linux/arch/x86/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>                /* test_thread_flag(), ...      */
   8#include <linux/sched/task_stack.h>     /* task_stack_*(), ...          */
   9#include <linux/kdebug.h>               /* oops_begin/end, ...          */
  10#include <linux/extable.h>              /* search_exception_tables      */
  11#include <linux/memblock.h>             /* max_low_pfn                  */
  12#include <linux/kprobes.h>              /* NOKPROBE_SYMBOL, ...         */
  13#include <linux/mmiotrace.h>            /* kmmio_handler, ...           */
  14#include <linux/perf_event.h>           /* perf_sw_event                */
  15#include <linux/hugetlb.h>              /* hstate_index_to_shift        */
  16#include <linux/prefetch.h>             /* prefetchw                    */
  17#include <linux/context_tracking.h>     /* exception_enter(), ...       */
  18#include <linux/uaccess.h>              /* faulthandler_disabled()      */
  19#include <linux/efi.h>                  /* efi_recover_from_page_fault()*/
  20#include <linux/mm_types.h>
  21
  22#include <asm/cpufeature.h>             /* boot_cpu_has, ...            */
  23#include <asm/traps.h>                  /* dotraplinkage, ...           */
  24#include <asm/fixmap.h>                 /* VSYSCALL_ADDR                */
  25#include <asm/vsyscall.h>               /* emulate_vsyscall             */
  26#include <asm/vm86.h>                   /* struct vm86                  */
  27#include <asm/mmu_context.h>            /* vma_pkey()                   */
  28#include <asm/efi.h>                    /* efi_recover_from_page_fault()*/
  29#include <asm/desc.h>                   /* store_idt(), ...             */
  30#include <asm/cpu_entry_area.h>         /* exception stack              */
  31#include <asm/pgtable_areas.h>          /* VMALLOC_START, ...           */
  32#include <asm/kvm_para.h>               /* kvm_handle_async_pf          */
  33
  34#define CREATE_TRACE_POINTS
  35#include <asm/trace/exceptions.h>
  36
  37/*
  38 * Returns 0 if mmiotrace is disabled, or if the fault is not
  39 * handled by mmiotrace:
  40 */
  41static nokprobe_inline int
  42kmmio_fault(struct pt_regs *regs, unsigned long addr)
  43{
  44        if (unlikely(is_kmmio_active()))
  45                if (kmmio_handler(regs, addr) == 1)
  46                        return -1;
  47        return 0;
  48}
  49
  50/*
  51 * Prefetch quirks:
  52 *
  53 * 32-bit mode:
  54 *
  55 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  56 *   Check that here and ignore it.
  57 *
  58 * 64-bit mode:
  59 *
  60 *   Sometimes the CPU reports invalid exceptions on prefetch.
  61 *   Check that here and ignore it.
  62 *
  63 * Opcode checker based on code by Richard Brunner.
  64 */
  65static inline int
  66check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  67                      unsigned char opcode, int *prefetch)
  68{
  69        unsigned char instr_hi = opcode & 0xf0;
  70        unsigned char instr_lo = opcode & 0x0f;
  71
  72        switch (instr_hi) {
  73        case 0x20:
  74        case 0x30:
  75                /*
  76                 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  77                 * In X86_64 long mode, the CPU will signal invalid
  78                 * opcode if some of these prefixes are present so
  79                 * X86_64 will never get here anyway
  80                 */
  81                return ((instr_lo & 7) == 0x6);
  82#ifdef CONFIG_X86_64
  83        case 0x40:
  84                /*
  85                 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
  86                 * Need to figure out under what instruction mode the
  87                 * instruction was issued. Could check the LDT for lm,
  88                 * but for now it's good enough to assume that long
  89                 * mode only uses well known segments or kernel.
  90                 */
  91                return (!user_mode(regs) || user_64bit_mode(regs));
  92#endif
  93        case 0x60:
  94                /* 0x64 thru 0x67 are valid prefixes in all modes. */
  95                return (instr_lo & 0xC) == 0x4;
  96        case 0xF0:
  97                /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  98                return !instr_lo || (instr_lo>>1) == 1;
  99        case 0x00:
 100                /* Prefetch instruction is 0x0F0D or 0x0F18 */
 101                if (get_kernel_nofault(opcode, instr))
 102                        return 0;
 103
 104                *prefetch = (instr_lo == 0xF) &&
 105                        (opcode == 0x0D || opcode == 0x18);
 106                return 0;
 107        default:
 108                return 0;
 109        }
 110}
 111
 112static int
 113is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 114{
 115        unsigned char *max_instr;
 116        unsigned char *instr;
 117        int prefetch = 0;
 118
 119        /*
 120         * If it was a exec (instruction fetch) fault on NX page, then
 121         * do not ignore the fault:
 122         */
 123        if (error_code & X86_PF_INSTR)
 124                return 0;
 125
 126        instr = (void *)convert_ip_to_linear(current, regs);
 127        max_instr = instr + 15;
 128
 129        if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 130                return 0;
 131
 132        while (instr < max_instr) {
 133                unsigned char opcode;
 134
 135                if (get_kernel_nofault(opcode, instr))
 136                        break;
 137
 138                instr++;
 139
 140                if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 141                        break;
 142        }
 143        return prefetch;
 144}
 145
 146DEFINE_SPINLOCK(pgd_lock);
 147LIST_HEAD(pgd_list);
 148
 149#ifdef CONFIG_X86_32
 150static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 151{
 152        unsigned index = pgd_index(address);
 153        pgd_t *pgd_k;
 154        p4d_t *p4d, *p4d_k;
 155        pud_t *pud, *pud_k;
 156        pmd_t *pmd, *pmd_k;
 157
 158        pgd += index;
 159        pgd_k = init_mm.pgd + index;
 160
 161        if (!pgd_present(*pgd_k))
 162                return NULL;
 163
 164        /*
 165         * set_pgd(pgd, *pgd_k); here would be useless on PAE
 166         * and redundant with the set_pmd() on non-PAE. As would
 167         * set_p4d/set_pud.
 168         */
 169        p4d = p4d_offset(pgd, address);
 170        p4d_k = p4d_offset(pgd_k, address);
 171        if (!p4d_present(*p4d_k))
 172                return NULL;
 173
 174        pud = pud_offset(p4d, address);
 175        pud_k = pud_offset(p4d_k, address);
 176        if (!pud_present(*pud_k))
 177                return NULL;
 178
 179        pmd = pmd_offset(pud, address);
 180        pmd_k = pmd_offset(pud_k, address);
 181
 182        if (pmd_present(*pmd) != pmd_present(*pmd_k))
 183                set_pmd(pmd, *pmd_k);
 184
 185        if (!pmd_present(*pmd_k))
 186                return NULL;
 187        else
 188                BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 189
 190        return pmd_k;
 191}
 192
 193/*
 194 *   Handle a fault on the vmalloc or module mapping area
 195 *
 196 *   This is needed because there is a race condition between the time
 197 *   when the vmalloc mapping code updates the PMD to the point in time
 198 *   where it synchronizes this update with the other page-tables in the
 199 *   system.
 200 *
 201 *   In this race window another thread/CPU can map an area on the same
 202 *   PMD, finds it already present and does not synchronize it with the
 203 *   rest of the system yet. As a result v[mz]alloc might return areas
 204 *   which are not mapped in every page-table in the system, causing an
 205 *   unhandled page-fault when they are accessed.
 206 */
 207static noinline int vmalloc_fault(unsigned long address)
 208{
 209        unsigned long pgd_paddr;
 210        pmd_t *pmd_k;
 211        pte_t *pte_k;
 212
 213        /* Make sure we are in vmalloc area: */
 214        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 215                return -1;
 216
 217        /*
 218         * Synchronize this task's top level page-table
 219         * with the 'reference' page table.
 220         *
 221         * Do _not_ use "current" here. We might be inside
 222         * an interrupt in the middle of a task switch..
 223         */
 224        pgd_paddr = read_cr3_pa();
 225        pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 226        if (!pmd_k)
 227                return -1;
 228
 229        if (pmd_large(*pmd_k))
 230                return 0;
 231
 232        pte_k = pte_offset_kernel(pmd_k, address);
 233        if (!pte_present(*pte_k))
 234                return -1;
 235
 236        return 0;
 237}
 238NOKPROBE_SYMBOL(vmalloc_fault);
 239
 240void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 241{
 242        unsigned long addr;
 243
 244        for (addr = start & PMD_MASK;
 245             addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 246             addr += PMD_SIZE) {
 247                struct page *page;
 248
 249                spin_lock(&pgd_lock);
 250                list_for_each_entry(page, &pgd_list, lru) {
 251                        spinlock_t *pgt_lock;
 252
 253                        /* the pgt_lock only for Xen */
 254                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 255
 256                        spin_lock(pgt_lock);
 257                        vmalloc_sync_one(page_address(page), addr);
 258                        spin_unlock(pgt_lock);
 259                }
 260                spin_unlock(&pgd_lock);
 261        }
 262}
 263
 264/*
 265 * Did it hit the DOS screen memory VA from vm86 mode?
 266 */
 267static inline void
 268check_v8086_mode(struct pt_regs *regs, unsigned long address,
 269                 struct task_struct *tsk)
 270{
 271#ifdef CONFIG_VM86
 272        unsigned long bit;
 273
 274        if (!v8086_mode(regs) || !tsk->thread.vm86)
 275                return;
 276
 277        bit = (address - 0xA0000) >> PAGE_SHIFT;
 278        if (bit < 32)
 279                tsk->thread.vm86->screen_bitmap |= 1 << bit;
 280#endif
 281}
 282
 283static bool low_pfn(unsigned long pfn)
 284{
 285        return pfn < max_low_pfn;
 286}
 287
 288static void dump_pagetable(unsigned long address)
 289{
 290        pgd_t *base = __va(read_cr3_pa());
 291        pgd_t *pgd = &base[pgd_index(address)];
 292        p4d_t *p4d;
 293        pud_t *pud;
 294        pmd_t *pmd;
 295        pte_t *pte;
 296
 297#ifdef CONFIG_X86_PAE
 298        pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 299        if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 300                goto out;
 301#define pr_pde pr_cont
 302#else
 303#define pr_pde pr_info
 304#endif
 305        p4d = p4d_offset(pgd, address);
 306        pud = pud_offset(p4d, address);
 307        pmd = pmd_offset(pud, address);
 308        pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 309#undef pr_pde
 310
 311        /*
 312         * We must not directly access the pte in the highpte
 313         * case if the page table is located in highmem.
 314         * And let's rather not kmap-atomic the pte, just in case
 315         * it's allocated already:
 316         */
 317        if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 318                goto out;
 319
 320        pte = pte_offset_kernel(pmd, address);
 321        pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 322out:
 323        pr_cont("\n");
 324}
 325
 326#else /* CONFIG_X86_64: */
 327
 328#ifdef CONFIG_CPU_SUP_AMD
 329static const char errata93_warning[] =
 330KERN_ERR 
 331"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 332"******* Working around it, but it may cause SEGVs or burn power.\n"
 333"******* Please consider a BIOS update.\n"
 334"******* Disabling USB legacy in the BIOS may also help.\n";
 335#endif
 336
 337/*
 338 * No vm86 mode in 64-bit mode:
 339 */
 340static inline void
 341check_v8086_mode(struct pt_regs *regs, unsigned long address,
 342                 struct task_struct *tsk)
 343{
 344}
 345
 346static int bad_address(void *p)
 347{
 348        unsigned long dummy;
 349
 350        return get_kernel_nofault(dummy, (unsigned long *)p);
 351}
 352
 353static void dump_pagetable(unsigned long address)
 354{
 355        pgd_t *base = __va(read_cr3_pa());
 356        pgd_t *pgd = base + pgd_index(address);
 357        p4d_t *p4d;
 358        pud_t *pud;
 359        pmd_t *pmd;
 360        pte_t *pte;
 361
 362        if (bad_address(pgd))
 363                goto bad;
 364
 365        pr_info("PGD %lx ", pgd_val(*pgd));
 366
 367        if (!pgd_present(*pgd))
 368                goto out;
 369
 370        p4d = p4d_offset(pgd, address);
 371        if (bad_address(p4d))
 372                goto bad;
 373
 374        pr_cont("P4D %lx ", p4d_val(*p4d));
 375        if (!p4d_present(*p4d) || p4d_large(*p4d))
 376                goto out;
 377
 378        pud = pud_offset(p4d, address);
 379        if (bad_address(pud))
 380                goto bad;
 381
 382        pr_cont("PUD %lx ", pud_val(*pud));
 383        if (!pud_present(*pud) || pud_large(*pud))
 384                goto out;
 385
 386        pmd = pmd_offset(pud, address);
 387        if (bad_address(pmd))
 388                goto bad;
 389
 390        pr_cont("PMD %lx ", pmd_val(*pmd));
 391        if (!pmd_present(*pmd) || pmd_large(*pmd))
 392                goto out;
 393
 394        pte = pte_offset_kernel(pmd, address);
 395        if (bad_address(pte))
 396                goto bad;
 397
 398        pr_cont("PTE %lx", pte_val(*pte));
 399out:
 400        pr_cont("\n");
 401        return;
 402bad:
 403        pr_info("BAD\n");
 404}
 405
 406#endif /* CONFIG_X86_64 */
 407
 408/*
 409 * Workaround for K8 erratum #93 & buggy BIOS.
 410 *
 411 * BIOS SMM functions are required to use a specific workaround
 412 * to avoid corruption of the 64bit RIP register on C stepping K8.
 413 *
 414 * A lot of BIOS that didn't get tested properly miss this.
 415 *
 416 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 417 * Try to work around it here.
 418 *
 419 * Note we only handle faults in kernel here.
 420 * Does nothing on 32-bit.
 421 */
 422static int is_errata93(struct pt_regs *regs, unsigned long address)
 423{
 424#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 425        if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 426            || boot_cpu_data.x86 != 0xf)
 427                return 0;
 428
 429        if (address != regs->ip)
 430                return 0;
 431
 432        if ((address >> 32) != 0)
 433                return 0;
 434
 435        address |= 0xffffffffUL << 32;
 436        if ((address >= (u64)_stext && address <= (u64)_etext) ||
 437            (address >= MODULES_VADDR && address <= MODULES_END)) {
 438                printk_once(errata93_warning);
 439                regs->ip = address;
 440                return 1;
 441        }
 442#endif
 443        return 0;
 444}
 445
 446/*
 447 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 448 * to illegal addresses >4GB.
 449 *
 450 * We catch this in the page fault handler because these addresses
 451 * are not reachable. Just detect this case and return.  Any code
 452 * segment in LDT is compatibility mode.
 453 */
 454static int is_errata100(struct pt_regs *regs, unsigned long address)
 455{
 456#ifdef CONFIG_X86_64
 457        if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 458                return 1;
 459#endif
 460        return 0;
 461}
 462
 463/* Pentium F0 0F C7 C8 bug workaround: */
 464static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 465{
 466#ifdef CONFIG_X86_F00F_BUG
 467        if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
 468                handle_invalid_op(regs);
 469                return 1;
 470        }
 471#endif
 472        return 0;
 473}
 474
 475static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 476{
 477        u32 offset = (index >> 3) * sizeof(struct desc_struct);
 478        unsigned long addr;
 479        struct ldttss_desc desc;
 480
 481        if (index == 0) {
 482                pr_alert("%s: NULL\n", name);
 483                return;
 484        }
 485
 486        if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 487                pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 488                return;
 489        }
 490
 491        if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 492                              sizeof(struct ldttss_desc))) {
 493                pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 494                         name, index);
 495                return;
 496        }
 497
 498        addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 499#ifdef CONFIG_X86_64
 500        addr |= ((u64)desc.base3 << 32);
 501#endif
 502        pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 503                 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 504}
 505
 506static void
 507show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 508{
 509        if (!oops_may_print())
 510                return;
 511
 512        if (error_code & X86_PF_INSTR) {
 513                unsigned int level;
 514                pgd_t *pgd;
 515                pte_t *pte;
 516
 517                pgd = __va(read_cr3_pa());
 518                pgd += pgd_index(address);
 519
 520                pte = lookup_address_in_pgd(pgd, address, &level);
 521
 522                if (pte && pte_present(*pte) && !pte_exec(*pte))
 523                        pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 524                                from_kuid(&init_user_ns, current_uid()));
 525                if (pte && pte_present(*pte) && pte_exec(*pte) &&
 526                                (pgd_flags(*pgd) & _PAGE_USER) &&
 527                                (__read_cr4() & X86_CR4_SMEP))
 528                        pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 529                                from_kuid(&init_user_ns, current_uid()));
 530        }
 531
 532        if (address < PAGE_SIZE && !user_mode(regs))
 533                pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 534                        (void *)address);
 535        else
 536                pr_alert("BUG: unable to handle page fault for address: %px\n",
 537                        (void *)address);
 538
 539        pr_alert("#PF: %s %s in %s mode\n",
 540                 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 541                 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 542                 (error_code & X86_PF_WRITE) ? "write access" :
 543                                               "read access",
 544                             user_mode(regs) ? "user" : "kernel");
 545        pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 546                 !(error_code & X86_PF_PROT) ? "not-present page" :
 547                 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 548                 (error_code & X86_PF_PK)    ? "protection keys violation" :
 549                                               "permissions violation");
 550
 551        if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 552                struct desc_ptr idt, gdt;
 553                u16 ldtr, tr;
 554
 555                /*
 556                 * This can happen for quite a few reasons.  The more obvious
 557                 * ones are faults accessing the GDT, or LDT.  Perhaps
 558                 * surprisingly, if the CPU tries to deliver a benign or
 559                 * contributory exception from user code and gets a page fault
 560                 * during delivery, the page fault can be delivered as though
 561                 * it originated directly from user code.  This could happen
 562                 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 563                 * kernel or IST stack.
 564                 */
 565                store_idt(&idt);
 566
 567                /* Usable even on Xen PV -- it's just slow. */
 568                native_store_gdt(&gdt);
 569
 570                pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 571                         idt.address, idt.size, gdt.address, gdt.size);
 572
 573                store_ldt(ldtr);
 574                show_ldttss(&gdt, "LDTR", ldtr);
 575
 576                store_tr(tr);
 577                show_ldttss(&gdt, "TR", tr);
 578        }
 579
 580        dump_pagetable(address);
 581}
 582
 583static noinline void
 584pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 585            unsigned long address)
 586{
 587        struct task_struct *tsk;
 588        unsigned long flags;
 589        int sig;
 590
 591        flags = oops_begin();
 592        tsk = current;
 593        sig = SIGKILL;
 594
 595        printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 596               tsk->comm, address);
 597        dump_pagetable(address);
 598
 599        if (__die("Bad pagetable", regs, error_code))
 600                sig = 0;
 601
 602        oops_end(flags, regs, sig);
 603}
 604
 605static void set_signal_archinfo(unsigned long address,
 606                                unsigned long error_code)
 607{
 608        struct task_struct *tsk = current;
 609
 610        /*
 611         * To avoid leaking information about the kernel page
 612         * table layout, pretend that user-mode accesses to
 613         * kernel addresses are always protection faults.
 614         *
 615         * NB: This means that failed vsyscalls with vsyscall=none
 616         * will have the PROT bit.  This doesn't leak any
 617         * information and does not appear to cause any problems.
 618         */
 619        if (address >= TASK_SIZE_MAX)
 620                error_code |= X86_PF_PROT;
 621
 622        tsk->thread.trap_nr = X86_TRAP_PF;
 623        tsk->thread.error_code = error_code | X86_PF_USER;
 624        tsk->thread.cr2 = address;
 625}
 626
 627static noinline void
 628no_context(struct pt_regs *regs, unsigned long error_code,
 629           unsigned long address, int signal, int si_code)
 630{
 631        struct task_struct *tsk = current;
 632        unsigned long flags;
 633        int sig;
 634
 635        if (user_mode(regs)) {
 636                /*
 637                 * This is an implicit supervisor-mode access from user
 638                 * mode.  Bypass all the kernel-mode recovery code and just
 639                 * OOPS.
 640                 */
 641                goto oops;
 642        }
 643
 644        /* Are we prepared to handle this kernel fault? */
 645        if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 646                /*
 647                 * Any interrupt that takes a fault gets the fixup. This makes
 648                 * the below recursive fault logic only apply to a faults from
 649                 * task context.
 650                 */
 651                if (in_interrupt())
 652                        return;
 653
 654                /*
 655                 * Per the above we're !in_interrupt(), aka. task context.
 656                 *
 657                 * In this case we need to make sure we're not recursively
 658                 * faulting through the emulate_vsyscall() logic.
 659                 */
 660                if (current->thread.sig_on_uaccess_err && signal) {
 661                        set_signal_archinfo(address, error_code);
 662
 663                        /* XXX: hwpoison faults will set the wrong code. */
 664                        force_sig_fault(signal, si_code, (void __user *)address);
 665                }
 666
 667                /*
 668                 * Barring that, we can do the fixup and be happy.
 669                 */
 670                return;
 671        }
 672
 673#ifdef CONFIG_VMAP_STACK
 674        /*
 675         * Stack overflow?  During boot, we can fault near the initial
 676         * stack in the direct map, but that's not an overflow -- check
 677         * that we're in vmalloc space to avoid this.
 678         */
 679        if (is_vmalloc_addr((void *)address) &&
 680            (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
 681             address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
 682                unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
 683                /*
 684                 * We're likely to be running with very little stack space
 685                 * left.  It's plausible that we'd hit this condition but
 686                 * double-fault even before we get this far, in which case
 687                 * we're fine: the double-fault handler will deal with it.
 688                 *
 689                 * We don't want to make it all the way into the oops code
 690                 * and then double-fault, though, because we're likely to
 691                 * break the console driver and lose most of the stack dump.
 692                 */
 693                asm volatile ("movq %[stack], %%rsp\n\t"
 694                              "call handle_stack_overflow\n\t"
 695                              "1: jmp 1b"
 696                              : ASM_CALL_CONSTRAINT
 697                              : "D" ("kernel stack overflow (page fault)"),
 698                                "S" (regs), "d" (address),
 699                                [stack] "rm" (stack));
 700                unreachable();
 701        }
 702#endif
 703
 704        /*
 705         * 32-bit:
 706         *
 707         *   Valid to do another page fault here, because if this fault
 708         *   had been triggered by is_prefetch fixup_exception would have
 709         *   handled it.
 710         *
 711         * 64-bit:
 712         *
 713         *   Hall of shame of CPU/BIOS bugs.
 714         */
 715        if (is_prefetch(regs, error_code, address))
 716                return;
 717
 718        if (is_errata93(regs, address))
 719                return;
 720
 721        /*
 722         * Buggy firmware could access regions which might page fault, try to
 723         * recover from such faults.
 724         */
 725        if (IS_ENABLED(CONFIG_EFI))
 726                efi_recover_from_page_fault(address);
 727
 728oops:
 729        /*
 730         * Oops. The kernel tried to access some bad page. We'll have to
 731         * terminate things with extreme prejudice:
 732         */
 733        flags = oops_begin();
 734
 735        show_fault_oops(regs, error_code, address);
 736
 737        if (task_stack_end_corrupted(tsk))
 738                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 739
 740        sig = SIGKILL;
 741        if (__die("Oops", regs, error_code))
 742                sig = 0;
 743
 744        /* Executive summary in case the body of the oops scrolled away */
 745        printk(KERN_DEFAULT "CR2: %016lx\n", address);
 746
 747        oops_end(flags, regs, sig);
 748}
 749
 750/*
 751 * Print out info about fatal segfaults, if the show_unhandled_signals
 752 * sysctl is set:
 753 */
 754static inline void
 755show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 756                unsigned long address, struct task_struct *tsk)
 757{
 758        const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 759
 760        if (!unhandled_signal(tsk, SIGSEGV))
 761                return;
 762
 763        if (!printk_ratelimit())
 764                return;
 765
 766        printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 767                loglvl, tsk->comm, task_pid_nr(tsk), address,
 768                (void *)regs->ip, (void *)regs->sp, error_code);
 769
 770        print_vma_addr(KERN_CONT " in ", regs->ip);
 771
 772        printk(KERN_CONT "\n");
 773
 774        show_opcodes(regs, loglvl);
 775}
 776
 777/*
 778 * The (legacy) vsyscall page is the long page in the kernel portion
 779 * of the address space that has user-accessible permissions.
 780 */
 781static bool is_vsyscall_vaddr(unsigned long vaddr)
 782{
 783        return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
 784}
 785
 786static void
 787__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 788                       unsigned long address, u32 pkey, int si_code)
 789{
 790        struct task_struct *tsk = current;
 791
 792        /* User mode accesses just cause a SIGSEGV */
 793        if (user_mode(regs) && (error_code & X86_PF_USER)) {
 794                /*
 795                 * It's possible to have interrupts off here:
 796                 */
 797                local_irq_enable();
 798
 799                /*
 800                 * Valid to do another page fault here because this one came
 801                 * from user space:
 802                 */
 803                if (is_prefetch(regs, error_code, address))
 804                        return;
 805
 806                if (is_errata100(regs, address))
 807                        return;
 808
 809                /*
 810                 * To avoid leaking information about the kernel page table
 811                 * layout, pretend that user-mode accesses to kernel addresses
 812                 * are always protection faults.
 813                 */
 814                if (address >= TASK_SIZE_MAX)
 815                        error_code |= X86_PF_PROT;
 816
 817                if (likely(show_unhandled_signals))
 818                        show_signal_msg(regs, error_code, address, tsk);
 819
 820                set_signal_archinfo(address, error_code);
 821
 822                if (si_code == SEGV_PKUERR)
 823                        force_sig_pkuerr((void __user *)address, pkey);
 824
 825                force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 826
 827                local_irq_disable();
 828
 829                return;
 830        }
 831
 832        if (is_f00f_bug(regs, address))
 833                return;
 834
 835        no_context(regs, error_code, address, SIGSEGV, si_code);
 836}
 837
 838static noinline void
 839bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 840                     unsigned long address)
 841{
 842        __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 843}
 844
 845static void
 846__bad_area(struct pt_regs *regs, unsigned long error_code,
 847           unsigned long address, u32 pkey, int si_code)
 848{
 849        struct mm_struct *mm = current->mm;
 850        /*
 851         * Something tried to access memory that isn't in our memory map..
 852         * Fix it, but check if it's kernel or user first..
 853         */
 854        mmap_read_unlock(mm);
 855
 856        __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 857}
 858
 859static noinline void
 860bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 861{
 862        __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
 863}
 864
 865static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 866                struct vm_area_struct *vma)
 867{
 868        /* This code is always called on the current mm */
 869        bool foreign = false;
 870
 871        if (!boot_cpu_has(X86_FEATURE_OSPKE))
 872                return false;
 873        if (error_code & X86_PF_PK)
 874                return true;
 875        /* this checks permission keys on the VMA: */
 876        if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 877                                       (error_code & X86_PF_INSTR), foreign))
 878                return true;
 879        return false;
 880}
 881
 882static noinline void
 883bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 884                      unsigned long address, struct vm_area_struct *vma)
 885{
 886        /*
 887         * This OSPKE check is not strictly necessary at runtime.
 888         * But, doing it this way allows compiler optimizations
 889         * if pkeys are compiled out.
 890         */
 891        if (bad_area_access_from_pkeys(error_code, vma)) {
 892                /*
 893                 * A protection key fault means that the PKRU value did not allow
 894                 * access to some PTE.  Userspace can figure out what PKRU was
 895                 * from the XSAVE state.  This function captures the pkey from
 896                 * the vma and passes it to userspace so userspace can discover
 897                 * which protection key was set on the PTE.
 898                 *
 899                 * If we get here, we know that the hardware signaled a X86_PF_PK
 900                 * fault and that there was a VMA once we got in the fault
 901                 * handler.  It does *not* guarantee that the VMA we find here
 902                 * was the one that we faulted on.
 903                 *
 904                 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 905                 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 906                 * 3. T1   : faults...
 907                 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 908                 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 909                 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 910                 *           faulted on a pte with its pkey=4.
 911                 */
 912                u32 pkey = vma_pkey(vma);
 913
 914                __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 915        } else {
 916                __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 917        }
 918}
 919
 920static void
 921do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 922          vm_fault_t fault)
 923{
 924        /* Kernel mode? Handle exceptions or die: */
 925        if (!(error_code & X86_PF_USER)) {
 926                no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 927                return;
 928        }
 929
 930        /* User-space => ok to do another page fault: */
 931        if (is_prefetch(regs, error_code, address))
 932                return;
 933
 934        set_signal_archinfo(address, error_code);
 935
 936#ifdef CONFIG_MEMORY_FAILURE
 937        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 938                struct task_struct *tsk = current;
 939                unsigned lsb = 0;
 940
 941                pr_err(
 942        "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 943                        tsk->comm, tsk->pid, address);
 944                if (fault & VM_FAULT_HWPOISON_LARGE)
 945                        lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 946                if (fault & VM_FAULT_HWPOISON)
 947                        lsb = PAGE_SHIFT;
 948                force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 949                return;
 950        }
 951#endif
 952        force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 953}
 954
 955static noinline void
 956mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 957               unsigned long address, vm_fault_t fault)
 958{
 959        if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
 960                no_context(regs, error_code, address, 0, 0);
 961                return;
 962        }
 963
 964        if (fault & VM_FAULT_OOM) {
 965                /* Kernel mode? Handle exceptions or die: */
 966                if (!(error_code & X86_PF_USER)) {
 967                        no_context(regs, error_code, address,
 968                                   SIGSEGV, SEGV_MAPERR);
 969                        return;
 970                }
 971
 972                /*
 973                 * We ran out of memory, call the OOM killer, and return the
 974                 * userspace (which will retry the fault, or kill us if we got
 975                 * oom-killed):
 976                 */
 977                pagefault_out_of_memory();
 978        } else {
 979                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 980                             VM_FAULT_HWPOISON_LARGE))
 981                        do_sigbus(regs, error_code, address, fault);
 982                else if (fault & VM_FAULT_SIGSEGV)
 983                        bad_area_nosemaphore(regs, error_code, address);
 984                else
 985                        BUG();
 986        }
 987}
 988
 989static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 990{
 991        if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 992                return 0;
 993
 994        if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 995                return 0;
 996
 997        return 1;
 998}
 999
1000/*
1001 * Handle a spurious fault caused by a stale TLB entry.
1002 *
1003 * This allows us to lazily refresh the TLB when increasing the
1004 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1005 * eagerly is very expensive since that implies doing a full
1006 * cross-processor TLB flush, even if no stale TLB entries exist
1007 * on other processors.
1008 *
1009 * Spurious faults may only occur if the TLB contains an entry with
1010 * fewer permission than the page table entry.  Non-present (P = 0)
1011 * and reserved bit (R = 1) faults are never spurious.
1012 *
1013 * There are no security implications to leaving a stale TLB when
1014 * increasing the permissions on a page.
1015 *
1016 * Returns non-zero if a spurious fault was handled, zero otherwise.
1017 *
1018 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1019 * (Optional Invalidation).
1020 */
1021static noinline int
1022spurious_kernel_fault(unsigned long error_code, unsigned long address)
1023{
1024        pgd_t *pgd;
1025        p4d_t *p4d;
1026        pud_t *pud;
1027        pmd_t *pmd;
1028        pte_t *pte;
1029        int ret;
1030
1031        /*
1032         * Only writes to RO or instruction fetches from NX may cause
1033         * spurious faults.
1034         *
1035         * These could be from user or supervisor accesses but the TLB
1036         * is only lazily flushed after a kernel mapping protection
1037         * change, so user accesses are not expected to cause spurious
1038         * faults.
1039         */
1040        if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1041            error_code != (X86_PF_INSTR | X86_PF_PROT))
1042                return 0;
1043
1044        pgd = init_mm.pgd + pgd_index(address);
1045        if (!pgd_present(*pgd))
1046                return 0;
1047
1048        p4d = p4d_offset(pgd, address);
1049        if (!p4d_present(*p4d))
1050                return 0;
1051
1052        if (p4d_large(*p4d))
1053                return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1054
1055        pud = pud_offset(p4d, address);
1056        if (!pud_present(*pud))
1057                return 0;
1058
1059        if (pud_large(*pud))
1060                return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1061
1062        pmd = pmd_offset(pud, address);
1063        if (!pmd_present(*pmd))
1064                return 0;
1065
1066        if (pmd_large(*pmd))
1067                return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1068
1069        pte = pte_offset_kernel(pmd, address);
1070        if (!pte_present(*pte))
1071                return 0;
1072
1073        ret = spurious_kernel_fault_check(error_code, pte);
1074        if (!ret)
1075                return 0;
1076
1077        /*
1078         * Make sure we have permissions in PMD.
1079         * If not, then there's a bug in the page tables:
1080         */
1081        ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1082        WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1083
1084        return ret;
1085}
1086NOKPROBE_SYMBOL(spurious_kernel_fault);
1087
1088int show_unhandled_signals = 1;
1089
1090static inline int
1091access_error(unsigned long error_code, struct vm_area_struct *vma)
1092{
1093        /* This is only called for the current mm, so: */
1094        bool foreign = false;
1095
1096        /*
1097         * Read or write was blocked by protection keys.  This is
1098         * always an unconditional error and can never result in
1099         * a follow-up action to resolve the fault, like a COW.
1100         */
1101        if (error_code & X86_PF_PK)
1102                return 1;
1103
1104        /*
1105         * Make sure to check the VMA so that we do not perform
1106         * faults just to hit a X86_PF_PK as soon as we fill in a
1107         * page.
1108         */
1109        if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1110                                       (error_code & X86_PF_INSTR), foreign))
1111                return 1;
1112
1113        if (error_code & X86_PF_WRITE) {
1114                /* write, present and write, not present: */
1115                if (unlikely(!(vma->vm_flags & VM_WRITE)))
1116                        return 1;
1117                return 0;
1118        }
1119
1120        /* read, present: */
1121        if (unlikely(error_code & X86_PF_PROT))
1122                return 1;
1123
1124        /* read, not present: */
1125        if (unlikely(!vma_is_accessible(vma)))
1126                return 1;
1127
1128        return 0;
1129}
1130
1131static int fault_in_kernel_space(unsigned long address)
1132{
1133        /*
1134         * On 64-bit systems, the vsyscall page is at an address above
1135         * TASK_SIZE_MAX, but is not considered part of the kernel
1136         * address space.
1137         */
1138        if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1139                return false;
1140
1141        return address >= TASK_SIZE_MAX;
1142}
1143
1144/*
1145 * Called for all faults where 'address' is part of the kernel address
1146 * space.  Might get called for faults that originate from *code* that
1147 * ran in userspace or the kernel.
1148 */
1149static void
1150do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1151                   unsigned long address)
1152{
1153        /*
1154         * Protection keys exceptions only happen on user pages.  We
1155         * have no user pages in the kernel portion of the address
1156         * space, so do not expect them here.
1157         */
1158        WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1159
1160#ifdef CONFIG_X86_32
1161        /*
1162         * We can fault-in kernel-space virtual memory on-demand. The
1163         * 'reference' page table is init_mm.pgd.
1164         *
1165         * NOTE! We MUST NOT take any locks for this case. We may
1166         * be in an interrupt or a critical region, and should
1167         * only copy the information from the master page table,
1168         * nothing more.
1169         *
1170         * Before doing this on-demand faulting, ensure that the
1171         * fault is not any of the following:
1172         * 1. A fault on a PTE with a reserved bit set.
1173         * 2. A fault caused by a user-mode access.  (Do not demand-
1174         *    fault kernel memory due to user-mode accesses).
1175         * 3. A fault caused by a page-level protection violation.
1176         *    (A demand fault would be on a non-present page which
1177         *     would have X86_PF_PROT==0).
1178         *
1179         * This is only needed to close a race condition on x86-32 in
1180         * the vmalloc mapping/unmapping code. See the comment above
1181         * vmalloc_fault() for details. On x86-64 the race does not
1182         * exist as the vmalloc mappings don't need to be synchronized
1183         * there.
1184         */
1185        if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1186                if (vmalloc_fault(address) >= 0)
1187                        return;
1188        }
1189#endif
1190
1191        /* Was the fault spurious, caused by lazy TLB invalidation? */
1192        if (spurious_kernel_fault(hw_error_code, address))
1193                return;
1194
1195        /* kprobes don't want to hook the spurious faults: */
1196        if (kprobe_page_fault(regs, X86_TRAP_PF))
1197                return;
1198
1199        /*
1200         * Note, despite being a "bad area", there are quite a few
1201         * acceptable reasons to get here, such as erratum fixups
1202         * and handling kernel code that can fault, like get_user().
1203         *
1204         * Don't take the mm semaphore here. If we fixup a prefetch
1205         * fault we could otherwise deadlock:
1206         */
1207        bad_area_nosemaphore(regs, hw_error_code, address);
1208}
1209NOKPROBE_SYMBOL(do_kern_addr_fault);
1210
1211/* Handle faults in the user portion of the address space */
1212static inline
1213void do_user_addr_fault(struct pt_regs *regs,
1214                        unsigned long hw_error_code,
1215                        unsigned long address)
1216{
1217        struct vm_area_struct *vma;
1218        struct task_struct *tsk;
1219        struct mm_struct *mm;
1220        vm_fault_t fault;
1221        unsigned int flags = FAULT_FLAG_DEFAULT;
1222
1223        tsk = current;
1224        mm = tsk->mm;
1225
1226        /* kprobes don't want to hook the spurious faults: */
1227        if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1228                return;
1229
1230        /*
1231         * Reserved bits are never expected to be set on
1232         * entries in the user portion of the page tables.
1233         */
1234        if (unlikely(hw_error_code & X86_PF_RSVD))
1235                pgtable_bad(regs, hw_error_code, address);
1236
1237        /*
1238         * If SMAP is on, check for invalid kernel (supervisor) access to user
1239         * pages in the user address space.  The odd case here is WRUSS,
1240         * which, according to the preliminary documentation, does not respect
1241         * SMAP and will have the USER bit set so, in all cases, SMAP
1242         * enforcement appears to be consistent with the USER bit.
1243         */
1244        if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1245                     !(hw_error_code & X86_PF_USER) &&
1246                     !(regs->flags & X86_EFLAGS_AC)))
1247        {
1248                bad_area_nosemaphore(regs, hw_error_code, address);
1249                return;
1250        }
1251
1252        /*
1253         * If we're in an interrupt, have no user context or are running
1254         * in a region with pagefaults disabled then we must not take the fault
1255         */
1256        if (unlikely(faulthandler_disabled() || !mm)) {
1257                bad_area_nosemaphore(regs, hw_error_code, address);
1258                return;
1259        }
1260
1261        /*
1262         * It's safe to allow irq's after cr2 has been saved and the
1263         * vmalloc fault has been handled.
1264         *
1265         * User-mode registers count as a user access even for any
1266         * potential system fault or CPU buglet:
1267         */
1268        if (user_mode(regs)) {
1269                local_irq_enable();
1270                flags |= FAULT_FLAG_USER;
1271        } else {
1272                if (regs->flags & X86_EFLAGS_IF)
1273                        local_irq_enable();
1274        }
1275
1276        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1277
1278        if (hw_error_code & X86_PF_WRITE)
1279                flags |= FAULT_FLAG_WRITE;
1280        if (hw_error_code & X86_PF_INSTR)
1281                flags |= FAULT_FLAG_INSTRUCTION;
1282
1283#ifdef CONFIG_X86_64
1284        /*
1285         * Faults in the vsyscall page might need emulation.  The
1286         * vsyscall page is at a high address (>PAGE_OFFSET), but is
1287         * considered to be part of the user address space.
1288         *
1289         * The vsyscall page does not have a "real" VMA, so do this
1290         * emulation before we go searching for VMAs.
1291         *
1292         * PKRU never rejects instruction fetches, so we don't need
1293         * to consider the PF_PK bit.
1294         */
1295        if (is_vsyscall_vaddr(address)) {
1296                if (emulate_vsyscall(hw_error_code, regs, address))
1297                        return;
1298        }
1299#endif
1300
1301        /*
1302         * Kernel-mode access to the user address space should only occur
1303         * on well-defined single instructions listed in the exception
1304         * tables.  But, an erroneous kernel fault occurring outside one of
1305         * those areas which also holds mmap_lock might deadlock attempting
1306         * to validate the fault against the address space.
1307         *
1308         * Only do the expensive exception table search when we might be at
1309         * risk of a deadlock.  This happens if we
1310         * 1. Failed to acquire mmap_lock, and
1311         * 2. The access did not originate in userspace.
1312         */
1313        if (unlikely(!mmap_read_trylock(mm))) {
1314                if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1315                        /*
1316                         * Fault from code in kernel from
1317                         * which we do not expect faults.
1318                         */
1319                        bad_area_nosemaphore(regs, hw_error_code, address);
1320                        return;
1321                }
1322retry:
1323                mmap_read_lock(mm);
1324        } else {
1325                /*
1326                 * The above down_read_trylock() might have succeeded in
1327                 * which case we'll have missed the might_sleep() from
1328                 * down_read():
1329                 */
1330                might_sleep();
1331        }
1332
1333        vma = find_vma(mm, address);
1334        if (unlikely(!vma)) {
1335                bad_area(regs, hw_error_code, address);
1336                return;
1337        }
1338        if (likely(vma->vm_start <= address))
1339                goto good_area;
1340        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1341                bad_area(regs, hw_error_code, address);
1342                return;
1343        }
1344        if (unlikely(expand_stack(vma, address))) {
1345                bad_area(regs, hw_error_code, address);
1346                return;
1347        }
1348
1349        /*
1350         * Ok, we have a good vm_area for this memory access, so
1351         * we can handle it..
1352         */
1353good_area:
1354        if (unlikely(access_error(hw_error_code, vma))) {
1355                bad_area_access_error(regs, hw_error_code, address, vma);
1356                return;
1357        }
1358
1359        /*
1360         * If for any reason at all we couldn't handle the fault,
1361         * make sure we exit gracefully rather than endlessly redo
1362         * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1363         * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1364         *
1365         * Note that handle_userfault() may also release and reacquire mmap_lock
1366         * (and not return with VM_FAULT_RETRY), when returning to userland to
1367         * repeat the page fault later with a VM_FAULT_NOPAGE retval
1368         * (potentially after handling any pending signal during the return to
1369         * userland). The return to userland is identified whenever
1370         * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1371         */
1372        fault = handle_mm_fault(vma, address, flags, regs);
1373
1374        /* Quick path to respond to signals */
1375        if (fault_signal_pending(fault, regs)) {
1376                if (!user_mode(regs))
1377                        no_context(regs, hw_error_code, address, SIGBUS,
1378                                   BUS_ADRERR);
1379                return;
1380        }
1381
1382        /*
1383         * If we need to retry the mmap_lock has already been released,
1384         * and if there is a fatal signal pending there is no guarantee
1385         * that we made any progress. Handle this case first.
1386         */
1387        if (unlikely((fault & VM_FAULT_RETRY) &&
1388                     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1389                flags |= FAULT_FLAG_TRIED;
1390                goto retry;
1391        }
1392
1393        mmap_read_unlock(mm);
1394        if (unlikely(fault & VM_FAULT_ERROR)) {
1395                mm_fault_error(regs, hw_error_code, address, fault);
1396                return;
1397        }
1398
1399        check_v8086_mode(regs, address, tsk);
1400}
1401NOKPROBE_SYMBOL(do_user_addr_fault);
1402
1403static __always_inline void
1404trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1405                         unsigned long address)
1406{
1407        if (!trace_pagefault_enabled())
1408                return;
1409
1410        if (user_mode(regs))
1411                trace_page_fault_user(address, regs, error_code);
1412        else
1413                trace_page_fault_kernel(address, regs, error_code);
1414}
1415
1416static __always_inline void
1417handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1418                              unsigned long address)
1419{
1420        trace_page_fault_entries(regs, error_code, address);
1421
1422        if (unlikely(kmmio_fault(regs, address)))
1423                return;
1424
1425        /* Was the fault on kernel-controlled part of the address space? */
1426        if (unlikely(fault_in_kernel_space(address))) {
1427                do_kern_addr_fault(regs, error_code, address);
1428        } else {
1429                do_user_addr_fault(regs, error_code, address);
1430                /*
1431                 * User address page fault handling might have reenabled
1432                 * interrupts. Fixing up all potential exit points of
1433                 * do_user_addr_fault() and its leaf functions is just not
1434                 * doable w/o creating an unholy mess or turning the code
1435                 * upside down.
1436                 */
1437                local_irq_disable();
1438        }
1439}
1440
1441DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1442{
1443        unsigned long address = read_cr2();
1444        irqentry_state_t state;
1445
1446        prefetchw(&current->mm->mmap_lock);
1447
1448        /*
1449         * KVM has two types of events that are, logically, interrupts, but
1450         * are unfortunately delivered using the #PF vector.  These events are
1451         * "you just accessed valid memory, but the host doesn't have it right
1452         * now, so I'll put you to sleep if you continue" and "that memory
1453         * you tried to access earlier is available now."
1454         *
1455         * We are relying on the interrupted context being sane (valid RSP,
1456         * relevant locks not held, etc.), which is fine as long as the
1457         * interrupted context had IF=1.  We are also relying on the KVM
1458         * async pf type field and CR2 being read consistently instead of
1459         * getting values from real and async page faults mixed up.
1460         *
1461         * Fingers crossed.
1462         *
1463         * The async #PF handling code takes care of idtentry handling
1464         * itself.
1465         */
1466        if (kvm_handle_async_pf(regs, (u32)address))
1467                return;
1468
1469        /*
1470         * Entry handling for valid #PF from kernel mode is slightly
1471         * different: RCU is already watching and rcu_irq_enter() must not
1472         * be invoked because a kernel fault on a user space address might
1473         * sleep.
1474         *
1475         * In case the fault hit a RCU idle region the conditional entry
1476         * code reenabled RCU to avoid subsequent wreckage which helps
1477         * debugability.
1478         */
1479        state = irqentry_enter(regs);
1480
1481        instrumentation_begin();
1482        handle_page_fault(regs, error_code, address);
1483        instrumentation_end();
1484
1485        irqentry_exit(regs, state);
1486}
1487