unsigned long *dest)
6205{
6206        return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6207}
6208
6209static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6210                           unsigned long value)
6211{
6212
6213        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6214}
6215
6216static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6217{
6218        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6219}
6220
6221static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6222{
6223        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6224        unsigned long value;
6225
6226        switch (cr) {
6227        case 0:
6228                value = kvm_read_cr0(vcpu);
6229                break;
6230        case 2:
6231                value = vcpu->arch.cr2;
6232                break;
6233        case 3:
6234                value = kvm_read_cr3(vcpu);
6235                break;
6236        case 4:
6237                value = kvm_read_cr4(vcpu);
6238                break;
6239        case 8:
6240                value = kvm_get_cr8(vcpu);
6241                break;
6242        default:
6243                kvm_err("%s: unexpected cr %u\n", __func__, cr);
6244                return 0;
6245        }
6246
6247        return value;
6248}
6249
6250static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6251{
6252        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6253        int res = 0;
6254
6255        switch (cr) {
6256        case 0:
6257                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6258                break;
6259        case 2:
6260                vcpu->arch.cr2 = val;
6261                break;
6262        case 3:
6263                res = kvm_set_cr3(vcpu, val);
6264                break;
6265        case 4:
6266                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6267                break;
6268        case 8:
6269                res = kvm_set_cr8(vcpu, val);
6270                break;
6271        default:
6272                kvm_err("%s: unexpected cr %u\n", __func__, cr);
6273                res = -1;
6274        }
6275
6276        return res;
6277}
6278
6279static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6280{
6281        return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6282}
6283
6284static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6285{
6286        kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6287}
6288
6289static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6290{
6291        kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6292}
6293
6294static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6295{
6296        kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6297}
6298
6299static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6300{
6301        kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6302}
6303
6304static unsigned long emulator_get_cached_segment_base(
6305        struct x86_emulate_ctxt *ctxt, int seg)
6306{
6307        return get_segment_base(emul_to_vcpu(ctxt), seg);
6308}
6309
6310static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6311                                 struct desc_struct *desc, u32 *base3,
6312                                 int seg)
6313{
6314        struct kvm_segment var;
6315
6316        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6317        *selector = var.selector;
6318
6319        if (var.unusable) {
6320                memset(desc, 0, sizeof(*desc));
6321                if (base3)
6322                        *base3 = 0;
6323                return false;
6324        }
6325
6326        if (var.g)
6327                var.limit >>= 12;
6328        set_desc_limit(desc, var.limit);
6329        set_desc_base(desc, (unsigned long)var.base);
6330#ifdef CONFIG_X86_64
6331        if (base3)
6332                *base3 = var.base >> 32;
6333#endif
6334        desc->type = var.type;
6335        desc->s = var.s;
6336        desc->dpl = var.dpl;
6337        desc->p = var.present;
6338        desc->avl = var.avl;
6339        desc->l = var.l;
6340        desc->d = var.db;
6341        desc->g = var.g;
6342
6343        return true;
6344}
6345
6346static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6347                                 struct desc_struct *desc, u32 base3,
6348                                 int seg)
6349{
6350        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6351        struct kvm_segment var;
6352
6353        var.selector = selector;
6354        var.base = get_desc_base(desc);
6355#ifdef CONFIG_X86_64
6356        var.base |= ((u64)base3) << 32;
6357#endif
6358        var.limit = get_desc_limit(desc);
6359        if (desc->g)
6360                var.limit = (var.limit << 12) | 0xfff;
6361        var.type = desc->type;
6362        var.dpl = desc->dpl;
6363        var.db = desc->d;
6364        var.s = desc->s;
6365        var.l = desc->l;
6366        var.g = desc->g;
6367        var.avl = desc->avl;
6368        var.present = desc->p;
6369        var.unusable = !var.present;
6370        var.padding = 0;
6371
6372        kvm_set_segment(vcpu, &var, seg);
6373        return;
6374}
6375
6376static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6377                            u32 msr_index, u64 *pdata)
6378{
6379        return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6380}
6381
6382static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6383                            u32 msr_index, u64 data)
6384{
6385        return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6386}
6387
6388static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6389{
6390        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6391
6392        return vcpu->arch.smbase;
6393}
6394
6395static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6396{
6397        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6398
6399        vcpu->arch.smbase = smbase;
6400}
6401
6402static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6403                              u32 pmc)
6404{
6405        return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6406}
6407
6408static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6409                             u32 pmc, u64 *pdata)
6410{
6411        return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6412}
6413
6414static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6415{
6416        emul_to_vcpu(ctxt)->arch.halt_request = 1;
6417}
6418
6419static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6420                              struct x86_instruction_info *info,
6421                              enum x86_intercept_stage stage)
6422{
6423        return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6424                                            &ctxt->exception);
6425}
6426
6427static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6428                              u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6429                              bool exact_only)
6430{
6431        return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6432}
6433
6434static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6435{
6436        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6437}
6438
6439static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6440{
6441        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6442}
6443
6444static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6445{
6446        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6447}
6448
6449static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6450{
6451        return kvm_register_read(emul_to_vcpu(ctxt), reg);
6452}
6453
6454static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6455{
6456        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6457}
6458
6459static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6460{
6461        kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6462}
6463
6464static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6465{
6466        return emul_to_vcpu(ctxt)->arch.hflags;
6467}
6468
6469static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6470{
6471        emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6472}
6473
6474static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6475                                  const char *smstate)
6476{
6477        return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6478}
6479
6480static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6481{
6482        kvm_smm_changed(emul_to_vcpu(ctxt));
6483}
6484
6485static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6486{
6487        return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6488}
6489
6490static const struct x86_emulate_ops emulate_ops = {
6491        .read_gpr            = emulator_read_gpr,
6492        .write_gpr           = emulator_write_gpr,
6493        .read_std            = emulator_read_std,
6494        .write_std           = emulator_write_std,
6495        .read_phys           = kvm_read_guest_phys_system,
6496        .fetch               = kvm_fetch_guest_virt,
6497        .read_emulated       = emulator_read_emulated,
6498        .write_emulated      = emulator_write_emulated,
6499        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6500        .invlpg              = emulator_invlpg,
6501        .pio_in_emulated     = emulator_pio_in_emulated,
6502        .pio_out_emulated    = emulator_pio_out_emulated,
6503        .get_segment         = emulator_get_segment,
6504        .set_segment         = emulator_set_segment,
6505        .get_cached_segment_base = emulator_get_cached_segment_base,
6506        .get_gdt             = emulator_get_gdt,
6507        .get_idt             = emulator_get_idt,
6508        .set_gdt             = emulator_set_gdt,
6509        .set_idt             = emulator_set_idt,
6510        .get_cr              = emulator_get_cr,
6511        .set_cr              = emulator_set_cr,
6512        .cpl                 = emulator_get_cpl,
6513        .get_dr              = emulator_get_dr,
6514        .set_dr              = emulator_set_dr,
6515        .get_smbase          = emulator_get_smbase,
6516        .set_smbase          = emulator_set_smbase,
6517        .set_msr             = emulator_set_msr,
6518        .get_msr             = emulator_get_msr,
6519        .check_pmc           = emulator_check_pmc,
6520        .read_pmc            = emulator_read_pmc,
6521        .halt                = emulator_halt,
6522        .wbinvd              = emulator_wbinvd,
6523        .fix_hypercall       = emulator_fix_hypercall,
6524        .intercept           = emulator_intercept,
6525        .get_cpuid           = emulator_get_cpuid,
6526        .guest_has_long_mode = emulator_guest_has_long_mode,
6527        .guest_has_movbe     = emulator_guest_has_movbe,
6528        .guest_has_fxsr      = emulator_guest_has_fxsr,
6529        .set_nmi_mask        = emulator_set_nmi_mask,
6530        .get_hflags          = emulator_get_hflags,
6531        .set_hflags          = emulator_set_hflags,
6532        .pre_leave_smm       = emulator_pre_leave_smm,
6533        .post_leave_smm      = emulator_post_leave_smm,
6534        .set_xcr             = emulator_set_xcr,
6535};
6536
6537static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6538{
6539        u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6540        /*
6541         * an sti; sti; sequence only disable interrupts for the first
6542         * instruction. So, if the last instruction, be it emulated or
6543         * not, left the system with the INT_STI flag enabled, it
6544         * means that the last instruction is an sti. We should not
6545         * leave the flag on in this case. The same goes for mov ss
6546         */
6547        if (int_shadow & mask)
6548                mask = 0;
6549        if (unlikely(int_shadow || mask)) {
6550                kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6551                if (!mask)
6552                        kvm_make_request(KVM_REQ_EVENT, vcpu);
6553        }
6554}
6555
6556static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6557{
6558        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6559        if (ctxt->exception.vector == PF_VECTOR)
6560                return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6561
6562        if (ctxt->exception.error_code_valid)
6563                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6564                                      ctxt->exception.error_code);
6565        else
6566                kvm_queue_exception(vcpu, ctxt->exception.vector);
6567        return false;
6568}
6569
6570static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6571{
6572        struct x86_emulate_ctxt *ctxt;
6573
6574        ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6575        if (!ctxt) {
6576                pr_err("kvm: failed to allocate vcpu's emulator\n");
6577                return NULL;
6578        }
6579
6580        ctxt->vcpu = vcpu;
6581        ctxt->ops = &emulate_ops;
6582        vcpu->arch.emulate_ctxt = ctxt;
6583
6584        return ctxt;
6585}
6586
6587static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6588{
6589        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6590        int cs_db, cs_l;
6591
6592        kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6593
6594        ctxt->gpa_available = false;
6595        ctxt->eflags = kvm_get_rflags(vcpu);
6596        ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6597
6598        ctxt->eip = kvm_rip_read(vcpu);
6599        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6600                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6601                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6602                     cs_db                              ? X86EMUL_MODE_PROT32 :
6603                                                          X86EMUL_MODE_PROT16;
6604        BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6605        BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6606        BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6607
6608        init_decode_cache(ctxt);
6609        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6610}
6611
6612void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6613{
6614        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6615        int ret;
6616
6617        init_emulate_ctxt(vcpu);
6618
6619        ctxt->op_bytes = 2;
6620        ctxt->ad_bytes = 2;
6621        ctxt->_eip = ctxt->eip + inc_eip;
6622        ret = emulate_int_real(ctxt, irq);
6623
6624        if (ret != X86EMUL_CONTINUE) {
6625                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6626        } else {
6627                ctxt->eip = ctxt->_eip;
6628                kvm_rip_write(vcpu, ctxt->eip);
6629                kvm_set_rflags(vcpu, ctxt->eflags);
6630        }
6631}
6632EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6633
6634static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6635{
6636        ++vcpu->stat.insn_emulation_fail;
6637        trace_kvm_emulate_insn_failed(vcpu);
6638
6639        if (emulation_type & EMULTYPE_VMWARE_GP) {
6640                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6641                return 1;
6642        }
6643
6644        if (emulation_type & EMULTYPE_SKIP) {
6645                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6646                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6647                vcpu->run->internal.ndata = 0;
6648                return 0;
6649        }
6650
6651        kvm_queue_exception(vcpu, UD_VECTOR);
6652
6653        if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6654                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6655                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6656                vcpu->run->internal.ndata = 0;
6657                return 0;
6658        }
6659
6660        return 1;
6661}
6662
6663static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6664                                  bool write_fault_to_shadow_pgtable,
6665                                  int emulation_type)
6666{
6667        gpa_t gpa = cr2_or_gpa;
6668        kvm_pfn_t pfn;
6669
6670        if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6671                return false;
6672
6673        if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6674            WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6675                return false;
6676
6677        if (!vcpu->arch.mmu->direct_map) {
6678                /*
6679                 * Write permission should be allowed since only
6680                 * write access need to be emulated.
6681                 */
6682                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6683
6684                /*
6685                 * If the mapping is invalid in guest, let cpu retry
6686                 * it to generate fault.
6687                 */
6688                if (gpa == UNMAPPED_GVA)
6689                        return true;
6690        }
6691
6692        /*
6693         * Do not retry the unhandleable instruction if it faults on the
6694         * readonly host memory, otherwise it will goto a infinite loop:
6695         * retry instruction -> write #PF -> emulation fail -> retry
6696         * instruction -> ...
6697         */
6698        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6699
6700        /*
6701         * If the instruction failed on the error pfn, it can not be fixed,
6702         * report the error to userspace.
6703         */
6704        if (is_error_noslot_pfn(pfn))
6705                return false;
6706
6707        kvm_release_pfn_clean(pfn);
6708
6709        /* The instructions are well-emulated on direct mmu. */
6710        if (vcpu->arch.mmu->direct_map) {
6711                unsigned int indirect_shadow_pages;
6712
6713                spin_lock(&vcpu->kvm->mmu_lock);
6714                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6715                spin_unlock(&vcpu->kvm->mmu_lock);
6716
6717                if (indirect_shadow_pages)
6718                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6719
6720                return true;
6721        }
6722
6723        /*
6724         * if emulation was due to access to shadowed page table
6725         * and it failed try to unshadow page and re-enter the
6726         * guest to let CPU execute the instruction.
6727         */
6728        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6729
6730        /*
6731         * If the access faults on its page table, it can not
6732         * be fixed by unprotecting shadow page and it should
6733         * be reported to userspace.
6734         */
6735        return !write_fault_to_shadow_pgtable;
6736}
6737
6738static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6739                              gpa_t cr2_or_gpa,  int emulation_type)
6740{
6741        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6742        unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6743
6744        last_retry_eip = vcpu->arch.last_retry_eip;
6745        last_retry_addr = vcpu->arch.last_retry_addr;
6746
6747        /*
6748         * If the emulation is caused by #PF and it is non-page_table
6749         * writing instruction, it means the VM-EXIT is caused by shadow
6750         * page protected, we can zap the shadow page and retry this
6751         * instruction directly.
6752         *
6753         * Note: if the guest uses a non-page-table modifying instruction
6754         * on the PDE that points to the instruction, then we will unmap
6755         * the instruction and go to an infinite loop. So, we cache the
6756         * last retried eip and the last fault address, if we meet the eip
6757         * and the address again, we can break out of the potential infinite
6758         * loop.
6759         */
6760        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6761
6762        if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6763                return false;
6764
6765        if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6766            WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6767                return false;
6768
6769        if (x86_page_table_writing_insn(ctxt))
6770                return false;
6771
6772        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6773                return false;
6774
6775        vcpu->arch.last_retry_eip = ctxt->eip;
6776        vcpu->arch.last_retry_addr = cr2_or_gpa;
6777
6778        if (!vcpu->arch.mmu->direct_map)
6779                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6780
6781        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6782
6783        return true;
6784}
6785
6786static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6787static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6788
6789static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6790{
6791        if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6792                /* This is a good place to trace that we are exiting SMM.  */
6793                trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6794
6795                /* Process a latched INIT or SMI, if any.  */
6796                kvm_make_request(KVM_REQ_EVENT, vcpu);
6797        }
6798
6799        kvm_mmu_reset_context(vcpu);
6800}
6801
6802static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6803                                unsigned long *db)
6804{
6805        u32 dr6 = 0;
6806        int i;
6807        u32 enable, rwlen;
6808
6809        enable = dr7;
6810        rwlen = dr7 >> 16;
6811        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6812                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6813                        dr6 |= (1 << i);
6814        return dr6;
6815}
6816
6817static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6818{
6819        struct kvm_run *kvm_run = vcpu->run;
6820
6821        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6822                kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6823                kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6824                kvm_run->debug.arch.exception = DB_VECTOR;
6825                kvm_run->exit_reason = KVM_EXIT_DEBUG;
6826                return 0;
6827        }
6828        kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6829        return 1;
6830}
6831
6832int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6833{
6834        unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6835        int r;
6836
6837        r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6838        if (unlikely(!r))
6839                return 0;
6840
6841        /*
6842         * rflags is the old, "raw" value of the flags.  The new value has
6843         * not been saved yet.
6844         *
6845         * This is correct even for TF set by the guest, because "the
6846         * processor will not generate this exception after the instruction
6847         * that sets the TF flag".
6848         */
6849        if (unlikely(rflags & X86_EFLAGS_TF))
6850                r = kvm_vcpu_do_singlestep(vcpu);
6851        return r;
6852}
6853EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6854
6855static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6856{
6857        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6858            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6859                struct kvm_run *kvm_run = vcpu->run;
6860                unsigned long eip = kvm_get_linear_rip(vcpu);
6861                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6862                                           vcpu->arch.guest_debug_dr7,
6863                                           vcpu->arch.eff_db);
6864
6865                if (dr6 != 0) {
6866                        kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6867                        kvm_run->debug.arch.pc = eip;
6868                        kvm_run->debug.arch.exception = DB_VECTOR;
6869                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
6870                        *r = 0;
6871                        return true;
6872                }
6873        }
6874
6875        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6876            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6877                unsigned long eip = kvm_get_linear_rip(vcpu);
6878                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6879                                           vcpu->arch.dr7,
6880                                           vcpu->arch.db);
6881
6882                if (dr6 != 0) {
6883                        kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
6884                        *r = 1;
6885                        return true;
6886                }
6887        }
6888
6889        return false;
6890}
6891
6892static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6893{
6894        switch (ctxt->opcode_len) {
6895        case 1:
6896                switch (ctxt->b) {
6897                case 0xe4:      /* IN */
6898                case 0xe5:
6899                case 0xec:
6900                case 0xed:
6901                case 0xe6:      /* OUT */
6902                case 0xe7:
6903                case 0xee:
6904                case 0xef:
6905                case 0x6c:      /* INS */
6906                case 0x6d:
6907                case 0x6e:      /* OUTS */
6908                case 0x6f:
6909                        return true;
6910                }
6911                break;
6912        case 2:
6913                switch (ctxt->b) {
6914                case 0x33:      /* RDPMC */
6915                        return true;
6916                }
6917                break;
6918        }
6919
6920        return false;
6921}
6922
6923int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6924                            int emulation_type, void *insn, int insn_len)
6925{
6926        int r;
6927        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6928        bool writeback = true;
6929        bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6930
6931        vcpu->arch.l1tf_flush_l1d = true;
6932
6933        /*
6934         * Clear write_fault_to_shadow_pgtable here to ensure it is
6935         * never reused.
6936         */
6937        vcpu->arch.write_fault_to_shadow_pgtable = false;
6938        kvm_clear_exception_queue(vcpu);
6939
6940        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6941                init_emulate_ctxt(vcpu);
6942
6943                /*
6944                 * We will reenter on the same instruction since
6945                 * we do not set complete_userspace_io.  This does not
6946                 * handle watchpoints yet, those would be handled in
6947                 * the emulate_ops.
6948                 */
6949                if (!(emulation_type & EMULTYPE_SKIP) &&
6950                    kvm_vcpu_check_breakpoint(vcpu, &r))
6951                        return r;
6952
6953                ctxt->interruptibility = 0;
6954                ctxt->have_exception = false;
6955                ctxt->exception.vector = -1;
6956                ctxt->perm_ok = false;
6957
6958                ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6959
6960                r = x86_decode_insn(ctxt, insn, insn_len);
6961
6962                trace_kvm_emulate_insn_start(vcpu);
6963                ++vcpu->stat.insn_emulation;
6964                if (r != EMULATION_OK)  {
6965                        if ((emulation_type & EMULTYPE_TRAP_UD) ||
6966                            (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6967                                kvm_queue_exception(vcpu, UD_VECTOR);
6968                                return 1;
6969                        }
6970                        if (reexecute_instruction(vcpu, cr2_or_gpa,
6971                                                  write_fault_to_spt,
6972                                                  emulation_type))
6973                                return 1;
6974                        if (ctxt->have_exception) {
6975                                /*
6976                                 * #UD should result in just EMULATION_FAILED, and trap-like
6977                                 * exception should not be encountered during decode.
6978                                 */
6979                                WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6980                                             exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6981                                inject_emulated_exception(vcpu);
6982                                return 1;
6983                        }
6984                        return handle_emulation_failure(vcpu, emulation_type);
6985                }
6986        }
6987
6988        if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6989            !is_vmware_backdoor_opcode(ctxt)) {
6990                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6991                return 1;
6992        }
6993
6994        /*
6995         * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6996         * for kvm_skip_emulated_instruction().  The caller is responsible for
6997         * updating interruptibility state and injecting single-step #DBs.
6998         */
6999        if (emulation_type & EMULTYPE_SKIP) {
7000                kvm_rip_write(vcpu, ctxt->_eip);
7001                if (ctxt->eflags & X86_EFLAGS_RF)
7002                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7003                return 1;
7004        }
7005
7006        if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7007                return 1;
7008
7009        /* this is needed for vmware backdoor interface to work since it
7010           changes registers values  during IO operation */
7011        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7012                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7013                emulator_invalidate_register_cache(ctxt);
7014        }
7015
7016restart:
7017        if (emulation_type & EMULTYPE_PF) {
7018                /* Save the faulting GPA (cr2) in the address field */
7019                ctxt->exception.address = cr2_or_gpa;
7020
7021                /* With shadow page tables, cr2 contains a GVA or nGPA. */
7022                if (vcpu->arch.mmu->direct_map) {
7023                        ctxt->gpa_available = true;
7024                        ctxt->gpa_val = cr2_or_gpa;
7025                }
7026        } else {
7027                /* Sanitize the address out of an abundance of paranoia. */
7028                ctxt->exception.address = 0;
7029        }
7030
7031        r = x86_emulate_insn(ctxt);
7032
7033        if (r == EMULATION_INTERCEPTED)
7034                return 1;
7035
7036        if (r == EMULATION_FAILED) {
7037                if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7038                                        emulation_type))
7039                        return 1;
7040
7041                return handle_emulation_failure(vcpu, emulation_type);
7042        }
7043
7044        if (ctxt->have_exception) {
7045                r = 1;
7046                if (inject_emulated_exception(vcpu))
7047                        return r;
7048        } else if (vcpu->arch.pio.count) {
7049                if (!vcpu->arch.pio.in) {
7050                        /* FIXME: return into emulator if single-stepping.  */
7051                        vcpu->arch.pio.count = 0;
7052                } else {
7053                        writeback = false;
7054                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
7055                }
7056                r = 0;
7057        } else if (vcpu->mmio_needed) {
7058                ++vcpu->stat.mmio_exits;
7059
7060                if (!vcpu->mmio_is_write)
7061                        writeback = false;
7062                r = 0;
7063                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7064        } else if (r == EMULATION_RESTART)
7065                goto restart;
7066        else
7067                r = 1;
7068
7069        if (writeback) {
7070                unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7071                toggle_interruptibility(vcpu, ctxt->interruptibility);
7072                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7073                if (!ctxt->have_exception ||
7074                    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7075                        kvm_rip_write(vcpu, ctxt->eip);
7076                        if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7077                                r = kvm_vcpu_do_singlestep(vcpu);
7078                        if (kvm_x86_ops.update_emulated_instruction)
7079                                kvm_x86_ops.update_emulated_instruction(vcpu);
7080                        __kvm_set_rflags(vcpu, ctxt->eflags);
7081                }
7082
7083                /*
7084                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7085                 * do nothing, and it will be requested again as soon as
7086                 * the shadow expires.  But we still need to check here,
7087                 * because POPF has no interrupt shadow.
7088                 */
7089                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7090                        kvm_make_request(KVM_REQ_EVENT, vcpu);
7091        } else
7092                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7093
7094        return r;
7095}
7096
7097int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7098{
7099        return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7100}
7101EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7102
7103int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7104                                        void *insn, int insn_len)
7105{
7106        return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7107}
7108EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7109
7110static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7111{
7112        vcpu->arch.pio.count = 0;
7113        return 1;
7114}
7115
7116static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7117{
7118        vcpu->arch.pio.count = 0;
7119
7120        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7121                return 1;
7122
7123        return kvm_skip_emulated_instruction(vcpu);
7124}
7125
7126static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7127                            unsigned short port)
7128{
7129        unsigned long val = kvm_rax_read(vcpu);
7130        int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7131
7132        if (ret)
7133                return ret;
7134
7135        /*
7136         * Workaround userspace that relies on old KVM behavior of %rip being
7137         * incremented prior to exiting to userspace to handle "OUT 0x7e".
7138         */
7139        if (port == 0x7e &&
7140            kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7141                vcpu->arch.complete_userspace_io =
7142                        complete_fast_pio_out_port_0x7e;
7143                kvm_skip_emulated_instruction(vcpu);
7144        } else {
7145                vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7146                vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7147        }
7148        return 0;
7149}
7150
7151static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7152{
7153        unsigned long val;
7154
7155        /* We should only ever be called with arch.pio.count equal to 1 */
7156        BUG_ON(vcpu->arch.pio.count != 1);
7157
7158        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7159                vcpu->arch.pio.count = 0;
7160                return 1;
7161        }
7162
7163        /* For size less than 4 we merge, else we zero extend */
7164        val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7165
7166        /*
7167         * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7168         * the copy and tracing
7169         */
7170        emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7171        kvm_rax_write(vcpu, val);
7172
7173        return kvm_skip_emulated_instruction(vcpu);
7174}
7175
7176static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7177                           unsigned short port)
7178{
7179        unsigned long val;
7180        int ret;
7181
7182        /* For size less than 4 we merge, else we zero extend */
7183        val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7184
7185        ret = emulator_pio_in(vcpu, size, port, &val, 1);
7186        if (ret) {
7187                kvm_rax_write(vcpu, val);
7188                return ret;
7189        }
7190
7191        vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7192        vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7193
7194        return 0;
7195}
7196
7197int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7198{
7199        int ret;
7200
7201        if (in)
7202                ret = kvm_fast_pio_in(vcpu, size, port);
7203        else
7204                ret = kvm_fast_pio_out(vcpu, size, port);
7205        return ret && kvm_skip_emulated_instruction(vcpu);
7206}
7207EXPORT_SYMBOL_GPL(kvm_fast_pio);
7208
7209static int kvmclock_cpu_down_prep(unsigned int cpu)
7210{
7211        __this_cpu_write(cpu_tsc_khz, 0);
7212        return 0;
7213}
7214
7215static void tsc_khz_changed(void *data)
7216{
7217        struct cpufreq_freqs *freq = data;
7218        unsigned long khz = 0;
7219
7220        if (data)
7221                khz = freq->new;
7222        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7223                khz = cpufreq_quick_get(raw_smp_processor_id());
7224        if (!khz)
7225                khz = tsc_khz;
7226        __this_cpu_write(cpu_tsc_khz, khz);
7227}
7228
7229#ifdef CONFIG_X86_64
7230static void kvm_hyperv_tsc_notifier(void)
7231{
7232        struct kvm *kvm;
7233        struct kvm_vcpu *vcpu;
7234        int cpu;
7235
7236        mutex_lock(&kvm_lock);
7237        list_for_each_entry(kvm, &vm_list, vm_list)
7238                kvm_make_mclock_inprogress_request(kvm);
7239
7240        hyperv_stop_tsc_emulation();
7241
7242        /* TSC frequency always matches when on Hyper-V */
7243        for_each_present_cpu(cpu)
7244                per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7245        kvm_max_guest_tsc_khz = tsc_khz;
7246
7247        list_for_each_entry(kvm, &vm_list, vm_list) {
7248                struct kvm_arch *ka = &kvm->arch;
7249
7250                spin_lock(&ka->pvclock_gtod_sync_lock);
7251
7252                pvclock_update_vm_gtod_copy(kvm);
7253
7254                kvm_for_each_vcpu(cpu, vcpu, kvm)
7255                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7256
7257                kvm_for_each_vcpu(cpu, vcpu, kvm)
7258                        kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7259
7260                spin_unlock(&ka->pvclock_gtod_sync_lock);
7261        }
7262        mutex_unlock(&kvm_lock);
7263}
7264#endif
7265
7266static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7267{
7268        struct kvm *kvm;
7269        struct kvm_vcpu *vcpu;
7270        int i, send_ipi = 0;
7271
7272        /*
7273         * We allow guests to temporarily run on slowing clocks,
7274         * provided we notify them after, or to run on accelerating
7275         * clocks, provided we notify them before.  Thus time never
7276         * goes backwards.
7277         *
7278         * However, we have a problem.  We can't atomically update
7279         * the frequency of a given CPU from this function; it is
7280         * merely a notifier, which can be called from any CPU.
7281         * Changing the TSC frequency at arbitrary points in time
7282         * requires a recomputation of local variables related to
7283         * the TSC for each VCPU.  We must flag these local variables
7284         * to be updated and be sure the update takes place with the
7285         * new frequency before any guests proceed.
7286         *
7287         * Unfortunately, the combination of hotplug CPU and frequency
7288         * change creates an intractable locking scenario; the order
7289         * of when these callouts happen is undefined with respect to
7290         * CPU hotplug, and they can race with each other.  As such,
7291         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7292         * undefined; you can actually have a CPU frequency change take
7293         * place in between the computation of X and the setting of the
7294         * variable.  To protect against this problem, all updates of
7295         * the per_cpu tsc_khz variable are done in an interrupt
7296         * protected IPI, and all callers wishing to update the value
7297         * must wait for a synchronous IPI to complete (which is trivial
7298         * if the caller is on the CPU already).  This establishes the
7299         * necessary total order on variable updates.
7300         *
7301         * Note that because a guest time update may take place
7302         * anytime after the setting of the VCPU's request bit, the
7303         * correct TSC value must be set before the request.  However,
7304         * to ensure the update actually makes it to any guest which
7305         * starts running in hardware virtualization between the set
7306         * and the acquisition of the spinlock, we must also ping the
7307         * CPU after setting the request bit.
7308         *
7309         */
7310
7311        smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7312
7313        mutex_lock(&kvm_lock);
7314        list_for_each_entry(kvm, &vm_list, vm_list) {
7315                kvm_for_each_vcpu(i, vcpu, kvm) {
7316                        if (vcpu->cpu != cpu)
7317                                continue;
7318                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7319                        if (vcpu->cpu != raw_smp_processor_id())
7320                                send_ipi = 1;
7321                }
7322        }
7323        mutex_unlock(&kvm_lock);
7324
7325        if (freq->old < freq->new && send_ipi) {
7326                /*
7327                 * We upscale the frequency.  Must make the guest
7328                 * doesn't see old kvmclock values while running with
7329                 * the new frequency, otherwise we risk the guest sees
7330                 * time go backwards.
7331                 *
7332                 * In case we update the frequency for another cpu
7333                 * (which might be in guest context) send an interrupt
7334                 * to kick the cpu out of guest context.  Next time
7335                 * guest context is entered kvmclock will be updated,
7336                 * so the guest will not see stale values.
7337                 */
7338                smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7339        }
7340}
7341
7342static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7343                                     void *data)
7344{
7345        struct cpufreq_freqs *freq = data;
7346        int cpu;
7347
7348        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7349                return 0;
7350        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7351                return 0;
7352
7353        for_each_cpu(cpu, freq->policy->cpus)
7354                __kvmclock_cpufreq_notifier(freq, cpu);
7355
7356        return 0;
7357}
7358
7359static struct notifier_block kvmclock_cpufreq_notifier_block = {
7360        .notifier_call  = kvmclock_cpufreq_notifier
7361};
7362
7363static int kvmclock_cpu_online(unsigned int cpu)
7364{
7365        tsc_khz_changed(NULL);
7366        return 0;
7367}
7368
7369static void kvm_timer_init(void)
7370{
7371        max_tsc_khz = tsc_khz;
7372
7373        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7374#ifdef CONFIG_CPU_FREQ
7375                struct cpufreq_policy *policy;
7376                int cpu;
7377
7378                cpu = get_cpu();
7379                policy = cpufreq_cpu_get(cpu);
7380                if (policy) {
7381                        if (policy->cpuinfo.max_freq)
7382                                max_tsc_khz = policy->cpuinfo.max_freq;
7383                        cpufreq_cpu_put(policy);
7384                }
7385                put_cpu();
7386#endif
7387                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7388                                          CPUFREQ_TRANSITION_NOTIFIER);
7389        }
7390
7391        cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7392                          kvmclock_cpu_online, kvmclock_cpu_down_prep);
7393}
7394
7395DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7396EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7397
7398int kvm_is_in_guest(void)
7399{
7400        return __this_cpu_read(current_vcpu) != NULL;
7401}
7402
7403static int kvm_is_user_mode(void)
7404{
7405        int user_mode = 3;
7406
7407        if (__this_cpu_read(current_vcpu))
7408                user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7409
7410        return user_mode != 0;
7411}
7412
7413static unsigned long kvm_get_guest_ip(void)
7414{
7415        unsigned long ip = 0;
7416
7417        if (__this_cpu_read(current_vcpu))
7418                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7419
7420        return ip;
7421}
7422
7423static void kvm_handle_intel_pt_intr(void)
7424{
7425        struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7426
7427        kvm_make_request(KVM_REQ_PMI, vcpu);
7428        __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7429                        (unsigned long *)&vcpu->arch.pmu.global_status);
7430}
7431
7432static struct perf_guest_info_callbacks kvm_guest_cbs = {
7433        .is_in_guest            = kvm_is_in_guest,
7434        .is_user_mode           = kvm_is_user_mode,
7435        .get_guest_ip           = kvm_get_guest_ip,
7436        .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7437};
7438
7439#ifdef CONFIG_X86_64
7440static void pvclock_gtod_update_fn(struct work_struct *work)
7441{
7442        struct kvm *kvm;
7443
7444        struct kvm_vcpu *vcpu;
7445        int i;
7446
7447        mutex_lock(&kvm_lock);
7448        list_for_each_entry(kvm, &vm_list, vm_list)
7449                kvm_for_each_vcpu(i, vcpu, kvm)
7450                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7451        atomic_set(&kvm_guest_has_master_clock, 0);
7452        mutex_unlock(&kvm_lock);
7453}
7454
7455static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7456
7457/*
7458 * Notification about pvclock gtod data update.
7459 */
7460static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7461                               void *priv)
7462{
7463        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7464        struct timekeeper *tk = priv;
7465
7466        update_pvclock_gtod(tk);
7467
7468        /* disable master clock if host does not trust, or does not
7469         * use, TSC based clocksource.
7470         */
7471        if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7472            atomic_read(&kvm_guest_has_master_clock) != 0)
7473                queue_work(system_long_wq, &pvclock_gtod_work);
7474
7475        return 0;
7476}
7477
7478static struct notifier_block pvclock_gtod_notifier = {
7479        .notifier_call = pvclock_gtod_notify,
7480};
7481#endif
7482
7483int kvm_arch_init(void *opaque)
7484{
7485        struct kvm_x86_init_ops *ops = opaque;
7486        int r;
7487
7488        if (kvm_x86_ops.hardware_enable) {
7489                printk(KERN_ERR "kvm: already loaded the other module\n");
7490                r = -EEXIST;
7491                goto out;
7492        }
7493
7494        if (!ops->cpu_has_kvm_support()) {
7495                pr_err_ratelimited("kvm: no hardware support\n");
7496                r = -EOPNOTSUPP;
7497                goto out;
7498        }
7499        if (ops->disabled_by_bios()) {
7500                pr_err_ratelimited("kvm: disabled by bios\n");
7501                r = -EOPNOTSUPP;
7502                goto out;
7503        }
7504
7505        /*
7506         * KVM explicitly assumes that the guest has an FPU and
7507         * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7508         * vCPU's FPU state as a fxregs_state struct.
7509         */
7510        if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7511                printk(KERN_ERR "kvm: inadequate fpu\n");
7512                r = -EOPNOTSUPP;
7513                goto out;
7514        }
7515
7516        r = -ENOMEM;
7517        x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7518                                          __alignof__(struct fpu), SLAB_ACCOUNT,
7519                                          NULL);
7520        if (!x86_fpu_cache) {
7521                printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7522                goto out;
7523        }
7524
7525        x86_emulator_cache = kvm_alloc_emulator_cache();
7526        if (!x86_emulator_cache) {
7527                pr_err("kvm: failed to allocate cache for x86 emulator\n");
7528                goto out_free_x86_fpu_cache;
7529        }
7530
7531        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7532        if (!shared_msrs) {
7533                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7534                goto out_free_x86_emulator_cache;
7535        }
7536
7537        r = kvm_mmu_module_init();
7538        if (r)
7539                goto out_free_percpu;
7540
7541        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7542                        PT_DIRTY_MASK, PT64_NX_MASK, 0,
7543                        PT_PRESENT_MASK, 0, sme_me_mask);
7544        kvm_timer_init();
7545
7546        perf_register_guest_info_callbacks(&kvm_guest_cbs);
7547
7548        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7549                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7550                supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7551        }
7552
7553        kvm_lapic_init();
7554        if (pi_inject_timer == -1)
7555                pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7556#ifdef CONFIG_X86_64
7557        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7558
7559        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7560                set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7561#endif
7562
7563        return 0;
7564
7565out_free_percpu:
7566        free_percpu(shared_msrs);
7567out_free_x86_emulator_cache:
7568        kmem_cache_destroy(x86_emulator_cache);
7569out_free_x86_fpu_cache:
7570        kmem_cache_destroy(x86_fpu_cache);
7571out:
7572        return r;
7573}
7574
7575void kvm_arch_exit(void)
7576{
7577#ifdef CONFIG_X86_64
7578        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7579                clear_hv_tscchange_cb();
7580#endif
7581        kvm_lapic_exit();
7582        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7583
7584        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7585                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7586                                            CPUFREQ_TRANSITION_NOTIFIER);
7587        cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7588#ifdef CONFIG_X86_64
7589        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7590#endif
7591        kvm_x86_ops.hardware_enable = NULL;
7592        kvm_mmu_module_exit();
7593        free_percpu(shared_msrs);
7594        kmem_cache_destroy(x86_fpu_cache);
7595}
7596
7597int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7598{
7599        ++vcpu->stat.halt_exits;
7600        if (lapic_in_kernel(vcpu)) {
7601                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7602                return 1;
7603        } else {
7604                vcpu->run->exit_reason = KVM_EXIT_HLT;
7605                return 0;
7606        }
7607}
7608EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7609
7610int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7611{
7612        int ret = kvm_skip_emulated_instruction(vcpu);
7613        /*
7614         * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7615         * KVM_EXIT_DEBUG here.
7616         */
7617        return kvm_vcpu_halt(vcpu) && ret;
7618}
7619EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7620
7621#ifdef CONFIG_X86_64
7622static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7623                                unsigned long clock_type)
7624{
7625        struct kvm_clock_pairing clock_pairing;
7626        struct timespec64 ts;
7627        u64 cycle;
7628        int ret;
7629
7630        if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7631                return -KVM_EOPNOTSUPP;
7632
7633        if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7634                return -KVM_EOPNOTSUPP;
7635
7636        clock_pairing.sec = ts.tv_sec;
7637        clock_pairing.nsec = ts.tv_nsec;
7638        clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7639        clock_pairing.flags = 0;
7640        memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7641
7642        ret = 0;
7643        if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7644                            sizeof(struct kvm_clock_pairing)))
7645                ret = -KVM_EFAULT;
7646
7647        return ret;
7648}
7649#endif
7650
7651/*
7652 * kvm_pv_kick_cpu_op:  Kick a vcpu.
7653 *
7654 * @apicid - apicid of vcpu to be kicked.
7655 */
7656static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7657{
7658        struct kvm_lapic_irq lapic_irq;
7659
7660        lapic_irq.shorthand = APIC_DEST_NOSHORT;
7661        lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7662        lapic_irq.level = 0;
7663        lapic_irq.dest_id = apicid;
7664        lapic_irq.msi_redir_hint = false;
7665
7666        lapic_irq.delivery_mode = APIC_DM_REMRD;
7667        kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7668}
7669
7670bool kvm_apicv_activated(struct kvm *kvm)
7671{
7672        return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7673}
7674EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7675
7676void kvm_apicv_init(struct kvm *kvm, bool enable)
7677{
7678        if (enable)
7679                clear_bit(APICV_INHIBIT_REASON_DISABLE,
7680                          &kvm->arch.apicv_inhibit_reasons);
7681        else
7682                set_bit(APICV_INHIBIT_REASON_DISABLE,
7683                        &kvm->arch.apicv_inhibit_reasons);
7684}
7685EXPORT_SYMBOL_GPL(kvm_apicv_init);
7686
7687static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7688{
7689        struct kvm_vcpu *target = NULL;
7690        struct kvm_apic_map *map;
7691
7692        rcu_read_lock();
7693        map = rcu_dereference(kvm->arch.apic_map);
7694
7695        if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7696                target = map->phys_map[dest_id]->vcpu;
7697
7698        rcu_read_unlock();
7699
7700        if (target && READ_ONCE(target->ready))
7701                kvm_vcpu_yield_to(target);
7702}
7703
7704int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7705{
7706        unsigned long nr, a0, a1, a2, a3, ret;
7707        int op_64_bit;
7708
7709        if (kvm_hv_hypercall_enabled(vcpu->kvm))
7710                return kvm_hv_hypercall(vcpu);
7711
7712        nr = kvm_rax_read(vcpu);
7713        a0 = kvm_rbx_read(vcpu);
7714        a1 = kvm_rcx_read(vcpu);
7715        a2 = kvm_rdx_read(vcpu);
7716        a3 = kvm_rsi_read(vcpu);
7717
7718        trace_kvm_hypercall(nr, a0, a1, a2, a3);
7719
7720        op_64_bit = is_64_bit_mode(vcpu);
7721        if (!op_64_bit) {
7722                nr &= 0xFFFFFFFF;
7723                a0 &= 0xFFFFFFFF;
7724                a1 &= 0xFFFFFFFF;
7725                a2 &= 0xFFFFFFFF;
7726                a3 &= 0xFFFFFFFF;
7727        }
7728
7729        if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7730                ret = -KVM_EPERM;
7731                goto out;
7732        }
7733
7734        switch (nr) {
7735        case KVM_HC_VAPIC_POLL_IRQ:
7736                ret = 0;
7737                break;
7738        case KVM_HC_KICK_CPU:
7739                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7740                kvm_sched_yield(vcpu->kvm, a1);
7741                ret = 0;
7742                break;
7743#ifdef CONFIG_X86_64
7744        case KVM_HC_CLOCK_PAIRING:
7745                ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7746                break;
7747#endif
7748        case KVM_HC_SEND_IPI:
7749                ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7750                break;
7751        case KVM_HC_SCHED_YIELD:
7752                kvm_sched_yield(vcpu->kvm, a0);
7753                ret = 0;
7754                break;
7755        default:
7756                ret = -KVM_ENOSYS;
7757                break;
7758        }
7759out:
7760        if (!op_64_bit)
7761                ret = (u32)ret;
7762        kvm_rax_write(vcpu, ret);
7763
7764        ++vcpu->stat.hypercalls;
7765        return kvm_skip_emulated_instruction(vcpu);
7766}
7767EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7768
7769static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7770{
7771        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7772        char instruction[3];
7773        unsigned long rip = kvm_rip_read(vcpu);
7774
7775        kvm_x86_ops.patch_hypercall(vcpu, instruction);
7776
7777        return emulator_write_emulated(ctxt, rip, instruction, 3,
7778                &ctxt->exception);
7779}
7780
7781static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7782{
7783        return vcpu->run->request_interrupt_window &&
7784                likely(!pic_in_kernel(vcpu->kvm));
7785}
7786
7787static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7788{
7789        struct kvm_run *kvm_run = vcpu->run;
7790
7791        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7792        kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7793        kvm_run->cr8 = kvm_get_cr8(vcpu);
7794        kvm_run->apic_base = kvm_get_apic_base(vcpu);
7795        kvm_run->ready_for_interrupt_injection =
7796                pic_in_kernel(vcpu->kvm) ||
7797                kvm_vcpu_ready_for_interrupt_injection(vcpu);
7798}
7799
7800static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7801{
7802        int max_irr, tpr;
7803
7804        if (!kvm_x86_ops.update_cr8_intercept)
7805                return;
7806
7807        if (!lapic_in_kernel(vcpu))
7808                return;
7809
7810        if (vcpu->arch.apicv_active)
7811                return;
7812
7813        if (!vcpu->arch.apic->vapic_addr)
7814                max_irr = kvm_lapic_find_highest_irr(vcpu);
7815        else
7816                max_irr = -1;
7817
7818        if (max_irr != -1)
7819                max_irr >>= 4;
7820
7821        tpr = kvm_lapic_get_cr8(vcpu);
7822
7823        kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7824}
7825
7826static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
7827{
7828        int r;
7829        bool can_inject = true;
7830
7831        /* try to reinject previous events if any */
7832
7833        if (vcpu->arch.exception.injected) {
7834                kvm_x86_ops.queue_exception(vcpu);
7835                can_inject = false;
7836        }
7837        /*
7838         * Do not inject an NMI or interrupt if there is a pending
7839         * exception.  Exceptions and interrupts are recognized at
7840         * instruction boundaries, i.e. the start of an instruction.
7841         * Trap-like exceptions, e.g. #DB, have higher priority than
7842         * NMIs and interrupts, i.e. traps are recognized before an
7843         * NMI/interrupt that's pending on the same instruction.
7844         * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7845         * priority, but are only generated (pended) during instruction
7846         * execution, i.e. a pending fault-like exception means the
7847         * fault occurred on the *previous* instruction and must be
7848         * serviced prior to recognizing any new events in order to
7849         * fully complete the previous instruction.
7850         */
7851        else if (!vcpu->arch.exception.pending) {
7852                if (vcpu->arch.nmi_injected) {
7853                        kvm_x86_ops.set_nmi(vcpu);
7854                        can_inject = false;
7855                } else if (vcpu->arch.interrupt.injected) {
7856                        kvm_x86_ops.set_irq(vcpu);
7857                        can_inject = false;
7858                }
7859        }
7860
7861        WARN_ON_ONCE(vcpu->arch.exception.injected &&
7862                     vcpu->arch.exception.pending);
7863
7864        /*
7865         * Call check_nested_events() even if we reinjected a previous event
7866         * in order for caller to determine if it should require immediate-exit
7867         * from L2 to L1 due to pending L1 events which require exit
7868         * from L2 to L1.
7869         */
7870        if (is_guest_mode(vcpu)) {
7871                r = kvm_x86_ops.nested_ops->check_events(vcpu);
7872                if (r < 0)
7873                        goto busy;
7874        }
7875
7876        /* try to inject new event if pending */
7877        if (vcpu->arch.exception.pending) {
7878                trace_kvm_inj_exception(vcpu->arch.exception.nr,
7879                                        vcpu->arch.exception.has_error_code,
7880                                        vcpu->arch.exception.error_code);
7881
7882                vcpu->arch.exception.pending = false;
7883                vcpu->arch.exception.injected = true;
7884
7885                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7886                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7887                                             X86_EFLAGS_RF);
7888
7889                if (vcpu->arch.exception.nr == DB_VECTOR) {
7890                        kvm_deliver_exception_payload(vcpu);
7891                        if (vcpu->arch.dr7 & DR7_GD) {
7892                                vcpu->arch.dr7 &= ~DR7_GD;
7893                                kvm_update_dr7(vcpu);
7894                        }
7895                }
7896
7897                kvm_x86_ops.queue_exception(vcpu);
7898                can_inject = false;
7899        }
7900
7901        /*
7902         * Finally, inject interrupt events.  If an event cannot be injected
7903         * due to architectural conditions (e.g. IF=0) a window-open exit
7904         * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
7905         * and can architecturally be injected, but we cannot do it right now:
7906         * an interrupt could have arrived just now and we have to inject it
7907         * as a vmexit, or there could already an event in the queue, which is
7908         * indicated by can_inject.  In that case we request an immediate exit
7909         * in order to make progress and get back here for another iteration.
7910         * The kvm_x86_ops hooks communicate this by returning -EBUSY.
7911         */
7912        if (vcpu->arch.smi_pending) {
7913                r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
7914                if (r < 0)
7915                        goto busy;
7916                if (r) {
7917                        vcpu->arch.smi_pending = false;
7918                        ++vcpu->arch.smi_count;
7919                        enter_smm(vcpu);
7920                        can_inject = false;
7921                } else
7922                        kvm_x86_ops.enable_smi_window(vcpu);
7923        }
7924
7925        if (vcpu->arch.nmi_pending) {
7926                r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
7927                if (r < 0)
7928                        goto busy;
7929                if (r) {
7930                        --vcpu->arch.nmi_pending;
7931                        vcpu->arch.nmi_injected = true;
7932                        kvm_x86_ops.set_nmi(vcpu);
7933                        can_inject = false;
7934                        WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
7935                }
7936                if (vcpu->arch.nmi_pending)
7937                        kvm_x86_ops.enable_nmi_window(vcpu);
7938        }
7939
7940        if (kvm_cpu_has_injectable_intr(vcpu)) {
7941                r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
7942                if (r < 0)
7943                        goto busy;
7944                if (r) {
7945                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
7946                        kvm_x86_ops.set_irq(vcpu);
7947                        WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
7948                }
7949                if (kvm_cpu_has_injectable_intr(vcpu))
7950                        kvm_x86_ops.enable_irq_window(vcpu);
7951        }
7952
7953        if (is_guest_mode(vcpu) &&
7954            kvm_x86_ops.nested_ops->hv_timer_pending &&
7955            kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
7956                *req_immediate_exit = true;
7957
7958        WARN_ON(vcpu->arch.exception.pending);
7959        return;
7960
7961busy:
7962        *req_immediate_exit = true;
7963        return;
7964}
7965
7966static void process_nmi(struct kvm_vcpu *vcpu)
7967{
7968        unsigned limit = 2;
7969
7970        /*
7971         * x86 is limited to one NMI running, and one NMI pending after it.
7972         * If an NMI is already in progress, limit further NMIs to just one.
7973         * Otherwise, allow two (and we'll inject the first one immediately).
7974         */
7975        if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7976                limit = 1;
7977
7978        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7979        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7980        kvm_make_request(KVM_REQ_EVENT, vcpu);
7981}
7982
7983static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7984{
7985        u32 flags = 0;
7986        flags |= seg->g       << 23;
7987        flags |= seg->db      << 22;
7988        flags |= seg->l       << 21;
7989        flags |= seg->avl     << 20;
7990        flags |= seg->present << 15;
7991        flags |= seg->dpl     << 13;
7992        flags |= seg->s       << 12;
7993        flags |= seg->type    << 8;
7994        return flags;
7995}
7996
7997static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7998{
7999        struct kvm_segment seg;
8000        int offset;
8001
8002        kvm_get_segment(vcpu, &seg, n);
8003        put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8004
8005        if (n < 3)
8006                offset = 0x7f84 + n * 12;
8007        else
8008                offset = 0x7f2c + (n - 3) * 12;
8009
8010        put_smstate(u32, buf, offset + 8, seg.base);
8011        put_smstate(u32, buf, offset + 4, seg.limit);
8012        put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8013}
8014
8015#ifdef CONFIG_X86_64
8016static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8017{
8018        struct kvm_segment seg;
8019        int offset;
8020        u16 flags;
8021
8022        kvm_get_segment(vcpu, &seg, n);
8023        offset = 0x7e00 + n * 16;
8024
8025        flags = enter_smm_get_segment_flags(&seg) >> 8;
8026        put_smstate(u16, buf, offset, seg.selector);
8027        put_smstate(u16, buf, offset + 2, flags);
8028        put_smstate(u32, buf, offset + 4, seg.limit);
8029        put_smstate(u64, buf, offset + 8, seg.base);
8030}
8031#endif
8032
8033static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8034{
8035        struct desc_ptr dt;
8036        struct kvm_segment seg;
8037        unsigned long val;
8038        int i;
8039
8040        put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8041        put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8042        put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8043        put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8044
8045        for (i = 0; i < 8; i++)
8046                put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8047
8048        kvm_get_dr(vcpu, 6, &val);
8049        put_smstate(u32, buf, 0x7fcc, (u32)val);
8050        kvm_get_dr(vcpu, 7, &val);
8051        put_smstate(u32, buf, 0x7fc8, (u32)val);
8052
8053        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8054        put_smstate(u32, buf, 0x7fc4, seg.selector);
8055        put_smstate(u32, buf, 0x7f64, seg.base);
8056        put_smstate(u32, buf, 0x7f60, seg.limit);
8057        put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8058
8059        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8060        put_smstate(u32, buf, 0x7fc0, seg.selector);
8061        put_smstate(u32, buf, 0x7f80, seg.base);
8062        put_smstate(u32, buf, 0x7f7c, seg.limit);
8063        put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8064
8065        kvm_x86_ops.get_gdt(vcpu, &dt);
8066        put_smstate(u32, buf, 0x7f74, dt.address);
8067        put_smstate(u32, buf, 0x7f70, dt.size);
8068
8069        kvm_x86_ops.get_idt(vcpu, &dt);
8070        put_smstate(u32, buf, 0x7f58, dt.address);
8071        put_smstate(u32, buf, 0x7f54, dt.size);
8072
8073        for (i = 0; i < 6; i++)
8074                enter_smm_save_seg_32(vcpu, buf, i);
8075
8076        put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8077
8078        /* revision id */
8079        put_smstate(u32, buf, 0x7efc, 0x00020000);
8080        put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8081}
8082
8083#ifdef CONFIG_X86_64
8084static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8085{
8086        struct desc_ptr dt;
8087        struct kvm_segment seg;
8088        unsigned long val;
8089        int i;
8090
8091        for (i = 0; i < 16; i++)
8092                put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8093
8094        put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8095        put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8096
8097        kvm_get_dr(vcpu, 6, &val);
8098        put_smstate(u64, buf, 0x7f68, val);
8099        kvm_get_dr(vcpu, 7, &val);
8100        put_smstate(u64, buf, 0x7f60, val);
8101
8102        put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8103        put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8104        put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8105
8106        put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8107
8108        /* revision id */
8109        put_smstate(u32, buf, 0x7efc, 0x00020064);
8110
8111        put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8112
8113        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8114        put_smstate(u16, buf, 0x7e90, seg.selector);
8115        put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8116        put_smstate(u32, buf, 0x7e94, seg.limit);
8117        put_smstate(u64, buf, 0x7e98, seg.base);
8118
8119        kvm_x86_ops.get_idt(vcpu, &dt);
8120        put_smstate(u32, buf, 0x7e84, dt.size);
8121        put_smstate(u64, buf, 0x7e88, dt.address);
8122
8123        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8124        put_smstate(u16, buf, 0x7e70, seg.selector);
8125        put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8126        put_smstate(u32, buf, 0x7e74, seg.limit);
8127        put_smstate(u64, buf, 0x7e78, seg.base);
8128
8129        kvm_x86_ops.get_gdt(vcpu, &dt);
8130        put_smstate(u32, buf, 0x7e64, dt.size);
8131        put_smstate(u64, buf, 0x7e68, dt.address);
8132
8133        for (i = 0; i < 6; i++)
8134                enter_smm_save_seg_64(vcpu, buf, i);
8135}
8136#endif
8137
8138static void enter_smm(struct kvm_vcpu *vcpu)
8139{
8140        struct kvm_segment cs, ds;
8141        struct desc_ptr dt;
8142        char buf[512];
8143        u32 cr0;
8144
8145        trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8146        memset(buf, 0, 512);
8147#ifdef CONFIG_X86_64
8148        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8149                enter_smm_save_state_64(vcpu, buf);
8150        else
8151#endif
8152                enter_smm_save_state_32(vcpu, buf);
8153
8154        /*
8155         * Give pre_enter_smm() a chance to make ISA-specific changes to the
8156         * vCPU state (e.g. leave guest mode) after we've saved the state into
8157         * the SMM state-save area.
8158         */
8159        kvm_x86_ops.pre_enter_smm(vcpu, buf);
8160
8161        vcpu->arch.hflags |= HF_SMM_MASK;
8162        kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8163
8164        if (kvm_x86_ops.get_nmi_mask(vcpu))
8165                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8166        else
8167                kvm_x86_ops.set_nmi_mask(vcpu, true);
8168
8169        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8170        kvm_rip_write(vcpu, 0x8000);
8171
8172        cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8173        kvm_x86_ops.set_cr0(vcpu, cr0);
8174        vcpu->arch.cr0 = cr0;
8175
8176        kvm_x86_ops.set_cr4(vcpu, 0);
8177
8178        /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8179        dt.address = dt.size = 0;
8180        kvm_x86_ops.set_idt(vcpu, &dt);
8181
8182        __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8183
8184        cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8185        cs.base = vcpu->arch.smbase;
8186
8187        ds.selector = 0;
8188        ds.base = 0;
8189
8190        cs.limit    = ds.limit = 0xffffffff;
8191        cs.type     = ds.type = 0x3;
8192        cs.dpl      = ds.dpl = 0;
8193        cs.db       = ds.db = 0;
8194        cs.s        = ds.s = 1;
8195        cs.l        = ds.l = 0;
8196        cs.g        = ds.g = 1;
8197        cs.avl      = ds.avl = 0;
8198        cs.present  = ds.present = 1;
8199        cs.unusable = ds.unusable = 0;
8200        cs.padding  = ds.padding = 0;
8201
8202        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8203        kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8204        kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8205        kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8206        kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8207        kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8208
8209#ifdef CONFIG_X86_64
8210        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8211                kvm_x86_ops.set_efer(vcpu, 0);
8212#endif
8213
8214        kvm_update_cpuid_runtime(vcpu);
8215        kvm_mmu_reset_context(vcpu);
8216}
8217
8218static void process_smi(struct kvm_vcpu *vcpu)
8219{
8220        vcpu->arch.smi_pending = true;
8221        kvm_make_request(KVM_REQ_EVENT, vcpu);
8222}
8223
8224void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8225                                       unsigned long *vcpu_bitmap)
8226{
8227        cpumask_var_t cpus;
8228
8229        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8230
8231        kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8232                                    NULL, vcpu_bitmap, cpus);
8233
8234        free_cpumask_var(cpus);
8235}
8236
8237void kvm_make_scan_ioapic_request(struct kvm *kvm)
8238{
8239        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8240}
8241
8242void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8243{
8244        if (!lapic_in_kernel(vcpu))
8245                return;
8246
8247        vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8248        kvm_apic_update_apicv(vcpu);
8249        kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8250}
8251EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8252
8253/*
8254 * NOTE: Do not hold any lock prior to calling this.
8255 *
8256 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8257 * locked, because it calls __x86_set_memory_region() which does
8258 * synchronize_srcu(&kvm->srcu).
8259 */
8260void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8261{
8262        struct kvm_vcpu *except;
8263        unsigned long old, new, expected;
8264
8265        if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8266            !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8267                return;
8268
8269        old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8270        do {
8271                expected = new = old;
8272                if (activate)
8273                        __clear_bit(bit, &new);
8274                else
8275                        __set_bit(bit, &new);
8276                if (new == old)
8277                        break;
8278                old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8279        } while (old != expected);
8280
8281        if (!!old == !!new)
8282                return;
8283
8284        trace_kvm_apicv_update_request(activate, bit);
8285        if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8286                kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8287
8288        /*
8289         * Sending request to update APICV for all other vcpus,
8290         * while update the calling vcpu immediately instead of
8291         * waiting for another #VMEXIT to handle the request.
8292         */
8293        except = kvm_get_running_vcpu();
8294        kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8295                                         except);
8296        if (except)
8297                kvm_vcpu_update_apicv(except);
8298}
8299EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8300
8301static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8302{
8303        if (!kvm_apic_present(vcpu))
8304                return;
8305
8306        bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8307
8308        if (irqchip_split(vcpu->kvm))
8309                kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8310        else {
8311                if (vcpu->arch.apicv_active)
8312                        kvm_x86_ops.sync_pir_to_irr(vcpu);
8313                if (ioapic_in_kernel(vcpu->kvm))
8314                        kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8315        }
8316
8317        if (is_guest_mode(vcpu))
8318                vcpu->arch.load_eoi_exitmap_pending = true;
8319        else
8320                kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8321}
8322
8323static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8324{
8325        u64 eoi_exit_bitmap[4];
8326
8327        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8328                return;
8329
8330        bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8331                  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8332        kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8333}
8334
8335void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8336                                            unsigned long start, unsigned long end)
8337{
8338        unsigned long apic_address;
8339
8340        /*
8341         * The physical address of apic access page is stored in the VMCS.
8342         * Update it when it becomes invalid.
8343         */
8344        apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8345        if (start <= apic_address && apic_address < end)
8346                kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8347}
8348
8349void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8350{
8351        if (!lapic_in_kernel(vcpu))
8352                return;
8353
8354        if (!kvm_x86_ops.set_apic_access_page_addr)
8355                return;
8356
8357        kvm_x86_ops.set_apic_access_page_addr(vcpu);
8358}
8359
8360void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8361{
8362        smp_send_reschedule(vcpu->cpu);
8363}
8364EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8365
8366/*
8367 * Returns 1 to let vcpu_run() continue the guest execution loop without
8368 * exiting to the userspace.  Otherwise, the value will be returned to the
8369 * userspace.
8370 */
8371static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8372{
8373        int r;
8374        bool req_int_win =
8375                dm_request_for_irq_injection(vcpu) &&
8376                kvm_cpu_accept_dm_intr(vcpu);
8377        fastpath_t exit_fastpath;
8378
8379        bool req_immediate_exit = false;
8380
8381        if (kvm_request_pending(vcpu)) {
8382                if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8383                        if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) {
8384                                r = 0;
8385                                goto out;
8386                        }
8387                }
8388                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8389                        kvm_mmu_unload(vcpu);
8390                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8391                        __kvm_migrate_timers(vcpu);
8392                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8393                        kvm_gen_update_masterclock(vcpu->kvm);
8394                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8395                        kvm_gen_kvmclock_update(vcpu);
8396                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8397                        r = kvm_guest_time_update(vcpu);
8398                        if (unlikely(r))
8399                                goto out;
8400                }
8401                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8402                        kvm_mmu_sync_roots(vcpu);
8403                if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8404                        kvm_mmu_load_pgd(vcpu);
8405                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8406                        kvm_vcpu_flush_tlb_all(vcpu);
8407
8408                        /* Flushing all ASIDs flushes the current ASID... */
8409                        kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8410                }
8411                if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8412                        kvm_vcpu_flush_tlb_current(vcpu);
8413                if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8414                        kvm_vcpu_flush_tlb_guest(vcpu);
8415
8416                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8417                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8418                        r = 0;
8419                        goto out;
8420                }
8421                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8422                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8423                        vcpu->mmio_needed = 0;
8424                        r = 0;
8425                        goto out;
8426                }
8427                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8428                        /* Page is swapped out. Do synthetic halt */
8429                        vcpu->arch.apf.halted = true;
8430                        r = 1;
8431                        goto out;
8432                }
8433                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8434                        record_steal_time(vcpu);
8435                if (kvm_check_request(KVM_REQ_SMI, vcpu))
8436                        process_smi(vcpu);
8437                if (kvm_check_request(KVM_REQ_NMI, vcpu))
8438                        process_nmi(vcpu);
8439                if (kvm_check_request(KVM_REQ_PMU, vcpu))
8440                        kvm_pmu_handle_event(vcpu);
8441                if (kvm_check_request(KVM_REQ_PMI, vcpu))
8442                        kvm_pmu_deliver_pmi(vcpu);
8443                if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8444                        BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8445                        if (test_bit(vcpu->arch.pending_ioapic_eoi,
8446                                     vcpu->arch.ioapic_handled_vectors)) {
8447                                vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8448                                vcpu->run->eoi.vector =
8449                                                vcpu->arch.pending_ioapic_eoi;
8450                                r = 0;
8451                                goto out;
8452                        }
8453                }
8454                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8455                        vcpu_scan_ioapic(vcpu);
8456                if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8457                        vcpu_load_eoi_exitmap(vcpu);
8458                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8459                        kvm_vcpu_reload_apic_access_page(vcpu);
8460                if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8461                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8462                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8463                        r = 0;
8464                        goto out;
8465                }
8466                if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8467                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8468                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8469                        r = 0;
8470                        goto out;
8471                }
8472                if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8473                        vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8474                        vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8475                        r = 0;
8476                        goto out;
8477                }
8478
8479                /*
8480                 * KVM_REQ_HV_STIMER has to be processed after
8481                 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8482                 * depend on the guest clock being up-to-date
8483                 */
8484                if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8485                        kvm_hv_process_stimers(vcpu);
8486                if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8487                        kvm_vcpu_update_apicv(vcpu);
8488                if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8489                        kvm_check_async_pf_completion(vcpu);
8490        }
8491
8492        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8493                ++vcpu->stat.req_event;
8494                kvm_apic_accept_events(vcpu);
8495                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8496                        r = 1;
8497                        goto out;
8498                }
8499
8500                inject_pending_event(vcpu, &req_immediate_exit);
8501                if (req_int_win)
8502                        kvm_x86_ops.enable_irq_window(vcpu);
8503
8504                if (kvm_lapic_enabled(vcpu)) {
8505                        update_cr8_intercept(vcpu);
8506                        kvm_lapic_sync_to_vapic(vcpu);
8507                }
8508        }
8509
8510        r = kvm_mmu_reload(vcpu);
8511        if (unlikely(r)) {
8512                goto cancel_injection;
8513        }
8514
8515        preempt_disable();
8516
8517        kvm_x86_ops.prepare_guest_switch(vcpu);
8518
8519        /*
8520         * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8521         * IPI are then delayed after guest entry, which ensures that they
8522         * result in virtual interrupt delivery.
8523         */
8524        local_irq_disable();
8525        vcpu->mode = IN_GUEST_MODE;
8526
8527        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8528
8529        /*
8530         * 1) We should set ->mode before checking ->requests.  Please see
8531         * the comment in kvm_vcpu_exiting_guest_mode().
8532         *
8533         * 2) For APICv, we should set ->mode before checking PID.ON. This
8534         * pairs with the memory barrier implicit in pi_test_and_set_on
8535         * (see vmx_deliver_posted_interrupt).
8536         *
8537         * 3) This also orders the write to mode from any reads to the page
8538         * tables done while the VCPU is running.  Please see the comment
8539         * in kvm_flush_remote_tlbs.
8540         */
8541        smp_mb__after_srcu_read_unlock();
8542
8543        /*
8544         * This handles the case where a posted interrupt was
8545         * notified with kvm_vcpu_kick.
8546         */
8547        if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8548                kvm_x86_ops.sync_pir_to_irr(vcpu);
8549
8550        if (kvm_vcpu_exit_request(vcpu)) {
8551                vcpu->mode = OUTSIDE_GUEST_MODE;
8552                smp_wmb();
8553                local_irq_enable();
8554                preempt_enable();
8555                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8556                r = 1;
8557                goto cancel_injection;
8558        }
8559
8560        if (req_immediate_exit) {
8561                kvm_make_request(KVM_REQ_EVENT, vcpu);
8562                kvm_x86_ops.request_immediate_exit(vcpu);
8563        }
8564
8565        trace_kvm_entry(vcpu->vcpu_id);
8566
8567        fpregs_assert_state_consistent();
8568        if (test_thread_flag(TIF_NEED_FPU_LOAD))
8569                switch_fpu_return();
8570
8571        if (unlikely(vcpu->arch.switch_db_regs)) {
8572                set_debugreg(0, 7);
8573                set_debugreg(vcpu->arch.eff_db[0], 0);
8574                set_debugreg(vcpu->arch.eff_db[1], 1);
8575                set_debugreg(vcpu->arch.eff_db[2], 2);
8576                set_debugreg(vcpu->arch.eff_db[3], 3);
8577                set_debugreg(vcpu->arch.dr6, 6);
8578                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8579        }
8580
8581        exit_fastpath = kvm_x86_ops.run(vcpu);
8582
8583        /*
8584         * Do this here before restoring debug registers on the host.  And
8585         * since we do this before handling the vmexit, a DR access vmexit
8586         * can (a) read the correct value of the debug registers, (b) set
8587         * KVM_DEBUGREG_WONT_EXIT again.
8588         */
8589        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8590                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8591                kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8592                kvm_update_dr0123(vcpu);
8593                kvm_update_dr7(vcpu);
8594                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8595        }
8596
8597        /*
8598         * If the guest has used debug registers, at least dr7
8599         * will be disabled while returning to the host.
8600         * If we don't have active breakpoints in the host, we don't
8601         * care about the messed up debug address registers. But if
8602         * we have some of them active, restore the old state.
8603         */
8604        if (hw_breakpoint_active())
8605                hw_breakpoint_restore();
8606
8607        vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8608        vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8609
8610        vcpu->mode = OUTSIDE_GUEST_MODE;
8611        smp_wmb();
8612
8613        kvm_x86_ops.handle_exit_irqoff(vcpu);
8614
8615        /*
8616         * Consume any pending interrupts, including the possible source of
8617         * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8618         * An instruction is required after local_irq_enable() to fully unblock
8619         * interrupts on processors that implement an interrupt shadow, the
8620         * stat.exits increment will do nicely.
8621         */
8622        kvm_before_interrupt(vcpu);
8623        local_irq_enable();
8624        ++vcpu->stat.exits;
8625        local_irq_disable();
8626        kvm_after_interrupt(vcpu);
8627
8628        if (lapic_in_kernel(vcpu)) {
8629                s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8630                if (delta != S64_MIN) {
8631                        trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8632                        vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8633                }
8634        }
8635
8636        local_irq_enable();
8637        preempt_enable();
8638
8639        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8640
8641        /*
8642         * Profile KVM exit RIPs:
8643         */
8644        if (unlikely(prof_on == KVM_PROFILING)) {
8645                unsigned long rip = kvm_rip_read(vcpu);
8646                profile_hit(KVM_PROFILING, (void *)rip);
8647        }
8648
8649        if (unlikely(vcpu->arch.tsc_always_catchup))
8650                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8651
8652        if (vcpu->arch.apic_attention)
8653                kvm_lapic_sync_from_vapic(vcpu);
8654
8655        r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8656        return r;
8657
8658cancel_injection:
8659        if (req_immediate_exit)
8660                kvm_make_request(KVM_REQ_EVENT, vcpu);
8661        kvm_x86_ops.cancel_injection(vcpu);
8662        if (unlikely(vcpu->arch.apic_attention))
8663                kvm_lapic_sync_from_vapic(vcpu);
8664out:
8665        return r;
8666}
8667
8668static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8669{
8670        if (!kvm_arch_vcpu_runnable(vcpu) &&
8671            (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8672                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8673                kvm_vcpu_block(vcpu);
8674                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8675
8676                if (kvm_x86_ops.post_block)
8677                        kvm_x86_ops.post_block(vcpu);
8678
8679                if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8680                        return 1;
8681        }
8682
8683        kvm_apic_accept_events(vcpu);
8684        switch(vcpu->arch.mp_state) {
8685        case KVM_MP_STATE_HALTED:
8686                vcpu->arch.pv.pv_unhalted = false;
8687                vcpu->arch.mp_state =
8688                        KVM_MP_STATE_RUNNABLE;
8689                fallthrough;
8690        case KVM_MP_STATE_RUNNABLE:
8691                vcpu->arch.apf.halted = false;
8692                break;
8693        case KVM_MP_STATE_INIT_RECEIVED:
8694                break;
8695        default:
8696                return -EINTR;
8697        }
8698        return 1;
8699}
8700
8701static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8702{
8703        if (is_guest_mode(vcpu))
8704                kvm_x86_ops.nested_ops->check_events(vcpu);
8705
8706        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8707                !vcpu->arch.apf.halted);
8708}
8709
8710static int vcpu_run(struct kvm_vcpu *vcpu)
8711{
8712        int r;
8713        struct kvm *kvm = vcpu->kvm;
8714
8715        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8716        vcpu->arch.l1tf_flush_l1d = true;
8717
8718        for (;;) {
8719                if (kvm_vcpu_running(vcpu)) {
8720                        r = vcpu_enter_guest(vcpu);
8721                } else {
8722                        r = vcpu_block(kvm, vcpu);
8723                }
8724
8725                if (r <= 0)
8726                        break;
8727
8728                kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8729                if (kvm_cpu_has_pending_timer(vcpu))
8730                        kvm_inject_pending_timer_irqs(vcpu);
8731
8732                if (dm_request_for_irq_injection(vcpu) &&
8733                        kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8734                        r = 0;
8735                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8736                        ++vcpu->stat.request_irq_exits;
8737                        break;
8738                }
8739
8740                if (__xfer_to_guest_mode_work_pending()) {
8741                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8742                        r = xfer_to_guest_mode_handle_work(vcpu);
8743                        if (r)
8744                                return r;
8745                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8746                }
8747        }
8748
8749        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8750
8751        return r;
8752}
8753
8754static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8755{
8756        int r;
8757
8758        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8759        r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8760        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8761        return r;
8762}
8763
8764static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8765{
8766        BUG_ON(!vcpu->arch.pio.count);
8767
8768        return complete_emulated_io(vcpu);
8769}
8770
8771/*
8772 * Implements the following, as a state machine:
8773 *
8774 * read:
8775 *   for each fragment
8776 *     for each mmio piece in the fragment
8777 *       write gpa, len
8778 *       exit
8779 *       copy data
8780 *   execute insn
8781 *
8782 * write:
8783 *   for each fragment
8784 *     for each mmio piece in the fragment
8785 *       write gpa, len
8786 *       copy data
8787 *       exit
8788 */
8789static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8790{
8791        struct kvm_run *run = vcpu->run;
8792        struct kvm_mmio_fragment *frag;
8793        unsigned len;
8794
8795        BUG_ON(!vcpu->mmio_needed);
8796
8797        /* Complete previous fragment */
8798        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8799        len = min(8u, frag->len);
8800        if (!vcpu->mmio_is_write)
8801                memcpy(frag->data, run->mmio.data, len);
8802
8803        if (frag->len <= 8) {
8804                /* Switch to the next fragment. */
8805                frag++;
8806                vcpu->mmio_cur_fragment++;
8807        } else {
8808                /* Go forward to the next mmio piece. */
8809                frag->data += len;
8810                frag->gpa += len;
8811                frag->len -= len;
8812        }
8813
8814        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8815                vcpu->mmio_needed = 0;
8816
8817                /* FIXME: return into emulator if single-stepping.  */
8818                if (vcpu->mmio_is_write)
8819                        return 1;
8820                vcpu->mmio_read_completed = 1;
8821                return complete_emulated_io(vcpu);
8822        }
8823
8824        run->exit_reason = KVM_EXIT_MMIO;
8825        run->mmio.phys_addr = frag->gpa;
8826        if (vcpu->mmio_is_write)
8827                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8828        run->mmio.len = min(8u, frag->len);
8829        run->mmio.is_write = vcpu->mmio_is_write;
8830        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8831        return 0;
8832}
8833
8834static void kvm_save_current_fpu(struct fpu *fpu)
8835{
8836        /*
8837         * If the target FPU state is not resident in the CPU registers, just
8838         * memcpy() from current, else save CPU state directly to the target.
8839         */
8840        if (test_thread_flag(TIF_NEED_FPU_LOAD))
8841                memcpy(&fpu->state, &current->thread.fpu.state,
8842                       fpu_kernel_xstate_size);
8843        else
8844                copy_fpregs_to_fpstate(fpu);
8845}
8846
8847/* Swap (qemu) user FPU context for the guest FPU context. */
8848static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8849{
8850        fpregs_lock();
8851
8852        kvm_save_current_fpu(vcpu->arch.user_fpu);
8853
8854        /* PKRU is separately restored in kvm_x86_ops.run.  */
8855        __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8856                                ~XFEATURE_MASK_PKRU);
8857
8858        fpregs_mark_activate();
8859        fpregs_unlock();
8860
8861        trace_kvm_fpu(1);
8862}
8863
8864/* When vcpu_run ends, restore user space FPU context. */
8865static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8866{
8867        fpregs_lock();
8868
8869        kvm_save_current_fpu(vcpu->arch.guest_fpu);
8870
8871        copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8872
8873        fpregs_mark_activate();
8874        fpregs_unlock();
8875
8876        ++vcpu->stat.fpu_reload;
8877        trace_kvm_fpu(0);
8878}
8879
8880int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
8881{
8882        struct kvm_run *kvm_run = vcpu->run;
8883        int r;
8884
8885        vcpu_load(vcpu);
8886        kvm_sigset_activate(vcpu);
8887        kvm_load_guest_fpu(vcpu);
8888
8889        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8890                if (kvm_run->immediate_exit) {
8891                        r = -EINTR;
8892                        goto out;
8893                }
8894                kvm_vcpu_block(vcpu);
8895                kvm_apic_accept_events(vcpu);
8896                kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8897                r = -EAGAIN;
8898                if (signal_pending(current)) {
8899                        r = -EINTR;
8900                        kvm_run->exit_reason = KVM_EXIT_INTR;
8901                        ++vcpu->stat.signal_exits;
8902                }
8903                goto out;
8904        }
8905
8906        if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8907                r = -EINVAL;
8908                goto out;
8909        }
8910
8911        if (kvm_run->kvm_dirty_regs) {
8912                r = sync_regs(vcpu);
8913                if (r != 0)
8914                        goto out;
8915        }
8916
8917        /* re-sync apic's tpr */
8918        if (!lapic_in_kernel(vcpu)) {
8919                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8920                        r = -EINVAL;
8921                        goto out;
8922                }
8923        }
8924
8925        if (unlikely(vcpu->arch.complete_userspace_io)) {
8926                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8927                vcpu->arch.complete_userspace_io = NULL;
8928                r = cui(vcpu);
8929                if (r <= 0)
8930                        goto out;
8931        } else
8932                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8933
8934        if (kvm_run->immediate_exit)
8935                r = -EINTR;
8936        else
8937                r = vcpu_run(vcpu);
8938
8939out:
8940        kvm_put_guest_fpu(vcpu);
8941        if (kvm_run->kvm_valid_regs)
8942                store_regs(vcpu);
8943        post_kvm_run_save(vcpu);
8944        kvm_sigset_deactivate(vcpu);
8945
8946        vcpu_put(vcpu);
8947        return r;
8948}
8949
8950static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8951{
8952        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8953                /*
8954                 * We are here if userspace calls get_regs() in the middle of
8955                 * instruction emulation. Registers state needs to be copied
8956                 * back from emulation context to vcpu. Userspace shouldn't do
8957                 * that usually, but some bad designed PV devices (vmware
8958                 * backdoor interface) need this to work
8959                 */
8960                emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8961                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8962        }
8963        regs->rax = kvm_rax_read(vcpu);
8964        regs->rbx = kvm_rbx_read(vcpu);
8965        regs->rcx = kvm_rcx_read(vcpu);
8966        regs->rdx = kvm_rdx_read(vcpu);
8967        regs->rsi = kvm_rsi_read(vcpu);
8968        regs->rdi = kvm_rdi_read(vcpu);
8969        regs->rsp = kvm_rsp_read(vcpu);
8970        regs->rbp = kvm_rbp_read(vcpu);
8971#ifdef CONFIG_X86_64
8972        regs->r8 = kvm_r8_read(vcpu);
8973        regs->r9 = kvm_r9_read(vcpu);
8974        regs->r10 = kvm_r10_read(vcpu);
8975        regs->r11 = kvm_r11_read(vcpu);
8976        regs->r12 = kvm_r12_read(vcpu);
8977        regs->r13 = kvm_r13_read(vcpu);
8978        regs->r14 = kvm_r14_read(vcpu);
8979        regs->r15 = kvm_r15_read(vcpu);
8980#endif
8981
8982        regs->rip = kvm_rip_read(vcpu);
8983        regs->rflags = kvm_get_rflags(vcpu);
8984}
8985
8986int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8987{
8988        vcpu_load(vcpu);
8989        __get_regs(vcpu, regs);
8990        vcpu_put(vcpu);
8991        return 0;
8992}
8993
8994static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8995{
8996        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8997        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8998
8999        kvm_rax_write(vcpu, regs->rax);
9000        kvm_rbx_write(vcpu, regs->rbx);
9001        kvm_rcx_write(vcpu, regs->rcx);
9002        kvm_rdx_write(vcpu, regs->rdx);
9003        kvm_rsi_write(vcpu, regs->rsi);
9004        kvm_rdi_write(vcpu, regs->rdi);
9005        kvm_rsp_write(vcpu, regs->rsp);
9006        kvm_rbp_write(vcpu, regs->rbp);
9007#ifdef CONFIG_X86_64
9008        kvm_r8_write(vcpu, regs->r8);
9009        kvm_r9_write(vcpu, regs->r9);
9010        kvm_r10_write(vcpu, regs->r10);
9011        kvm_r11_write(vcpu, regs->r11);
9012        kvm_r12_write(vcpu, regs->r12);
9013        kvm_r13_write(vcpu, regs->r13);
9014        kvm_r14_write(vcpu, regs->r14);
9015        kvm_r15_write(vcpu, regs->r15);
9016#endif
9017
9018        kvm_rip_write(vcpu, regs->rip);
9019        kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9020
9021        vcpu->arch.exception.pending = false;
9022
9023        kvm_make_request(KVM_REQ_EVENT, vcpu);
9024}
9025
9026int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9027{
9028        vcpu_load(vcpu);
9029        __set_regs(vcpu, regs);
9030        vcpu_put(vcpu);
9031        return 0;
9032}
9033
9034void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9035{
9036        struct kvm_segment cs;
9037
9038        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9039        *db = cs.db;
9040        *l = cs.l;
9041}
9042EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9043
9044static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9045{
9046        struct desc_ptr dt;
9047
9048        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9049        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9050        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9051        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9052        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9053        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9054
9055        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9056        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9057
9058        kvm_x86_ops.get_idt(vcpu, &dt);
9059        sregs->idt.limit = dt.size;
9060        sregs->idt.base = dt.address;
9061        kvm_x86_ops.get_gdt(vcpu, &dt);
9062        sregs->gdt.limit = dt.size;
9063        sregs->gdt.base = dt.address;
9064
9065        sregs->cr0 = kvm_read_cr0(vcpu);
9066        sregs->cr2 = vcpu->arch.cr2;
9067        sregs->cr3 = kvm_read_cr3(vcpu);
9068        sregs->cr4 = kvm_read_cr4(vcpu);
9069        sregs->cr8 = kvm_get_cr8(vcpu);
9070        sregs->efer = vcpu->arch.efer;
9071        sregs->apic_base = kvm_get_apic_base(vcpu);
9072
9073        memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9074
9075        if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9076                set_bit(vcpu->arch.interrupt.nr,
9077                        (unsigned long *)sregs->interrupt_bitmap);
9078}
9079
9080int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9081                                  struct kvm_sregs *sregs)
9082{
9083        vcpu_load(vcpu);
9084        __get_sregs(vcpu, sregs);
9085        vcpu_put(vcpu);
9086        return 0;
9087}
9088
9089int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9090                                    struct kvm_mp_state *mp_state)
9091{
9092        vcpu_load(vcpu);
9093        if (kvm_mpx_supported())
9094                kvm_load_guest_fpu(vcpu);
9095
9096        kvm_apic_accept_events(vcpu);
9097        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9098                                        vcpu->arch.pv.pv_unhalted)
9099                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9100        else
9101                mp_state->mp_state = vcpu->arch.mp_state;
9102
9103        if (kvm_mpx_supported())
9104                kvm_put_guest_fpu(vcpu);
9105        vcpu_put(vcpu);
9106        return 0;
9107}
9108
9109int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9110                                    struct kvm_mp_state *mp_state)
9111{
9112        int ret = -EINVAL;
9113
9114        vcpu_load(vcpu);
9115
9116        if (!lapic_in_kernel(vcpu) &&
9117            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9118                goto out;
9119
9120        /*
9121         * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9122         * INIT state; latched init should be reported using
9123         * KVM_SET_VCPU_EVENTS, so reject it here.
9124         */
9125        if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9126            (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9127             mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9128                goto out;
9129
9130        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9131                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9132                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9133        } else
9134                vcpu->arch.mp_state = mp_state->mp_state;
9135        kvm_make_request(KVM_REQ_EVENT, vcpu);
9136
9137        ret = 0;
9138out:
9139        vcpu_put(vcpu);
9140        return ret;
9141}
9142
9143int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9144                    int reason, bool has_error_code, u32 error_code)
9145{
9146        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9147        int ret;
9148
9149        init_emulate_ctxt(vcpu);
9150
9151        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9152                                   has_error_code, error_code);
9153        if (ret) {
9154                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9155                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9156                vcpu->run->internal.ndata = 0;
9157                return 0;
9158        }
9159
9160        kvm_rip_write(vcpu, ctxt->eip);
9161        kvm_set_rflags(vcpu, ctxt->eflags);
9162        return 1;
9163}
9164EXPORT_SYMBOL_GPL(kvm_task_switch);
9165
9166static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9167{
9168        if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9169                /*
9170                 * When EFER.LME and CR0.PG are set, the processor is in
9171                 * 64-bit mode (though maybe in a 32-bit code segment).
9172                 * CR4.PAE and EFER.LMA must be set.
9173                 */
9174                if (!(sregs->cr4 & X86_CR4_PAE)
9175                    || !(sregs->efer & EFER_LMA))
9176                        return -EINVAL;
9177        } else {
9178                /*
9179                 * Not in 64-bit mode: EFER.LMA is clear and the code
9180                 * segment cannot be 64-bit.
9181                 */
9182                if (sregs->efer & EFER_LMA || sregs->cs.l)
9183                        return -EINVAL;
9184        }
9185
9186        return kvm_valid_cr4(vcpu, sregs->cr4);
9187}
9188
9189static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9190{
9191        struct msr_data apic_base_msr;
9192        int mmu_reset_needed = 0;
9193        int cpuid_update_needed = 0;
9194        int pending_vec, max_bits, idx;
9195        struct desc_ptr dt;
9196        int ret = -EINVAL;
9197
9198        if (kvm_valid_sregs(vcpu, sregs))
9199                goto out;
9200
9201        apic_base_msr.data = sregs->apic_base;
9202        apic_base_msr.host_initiated = true;
9203        if (kvm_set_apic_base(vcpu, &apic_base_msr))
9204                goto out;
9205
9206        dt.size = sregs->idt.limit;
9207        dt.address = sregs->idt.base;
9208        kvm_x86_ops.set_idt(vcpu, &dt);
9209        dt.size = sregs->gdt.limit;
9210        dt.address = sregs->gdt.base;
9211        kvm_x86_ops.set_gdt(vcpu, &dt);
9212
9213        vcpu->arch.cr2 = sregs->cr2;
9214        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9215        vcpu->arch.cr3 = sregs->cr3;
9216        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9217
9218        kvm_set_cr8(vcpu, sregs->cr8);
9219
9220        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9221        kvm_x86_ops.set_efer(vcpu, sregs->efer);
9222
9223        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9224        kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9225        vcpu->arch.cr0 = sregs->cr0;
9226
9227        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9228        cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9229                                (X86_CR4_OSXSAVE | X86_CR4_PKE));
9230        kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9231        if (cpuid_update_needed)
9232                kvm_update_cpuid_runtime(vcpu);
9233
9234        idx = srcu_read_lock(&vcpu->kvm->srcu);
9235        if (is_pae_paging(vcpu)) {
9236                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9237                mmu_reset_needed = 1;
9238        }
9239        srcu_read_unlock(&vcpu->kvm->srcu, idx);
9240
9241        if (mmu_reset_needed)
9242                kvm_mmu_reset_context(vcpu);
9243
9244        max_bits = KVM_NR_INTERRUPTS;
9245        pending_vec = find_first_bit(
9246                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9247        if (pending_vec < max_bits) {
9248                kvm_queue_interrupt(vcpu, pending_vec, false);
9249                pr_debug("Set back pending irq %d\n", pending_vec);
9250        }
9251
9252        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9253        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9254        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9255        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9256        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9257        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9258
9259        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9260        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9261
9262        update_cr8_intercept(vcpu);
9263
9264        /* Older userspace won't unhalt the vcpu on reset. */
9265        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9266            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9267            !is_protmode(vcpu))
9268                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9269
9270        kvm_make_request(KVM_REQ_EVENT, vcpu);
9271
9272        ret = 0;
9273out:
9274        return ret;
9275}
9276
9277int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9278                                  struct kvm_sregs *sregs)
9279{
9280        int ret;
9281
9282        vcpu_load(vcpu);
9283        ret = __set_sregs(vcpu, sregs);
9284        vcpu_put(vcpu);
9285        return ret;
9286}
9287
9288int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9289                                        struct kvm_guest_debug *dbg)
9290{
9291        unsigned long rflags;
9292        int i, r;
9293
9294        vcpu_load(vcpu);
9295
9296        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9297                r = -EBUSY;
9298                if (vcpu->arch.exception.pending)
9299                        goto out;
9300                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9301                        kvm_queue_exception(vcpu, DB_VECTOR);
9302                else
9303                        kvm_queue_exception(vcpu, BP_VECTOR);
9304        }
9305
9306        /*
9307         * Read rflags as long as potentially injected trace flags are still
9308         * filtered out.
9309         */
9310        rflags = kvm_get_rflags(vcpu);
9311
9312        vcpu->guest_debug = dbg->control;
9313        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9314                vcpu->guest_debug = 0;
9315
9316        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9317                for (i = 0; i < KVM_NR_DB_REGS; ++i)
9318                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9319                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9320        } else {
9321                for (i = 0; i < KVM_NR_DB_REGS; i++)
9322                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9323        }
9324        kvm_update_dr7(vcpu);
9325
9326        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9327                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9328                        get_segment_base(vcpu, VCPU_SREG_CS);
9329
9330        /*
9331         * Trigger an rflags update that will inject or remove the trace
9332         * flags.
9333         */
9334        kvm_set_rflags(vcpu, rflags);
9335
9336        kvm_x86_ops.update_exception_bitmap(vcpu);
9337
9338        r = 0;
9339
9340out:
9341        vcpu_put(vcpu);
9342        return r;
9343}
9344
9345/*
9346 * Translate a guest virtual address to a guest physical address.
9347 */
9348int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9349                                    struct kvm_translation *tr)
9350{
9351        unsigned long vaddr = tr->linear_address;
9352        gpa_t gpa;
9353        int idx;
9354
9355        vcpu_load(vcpu);
9356
9357        idx = srcu_read_lock(&vcpu->kvm->srcu);
9358        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9359        srcu_read_unlock(&vcpu->kvm->srcu, idx);
9360        tr->physical_address = gpa;
9361        tr->valid = gpa != UNMAPPED_GVA;
9362        tr->writeable = 1;
9363        tr->usermode = 0;
9364
9365        vcpu_put(vcpu);
9366        return 0;
9367}
9368
9369int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9370{
9371        struct fxregs_state *fxsave;
9372
9373        vcpu_load(vcpu);
9374
9375        fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9376        memcpy(fpu->fpr, fxsave->st_space, 128);
9377        fpu->fcw = fxsave->cwd;
9378        fpu->fsw = fxsave->swd;
9379        fpu->ftwx = fxsave->twd;
9380        fpu->last_opcode = fxsave->fop;
9381        fpu->last_ip = fxsave->rip;
9382        fpu->last_dp = fxsave->rdp;
9383        memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9384
9385        vcpu_put(vcpu);
9386        return 0;
9387}
9388
9389int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9390{
9391        struct fxregs_state *fxsave;
9392
9393        vcpu_load(vcpu);
9394
9395        fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9396
9397        memcpy(fxsave->st_space, fpu->fpr, 128);
9398        fxsave->cwd = fpu->fcw;
9399        fxsave->swd = fpu->fsw;
9400        fxsave->twd = fpu->ftwx;
9401        fxsave->fop = fpu->last_opcode;
9402        fxsave->rip = fpu->last_ip;
9403        fxsave->rdp = fpu->last_dp;
9404        memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9405
9406        vcpu_put(vcpu);
9407        return 0;
9408}
9409
9410static void store_regs(struct kvm_vcpu *vcpu)
9411{
9412        BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9413
9414        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9415                __get_regs(vcpu, &vcpu->run->s.regs.regs);
9416
9417        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9418                __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9419
9420        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9421                kvm_vcpu_ioctl_x86_get_vcpu_events(
9422                                vcpu, &vcpu->run->s.regs.events);
9423}
9424
9425static int sync_regs(struct kvm_vcpu *vcpu)
9426{
9427        if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9428                return -EINVAL;
9429
9430        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9431                __set_regs(vcpu, &vcpu->run->s.regs.regs);
9432                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9433        }
9434        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9435                if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9436                        return -EINVAL;
9437                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9438        }
9439        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9440                if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9441                                vcpu, &vcpu->run->s.regs.events))
9442                        return -EINVAL;
9443                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9444        }
9445
9446        return 0;
9447}
9448
9449static void fx_init(struct kvm_vcpu *vcpu)
9450{
9451        fpstate_init(&vcpu->arch.guest_fpu->state);
9452        if (boot_cpu_has(X86_FEATURE_XSAVES))
9453                vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9454                        host_xcr0 | XSTATE_COMPACTION_ENABLED;
9455
9456        /*
9457         * Ensure guest xcr0 is valid for loading
9458         */
9459        vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9460
9461        vcpu->arch.cr0 |= X86_CR0_ET;
9462}
9463
9464int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9465{
9466        if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9467                pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9468                             "guest TSC will not be reliable\n");
9469
9470        return 0;
9471}
9472
9473int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9474{
9475        struct page *page;
9476        int r;
9477
9478        if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9479                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9480        else
9481                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9482
9483        kvm_set_tsc_khz(vcpu, max_tsc_khz);
9484
9485        r = kvm_mmu_create(vcpu);
9486        if (r < 0)
9487                return r;
9488
9489        if (irqchip_in_kernel(vcpu->kvm)) {
9490                r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9491                if (r < 0)
9492                        goto fail_mmu_destroy;
9493                if (kvm_apicv_activated(vcpu->kvm))
9494                        vcpu->arch.apicv_active = true;
9495        } else
9496                static_key_slow_inc(&kvm_no_apic_vcpu);
9497
9498        r = -ENOMEM;
9499
9500        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9501        if (!page)
9502                goto fail_free_lapic;
9503        vcpu->arch.pio_data = page_address(page);
9504
9505        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9506                                       GFP_KERNEL_ACCOUNT);
9507        if (!vcpu->arch.mce_banks)
9508                goto fail_free_pio_data;
9509        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9510
9511        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9512                                GFP_KERNEL_ACCOUNT))
9513                goto fail_free_mce_banks;
9514
9515        if (!alloc_emulate_ctxt(vcpu))
9516                goto free_wbinvd_dirty_mask;
9517
9518        vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9519                                                GFP_KERNEL_ACCOUNT);
9520        if (!vcpu->arch.user_fpu) {
9521                pr_err("kvm: failed to allocate userspace's fpu\n");
9522                goto free_emulate_ctxt;
9523        }
9524
9525        vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9526                                                 GFP_KERNEL_ACCOUNT);
9527        if (!vcpu->arch.guest_fpu) {
9528                pr_err("kvm: failed to allocate vcpu's fpu\n");
9529                goto free_user_fpu;
9530        }
9531        fx_init(vcpu);
9532
9533        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9534
9535        vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9536
9537        kvm_async_pf_hash_reset(vcpu);
9538        kvm_pmu_init(vcpu);
9539
9540        vcpu->arch.pending_external_vector = -1;
9541        vcpu->arch.preempted_in_kernel = false;
9542
9543        kvm_hv_vcpu_init(vcpu);
9544
9545        r = kvm_x86_ops.vcpu_create(vcpu);
9546        if (r)
9547                goto free_guest_fpu;
9548
9549        vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9550        vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9551        kvm_vcpu_mtrr_init(vcpu);
9552        vcpu_load(vcpu);
9553        kvm_vcpu_reset(vcpu, false);
9554        kvm_init_mmu(vcpu, false);
9555        vcpu_put(vcpu);
9556        return 0;
9557
9558free_guest_fpu:
9559        kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9560free_user_fpu:
9561        kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9562free_emulate_ctxt:
9563        kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9564free_wbinvd_dirty_mask:
9565        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9566fail_free_mce_banks:
9567        kfree(vcpu->arch.mce_banks);
9568fail_free_pio_data:
9569        free_page((unsigned long)vcpu->arch.pio_data);
9570fail_free_lapic:
9571        kvm_free_lapic(vcpu);
9572fail_mmu_destroy:
9573        kvm_mmu_destroy(vcpu);
9574        return r;
9575}
9576
9577void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9578{
9579        struct msr_data msr;
9580        struct kvm *kvm = vcpu->kvm;
9581
9582        kvm_hv_vcpu_postcreate(vcpu);
9583
9584        if (mutex_lock_killable(&vcpu->mutex))
9585                return;
9586        vcpu_load(vcpu);
9587        msr.data = 0x0;
9588        msr.index = MSR_IA32_TSC;
9589        msr.host_initiated = true;
9590        kvm_write_tsc(vcpu, &msr);
9591        vcpu_put(vcpu);
9592
9593        /* poll control enabled by default */
9594        vcpu->arch.msr_kvm_poll_control = 1;
9595
9596        mutex_unlock(&vcpu->mutex);
9597
9598        if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9599                schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9600                                                KVMCLOCK_SYNC_PERIOD);
9601}
9602
9603void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9604{
9605        struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9606        int idx;
9607
9608        kvm_release_pfn(cache->pfn, cache->dirty, cache);
9609
9610        kvmclock_reset(vcpu);
9611
9612        kvm_x86_ops.vcpu_free(vcpu);
9613
9614        kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9615        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9616        kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9617        kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9618
9619        kvm_hv_vcpu_uninit(vcpu);
9620        kvm_pmu_destroy(vcpu);
9621        kfree(vcpu->arch.mce_banks);
9622        kvm_free_lapic(vcpu);
9623        idx = srcu_read_lock(&vcpu->kvm->srcu);
9624        kvm_mmu_destroy(vcpu);
9625        srcu_read_unlock(&vcpu->kvm->srcu, idx);
9626        free_page((unsigned long)vcpu->arch.pio_data);
9627        if (!lapic_in_kernel(vcpu))
9628                static_key_slow_dec(&kvm_no_apic_vcpu);
9629}
9630
9631void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9632{
9633        kvm_lapic_reset(vcpu, init_event);
9634
9635        vcpu->arch.hflags = 0;
9636
9637        vcpu->arch.smi_pending = 0;
9638        vcpu->arch.smi_count = 0;
9639        atomic_set(&vcpu->arch.nmi_queued, 0);
9640        vcpu->arch.nmi_pending = 0;
9641        vcpu->arch.nmi_injected = false;
9642        kvm_clear_interrupt_queue(vcpu);
9643        kvm_clear_exception_queue(vcpu);
9644
9645        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9646        kvm_update_dr0123(vcpu);
9647        vcpu->arch.dr6 = DR6_INIT;
9648        vcpu->arch.dr7 = DR7_FIXED_1;
9649        kvm_update_dr7(vcpu);
9650
9651        vcpu->arch.cr2 = 0;
9652
9653        kvm_make_request(KVM_REQ_EVENT, vcpu);
9654        vcpu->arch.apf.msr_en_val = 0;
9655        vcpu->arch.apf.msr_int_val = 0;
9656        vcpu->arch.st.msr_val = 0;
9657
9658        kvmclock_reset(vcpu);
9659
9660        kvm_clear_async_pf_completion_queue(vcpu);
9661        kvm_async_pf_hash_reset(vcpu);
9662        vcpu->arch.apf.halted = false;
9663
9664        if (kvm_mpx_supported()) {
9665                void *mpx_state_buffer;
9666
9667                /*
9668                 * To avoid have the INIT path from kvm_apic_has_events() that be
9669                 * called with loaded FPU and does not let userspace fix the state.
9670                 */
9671                if (init_event)
9672                        kvm_put_guest_fpu(vcpu);
9673                mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9674                                        XFEATURE_BNDREGS);
9675                if (mpx_state_buffer)
9676                        memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9677                mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9678                                        XFEATURE_BNDCSR);
9679                if (mpx_state_buffer)
9680                        memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9681                if (init_event)
9682                        kvm_load_guest_fpu(vcpu);
9683        }
9684
9685        if (!init_event) {
9686                kvm_pmu_reset(vcpu);
9687                vcpu->arch.smbase = 0x30000;
9688
9689                vcpu->arch.msr_misc_features_enables = 0;
9690
9691                vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9692        }
9693
9694        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9695        vcpu->arch.regs_avail = ~0;
9696        vcpu->arch.regs_dirty = ~0;
9697
9698        vcpu->arch.ia32_xss = 0;
9699
9700        kvm_x86_ops.vcpu_reset(vcpu, init_event);
9701}
9702
9703void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9704{
9705        struct kvm_segment cs;
9706
9707        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9708        cs.selector = vector << 8;
9709        cs.base = vector << 12;
9710        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9711        kvm_rip_write(vcpu, 0);
9712}
9713
9714int kvm_arch_hardware_enable(void)
9715{
9716        struct kvm *kvm;
9717        struct kvm_vcpu *vcpu;
9718        int i;
9719        int ret;
9720        u64 local_tsc;
9721        u64 max_tsc = 0;
9722        bool stable, backwards_tsc = false;
9723
9724        kvm_shared_msr_cpu_online();
9725        ret = kvm_x86_ops.hardware_enable();
9726        if (ret != 0)
9727                return ret;
9728
9729        local_tsc = rdtsc();
9730        stable = !kvm_check_tsc_unstable();
9731        list_for_each_entry(kvm, &vm_list, vm_list) {
9732                kvm_for_each_vcpu(i, vcpu, kvm) {
9733                        if (!stable && vcpu->cpu == smp_processor_id())
9734                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9735                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9736                                backwards_tsc = true;
9737                                if (vcpu->arch.last_host_tsc > max_tsc)
9738                                        max_tsc = vcpu->arch.last_host_tsc;
9739                        }
9740                }
9741        }
9742
9743        /*
9744         * Sometimes, even reliable TSCs go backwards.  This happens on
9745         * platforms that reset TSC during suspend or hibernate actions, but
9746         * maintain synchronization.  We must compensate.  Fortunately, we can
9747         * detect that condition here, which happens early in CPU bringup,
9748         * before any KVM threads can be running.  Unfortunately, we can't
9749         * bring the TSCs fully up to date with real time, as we aren't yet far
9750         * enough into CPU bringup that we know how much real time has actually
9751         * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9752         * variables that haven't been updated yet.
9753         *
9754         * So we simply find the maximum observed TSC above, then record the
9755         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9756         * the adjustment will be applied.  Note that we accumulate
9757         * adjustments, in case multiple suspend cycles happen before some VCPU
9758         * gets a chance to run again.  In the event that no KVM threads get a
9759         * chance to run, we will miss the entire elapsed period, as we'll have
9760         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9761         * loose cycle time.  This isn't too big a deal, since the loss will be
9762         * uniform across all VCPUs (not to mention the scenario is extremely
9763         * unlikely). It is possible that a second hibernate recovery happens
9764         * much faster than a first, causing the observed TSC here to be
9765         * smaller; this would require additional padding adjustment, which is
9766         * why we set last_host_tsc to the local tsc observed here.
9767         *
9768         * N.B. - this code below runs only on platforms with reliable TSC,
9769         * as that is the only way backwards_tsc is set above.  Also note
9770         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9771         * have the same delta_cyc adjustment applied if backwards_tsc
9772         * is detected.  Note further, this adjustment is only done once,
9773         * as we reset last_host_tsc on all VCPUs to stop this from being
9774         * called multiple times (one for each physical CPU bringup).
9775         *
9776         * Platforms with unreliable TSCs don't have to deal with this, they
9777         * will be compensated by the logic in vcpu_load, which sets the TSC to
9778         * catchup mode.  This will catchup all VCPUs to real time, but cannot
9779         * guarantee that they stay in perfect synchronization.
9780         */
9781        if (backwards_tsc) {
9782                u64 delta_cyc = max_tsc - local_tsc;
9783                list_for_each_entry(kvm, &vm_list, vm_list) {
9784                        kvm->arch.backwards_tsc_observed = true;
9785                        kvm_for_each_vcpu(i, vcpu, kvm) {
9786                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
9787                                vcpu->arch.last_host_tsc = local_tsc;
9788                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9789                        }
9790
9791                        /*
9792                         * We have to disable TSC offset matching.. if you were
9793                         * booting a VM while issuing an S4 host suspend....
9794                         * you may have some problem.  Solving this issue is
9795                         * left as an exercise to the reader.
9796                         */
9797                        kvm->arch.last_tsc_nsec = 0;
9798                        kvm->arch.last_tsc_write = 0;
9799                }
9800
9801        }
9802        return 0;
9803}
9804
9805void kvm_arch_hardware_disable(void)
9806{
9807        kvm_x86_ops.hardware_disable();
9808        drop_user_return_notifiers();
9809}
9810
9811int kvm_arch_hardware_setup(void *opaque)
9812{
9813        struct kvm_x86_init_ops *ops = opaque;
9814        int r;
9815
9816        rdmsrl_safe(MSR_EFER, &host_efer);
9817
9818        if (boot_cpu_has(X86_FEATURE_XSAVES))
9819                rdmsrl(MSR_IA32_XSS, host_xss);
9820
9821        r = ops->hardware_setup();
9822        if (r != 0)
9823                return r;
9824
9825        memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9826
9827        if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9828                supported_xss = 0;
9829
9830#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9831        cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9832#undef __kvm_cpu_cap_has
9833
9834        if (kvm_has_tsc_control) {
9835                /*
9836                 * Make sure the user can only configure tsc_khz values that
9837                 * fit into a signed integer.
9838                 * A min value is not calculated because it will always
9839                 * be 1 on all machines.
9840                 */
9841                u64 max = min(0x7fffffffULL,
9842                              __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9843                kvm_max_guest_tsc_khz = max;
9844
9845                kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9846        }
9847
9848        kvm_init_msr_list();
9849        return 0;
9850}
9851
9852void kvm_arch_hardware_unsetup(void)
9853{
9854        kvm_x86_ops.hardware_unsetup();
9855}
9856
9857int kvm_arch_check_processor_compat(void *opaque)
9858{
9859        struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9860        struct kvm_x86_init_ops *ops = opaque;
9861
9862        WARN_ON(!irqs_disabled());
9863
9864        if (__cr4_reserved_bits(cpu_has, c) !=
9865            __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9866                return -EIO;
9867
9868        return ops->check_processor_compatibility();
9869}
9870
9871bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9872{
9873        return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9874}
9875EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9876
9877bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9878{
9879        return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9880}
9881
9882struct static_key kvm_no_apic_vcpu __read_mostly;
9883EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9884
9885void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9886{
9887        struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9888
9889        vcpu->arch.l1tf_flush_l1d = true;
9890        if (pmu->version && unlikely(pmu->event_count)) {
9891                pmu->need_cleanup = true;
9892                kvm_make_request(KVM_REQ_PMU, vcpu);
9893        }
9894        kvm_x86_ops.sched_in(vcpu, cpu);
9895}
9896
9897void kvm_arch_free_vm(struct kvm *kvm)
9898{
9899        kfree(kvm->arch.hyperv.hv_pa_pg);
9900        vfree(kvm);
9901}
9902
9903
9904int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9905{
9906        if (type)
9907                return -EINVAL;
9908
9909        INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9910        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9911        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9912        INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9913        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9914        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9915
9916        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9917        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9918        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9919        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9920                &kvm->arch.irq_sources_bitmap);
9921
9922        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9923        mutex_init(&kvm->arch.apic_map_lock);
9924        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9925
9926        kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9927        pvclock_update_vm_gtod_copy(kvm);
9928
9929        kvm->arch.guest_can_read_msr_platform_info = true;
9930
9931        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9932        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9933
9934        kvm_hv_init_vm(kvm);
9935        kvm_page_track_init(kvm);
9936        kvm_mmu_init_vm(kvm);
9937
9938        return kvm_x86_ops.vm_init(kvm);
9939}
9940
9941int kvm_arch_post_init_vm(struct kvm *kvm)
9942{
9943        return kvm_mmu_post_init_vm(kvm);
9944}
9945
9946static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9947{
9948        vcpu_load(vcpu);
9949        kvm_mmu_unload(vcpu);
9950        vcpu_put(vcpu);
9951}
9952
9953static void kvm_free_vcpus(struct kvm *kvm)
9954{
9955        unsigned int i;
9956        struct kvm_vcpu *vcpu;
9957
9958        /*
9959         * Unpin any mmu pages first.
9960         */
9961        kvm_for_each_vcpu(i, vcpu, kvm) {
9962                kvm_clear_async_pf_completion_queue(vcpu);
9963                kvm_unload_vcpu_mmu(vcpu);
9964        }
9965        kvm_for_each_vcpu(i, vcpu, kvm)
9966                kvm_vcpu_destroy(vcpu);
9967
9968        mutex_lock(&kvm->lock);
9969        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9970                kvm->vcpus[i] = NULL;
9971
9972        atomic_set(&kvm->online_vcpus, 0);
9973        mutex_unlock(&kvm->lock);
9974}
9975
9976void kvm_arch_sync_events(struct kvm *kvm)
9977{
9978        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9979        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9980        kvm_free_pit(kvm);
9981}
9982
9983int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9984{
9985        int i, r;
9986        unsigned long hva, old_npages;
9987        struct kvm_memslots *slots = kvm_memslots(kvm);
9988        struct kvm_memory_slot *slot;
9989
9990        /* Called with kvm->slots_lock held.  */
9991        if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9992                return -EINVAL;
9993
9994        slot = id_to_memslot(slots, id);
9995        if (size) {
9996                if (slot && slot->npages)
9997                        return -EEXIST;
9998
9999                /*
10000                 * MAP_SHARED to prevent internal slot pages from being moved
10001                 * by fork()/COW.
10002                 */
10003                hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10004                              MAP_SHARED | MAP_ANONYMOUS, 0);
10005                if (IS_ERR((void *)hva))
10006                        return PTR_ERR((void *)hva);
10007        } else {
10008                if (!slot || !slot->npages)
10009                        return 0;
10010
10011                old_npages = slot->npages;
10012                hva = 0;
10013        }
10014
10015        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10016                struct kvm_userspace_memory_region m;
10017
10018                m.slot = id | (i << 16);
10019                m.flags = 0;
10020                m.guest_phys_addr = gpa;
10021                m.userspace_addr = hva;
10022                m.memory_size = size;
10023                r = __kvm_set_memory_region(kvm, &m);
10024                if (r < 0)
10025                        return r;
10026        }
10027
10028        if (!size)
10029                vm_munmap(hva, old_npages * PAGE_SIZE);
10030
10031        return 0;
10032}
10033EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10034
10035void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10036{
10037        kvm_mmu_pre_destroy_vm(kvm);
10038}
10039
10040void kvm_arch_destroy_vm(struct kvm *kvm)
10041{
10042        if (current->mm == kvm->mm) {
10043                /*
10044                 * Free memory regions allocated on behalf of userspace,
10045                 * unless the the memory map has changed due to process exit
10046                 * or fd copying.
10047                 */
10048                mutex_lock(&kvm->slots_lock);
10049                __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10050                                        0, 0);
10051                __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10052                                        0, 0);
10053                __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10054                mutex_unlock(&kvm->slots_lock);
10055        }
10056        if (kvm_x86_ops.vm_destroy)
10057                kvm_x86_ops.vm_destroy(kvm);
10058        kvm_pic_destroy(kvm);
10059        kvm_ioapic_destroy(kvm);
10060        kvm_free_vcpus(kvm);
10061        kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10062        kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10063        kvm_mmu_uninit_vm(kvm);
10064        kvm_page_track_cleanup(kvm);
10065        kvm_hv_destroy_vm(kvm);
10066}
10067
10068void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10069{
10070        int i;
10071
10072        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10073                kvfree(slot->arch.rmap[i]);
10074                slot->arch.rmap[i] = NULL;
10075
10076                if (i == 0)
10077                        continue;
10078
10079                kvfree(slot->arch.lpage_info[i - 1]);
10080                slot->arch.lpage_info[i - 1] = NULL;
10081        }
10082
10083        kvm_page_track_free_memslot(slot);
10084}
10085
10086static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10087                                      unsigned long npages)
10088{
10089        int i;
10090
10091        /*
10092         * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10093         * old arrays will be freed by __kvm_set_memory_region() if installing
10094         * the new memslot is successful.
10095         */
10096        memset(&slot->arch, 0, sizeof(slot->arch));
10097
10098        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10099                struct kvm_lpage_info *linfo;
10100                unsigned long ugfn;
10101                int lpages;
10102                int level = i + 1;
10103
10104                lpages = gfn_to_index(slot->base_gfn + npages - 1,
10105                                      slot->base_gfn, level) + 1;
10106
10107                slot->arch.rmap[i] =
10108                        kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10109                                 GFP_KERNEL_ACCOUNT);
10110                if (!slot->arch.rmap[i])
10111                        goto out_free;
10112                if (i == 0)
10113                        continue;
10114
10115                linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10116                if (!linfo)
10117                        goto out_free;
10118
10119                slot->arch.lpage_info[i - 1] = linfo;
10120
10121                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10122                        linfo[0].disallow_lpage = 1;
10123                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10124                        linfo[lpages - 1].disallow_lpage = 1;
10125                ugfn = slot->userspace_addr >> PAGE_SHIFT;
10126                /*
10127                 * If the gfn and userspace address are not aligned wrt each
10128                 * other, disable large page support for this slot.
10129                 */
10130                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10131                        unsigned long j;
10132
10133                        for (j = 0; j < lpages; ++j)
10134                                linfo[j].disallow_lpage = 1;
10135                }
10136        }
10137
10138        if (kvm_page_track_create_memslot(slot, npages))
10139                goto out_free;
10140
10141        return 0;
10142
10143out_free:
10144        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10145                kvfree(slot->arch.rmap[i]);
10146                slot->arch.rmap[i] = NULL;
10147                if (i == 0)
10148                        continue;
10149
10150                kvfree(slot->arch.lpage_info[i - 1]);
10151                slot->arch.lpage_info[i - 1] = NULL;
10152        }
10153        return -ENOMEM;
10154}
10155
10156void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10157{
10158        struct kvm_vcpu *vcpu;
10159        int i;
10160
10161        /*
10162         * memslots->generation has been incremented.
10163         * mmio generation may have reached its maximum value.
10164         */
10165        kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10166
10167        /* Force re-initialization of steal_time cache */
10168        kvm_for_each_vcpu(i, vcpu, kvm)
10169                kvm_vcpu_kick(vcpu);
10170}
10171
10172int kvm_arch_prepare_memory_region(struct kvm *kvm,
10173                                struct kvm_memory_slot *memslot,
10174                                const struct kvm_userspace_memory_region *mem,
10175                                enum kvm_mr_change change)
10176{
10177        if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10178                return kvm_alloc_memslot_metadata(memslot,
10179                                                  mem->memory_size >> PAGE_SHIFT);
10180        return 0;
10181}
10182
10183static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10184                                     struct kvm_memory_slot *old,
10185                                     struct kvm_memory_slot *new,
10186                                     enum kvm_mr_change change)
10187{
10188        /*
10189         * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10190         * See comments below.
10191         */
10192        if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10193                return;
10194
10195        /*
10196         * Dirty logging tracks sptes in 4k granularity, meaning that large
10197         * sptes have to be split.  If live migration is successful, the guest
10198         * in the source machine will be destroyed and large sptes will be
10199         * created in the destination. However, if the guest continues to run
10200         * in the source machine (for example if live migration fails), small
10201         * sptes will remain around and cause bad performance.
10202         *
10203         * Scan sptes if dirty logging has been stopped, dropping those
10204         * which can be collapsed into a single large-page spte.  Later
10205         * page faults will create the large-page sptes.
10206         *
10207         * There is no need to do this in any of the following cases:
10208         * CREATE:      No dirty mappings will already exist.
10209         * MOVE/DELETE: The old mappings will already have been cleaned up by
10210         *              kvm_arch_flush_shadow_memslot()
10211         */
10212        if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10213            !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10214                kvm_mmu_zap_collapsible_sptes(kvm, new);
10215
10216        /*
10217         * Enable or disable dirty logging for the slot.
10218         *
10219         * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10220         * slot have been zapped so no dirty logging updates are needed for
10221         * the old slot.
10222         * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10223         * any mappings that might be created in it will consume the
10224         * properties of the new slot and do not need to be updated here.
10225         *
10226         * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10227         * called to enable/disable dirty logging.
10228         *
10229         * When disabling dirty logging with PML enabled, the D-bit is set
10230         * for sptes in the slot in order to prevent unnecessary GPA
10231         * logging in the PML buffer (and potential PML buffer full VMEXIT).
10232         * This guarantees leaving PML enabled for the guest's lifetime
10233         * won't have any additional overhead from PML when the guest is
10234         * running with dirty logging disabled.
10235         *
10236         * When enabling dirty logging, large sptes are write-protected
10237         * so they can be split on first write.  New large sptes cannot
10238         * be created for this slot until the end of the logging.
10239         * See the comments in fast_page_fault().
10240         * For small sptes, nothing is done if the dirty log is in the
10241         * initial-all-set state.  Otherwise, depending on whether pml
10242         * is enabled the D-bit or the W-bit will be cleared.
10243         */
10244        if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10245                if (kvm_x86_ops.slot_enable_log_dirty) {
10246                        kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10247                } else {
10248                        int level =
10249                                kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10250                                PG_LEVEL_2M : PG_LEVEL_4K;
10251
10252                        /*
10253                         * If we're with initial-all-set, we don't need
10254                         * to write protect any small page because
10255                         * they're reported as dirty already.  However
10256                         * we still need to write-protect huge pages
10257                         * so that the page split can happen lazily on
10258                         * the first write to the huge page.
10259                         */
10260                        kvm_mmu_slot_remove_write_access(kvm, new, level);
10261                }
10262        } else {
10263                if (kvm_x86_ops.slot_disable_log_dirty)
10264                        kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10265        }
10266}
10267
10268void kvm_arch_commit_memory_region(struct kvm *kvm,
10269                                const struct kvm_userspace_memory_region *mem,
10270                                struct kvm_memory_slot *old,
10271                                const struct kvm_memory_slot *new,
10272                                enum kvm_mr_change change)
10273{
10274        if (!kvm->arch.n_requested_mmu_pages)
10275                kvm_mmu_change_mmu_pages(kvm,
10276                                kvm_mmu_calculate_default_mmu_pages(kvm));
10277
10278        /*
10279         * FIXME: const-ify all uses of struct kvm_memory_slot.
10280         */
10281        kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10282
10283        /* Free the arrays associated with the old memslot. */
10284        if (change == KVM_MR_MOVE)
10285                kvm_arch_free_memslot(kvm, old);
10286}
10287
10288void kvm_arch_flush_shadow_all(struct kvm *kvm)
10289{
10290        kvm_mmu_zap_all(kvm);
10291}
10292
10293void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10294                                   struct kvm_memory_slot *slot)
10295{
10296        kvm_page_track_flush_slot(kvm, slot);
10297}
10298
10299static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10300{
10301        return (is_guest_mode(vcpu) &&
10302                        kvm_x86_ops.guest_apic_has_interrupt &&
10303                        kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10304}
10305
10306static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10307{
10308        if (!list_empty_careful(&vcpu->async_pf.done))
10309                return true;
10310
10311        if (kvm_apic_has_events(vcpu))
10312                return true;
10313
10314        if (vcpu->arch.pv.pv_unhalted)
10315                return true;
10316
10317        if (vcpu->arch.exception.pending)
10318                return true;
10319
10320        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10321            (vcpu->arch.nmi_pending &&
10322             kvm_x86_ops.nmi_allowed(vcpu, false)))
10323                return true;
10324
10325        if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10326            (vcpu->arch.smi_pending &&
10327             kvm_x86_ops.smi_allowed(vcpu, false)))
10328                return true;
10329
10330        if (kvm_arch_interrupt_allowed(vcpu) &&
10331            (kvm_cpu_has_interrupt(vcpu) ||
10332            kvm_guest_apic_has_interrupt(vcpu)))
10333                return true;
10334
10335        if (kvm_hv_has_stimer_pending(vcpu))
10336                return true;
10337
10338        if (is_guest_mode(vcpu) &&
10339            kvm_x86_ops.nested_ops->hv_timer_pending &&
10340            kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10341                return true;
10342
10343        return false;
10344}
10345
10346int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10347{
10348        return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10349}
10350
10351bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10352{
10353        if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10354                return true;
10355
10356        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10357                kvm_test_request(KVM_REQ_SMI, vcpu) ||
10358                 kvm_test_request(KVM_REQ_EVENT, vcpu))
10359                return true;
10360
10361        if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10362                return true;
10363
10364        return false;
10365}
10366
10367bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10368{
10369        return vcpu->arch.preempted_in_kernel;
10370}
10371
10372int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10373{
10374        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10375}
10376
10377int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10378{
10379        return kvm_x86_ops.interrupt_allowed(vcpu, false);
10380}
10381
10382unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10383{
10384        if (is_64_bit_mode(vcpu))
10385                return kvm_rip_read(vcpu);
10386        return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10387                     kvm_rip_read(vcpu));
10388}
10389EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10390
10391bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10392{
10393        return kvm_get_linear_rip(vcpu) == linear_rip;
10394}
10395EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10396
10397unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10398{
10399        unsigned long rflags;
10400
10401        rflags = kvm_x86_ops.get_rflags(vcpu);
10402        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10403                rflags &= ~X86_EFLAGS_TF;
10404        return rflags;
10405}
10406EXPORT_SYMBOL_GPL(kvm_get_rflags);
10407
10408static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10409{
10410        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10411            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10412                rflags |= X86_EFLAGS_TF;
10413        kvm_x86_ops.set_rflags(vcpu, rflags);
10414}
10415
10416void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10417{
10418        __kvm_set_rflags(vcpu, rflags);
10419        kvm_make_request(KVM_REQ_EVENT, vcpu);
10420}
10421EXPORT_SYMBOL_GPL(kvm_set_rflags);
10422
10423void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10424{
10425        int r;
10426
10427        if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10428              work->wakeup_all)
10429                return;
10430
10431        r = kvm_mmu_reload(vcpu);
10432        if (unlikely(r))
10433                return;
10434
10435        if (!vcpu->arch.mmu->direct_map &&
10436              work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10437                return;
10438
10439        kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10440}
10441
10442static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10443{
10444        BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10445
10446        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10447}
10448
10449static inline u32 kvm_async_pf_next_probe(u32 key)
10450{
10451        return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10452}
10453
10454static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10455{
10456        u32 key = kvm_async_pf_hash_fn(gfn);
10457
10458        while (vcpu->arch.apf.gfns[key] != ~0)
10459                key = kvm_async_pf_next_probe(key);
10460
10461        vcpu->arch.apf.gfns[key] = gfn;
10462}
10463
10464static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10465{
10466        int i;
10467        u32 key = kvm_async_pf_hash_fn(gfn);
10468
10469        for (i = 0; i < ASYNC_PF_PER_VCPU &&
10470                     (vcpu->arch.apf.gfns[key] != gfn &&
10471                      vcpu->arch.apf.gfns[key] != ~0); i++)
10472                key = kvm_async_pf_next_probe(key);
10473
10474        return key;
10475}
10476
10477bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10478{
10479        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10480}
10481
10482static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10483{
10484        u32 i, j, k;
10485
10486        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10487
10488        if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10489                return;
10490
10491        while (true) {
10492                vcpu->arch.apf.gfns[i] = ~0;
10493                do {
10494                        j = kvm_async_pf_next_probe(j);
10495                        if (vcpu->arch.apf.gfns[j] == ~0)
10496                                return;
10497                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10498                        /*
10499                         * k lies cyclically in ]i,j]
10500                         * |    i.k.j |
10501                         * |....j i.k.| or  |.k..j i...|
10502                         */
10503                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10504                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10505                i = j;
10506        }
10507}
10508
10509static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10510{
10511        u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10512
10513        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10514                                      sizeof(reason));
10515}
10516
10517static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10518{
10519        unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10520
10521        return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10522                                             &token, offset, sizeof(token));
10523}
10524
10525static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10526{
10527        unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10528        u32 val;
10529
10530        if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10531                                         &val, offset, sizeof(val)))
10532                return false;
10533
10534        return !val;
10535}
10536
10537static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10538{
10539        if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10540                return false;
10541
10542        if (!kvm_pv_async_pf_enabled(vcpu) ||
10543            (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10544                return false;
10545
10546        return true;
10547}
10548
10549bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10550{
10551        if (unlikely(!lapic_in_kernel(vcpu) ||
10552                     kvm_event_needs_reinjection(vcpu) ||
10553                     vcpu->arch.exception.pending))
10554                return false;
10555
10556        if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10557                return false;
10558
10559        /*
10560         * If interrupts are off we cannot even use an artificial
10561         * halt state.
10562         */
10563        return kvm_arch_interrupt_allowed(vcpu);
10564}
10565
10566bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10567                                     struct kvm_async_pf *work)
10568{
10569        struct x86_exception fault;
10570
10571        trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10572        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10573
10574        if (kvm_can_deliver_async_pf(vcpu) &&
10575            !apf_put_user_notpresent(vcpu)) {
10576                fault.vector = PF_VECTOR;
10577                fault.error_code_valid = true;
10578                fault.error_code = 0;
10579                fault.nested_page_fault = false;
10580                fault.address = work->arch.token;
10581                fault.async_page_fault = true;
10582                kvm_inject_page_fault(vcpu, &fault);
10583                return true;
10584        } else {
10585                /*
10586                 * It is not possible to deliver a paravirtualized asynchronous
10587                 * page fault, but putting the guest in an artificial halt state
10588                 * can be beneficial nevertheless: if an interrupt arrives, we
10589                 * can deliver it timely and perhaps the guest will schedule
10590                 * another process.  When the instruction that triggered a page
10591                 * fault is retried, hopefully the page will be ready in the host.
10592                 */
10593                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10594                return false;
10595        }
10596}
10597
10598void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10599                                 struct kvm_async_pf *work)
10600{
10601        struct kvm_lapic_irq irq = {
10602                .delivery_mode = APIC_DM_FIXED,
10603                .vector = vcpu->arch.apf.vec
10604        };
10605
10606        if (work->wakeup_all)
10607                work->arch.token = ~0; /* broadcast wakeup */
10608        else
10609                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10610        trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10611
10612        if ((work->wakeup_all || work->notpresent_injected) &&
10613            kvm_pv_async_pf_enabled(vcpu) &&
10614            !apf_put_user_ready(vcpu, work->arch.token)) {
10615                vcpu->arch.apf.pageready_pending = true;
10616                kvm_apic_set_irq(vcpu, &irq, NULL);
10617        }
10618
10619        vcpu->arch.apf.halted = false;
10620        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10621}
10622
10623void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10624{
10625        kvm_make_request(KVM_REQ_APF_READY, vcpu);
10626        if (!vcpu->arch.apf.pageready_pending)
10627                kvm_vcpu_kick(vcpu);
10628}
10629
10630bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10631{
10632        if (!kvm_pv_async_pf_enabled(vcpu))
10633                return true;
10634        else
10635                return apf_pageready_slot_free(vcpu);
10636}
10637
10638void kvm_arch_start_assignment(struct kvm *kvm)
10639{
10640        atomic_inc(&kvm->arch.assigned_device_count);
10641}
10642EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10643
10644void kvm_arch_end_assignment(struct kvm *kvm)
10645{
10646        atomic_dec(&kvm->arch.assigned_device_count);
10647}
10648EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10649
10650bool kvm_arch_has_assigned_device(struct kvm *kvm)
10651{
10652        return atomic_read(&kvm->arch.assigned_device_count);
10653}
10654EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10655
10656void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10657{
10658        atomic_inc(&kvm->arch.noncoherent_dma_count);
10659}
10660EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10661
10662void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10663{
10664        atomic_dec(&kvm->arch.noncoherent_dma_count);
10665}
10666EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10667
10668bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10669{
10670        return atomic_read(&kvm->arch.noncoherent_dma_count);
10671}
10672EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10673
10674bool kvm_arch_has_irq_bypass(void)
10675{
10676        return true;
10677}
10678
10679int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10680                                      struct irq_bypass_producer *prod)
10681{
10682        struct kvm_kernel_irqfd *irqfd =
10683                container_of(cons, struct kvm_kernel_irqfd, consumer);
10684        int ret;
10685
10686        irqfd->producer = prod;
10687        kvm_arch_start_assignment(irqfd->kvm);
10688        ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
10689                                         prod->irq, irqfd->gsi, 1);
10690
10691        if (ret)
10692                kvm_arch_end_assignment(irqfd->kvm);
10693
10694        return ret;
10695}
10696
10697void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10698                                      struct irq_bypass_producer *prod)
10699{
10700        int ret;
10701        struct kvm_kernel_irqfd *irqfd =
10702                container_of(cons, struct kvm_kernel_irqfd, consumer);
10703
10704        WARN_ON(irqfd->producer != prod);
10705        irqfd->producer = NULL;
10706
10707        /*
10708         * When producer of consumer is unregistered, we change back to
10709         * remapped mode, so we can re-use the current implementation
10710         * when the irq is masked/disabled or the consumer side (KVM
10711         * int this case doesn't want to receive the interrupts.
10712        */
10713        ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10714        if (ret)
10715                printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10716                       " fails: %d\n", irqfd->consumer.token, ret);
10717
10718        kvm_arch_end_assignment(irqfd->kvm);
10719}
10720
10721int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10722                                   uint32_t guest_irq, bool set)
10723{
10724        return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10725}
10726
10727bool kvm_vector_hashing_enabled(void)
10728{
10729        return vector_hashing;
10730}
10731
10732bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10733{
10734        return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10735}
10736EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10737
10738
10739int kvm_spec_ctrl_test_value(u64 value)
10740{
10741        /*
10742         * test that setting IA32_SPEC_CTRL to given value
10743         * is allowed by the host processor
10744         */
10745
10746        u64 saved_value;
10747        unsigned long flags;
10748        int ret = 0;
10749
10750        local_irq_save(flags);
10751
10752        if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
10753                ret = 1;
10754        else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
10755                ret = 1;
10756        else
10757                wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
10758
10759        local_irq_restore(flags);
10760
10761        return ret;
10762}
10763EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
10764
10765void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
10766{
10767        struct x86_exception fault;
10768        u32 access = error_code &
10769                (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
10770
10771        if (!(error_code & PFERR_PRESENT_MASK) ||
10772            vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
10773                /*
10774                 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
10775                 * tables probably do not match the TLB.  Just proceed
10776                 * with the error code that the processor gave.
10777                 */
10778                fault.vector = PF_VECTOR;
10779                fault.error_code_valid = true;
10780                fault.error_code = error_code;
10781                fault.nested_page_fault = false;
10782                fault.address = gva;
10783        }
10784        vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
10785}
10786EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
10787
10788EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10789EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10790EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10791EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10792EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10793EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10794EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10795EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10796EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10797EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10798EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10799EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10800EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10801EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10802EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10803EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10804EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10805EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10806EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10807EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10808EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10809EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10810