linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/init.h>
   3
   4#include <linux/mm.h>
   5#include <linux/spinlock.h>
   6#include <linux/smp.h>
   7#include <linux/interrupt.h>
   8#include <linux/export.h>
   9#include <linux/cpu.h>
  10#include <linux/debugfs.h>
  11
  12#include <asm/tlbflush.h>
  13#include <asm/mmu_context.h>
  14#include <asm/nospec-branch.h>
  15#include <asm/cache.h>
  16#include <asm/apic.h>
  17#include <asm/uv/uv.h>
  18
  19#include "mm_internal.h"
  20
  21#ifdef CONFIG_PARAVIRT
  22# define STATIC_NOPV
  23#else
  24# define STATIC_NOPV                    static
  25# define __flush_tlb_local              native_flush_tlb_local
  26# define __flush_tlb_global             native_flush_tlb_global
  27# define __flush_tlb_one_user(addr)     native_flush_tlb_one_user(addr)
  28# define __flush_tlb_others(msk, info)  native_flush_tlb_others(msk, info)
  29#endif
  30
  31/*
  32 *      TLB flushing, formerly SMP-only
  33 *              c/o Linus Torvalds.
  34 *
  35 *      These mean you can really definitely utterly forget about
  36 *      writing to user space from interrupts. (Its not allowed anyway).
  37 *
  38 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  39 *
  40 *      More scalable flush, from Andi Kleen
  41 *
  42 *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  43 */
  44
  45/*
  46 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
  47 * stored in cpu_tlb_state.last_user_mm_ibpb.
  48 */
  49#define LAST_USER_MM_IBPB       0x1UL
  50
  51/*
  52 * The x86 feature is called PCID (Process Context IDentifier). It is similar
  53 * to what is traditionally called ASID on the RISC processors.
  54 *
  55 * We don't use the traditional ASID implementation, where each process/mm gets
  56 * its own ASID and flush/restart when we run out of ASID space.
  57 *
  58 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  59 * that came by on this CPU, allowing cheaper switch_mm between processes on
  60 * this CPU.
  61 *
  62 * We end up with different spaces for different things. To avoid confusion we
  63 * use different names for each of them:
  64 *
  65 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  66 *         the canonical identifier for an mm
  67 *
  68 * kPCID - [1, TLB_NR_DYN_ASIDS]
  69 *         the value we write into the PCID part of CR3; corresponds to the
  70 *         ASID+1, because PCID 0 is special.
  71 *
  72 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  73 *         for KPTI each mm has two address spaces and thus needs two
  74 *         PCID values, but we can still do with a single ASID denomination
  75 *         for each mm. Corresponds to kPCID + 2048.
  76 *
  77 */
  78
  79/* There are 12 bits of space for ASIDS in CR3 */
  80#define CR3_HW_ASID_BITS                12
  81
  82/*
  83 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  84 * user/kernel switches
  85 */
  86#ifdef CONFIG_PAGE_TABLE_ISOLATION
  87# define PTI_CONSUMED_PCID_BITS 1
  88#else
  89# define PTI_CONSUMED_PCID_BITS 0
  90#endif
  91
  92#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
  93
  94/*
  95 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
  96 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
  97 * use by non-PCID-aware users.
  98 */
  99#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
 100
 101/*
 102 * Given @asid, compute kPCID
 103 */
 104static inline u16 kern_pcid(u16 asid)
 105{
 106        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 107
 108#ifdef CONFIG_PAGE_TABLE_ISOLATION
 109        /*
 110         * Make sure that the dynamic ASID space does not confict with the
 111         * bit we are using to switch between user and kernel ASIDs.
 112         */
 113        BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
 114
 115        /*
 116         * The ASID being passed in here should have respected the
 117         * MAX_ASID_AVAILABLE and thus never have the switch bit set.
 118         */
 119        VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
 120#endif
 121        /*
 122         * The dynamically-assigned ASIDs that get passed in are small
 123         * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
 124         * so do not bother to clear it.
 125         *
 126         * If PCID is on, ASID-aware code paths put the ASID+1 into the
 127         * PCID bits.  This serves two purposes.  It prevents a nasty
 128         * situation in which PCID-unaware code saves CR3, loads some other
 129         * value (with PCID == 0), and then restores CR3, thus corrupting
 130         * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 131         * that any bugs involving loading a PCID-enabled CR3 with
 132         * CR4.PCIDE off will trigger deterministically.
 133         */
 134        return asid + 1;
 135}
 136
 137/*
 138 * Given @asid, compute uPCID
 139 */
 140static inline u16 user_pcid(u16 asid)
 141{
 142        u16 ret = kern_pcid(asid);
 143#ifdef CONFIG_PAGE_TABLE_ISOLATION
 144        ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 145#endif
 146        return ret;
 147}
 148
 149static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 150{
 151        if (static_cpu_has(X86_FEATURE_PCID)) {
 152                return __sme_pa(pgd) | kern_pcid(asid);
 153        } else {
 154                VM_WARN_ON_ONCE(asid != 0);
 155                return __sme_pa(pgd);
 156        }
 157}
 158
 159static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 160{
 161        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 162        /*
 163         * Use boot_cpu_has() instead of this_cpu_has() as this function
 164         * might be called during early boot. This should work even after
 165         * boot because all CPU's the have same capabilities:
 166         */
 167        VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 168        return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 169}
 170
 171/*
 172 * We get here when we do something requiring a TLB invalidation
 173 * but could not go invalidate all of the contexts.  We do the
 174 * necessary invalidation by clearing out the 'ctx_id' which
 175 * forces a TLB flush when the context is loaded.
 176 */
 177static void clear_asid_other(void)
 178{
 179        u16 asid;
 180
 181        /*
 182         * This is only expected to be set if we have disabled
 183         * kernel _PAGE_GLOBAL pages.
 184         */
 185        if (!static_cpu_has(X86_FEATURE_PTI)) {
 186                WARN_ON_ONCE(1);
 187                return;
 188        }
 189
 190        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 191                /* Do not need to flush the current asid */
 192                if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
 193                        continue;
 194                /*
 195                 * Make sure the next time we go to switch to
 196                 * this asid, we do a flush:
 197                 */
 198                this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
 199        }
 200        this_cpu_write(cpu_tlbstate.invalidate_other, false);
 201}
 202
 203atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 204
 205
 206static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 207                            u16 *new_asid, bool *need_flush)
 208{
 209        u16 asid;
 210
 211        if (!static_cpu_has(X86_FEATURE_PCID)) {
 212                *new_asid = 0;
 213                *need_flush = true;
 214                return;
 215        }
 216
 217        if (this_cpu_read(cpu_tlbstate.invalidate_other))
 218                clear_asid_other();
 219
 220        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 221                if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
 222                    next->context.ctx_id)
 223                        continue;
 224
 225                *new_asid = asid;
 226                *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
 227                               next_tlb_gen);
 228                return;
 229        }
 230
 231        /*
 232         * We don't currently own an ASID slot on this CPU.
 233         * Allocate a slot.
 234         */
 235        *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 236        if (*new_asid >= TLB_NR_DYN_ASIDS) {
 237                *new_asid = 0;
 238                this_cpu_write(cpu_tlbstate.next_asid, 1);
 239        }
 240        *need_flush = true;
 241}
 242
 243/*
 244 * Given an ASID, flush the corresponding user ASID.  We can delay this
 245 * until the next time we switch to it.
 246 *
 247 * See SWITCH_TO_USER_CR3.
 248 */
 249static inline void invalidate_user_asid(u16 asid)
 250{
 251        /* There is no user ASID if address space separation is off */
 252        if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 253                return;
 254
 255        /*
 256         * We only have a single ASID if PCID is off and the CR3
 257         * write will have flushed it.
 258         */
 259        if (!cpu_feature_enabled(X86_FEATURE_PCID))
 260                return;
 261
 262        if (!static_cpu_has(X86_FEATURE_PTI))
 263                return;
 264
 265        __set_bit(kern_pcid(asid),
 266                  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 267}
 268
 269static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 270{
 271        unsigned long new_mm_cr3;
 272
 273        if (need_flush) {
 274                invalidate_user_asid(new_asid);
 275                new_mm_cr3 = build_cr3(pgdir, new_asid);
 276        } else {
 277                new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
 278        }
 279
 280        /*
 281         * Caution: many callers of this function expect
 282         * that load_cr3() is serializing and orders TLB
 283         * fills with respect to the mm_cpumask writes.
 284         */
 285        write_cr3(new_mm_cr3);
 286}
 287
 288void leave_mm(int cpu)
 289{
 290        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 291
 292        /*
 293         * It's plausible that we're in lazy TLB mode while our mm is init_mm.
 294         * If so, our callers still expect us to flush the TLB, but there
 295         * aren't any user TLB entries in init_mm to worry about.
 296         *
 297         * This needs to happen before any other sanity checks due to
 298         * intel_idle's shenanigans.
 299         */
 300        if (loaded_mm == &init_mm)
 301                return;
 302
 303        /* Warn if we're not lazy. */
 304        WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
 305
 306        switch_mm(NULL, &init_mm, NULL);
 307}
 308EXPORT_SYMBOL_GPL(leave_mm);
 309
 310void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 311               struct task_struct *tsk)
 312{
 313        unsigned long flags;
 314
 315        local_irq_save(flags);
 316        switch_mm_irqs_off(prev, next, tsk);
 317        local_irq_restore(flags);
 318}
 319
 320static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
 321{
 322        unsigned long next_tif = task_thread_info(next)->flags;
 323        unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
 324
 325        return (unsigned long)next->mm | ibpb;
 326}
 327
 328static void cond_ibpb(struct task_struct *next)
 329{
 330        if (!next || !next->mm)
 331                return;
 332
 333        /*
 334         * Both, the conditional and the always IBPB mode use the mm
 335         * pointer to avoid the IBPB when switching between tasks of the
 336         * same process. Using the mm pointer instead of mm->context.ctx_id
 337         * opens a hypothetical hole vs. mm_struct reuse, which is more or
 338         * less impossible to control by an attacker. Aside of that it
 339         * would only affect the first schedule so the theoretically
 340         * exposed data is not really interesting.
 341         */
 342        if (static_branch_likely(&switch_mm_cond_ibpb)) {
 343                unsigned long prev_mm, next_mm;
 344
 345                /*
 346                 * This is a bit more complex than the always mode because
 347                 * it has to handle two cases:
 348                 *
 349                 * 1) Switch from a user space task (potential attacker)
 350                 *    which has TIF_SPEC_IB set to a user space task
 351                 *    (potential victim) which has TIF_SPEC_IB not set.
 352                 *
 353                 * 2) Switch from a user space task (potential attacker)
 354                 *    which has TIF_SPEC_IB not set to a user space task
 355                 *    (potential victim) which has TIF_SPEC_IB set.
 356                 *
 357                 * This could be done by unconditionally issuing IBPB when
 358                 * a task which has TIF_SPEC_IB set is either scheduled in
 359                 * or out. Though that results in two flushes when:
 360                 *
 361                 * - the same user space task is scheduled out and later
 362                 *   scheduled in again and only a kernel thread ran in
 363                 *   between.
 364                 *
 365                 * - a user space task belonging to the same process is
 366                 *   scheduled in after a kernel thread ran in between
 367                 *
 368                 * - a user space task belonging to the same process is
 369                 *   scheduled in immediately.
 370                 *
 371                 * Optimize this with reasonably small overhead for the
 372                 * above cases. Mangle the TIF_SPEC_IB bit into the mm
 373                 * pointer of the incoming task which is stored in
 374                 * cpu_tlbstate.last_user_mm_ibpb for comparison.
 375                 */
 376                next_mm = mm_mangle_tif_spec_ib(next);
 377                prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
 378
 379                /*
 380                 * Issue IBPB only if the mm's are different and one or
 381                 * both have the IBPB bit set.
 382                 */
 383                if (next_mm != prev_mm &&
 384                    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
 385                        indirect_branch_prediction_barrier();
 386
 387                this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
 388        }
 389
 390        if (static_branch_unlikely(&switch_mm_always_ibpb)) {
 391                /*
 392                 * Only flush when switching to a user space task with a
 393                 * different context than the user space task which ran
 394                 * last on this CPU.
 395                 */
 396                if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
 397                        indirect_branch_prediction_barrier();
 398                        this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
 399                }
 400        }
 401}
 402
 403#ifdef CONFIG_PERF_EVENTS
 404static inline void cr4_update_pce_mm(struct mm_struct *mm)
 405{
 406        if (static_branch_unlikely(&rdpmc_always_available_key) ||
 407            (!static_branch_unlikely(&rdpmc_never_available_key) &&
 408             atomic_read(&mm->context.perf_rdpmc_allowed)))
 409                cr4_set_bits_irqsoff(X86_CR4_PCE);
 410        else
 411                cr4_clear_bits_irqsoff(X86_CR4_PCE);
 412}
 413
 414void cr4_update_pce(void *ignored)
 415{
 416        cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
 417}
 418
 419#else
 420static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
 421#endif
 422
 423void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 424                        struct task_struct *tsk)
 425{
 426        struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 427        u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 428        bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
 429        unsigned cpu = smp_processor_id();
 430        u64 next_tlb_gen;
 431        bool need_flush;
 432        u16 new_asid;
 433
 434        /*
 435         * NB: The scheduler will call us with prev == next when switching
 436         * from lazy TLB mode to normal mode if active_mm isn't changing.
 437         * When this happens, we don't assume that CR3 (and hence
 438         * cpu_tlbstate.loaded_mm) matches next.
 439         *
 440         * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 441         */
 442
 443        /* We don't want flush_tlb_func_* to run concurrently with us. */
 444        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 445                WARN_ON_ONCE(!irqs_disabled());
 446
 447        /*
 448         * Verify that CR3 is what we think it is.  This will catch
 449         * hypothetical buggy code that directly switches to swapper_pg_dir
 450         * without going through leave_mm() / switch_mm_irqs_off() or that
 451         * does something like write_cr3(read_cr3_pa()).
 452         *
 453         * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 454         * isn't free.
 455         */
 456#ifdef CONFIG_DEBUG_VM
 457        if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
 458                /*
 459                 * If we were to BUG here, we'd be very likely to kill
 460                 * the system so hard that we don't see the call trace.
 461                 * Try to recover instead by ignoring the error and doing
 462                 * a global flush to minimize the chance of corruption.
 463                 *
 464                 * (This is far from being a fully correct recovery.
 465                 *  Architecturally, the CPU could prefetch something
 466                 *  back into an incorrect ASID slot and leave it there
 467                 *  to cause trouble down the road.  It's better than
 468                 *  nothing, though.)
 469                 */
 470                __flush_tlb_all();
 471        }
 472#endif
 473        this_cpu_write(cpu_tlbstate.is_lazy, false);
 474
 475        /*
 476         * The membarrier system call requires a full memory barrier and
 477         * core serialization before returning to user-space, after
 478         * storing to rq->curr. Writing to CR3 provides that full
 479         * memory barrier and core serializing instruction.
 480         */
 481        if (real_prev == next) {
 482                VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 483                           next->context.ctx_id);
 484
 485                /*
 486                 * Even in lazy TLB mode, the CPU should stay set in the
 487                 * mm_cpumask. The TLB shootdown code can figure out from
 488                 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
 489                 */
 490                if (WARN_ON_ONCE(real_prev != &init_mm &&
 491                                 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 492                        cpumask_set_cpu(cpu, mm_cpumask(next));
 493
 494                /*
 495                 * If the CPU is not in lazy TLB mode, we are just switching
 496                 * from one thread in a process to another thread in the same
 497                 * process. No TLB flush required.
 498                 */
 499                if (!was_lazy)
 500                        return;
 501
 502                /*
 503                 * Read the tlb_gen to check whether a flush is needed.
 504                 * If the TLB is up to date, just use it.
 505                 * The barrier synchronizes with the tlb_gen increment in
 506                 * the TLB shootdown code.
 507                 */
 508                smp_mb();
 509                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 510                if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
 511                                next_tlb_gen)
 512                        return;
 513
 514                /*
 515                 * TLB contents went out of date while we were in lazy
 516                 * mode. Fall through to the TLB switching code below.
 517                 */
 518                new_asid = prev_asid;
 519                need_flush = true;
 520        } else {
 521                /*
 522                 * Avoid user/user BTB poisoning by flushing the branch
 523                 * predictor when switching between processes. This stops
 524                 * one process from doing Spectre-v2 attacks on another.
 525                 */
 526                cond_ibpb(tsk);
 527
 528                /*
 529                 * Stop remote flushes for the previous mm.
 530                 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
 531                 * but the bitmap manipulation can cause cache line contention.
 532                 */
 533                if (real_prev != &init_mm) {
 534                        VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
 535                                                mm_cpumask(real_prev)));
 536                        cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 537                }
 538
 539                /*
 540                 * Start remote flushes and then read tlb_gen.
 541                 */
 542                if (next != &init_mm)
 543                        cpumask_set_cpu(cpu, mm_cpumask(next));
 544                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 545
 546                choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 547
 548                /* Let nmi_uaccess_okay() know that we're changing CR3. */
 549                this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 550                barrier();
 551        }
 552
 553        if (need_flush) {
 554                this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 555                this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 556                load_new_mm_cr3(next->pgd, new_asid, true);
 557
 558                trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 559        } else {
 560                /* The new ASID is already up to date. */
 561                load_new_mm_cr3(next->pgd, new_asid, false);
 562
 563                trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
 564        }
 565
 566        /* Make sure we write CR3 before loaded_mm. */
 567        barrier();
 568
 569        this_cpu_write(cpu_tlbstate.loaded_mm, next);
 570        this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 571
 572        if (next != real_prev) {
 573                cr4_update_pce_mm(next);
 574                switch_ldt(real_prev, next);
 575        }
 576}
 577
 578/*
 579 * Please ignore the name of this function.  It should be called
 580 * switch_to_kernel_thread().
 581 *
 582 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 583 * kernel thread or other context without an mm.  Acceptable implementations
 584 * include doing nothing whatsoever, switching to init_mm, or various clever
 585 * lazy tricks to try to minimize TLB flushes.
 586 *
 587 * The scheduler reserves the right to call enter_lazy_tlb() several times
 588 * in a row.  It will notify us that we're going back to a real mm by
 589 * calling switch_mm_irqs_off().
 590 */
 591void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 592{
 593        if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 594                return;
 595
 596        this_cpu_write(cpu_tlbstate.is_lazy, true);
 597}
 598
 599/*
 600 * Call this when reinitializing a CPU.  It fixes the following potential
 601 * problems:
 602 *
 603 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 604 *   because the CPU was taken down and came back up with CR3's PCID
 605 *   bits clear.  CPU hotplug can do this.
 606 *
 607 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 608 *
 609 * - The CPU went so far out to lunch that it may have missed a TLB
 610 *   flush.
 611 */
 612void initialize_tlbstate_and_flush(void)
 613{
 614        int i;
 615        struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 616        u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 617        unsigned long cr3 = __read_cr3();
 618
 619        /* Assert that CR3 already references the right mm. */
 620        WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 621
 622        /*
 623         * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 624         * doesn't work like other CR4 bits because it can only be set from
 625         * long mode.)
 626         */
 627        WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 628                !(cr4_read_shadow() & X86_CR4_PCIDE));
 629
 630        /* Force ASID 0 and force a TLB flush. */
 631        write_cr3(build_cr3(mm->pgd, 0));
 632
 633        /* Reinitialize tlbstate. */
 634        this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
 635        this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 636        this_cpu_write(cpu_tlbstate.next_asid, 1);
 637        this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 638        this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 639
 640        for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 641                this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 642}
 643
 644/*
 645 * flush_tlb_func_common()'s memory ordering requirement is that any
 646 * TLB fills that happen after we flush the TLB are ordered after we
 647 * read active_mm's tlb_gen.  We don't need any explicit barriers
 648 * because all x86 flush operations are serializing and the
 649 * atomic64_read operation won't be reordered by the compiler.
 650 */
 651static void flush_tlb_func_common(const struct flush_tlb_info *f,
 652                                  bool local, enum tlb_flush_reason reason)
 653{
 654        /*
 655         * We have three different tlb_gen values in here.  They are:
 656         *
 657         * - mm_tlb_gen:     the latest generation.
 658         * - local_tlb_gen:  the generation that this CPU has already caught
 659         *                   up to.
 660         * - f->new_tlb_gen: the generation that the requester of the flush
 661         *                   wants us to catch up to.
 662         */
 663        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 664        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 665        u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 666        u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 667
 668        /* This code cannot presently handle being reentered. */
 669        VM_WARN_ON(!irqs_disabled());
 670
 671        if (unlikely(loaded_mm == &init_mm))
 672                return;
 673
 674        VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 675                   loaded_mm->context.ctx_id);
 676
 677        if (this_cpu_read(cpu_tlbstate.is_lazy)) {
 678                /*
 679                 * We're in lazy mode.  We need to at least flush our
 680                 * paging-structure cache to avoid speculatively reading
 681                 * garbage into our TLB.  Since switching to init_mm is barely
 682                 * slower than a minimal flush, just switch to init_mm.
 683                 *
 684                 * This should be rare, with native_flush_tlb_others skipping
 685                 * IPIs to lazy TLB mode CPUs.
 686                 */
 687                switch_mm_irqs_off(NULL, &init_mm, NULL);
 688                return;
 689        }
 690
 691        if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 692                /*
 693                 * There's nothing to do: we're already up to date.  This can
 694                 * happen if two concurrent flushes happen -- the first flush to
 695                 * be handled can catch us all the way up, leaving no work for
 696                 * the second flush.
 697                 */
 698                trace_tlb_flush(reason, 0);
 699                return;
 700        }
 701
 702        WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 703        WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 704
 705        /*
 706         * If we get to this point, we know that our TLB is out of date.
 707         * This does not strictly imply that we need to flush (it's
 708         * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 709         * going to need to flush in the very near future, so we might
 710         * as well get it over with.
 711         *
 712         * The only question is whether to do a full or partial flush.
 713         *
 714         * We do a partial flush if requested and two extra conditions
 715         * are met:
 716         *
 717         * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 718         *    we've always done all needed flushes to catch up to
 719         *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 720         *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 721         *    us up to date for tlb_gen 3 is the partial flush we're
 722         *    processing.
 723         *
 724         *    As an example of why this check is needed, suppose that there
 725         *    are two concurrent flushes.  The first is a full flush that
 726         *    changes context.tlb_gen from 1 to 2.  The second is a partial
 727         *    flush that changes context.tlb_gen from 2 to 3.  If they get
 728         *    processed on this CPU in reverse order, we'll see
 729         *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 730         *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
 731         *    3, we'd be break the invariant: we'd update local_tlb_gen above
 732         *    1 without the full flush that's needed for tlb_gen 2.
 733         *
 734         * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
 735         *    Partial TLB flushes are not all that much cheaper than full TLB
 736         *    flushes, so it seems unlikely that it would be a performance win
 737         *    to do a partial flush if that won't bring our TLB fully up to
 738         *    date.  By doing a full flush instead, we can increase
 739         *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 740         *    avoid another flush in the very near future.
 741         */
 742        if (f->end != TLB_FLUSH_ALL &&
 743            f->new_tlb_gen == local_tlb_gen + 1 &&
 744            f->new_tlb_gen == mm_tlb_gen) {
 745                /* Partial flush */
 746                unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
 747                unsigned long addr = f->start;
 748
 749                while (addr < f->end) {
 750                        flush_tlb_one_user(addr);
 751                        addr += 1UL << f->stride_shift;
 752                }
 753                if (local)
 754                        count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
 755                trace_tlb_flush(reason, nr_invalidate);
 756        } else {
 757                /* Full flush. */
 758                flush_tlb_local();
 759                if (local)
 760                        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 761                trace_tlb_flush(reason, TLB_FLUSH_ALL);
 762        }
 763
 764        /* Both paths above update our state to mm_tlb_gen. */
 765        this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 766}
 767
 768static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
 769{
 770        const struct flush_tlb_info *f = info;
 771
 772        flush_tlb_func_common(f, true, reason);
 773}
 774
 775static void flush_tlb_func_remote(void *info)
 776{
 777        const struct flush_tlb_info *f = info;
 778
 779        inc_irq_stat(irq_tlb_count);
 780
 781        if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
 782                return;
 783
 784        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 785        flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
 786}
 787
 788static bool tlb_is_not_lazy(int cpu, void *data)
 789{
 790        return !per_cpu(cpu_tlbstate.is_lazy, cpu);
 791}
 792
 793STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
 794                                         const struct flush_tlb_info *info)
 795{
 796        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 797        if (info->end == TLB_FLUSH_ALL)
 798                trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 799        else
 800                trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 801                                (info->end - info->start) >> PAGE_SHIFT);
 802
 803        if (is_uv_system()) {
 804                /*
 805                 * This whole special case is confused.  UV has a "Broadcast
 806                 * Assist Unit", which seems to be a fancy way to send IPIs.
 807                 * Back when x86 used an explicit TLB flush IPI, UV was
 808                 * optimized to use its own mechanism.  These days, x86 uses
 809                 * smp_call_function_many(), but UV still uses a manual IPI,
 810                 * and that IPI's action is out of date -- it does a manual
 811                 * flush instead of calling flush_tlb_func_remote().  This
 812                 * means that the percpu tlb_gen variables won't be updated
 813                 * and we'll do pointless flushes on future context switches.
 814                 *
 815                 * Rather than hooking native_flush_tlb_others() here, I think
 816                 * that UV should be updated so that smp_call_function_many(),
 817                 * etc, are optimal on UV.
 818                 */
 819                cpumask = uv_flush_tlb_others(cpumask, info);
 820                if (cpumask)
 821                        smp_call_function_many(cpumask, flush_tlb_func_remote,
 822                                               (void *)info, 1);
 823                return;
 824        }
 825
 826        /*
 827         * If no page tables were freed, we can skip sending IPIs to
 828         * CPUs in lazy TLB mode. They will flush the CPU themselves
 829         * at the next context switch.
 830         *
 831         * However, if page tables are getting freed, we need to send the
 832         * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
 833         * up on the new contents of what used to be page tables, while
 834         * doing a speculative memory access.
 835         */
 836        if (info->freed_tables)
 837                smp_call_function_many(cpumask, flush_tlb_func_remote,
 838                               (void *)info, 1);
 839        else
 840                on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
 841                                (void *)info, 1, cpumask);
 842}
 843
 844void flush_tlb_others(const struct cpumask *cpumask,
 845                      const struct flush_tlb_info *info)
 846{
 847        __flush_tlb_others(cpumask, info);
 848}
 849
 850/*
 851 * See Documentation/x86/tlb.rst for details.  We choose 33
 852 * because it is large enough to cover the vast majority (at
 853 * least 95%) of allocations, and is small enough that we are
 854 * confident it will not cause too much overhead.  Each single
 855 * flush is about 100 ns, so this caps the maximum overhead at
 856 * _about_ 3,000 ns.
 857 *
 858 * This is in units of pages.
 859 */
 860unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 861
 862static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
 863
 864#ifdef CONFIG_DEBUG_VM
 865static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
 866#endif
 867
 868static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
 869                        unsigned long start, unsigned long end,
 870                        unsigned int stride_shift, bool freed_tables,
 871                        u64 new_tlb_gen)
 872{
 873        struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
 874
 875#ifdef CONFIG_DEBUG_VM
 876        /*
 877         * Ensure that the following code is non-reentrant and flush_tlb_info
 878         * is not overwritten. This means no TLB flushing is initiated by
 879         * interrupt handlers and machine-check exception handlers.
 880         */
 881        BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
 882#endif
 883
 884        info->start             = start;
 885        info->end               = end;
 886        info->mm                = mm;
 887        info->stride_shift      = stride_shift;
 888        info->freed_tables      = freed_tables;
 889        info->new_tlb_gen       = new_tlb_gen;
 890
 891        return info;
 892}
 893
 894static inline void put_flush_tlb_info(void)
 895{
 896#ifdef CONFIG_DEBUG_VM
 897        /* Complete reentrency prevention checks */
 898        barrier();
 899        this_cpu_dec(flush_tlb_info_idx);
 900#endif
 901}
 902
 903void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 904                                unsigned long end, unsigned int stride_shift,
 905                                bool freed_tables)
 906{
 907        struct flush_tlb_info *info;
 908        u64 new_tlb_gen;
 909        int cpu;
 910
 911        cpu = get_cpu();
 912
 913        /* Should we flush just the requested range? */
 914        if ((end == TLB_FLUSH_ALL) ||
 915            ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
 916                start = 0;
 917                end = TLB_FLUSH_ALL;
 918        }
 919
 920        /* This is also a barrier that synchronizes with switch_mm(). */
 921        new_tlb_gen = inc_mm_tlb_gen(mm);
 922
 923        info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
 924                                  new_tlb_gen);
 925
 926        if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
 927                lockdep_assert_irqs_enabled();
 928                local_irq_disable();
 929                flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
 930                local_irq_enable();
 931        }
 932
 933        if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
 934                flush_tlb_others(mm_cpumask(mm), info);
 935
 936        put_flush_tlb_info();
 937        put_cpu();
 938}
 939
 940
 941static void do_flush_tlb_all(void *info)
 942{
 943        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 944        __flush_tlb_all();
 945}
 946
 947void flush_tlb_all(void)
 948{
 949        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 950        on_each_cpu(do_flush_tlb_all, NULL, 1);
 951}
 952
 953static void do_kernel_range_flush(void *info)
 954{
 955        struct flush_tlb_info *f = info;
 956        unsigned long addr;
 957
 958        /* flush range by one by one 'invlpg' */
 959        for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
 960                flush_tlb_one_kernel(addr);
 961}
 962
 963void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 964{
 965        /* Balance as user space task's flush, a bit conservative */
 966        if (end == TLB_FLUSH_ALL ||
 967            (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
 968                on_each_cpu(do_flush_tlb_all, NULL, 1);
 969        } else {
 970                struct flush_tlb_info *info;
 971
 972                preempt_disable();
 973                info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
 974
 975                on_each_cpu(do_kernel_range_flush, info, 1);
 976
 977                put_flush_tlb_info();
 978                preempt_enable();
 979        }
 980}
 981
 982/*
 983 * This can be used from process context to figure out what the value of
 984 * CR3 is without needing to do a (slow) __read_cr3().
 985 *
 986 * It's intended to be used for code like KVM that sneakily changes CR3
 987 * and needs to restore it.  It needs to be used very carefully.
 988 */
 989unsigned long __get_current_cr3_fast(void)
 990{
 991        unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
 992                this_cpu_read(cpu_tlbstate.loaded_mm_asid));
 993
 994        /* For now, be very restrictive about when this can be called. */
 995        VM_WARN_ON(in_nmi() || preemptible());
 996
 997        VM_BUG_ON(cr3 != __read_cr3());
 998        return cr3;
 999}
1000EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1001
1002/*
1003 * Flush one page in the kernel mapping
1004 */
1005void flush_tlb_one_kernel(unsigned long addr)
1006{
1007        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1008
1009        /*
1010         * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1011         * paravirt equivalent.  Even with PCID, this is sufficient: we only
1012         * use PCID if we also use global PTEs for the kernel mapping, and
1013         * INVLPG flushes global translations across all address spaces.
1014         *
1015         * If PTI is on, then the kernel is mapped with non-global PTEs, and
1016         * __flush_tlb_one_user() will flush the given address for the current
1017         * kernel address space and for its usermode counterpart, but it does
1018         * not flush it for other address spaces.
1019         */
1020        flush_tlb_one_user(addr);
1021
1022        if (!static_cpu_has(X86_FEATURE_PTI))
1023                return;
1024
1025        /*
1026         * See above.  We need to propagate the flush to all other address
1027         * spaces.  In principle, we only need to propagate it to kernelmode
1028         * address spaces, but the extra bookkeeping we would need is not
1029         * worth it.
1030         */
1031        this_cpu_write(cpu_tlbstate.invalidate_other, true);
1032}
1033
1034/*
1035 * Flush one page in the user mapping
1036 */
1037STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1038{
1039        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1040
1041        asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1042
1043        if (!static_cpu_has(X86_FEATURE_PTI))
1044                return;
1045
1046        /*
1047         * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1048         * Just use invalidate_user_asid() in case we are called early.
1049         */
1050        if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1051                invalidate_user_asid(loaded_mm_asid);
1052        else
1053                invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1054}
1055
1056void flush_tlb_one_user(unsigned long addr)
1057{
1058        __flush_tlb_one_user(addr);
1059}
1060
1061/*
1062 * Flush everything
1063 */
1064STATIC_NOPV void native_flush_tlb_global(void)
1065{
1066        unsigned long cr4, flags;
1067
1068        if (static_cpu_has(X86_FEATURE_INVPCID)) {
1069                /*
1070                 * Using INVPCID is considerably faster than a pair of writes
1071                 * to CR4 sandwiched inside an IRQ flag save/restore.
1072                 *
1073                 * Note, this works with CR4.PCIDE=0 or 1.
1074                 */
1075                invpcid_flush_all();
1076                return;
1077        }
1078
1079        /*
1080         * Read-modify-write to CR4 - protect it from preemption and
1081         * from interrupts. (Use the raw variant because this code can
1082         * be called from deep inside debugging code.)
1083         */
1084        raw_local_irq_save(flags);
1085
1086        cr4 = this_cpu_read(cpu_tlbstate.cr4);
1087        /* toggle PGE */
1088        native_write_cr4(cr4 ^ X86_CR4_PGE);
1089        /* write old PGE again and flush TLBs */
1090        native_write_cr4(cr4);
1091
1092        raw_local_irq_restore(flags);
1093}
1094
1095/*
1096 * Flush the entire current user mapping
1097 */
1098STATIC_NOPV void native_flush_tlb_local(void)
1099{
1100        /*
1101         * Preemption or interrupts must be disabled to protect the access
1102         * to the per CPU variable and to prevent being preempted between
1103         * read_cr3() and write_cr3().
1104         */
1105        WARN_ON_ONCE(preemptible());
1106
1107        invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1108
1109        /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1110        native_write_cr3(__native_read_cr3());
1111}
1112
1113void flush_tlb_local(void)
1114{
1115        __flush_tlb_local();
1116}
1117
1118/*
1119 * Flush everything
1120 */
1121void __flush_tlb_all(void)
1122{
1123        /*
1124         * This is to catch users with enabled preemption and the PGE feature
1125         * and don't trigger the warning in __native_flush_tlb().
1126         */
1127        VM_WARN_ON_ONCE(preemptible());
1128
1129        if (boot_cpu_has(X86_FEATURE_PGE)) {
1130                __flush_tlb_global();
1131        } else {
1132                /*
1133                 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1134                 */
1135                flush_tlb_local();
1136        }
1137}
1138EXPORT_SYMBOL_GPL(__flush_tlb_all);
1139
1140/*
1141 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
1142 * This means that the 'struct flush_tlb_info' that describes which mappings to
1143 * flush is actually fixed. We therefore set a single fixed struct and use it in
1144 * arch_tlbbatch_flush().
1145 */
1146static const struct flush_tlb_info full_flush_tlb_info = {
1147        .mm = NULL,
1148        .start = 0,
1149        .end = TLB_FLUSH_ALL,
1150};
1151
1152void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1153{
1154        int cpu = get_cpu();
1155
1156        if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1157                lockdep_assert_irqs_enabled();
1158                local_irq_disable();
1159                flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
1160                local_irq_enable();
1161        }
1162
1163        if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
1164                flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
1165
1166        cpumask_clear(&batch->cpumask);
1167
1168        put_cpu();
1169}
1170
1171/*
1172 * Blindly accessing user memory from NMI context can be dangerous
1173 * if we're in the middle of switching the current user task or
1174 * switching the loaded mm.  It can also be dangerous if we
1175 * interrupted some kernel code that was temporarily using a
1176 * different mm.
1177 */
1178bool nmi_uaccess_okay(void)
1179{
1180        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1181        struct mm_struct *current_mm = current->mm;
1182
1183        VM_WARN_ON_ONCE(!loaded_mm);
1184
1185        /*
1186         * The condition we want to check is
1187         * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1188         * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1189         * is supposed to be reasonably fast.
1190         *
1191         * Instead, we check the almost equivalent but somewhat conservative
1192         * condition below, and we rely on the fact that switch_mm_irqs_off()
1193         * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1194         */
1195        if (loaded_mm != current_mm)
1196                return false;
1197
1198        VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1199
1200        return true;
1201}
1202
1203static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1204                             size_t count, loff_t *ppos)
1205{
1206        char buf[32];
1207        unsigned int len;
1208
1209        len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1210        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1211}
1212
1213static ssize_t tlbflush_write_file(struct file *file,
1214                 const char __user *user_buf, size_t count, loff_t *ppos)
1215{
1216        char buf[32];
1217        ssize_t len;
1218        int ceiling;
1219
1220        len = min(count, sizeof(buf) - 1);
1221        if (copy_from_user(buf, user_buf, len))
1222                return -EFAULT;
1223
1224        buf[len] = '\0';
1225        if (kstrtoint(buf, 0, &ceiling))
1226                return -EINVAL;
1227
1228        if (ceiling < 0)
1229                return -EINVAL;
1230
1231        tlb_single_page_flush_ceiling = ceiling;
1232        return count;
1233}
1234
1235static const struct file_operations fops_tlbflush = {
1236        .read = tlbflush_read_file,
1237        .write = tlbflush_write_file,
1238        .llseek = default_llseek,
1239};
1240
1241static int __init create_tlb_single_page_flush_ceiling(void)
1242{
1243        debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1244                            arch_debugfs_dir, NULL, &fops_tlbflush);
1245        return 0;
1246}
1247late_initcall(create_tlb_single_page_flush_ceiling);
1248