linux/block/blk-mq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/kmemleak.h>
  14#include <linux/mm.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18#include <linux/smp.h>
  19#include <linux/llist.h>
  20#include <linux/list_sort.h>
  21#include <linux/cpu.h>
  22#include <linux/cache.h>
  23#include <linux/sched/sysctl.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29#include <linux/blk-crypto.h>
  30
  31#include <trace/events/block.h>
  32
  33#include <linux/blk-mq.h>
  34#include <linux/t10-pi.h>
  35#include "blk.h"
  36#include "blk-mq.h"
  37#include "blk-mq-debugfs.h"
  38#include "blk-mq-tag.h"
  39#include "blk-pm.h"
  40#include "blk-stat.h"
  41#include "blk-mq-sched.h"
  42#include "blk-rq-qos.h"
  43
  44static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  45
  46static void blk_mq_poll_stats_start(struct request_queue *q);
  47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  48
  49static int blk_mq_poll_stats_bkt(const struct request *rq)
  50{
  51        int ddir, sectors, bucket;
  52
  53        ddir = rq_data_dir(rq);
  54        sectors = blk_rq_stats_sectors(rq);
  55
  56        bucket = ddir + 2 * ilog2(sectors);
  57
  58        if (bucket < 0)
  59                return -1;
  60        else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  61                return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  62
  63        return bucket;
  64}
  65
  66/*
  67 * Check if any of the ctx, dispatch list or elevator
  68 * have pending work in this hardware queue.
  69 */
  70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  71{
  72        return !list_empty_careful(&hctx->dispatch) ||
  73                sbitmap_any_bit_set(&hctx->ctx_map) ||
  74                        blk_mq_sched_has_work(hctx);
  75}
  76
  77/*
  78 * Mark this ctx as having pending work in this hardware queue
  79 */
  80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  81                                     struct blk_mq_ctx *ctx)
  82{
  83        const int bit = ctx->index_hw[hctx->type];
  84
  85        if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  86                sbitmap_set_bit(&hctx->ctx_map, bit);
  87}
  88
  89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  90                                      struct blk_mq_ctx *ctx)
  91{
  92        const int bit = ctx->index_hw[hctx->type];
  93
  94        sbitmap_clear_bit(&hctx->ctx_map, bit);
  95}
  96
  97struct mq_inflight {
  98        struct hd_struct *part;
  99        unsigned int inflight[2];
 100};
 101
 102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
 103                                  struct request *rq, void *priv,
 104                                  bool reserved)
 105{
 106        struct mq_inflight *mi = priv;
 107
 108        if (rq->part == mi->part)
 109                mi->inflight[rq_data_dir(rq)]++;
 110
 111        return true;
 112}
 113
 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
 115{
 116        struct mq_inflight mi = { .part = part };
 117
 118        blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 119
 120        return mi.inflight[0] + mi.inflight[1];
 121}
 122
 123void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 124                         unsigned int inflight[2])
 125{
 126        struct mq_inflight mi = { .part = part };
 127
 128        blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 129        inflight[0] = mi.inflight[0];
 130        inflight[1] = mi.inflight[1];
 131}
 132
 133void blk_freeze_queue_start(struct request_queue *q)
 134{
 135        mutex_lock(&q->mq_freeze_lock);
 136        if (++q->mq_freeze_depth == 1) {
 137                percpu_ref_kill(&q->q_usage_counter);
 138                mutex_unlock(&q->mq_freeze_lock);
 139                if (queue_is_mq(q))
 140                        blk_mq_run_hw_queues(q, false);
 141        } else {
 142                mutex_unlock(&q->mq_freeze_lock);
 143        }
 144}
 145EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 146
 147void blk_mq_freeze_queue_wait(struct request_queue *q)
 148{
 149        wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 150}
 151EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 152
 153int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 154                                     unsigned long timeout)
 155{
 156        return wait_event_timeout(q->mq_freeze_wq,
 157                                        percpu_ref_is_zero(&q->q_usage_counter),
 158                                        timeout);
 159}
 160EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 161
 162/*
 163 * Guarantee no request is in use, so we can change any data structure of
 164 * the queue afterward.
 165 */
 166void blk_freeze_queue(struct request_queue *q)
 167{
 168        /*
 169         * In the !blk_mq case we are only calling this to kill the
 170         * q_usage_counter, otherwise this increases the freeze depth
 171         * and waits for it to return to zero.  For this reason there is
 172         * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 173         * exported to drivers as the only user for unfreeze is blk_mq.
 174         */
 175        blk_freeze_queue_start(q);
 176        blk_mq_freeze_queue_wait(q);
 177}
 178
 179void blk_mq_freeze_queue(struct request_queue *q)
 180{
 181        /*
 182         * ...just an alias to keep freeze and unfreeze actions balanced
 183         * in the blk_mq_* namespace
 184         */
 185        blk_freeze_queue(q);
 186}
 187EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 188
 189void blk_mq_unfreeze_queue(struct request_queue *q)
 190{
 191        mutex_lock(&q->mq_freeze_lock);
 192        q->mq_freeze_depth--;
 193        WARN_ON_ONCE(q->mq_freeze_depth < 0);
 194        if (!q->mq_freeze_depth) {
 195                percpu_ref_resurrect(&q->q_usage_counter);
 196                wake_up_all(&q->mq_freeze_wq);
 197        }
 198        mutex_unlock(&q->mq_freeze_lock);
 199}
 200EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 201
 202/*
 203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 204 * mpt3sas driver such that this function can be removed.
 205 */
 206void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 207{
 208        blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 209}
 210EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 211
 212/**
 213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 214 * @q: request queue.
 215 *
 216 * Note: this function does not prevent that the struct request end_io()
 217 * callback function is invoked. Once this function is returned, we make
 218 * sure no dispatch can happen until the queue is unquiesced via
 219 * blk_mq_unquiesce_queue().
 220 */
 221void blk_mq_quiesce_queue(struct request_queue *q)
 222{
 223        struct blk_mq_hw_ctx *hctx;
 224        unsigned int i;
 225        bool rcu = false;
 226
 227        blk_mq_quiesce_queue_nowait(q);
 228
 229        queue_for_each_hw_ctx(q, hctx, i) {
 230                if (hctx->flags & BLK_MQ_F_BLOCKING)
 231                        synchronize_srcu(hctx->srcu);
 232                else
 233                        rcu = true;
 234        }
 235        if (rcu)
 236                synchronize_rcu();
 237}
 238EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 239
 240/*
 241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 242 * @q: request queue.
 243 *
 244 * This function recovers queue into the state before quiescing
 245 * which is done by blk_mq_quiesce_queue.
 246 */
 247void blk_mq_unquiesce_queue(struct request_queue *q)
 248{
 249        blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 250
 251        /* dispatch requests which are inserted during quiescing */
 252        blk_mq_run_hw_queues(q, true);
 253}
 254EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 255
 256void blk_mq_wake_waiters(struct request_queue *q)
 257{
 258        struct blk_mq_hw_ctx *hctx;
 259        unsigned int i;
 260
 261        queue_for_each_hw_ctx(q, hctx, i)
 262                if (blk_mq_hw_queue_mapped(hctx))
 263                        blk_mq_tag_wakeup_all(hctx->tags, true);
 264}
 265
 266/*
 267 * Only need start/end time stamping if we have iostat or
 268 * blk stats enabled, or using an IO scheduler.
 269 */
 270static inline bool blk_mq_need_time_stamp(struct request *rq)
 271{
 272        return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
 273}
 274
 275static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 276                unsigned int tag, u64 alloc_time_ns)
 277{
 278        struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 279        struct request *rq = tags->static_rqs[tag];
 280
 281        if (data->q->elevator) {
 282                rq->tag = BLK_MQ_NO_TAG;
 283                rq->internal_tag = tag;
 284        } else {
 285                rq->tag = tag;
 286                rq->internal_tag = BLK_MQ_NO_TAG;
 287        }
 288
 289        /* csd/requeue_work/fifo_time is initialized before use */
 290        rq->q = data->q;
 291        rq->mq_ctx = data->ctx;
 292        rq->mq_hctx = data->hctx;
 293        rq->rq_flags = 0;
 294        rq->cmd_flags = data->cmd_flags;
 295        if (data->flags & BLK_MQ_REQ_PREEMPT)
 296                rq->rq_flags |= RQF_PREEMPT;
 297        if (blk_queue_io_stat(data->q))
 298                rq->rq_flags |= RQF_IO_STAT;
 299        INIT_LIST_HEAD(&rq->queuelist);
 300        INIT_HLIST_NODE(&rq->hash);
 301        RB_CLEAR_NODE(&rq->rb_node);
 302        rq->rq_disk = NULL;
 303        rq->part = NULL;
 304#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 305        rq->alloc_time_ns = alloc_time_ns;
 306#endif
 307        if (blk_mq_need_time_stamp(rq))
 308                rq->start_time_ns = ktime_get_ns();
 309        else
 310                rq->start_time_ns = 0;
 311        rq->io_start_time_ns = 0;
 312        rq->stats_sectors = 0;
 313        rq->nr_phys_segments = 0;
 314#if defined(CONFIG_BLK_DEV_INTEGRITY)
 315        rq->nr_integrity_segments = 0;
 316#endif
 317        blk_crypto_rq_set_defaults(rq);
 318        /* tag was already set */
 319        WRITE_ONCE(rq->deadline, 0);
 320
 321        rq->timeout = 0;
 322
 323        rq->end_io = NULL;
 324        rq->end_io_data = NULL;
 325
 326        data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
 327        refcount_set(&rq->ref, 1);
 328
 329        if (!op_is_flush(data->cmd_flags)) {
 330                struct elevator_queue *e = data->q->elevator;
 331
 332                rq->elv.icq = NULL;
 333                if (e && e->type->ops.prepare_request) {
 334                        if (e->type->icq_cache)
 335                                blk_mq_sched_assign_ioc(rq);
 336
 337                        e->type->ops.prepare_request(rq);
 338                        rq->rq_flags |= RQF_ELVPRIV;
 339                }
 340        }
 341
 342        data->hctx->queued++;
 343        return rq;
 344}
 345
 346static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
 347{
 348        struct request_queue *q = data->q;
 349        struct elevator_queue *e = q->elevator;
 350        u64 alloc_time_ns = 0;
 351        unsigned int tag;
 352
 353        /* alloc_time includes depth and tag waits */
 354        if (blk_queue_rq_alloc_time(q))
 355                alloc_time_ns = ktime_get_ns();
 356
 357        if (data->cmd_flags & REQ_NOWAIT)
 358                data->flags |= BLK_MQ_REQ_NOWAIT;
 359
 360        if (e) {
 361                /*
 362                 * Flush requests are special and go directly to the
 363                 * dispatch list. Don't include reserved tags in the
 364                 * limiting, as it isn't useful.
 365                 */
 366                if (!op_is_flush(data->cmd_flags) &&
 367                    e->type->ops.limit_depth &&
 368                    !(data->flags & BLK_MQ_REQ_RESERVED))
 369                        e->type->ops.limit_depth(data->cmd_flags, data);
 370        }
 371
 372retry:
 373        data->ctx = blk_mq_get_ctx(q);
 374        data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 375        if (!e)
 376                blk_mq_tag_busy(data->hctx);
 377
 378        /*
 379         * Waiting allocations only fail because of an inactive hctx.  In that
 380         * case just retry the hctx assignment and tag allocation as CPU hotplug
 381         * should have migrated us to an online CPU by now.
 382         */
 383        tag = blk_mq_get_tag(data);
 384        if (tag == BLK_MQ_NO_TAG) {
 385                if (data->flags & BLK_MQ_REQ_NOWAIT)
 386                        return NULL;
 387
 388                /*
 389                 * Give up the CPU and sleep for a random short time to ensure
 390                 * that thread using a realtime scheduling class are migrated
 391                 * off the CPU, and thus off the hctx that is going away.
 392                 */
 393                msleep(3);
 394                goto retry;
 395        }
 396        return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
 397}
 398
 399struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 400                blk_mq_req_flags_t flags)
 401{
 402        struct blk_mq_alloc_data data = {
 403                .q              = q,
 404                .flags          = flags,
 405                .cmd_flags      = op,
 406        };
 407        struct request *rq;
 408        int ret;
 409
 410        ret = blk_queue_enter(q, flags);
 411        if (ret)
 412                return ERR_PTR(ret);
 413
 414        rq = __blk_mq_alloc_request(&data);
 415        if (!rq)
 416                goto out_queue_exit;
 417        rq->__data_len = 0;
 418        rq->__sector = (sector_t) -1;
 419        rq->bio = rq->biotail = NULL;
 420        return rq;
 421out_queue_exit:
 422        blk_queue_exit(q);
 423        return ERR_PTR(-EWOULDBLOCK);
 424}
 425EXPORT_SYMBOL(blk_mq_alloc_request);
 426
 427struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 428        unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 429{
 430        struct blk_mq_alloc_data data = {
 431                .q              = q,
 432                .flags          = flags,
 433                .cmd_flags      = op,
 434        };
 435        u64 alloc_time_ns = 0;
 436        unsigned int cpu;
 437        unsigned int tag;
 438        int ret;
 439
 440        /* alloc_time includes depth and tag waits */
 441        if (blk_queue_rq_alloc_time(q))
 442                alloc_time_ns = ktime_get_ns();
 443
 444        /*
 445         * If the tag allocator sleeps we could get an allocation for a
 446         * different hardware context.  No need to complicate the low level
 447         * allocator for this for the rare use case of a command tied to
 448         * a specific queue.
 449         */
 450        if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
 451                return ERR_PTR(-EINVAL);
 452
 453        if (hctx_idx >= q->nr_hw_queues)
 454                return ERR_PTR(-EIO);
 455
 456        ret = blk_queue_enter(q, flags);
 457        if (ret)
 458                return ERR_PTR(ret);
 459
 460        /*
 461         * Check if the hardware context is actually mapped to anything.
 462         * If not tell the caller that it should skip this queue.
 463         */
 464        ret = -EXDEV;
 465        data.hctx = q->queue_hw_ctx[hctx_idx];
 466        if (!blk_mq_hw_queue_mapped(data.hctx))
 467                goto out_queue_exit;
 468        cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 469        data.ctx = __blk_mq_get_ctx(q, cpu);
 470
 471        if (!q->elevator)
 472                blk_mq_tag_busy(data.hctx);
 473
 474        ret = -EWOULDBLOCK;
 475        tag = blk_mq_get_tag(&data);
 476        if (tag == BLK_MQ_NO_TAG)
 477                goto out_queue_exit;
 478        return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
 479
 480out_queue_exit:
 481        blk_queue_exit(q);
 482        return ERR_PTR(ret);
 483}
 484EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 485
 486static void __blk_mq_free_request(struct request *rq)
 487{
 488        struct request_queue *q = rq->q;
 489        struct blk_mq_ctx *ctx = rq->mq_ctx;
 490        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 491        const int sched_tag = rq->internal_tag;
 492
 493        blk_crypto_free_request(rq);
 494        blk_pm_mark_last_busy(rq);
 495        rq->mq_hctx = NULL;
 496        if (rq->tag != BLK_MQ_NO_TAG)
 497                blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 498        if (sched_tag != BLK_MQ_NO_TAG)
 499                blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 500        blk_mq_sched_restart(hctx);
 501        blk_queue_exit(q);
 502}
 503
 504void blk_mq_free_request(struct request *rq)
 505{
 506        struct request_queue *q = rq->q;
 507        struct elevator_queue *e = q->elevator;
 508        struct blk_mq_ctx *ctx = rq->mq_ctx;
 509        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 510
 511        if (rq->rq_flags & RQF_ELVPRIV) {
 512                if (e && e->type->ops.finish_request)
 513                        e->type->ops.finish_request(rq);
 514                if (rq->elv.icq) {
 515                        put_io_context(rq->elv.icq->ioc);
 516                        rq->elv.icq = NULL;
 517                }
 518        }
 519
 520        ctx->rq_completed[rq_is_sync(rq)]++;
 521        if (rq->rq_flags & RQF_MQ_INFLIGHT)
 522                atomic_dec(&hctx->nr_active);
 523
 524        if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 525                laptop_io_completion(q->backing_dev_info);
 526
 527        rq_qos_done(q, rq);
 528
 529        WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 530        if (refcount_dec_and_test(&rq->ref))
 531                __blk_mq_free_request(rq);
 532}
 533EXPORT_SYMBOL_GPL(blk_mq_free_request);
 534
 535inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 536{
 537        u64 now = 0;
 538
 539        if (blk_mq_need_time_stamp(rq))
 540                now = ktime_get_ns();
 541
 542        if (rq->rq_flags & RQF_STATS) {
 543                blk_mq_poll_stats_start(rq->q);
 544                blk_stat_add(rq, now);
 545        }
 546
 547        blk_mq_sched_completed_request(rq, now);
 548
 549        blk_account_io_done(rq, now);
 550
 551        if (rq->end_io) {
 552                rq_qos_done(rq->q, rq);
 553                rq->end_io(rq, error);
 554        } else {
 555                blk_mq_free_request(rq);
 556        }
 557}
 558EXPORT_SYMBOL(__blk_mq_end_request);
 559
 560void blk_mq_end_request(struct request *rq, blk_status_t error)
 561{
 562        if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 563                BUG();
 564        __blk_mq_end_request(rq, error);
 565}
 566EXPORT_SYMBOL(blk_mq_end_request);
 567
 568/*
 569 * Softirq action handler - move entries to local list and loop over them
 570 * while passing them to the queue registered handler.
 571 */
 572static __latent_entropy void blk_done_softirq(struct softirq_action *h)
 573{
 574        struct list_head *cpu_list, local_list;
 575
 576        local_irq_disable();
 577        cpu_list = this_cpu_ptr(&blk_cpu_done);
 578        list_replace_init(cpu_list, &local_list);
 579        local_irq_enable();
 580
 581        while (!list_empty(&local_list)) {
 582                struct request *rq;
 583
 584                rq = list_entry(local_list.next, struct request, ipi_list);
 585                list_del_init(&rq->ipi_list);
 586                rq->q->mq_ops->complete(rq);
 587        }
 588}
 589
 590static void blk_mq_trigger_softirq(struct request *rq)
 591{
 592        struct list_head *list;
 593        unsigned long flags;
 594
 595        local_irq_save(flags);
 596        list = this_cpu_ptr(&blk_cpu_done);
 597        list_add_tail(&rq->ipi_list, list);
 598
 599        /*
 600         * If the list only contains our just added request, signal a raise of
 601         * the softirq.  If there are already entries there, someone already
 602         * raised the irq but it hasn't run yet.
 603         */
 604        if (list->next == &rq->ipi_list)
 605                raise_softirq_irqoff(BLOCK_SOFTIRQ);
 606        local_irq_restore(flags);
 607}
 608
 609static int blk_softirq_cpu_dead(unsigned int cpu)
 610{
 611        /*
 612         * If a CPU goes away, splice its entries to the current CPU
 613         * and trigger a run of the softirq
 614         */
 615        local_irq_disable();
 616        list_splice_init(&per_cpu(blk_cpu_done, cpu),
 617                         this_cpu_ptr(&blk_cpu_done));
 618        raise_softirq_irqoff(BLOCK_SOFTIRQ);
 619        local_irq_enable();
 620
 621        return 0;
 622}
 623
 624
 625static void __blk_mq_complete_request_remote(void *data)
 626{
 627        struct request *rq = data;
 628
 629        /*
 630         * For most of single queue controllers, there is only one irq vector
 631         * for handling I/O completion, and the only irq's affinity is set
 632         * to all possible CPUs.  On most of ARCHs, this affinity means the irq
 633         * is handled on one specific CPU.
 634         *
 635         * So complete I/O requests in softirq context in case of single queue
 636         * devices to avoid degrading I/O performance due to irqsoff latency.
 637         */
 638        if (rq->q->nr_hw_queues == 1)
 639                blk_mq_trigger_softirq(rq);
 640        else
 641                rq->q->mq_ops->complete(rq);
 642}
 643
 644static inline bool blk_mq_complete_need_ipi(struct request *rq)
 645{
 646        int cpu = raw_smp_processor_id();
 647
 648        if (!IS_ENABLED(CONFIG_SMP) ||
 649            !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
 650                return false;
 651
 652        /* same CPU or cache domain?  Complete locally */
 653        if (cpu == rq->mq_ctx->cpu ||
 654            (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
 655             cpus_share_cache(cpu, rq->mq_ctx->cpu)))
 656                return false;
 657
 658        /* don't try to IPI to an offline CPU */
 659        return cpu_online(rq->mq_ctx->cpu);
 660}
 661
 662bool blk_mq_complete_request_remote(struct request *rq)
 663{
 664        WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
 665
 666        /*
 667         * For a polled request, always complete locallly, it's pointless
 668         * to redirect the completion.
 669         */
 670        if (rq->cmd_flags & REQ_HIPRI)
 671                return false;
 672
 673        if (blk_mq_complete_need_ipi(rq)) {
 674                rq->csd.func = __blk_mq_complete_request_remote;
 675                rq->csd.info = rq;
 676                rq->csd.flags = 0;
 677                smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
 678        } else {
 679                if (rq->q->nr_hw_queues > 1)
 680                        return false;
 681                blk_mq_trigger_softirq(rq);
 682        }
 683
 684        return true;
 685}
 686EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
 687
 688/**
 689 * blk_mq_complete_request - end I/O on a request
 690 * @rq:         the request being processed
 691 *
 692 * Description:
 693 *      Complete a request by scheduling the ->complete_rq operation.
 694 **/
 695void blk_mq_complete_request(struct request *rq)
 696{
 697        if (!blk_mq_complete_request_remote(rq))
 698                rq->q->mq_ops->complete(rq);
 699}
 700EXPORT_SYMBOL(blk_mq_complete_request);
 701
 702static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 703        __releases(hctx->srcu)
 704{
 705        if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 706                rcu_read_unlock();
 707        else
 708                srcu_read_unlock(hctx->srcu, srcu_idx);
 709}
 710
 711static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 712        __acquires(hctx->srcu)
 713{
 714        if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 715                /* shut up gcc false positive */
 716                *srcu_idx = 0;
 717                rcu_read_lock();
 718        } else
 719                *srcu_idx = srcu_read_lock(hctx->srcu);
 720}
 721
 722/**
 723 * blk_mq_start_request - Start processing a request
 724 * @rq: Pointer to request to be started
 725 *
 726 * Function used by device drivers to notify the block layer that a request
 727 * is going to be processed now, so blk layer can do proper initializations
 728 * such as starting the timeout timer.
 729 */
 730void blk_mq_start_request(struct request *rq)
 731{
 732        struct request_queue *q = rq->q;
 733
 734        trace_block_rq_issue(q, rq);
 735
 736        if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 737                rq->io_start_time_ns = ktime_get_ns();
 738                rq->stats_sectors = blk_rq_sectors(rq);
 739                rq->rq_flags |= RQF_STATS;
 740                rq_qos_issue(q, rq);
 741        }
 742
 743        WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 744
 745        blk_add_timer(rq);
 746        WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 747
 748#ifdef CONFIG_BLK_DEV_INTEGRITY
 749        if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
 750                q->integrity.profile->prepare_fn(rq);
 751#endif
 752}
 753EXPORT_SYMBOL(blk_mq_start_request);
 754
 755static void __blk_mq_requeue_request(struct request *rq)
 756{
 757        struct request_queue *q = rq->q;
 758
 759        blk_mq_put_driver_tag(rq);
 760
 761        trace_block_rq_requeue(q, rq);
 762        rq_qos_requeue(q, rq);
 763
 764        if (blk_mq_request_started(rq)) {
 765                WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 766                rq->rq_flags &= ~RQF_TIMED_OUT;
 767        }
 768}
 769
 770void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 771{
 772        __blk_mq_requeue_request(rq);
 773
 774        /* this request will be re-inserted to io scheduler queue */
 775        blk_mq_sched_requeue_request(rq);
 776
 777        BUG_ON(!list_empty(&rq->queuelist));
 778        blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 779}
 780EXPORT_SYMBOL(blk_mq_requeue_request);
 781
 782static void blk_mq_requeue_work(struct work_struct *work)
 783{
 784        struct request_queue *q =
 785                container_of(work, struct request_queue, requeue_work.work);
 786        LIST_HEAD(rq_list);
 787        struct request *rq, *next;
 788
 789        spin_lock_irq(&q->requeue_lock);
 790        list_splice_init(&q->requeue_list, &rq_list);
 791        spin_unlock_irq(&q->requeue_lock);
 792
 793        list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 794                if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
 795                        continue;
 796
 797                rq->rq_flags &= ~RQF_SOFTBARRIER;
 798                list_del_init(&rq->queuelist);
 799                /*
 800                 * If RQF_DONTPREP, rq has contained some driver specific
 801                 * data, so insert it to hctx dispatch list to avoid any
 802                 * merge.
 803                 */
 804                if (rq->rq_flags & RQF_DONTPREP)
 805                        blk_mq_request_bypass_insert(rq, false, false);
 806                else
 807                        blk_mq_sched_insert_request(rq, true, false, false);
 808        }
 809
 810        while (!list_empty(&rq_list)) {
 811                rq = list_entry(rq_list.next, struct request, queuelist);
 812                list_del_init(&rq->queuelist);
 813                blk_mq_sched_insert_request(rq, false, false, false);
 814        }
 815
 816        blk_mq_run_hw_queues(q, false);
 817}
 818
 819void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 820                                bool kick_requeue_list)
 821{
 822        struct request_queue *q = rq->q;
 823        unsigned long flags;
 824
 825        /*
 826         * We abuse this flag that is otherwise used by the I/O scheduler to
 827         * request head insertion from the workqueue.
 828         */
 829        BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 830
 831        spin_lock_irqsave(&q->requeue_lock, flags);
 832        if (at_head) {
 833                rq->rq_flags |= RQF_SOFTBARRIER;
 834                list_add(&rq->queuelist, &q->requeue_list);
 835        } else {
 836                list_add_tail(&rq->queuelist, &q->requeue_list);
 837        }
 838        spin_unlock_irqrestore(&q->requeue_lock, flags);
 839
 840        if (kick_requeue_list)
 841                blk_mq_kick_requeue_list(q);
 842}
 843
 844void blk_mq_kick_requeue_list(struct request_queue *q)
 845{
 846        kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 847}
 848EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 849
 850void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 851                                    unsigned long msecs)
 852{
 853        kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 854                                    msecs_to_jiffies(msecs));
 855}
 856EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 857
 858struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 859{
 860        if (tag < tags->nr_tags) {
 861                prefetch(tags->rqs[tag]);
 862                return tags->rqs[tag];
 863        }
 864
 865        return NULL;
 866}
 867EXPORT_SYMBOL(blk_mq_tag_to_rq);
 868
 869static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
 870                               void *priv, bool reserved)
 871{
 872        /*
 873         * If we find a request that isn't idle and the queue matches,
 874         * we know the queue is busy. Return false to stop the iteration.
 875         */
 876        if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
 877                bool *busy = priv;
 878
 879                *busy = true;
 880                return false;
 881        }
 882
 883        return true;
 884}
 885
 886bool blk_mq_queue_inflight(struct request_queue *q)
 887{
 888        bool busy = false;
 889
 890        blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
 891        return busy;
 892}
 893EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
 894
 895static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 896{
 897        req->rq_flags |= RQF_TIMED_OUT;
 898        if (req->q->mq_ops->timeout) {
 899                enum blk_eh_timer_return ret;
 900
 901                ret = req->q->mq_ops->timeout(req, reserved);
 902                if (ret == BLK_EH_DONE)
 903                        return;
 904                WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
 905        }
 906
 907        blk_add_timer(req);
 908}
 909
 910static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
 911{
 912        unsigned long deadline;
 913
 914        if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
 915                return false;
 916        if (rq->rq_flags & RQF_TIMED_OUT)
 917                return false;
 918
 919        deadline = READ_ONCE(rq->deadline);
 920        if (time_after_eq(jiffies, deadline))
 921                return true;
 922
 923        if (*next == 0)
 924                *next = deadline;
 925        else if (time_after(*next, deadline))
 926                *next = deadline;
 927        return false;
 928}
 929
 930static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 931                struct request *rq, void *priv, bool reserved)
 932{
 933        unsigned long *next = priv;
 934
 935        /*
 936         * Just do a quick check if it is expired before locking the request in
 937         * so we're not unnecessarilly synchronizing across CPUs.
 938         */
 939        if (!blk_mq_req_expired(rq, next))
 940                return true;
 941
 942        /*
 943         * We have reason to believe the request may be expired. Take a
 944         * reference on the request to lock this request lifetime into its
 945         * currently allocated context to prevent it from being reallocated in
 946         * the event the completion by-passes this timeout handler.
 947         *
 948         * If the reference was already released, then the driver beat the
 949         * timeout handler to posting a natural completion.
 950         */
 951        if (!refcount_inc_not_zero(&rq->ref))
 952                return true;
 953
 954        /*
 955         * The request is now locked and cannot be reallocated underneath the
 956         * timeout handler's processing. Re-verify this exact request is truly
 957         * expired; if it is not expired, then the request was completed and
 958         * reallocated as a new request.
 959         */
 960        if (blk_mq_req_expired(rq, next))
 961                blk_mq_rq_timed_out(rq, reserved);
 962
 963        if (is_flush_rq(rq, hctx))
 964                rq->end_io(rq, 0);
 965        else if (refcount_dec_and_test(&rq->ref))
 966                __blk_mq_free_request(rq);
 967
 968        return true;
 969}
 970
 971static void blk_mq_timeout_work(struct work_struct *work)
 972{
 973        struct request_queue *q =
 974                container_of(work, struct request_queue, timeout_work);
 975        unsigned long next = 0;
 976        struct blk_mq_hw_ctx *hctx;
 977        int i;
 978
 979        /* A deadlock might occur if a request is stuck requiring a
 980         * timeout at the same time a queue freeze is waiting
 981         * completion, since the timeout code would not be able to
 982         * acquire the queue reference here.
 983         *
 984         * That's why we don't use blk_queue_enter here; instead, we use
 985         * percpu_ref_tryget directly, because we need to be able to
 986         * obtain a reference even in the short window between the queue
 987         * starting to freeze, by dropping the first reference in
 988         * blk_freeze_queue_start, and the moment the last request is
 989         * consumed, marked by the instant q_usage_counter reaches
 990         * zero.
 991         */
 992        if (!percpu_ref_tryget(&q->q_usage_counter))
 993                return;
 994
 995        blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
 996
 997        if (next != 0) {
 998                mod_timer(&q->timeout, next);
 999        } else {
1000                /*
1001                 * Request timeouts are handled as a forward rolling timer. If
1002                 * we end up here it means that no requests are pending and
1003                 * also that no request has been pending for a while. Mark
1004                 * each hctx as idle.
1005                 */
1006                queue_for_each_hw_ctx(q, hctx, i) {
1007                        /* the hctx may be unmapped, so check it here */
1008                        if (blk_mq_hw_queue_mapped(hctx))
1009                                blk_mq_tag_idle(hctx);
1010                }
1011        }
1012        blk_queue_exit(q);
1013}
1014
1015struct flush_busy_ctx_data {
1016        struct blk_mq_hw_ctx *hctx;
1017        struct list_head *list;
1018};
1019
1020static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021{
1022        struct flush_busy_ctx_data *flush_data = data;
1023        struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025        enum hctx_type type = hctx->type;
1026
1027        spin_lock(&ctx->lock);
1028        list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029        sbitmap_clear_bit(sb, bitnr);
1030        spin_unlock(&ctx->lock);
1031        return true;
1032}
1033
1034/*
1035 * Process software queues that have been marked busy, splicing them
1036 * to the for-dispatch
1037 */
1038void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039{
1040        struct flush_busy_ctx_data data = {
1041                .hctx = hctx,
1042                .list = list,
1043        };
1044
1045        sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046}
1047EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048
1049struct dispatch_rq_data {
1050        struct blk_mq_hw_ctx *hctx;
1051        struct request *rq;
1052};
1053
1054static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055                void *data)
1056{
1057        struct dispatch_rq_data *dispatch_data = data;
1058        struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060        enum hctx_type type = hctx->type;
1061
1062        spin_lock(&ctx->lock);
1063        if (!list_empty(&ctx->rq_lists[type])) {
1064                dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065                list_del_init(&dispatch_data->rq->queuelist);
1066                if (list_empty(&ctx->rq_lists[type]))
1067                        sbitmap_clear_bit(sb, bitnr);
1068        }
1069        spin_unlock(&ctx->lock);
1070
1071        return !dispatch_data->rq;
1072}
1073
1074struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075                                        struct blk_mq_ctx *start)
1076{
1077        unsigned off = start ? start->index_hw[hctx->type] : 0;
1078        struct dispatch_rq_data data = {
1079                .hctx = hctx,
1080                .rq   = NULL,
1081        };
1082
1083        __sbitmap_for_each_set(&hctx->ctx_map, off,
1084                               dispatch_rq_from_ctx, &data);
1085
1086        return data.rq;
1087}
1088
1089static inline unsigned int queued_to_index(unsigned int queued)
1090{
1091        if (!queued)
1092                return 0;
1093
1094        return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095}
1096
1097static bool __blk_mq_get_driver_tag(struct request *rq)
1098{
1099        struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1100        unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101        int tag;
1102
1103        blk_mq_tag_busy(rq->mq_hctx);
1104
1105        if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106                bt = &rq->mq_hctx->tags->breserved_tags;
1107                tag_offset = 0;
1108        }
1109
1110        if (!hctx_may_queue(rq->mq_hctx, bt))
1111                return false;
1112        tag = __sbitmap_queue_get(bt);
1113        if (tag == BLK_MQ_NO_TAG)
1114                return false;
1115
1116        rq->tag = tag + tag_offset;
1117        return true;
1118}
1119
1120static bool blk_mq_get_driver_tag(struct request *rq)
1121{
1122        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1123
1124        if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1125                return false;
1126
1127        if ((hctx->flags & BLK_MQ_F_TAG_SHARED) &&
1128                        !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1129                rq->rq_flags |= RQF_MQ_INFLIGHT;
1130                atomic_inc(&hctx->nr_active);
1131        }
1132        hctx->tags->rqs[rq->tag] = rq;
1133        return true;
1134}
1135
1136static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1137                                int flags, void *key)
1138{
1139        struct blk_mq_hw_ctx *hctx;
1140
1141        hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1142
1143        spin_lock(&hctx->dispatch_wait_lock);
1144        if (!list_empty(&wait->entry)) {
1145                struct sbitmap_queue *sbq;
1146
1147                list_del_init(&wait->entry);
1148                sbq = &hctx->tags->bitmap_tags;
1149                atomic_dec(&sbq->ws_active);
1150        }
1151        spin_unlock(&hctx->dispatch_wait_lock);
1152
1153        blk_mq_run_hw_queue(hctx, true);
1154        return 1;
1155}
1156
1157/*
1158 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1159 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1160 * restart. For both cases, take care to check the condition again after
1161 * marking us as waiting.
1162 */
1163static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1164                                 struct request *rq)
1165{
1166        struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1167        struct wait_queue_head *wq;
1168        wait_queue_entry_t *wait;
1169        bool ret;
1170
1171        if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1172                blk_mq_sched_mark_restart_hctx(hctx);
1173
1174                /*
1175                 * It's possible that a tag was freed in the window between the
1176                 * allocation failure and adding the hardware queue to the wait
1177                 * queue.
1178                 *
1179                 * Don't clear RESTART here, someone else could have set it.
1180                 * At most this will cost an extra queue run.
1181                 */
1182                return blk_mq_get_driver_tag(rq);
1183        }
1184
1185        wait = &hctx->dispatch_wait;
1186        if (!list_empty_careful(&wait->entry))
1187                return false;
1188
1189        wq = &bt_wait_ptr(sbq, hctx)->wait;
1190
1191        spin_lock_irq(&wq->lock);
1192        spin_lock(&hctx->dispatch_wait_lock);
1193        if (!list_empty(&wait->entry)) {
1194                spin_unlock(&hctx->dispatch_wait_lock);
1195                spin_unlock_irq(&wq->lock);
1196                return false;
1197        }
1198
1199        atomic_inc(&sbq->ws_active);
1200        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1201        __add_wait_queue(wq, wait);
1202
1203        /*
1204         * It's possible that a tag was freed in the window between the
1205         * allocation failure and adding the hardware queue to the wait
1206         * queue.
1207         */
1208        ret = blk_mq_get_driver_tag(rq);
1209        if (!ret) {
1210                spin_unlock(&hctx->dispatch_wait_lock);
1211                spin_unlock_irq(&wq->lock);
1212                return false;
1213        }
1214
1215        /*
1216         * We got a tag, remove ourselves from the wait queue to ensure
1217         * someone else gets the wakeup.
1218         */
1219        list_del_init(&wait->entry);
1220        atomic_dec(&sbq->ws_active);
1221        spin_unlock(&hctx->dispatch_wait_lock);
1222        spin_unlock_irq(&wq->lock);
1223
1224        return true;
1225}
1226
1227#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1228#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1229/*
1230 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1231 * - EWMA is one simple way to compute running average value
1232 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1233 * - take 4 as factor for avoiding to get too small(0) result, and this
1234 *   factor doesn't matter because EWMA decreases exponentially
1235 */
1236static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1237{
1238        unsigned int ewma;
1239
1240        if (hctx->queue->elevator)
1241                return;
1242
1243        ewma = hctx->dispatch_busy;
1244
1245        if (!ewma && !busy)
1246                return;
1247
1248        ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1249        if (busy)
1250                ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1251        ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1252
1253        hctx->dispatch_busy = ewma;
1254}
1255
1256#define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1257
1258static void blk_mq_handle_dev_resource(struct request *rq,
1259                                       struct list_head *list)
1260{
1261        struct request *next =
1262                list_first_entry_or_null(list, struct request, queuelist);
1263
1264        /*
1265         * If an I/O scheduler has been configured and we got a driver tag for
1266         * the next request already, free it.
1267         */
1268        if (next)
1269                blk_mq_put_driver_tag(next);
1270
1271        list_add(&rq->queuelist, list);
1272        __blk_mq_requeue_request(rq);
1273}
1274
1275static void blk_mq_handle_zone_resource(struct request *rq,
1276                                        struct list_head *zone_list)
1277{
1278        /*
1279         * If we end up here it is because we cannot dispatch a request to a
1280         * specific zone due to LLD level zone-write locking or other zone
1281         * related resource not being available. In this case, set the request
1282         * aside in zone_list for retrying it later.
1283         */
1284        list_add(&rq->queuelist, zone_list);
1285        __blk_mq_requeue_request(rq);
1286}
1287
1288enum prep_dispatch {
1289        PREP_DISPATCH_OK,
1290        PREP_DISPATCH_NO_TAG,
1291        PREP_DISPATCH_NO_BUDGET,
1292};
1293
1294static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1295                                                  bool need_budget)
1296{
1297        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1298
1299        if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1300                blk_mq_put_driver_tag(rq);
1301                return PREP_DISPATCH_NO_BUDGET;
1302        }
1303
1304        if (!blk_mq_get_driver_tag(rq)) {
1305                /*
1306                 * The initial allocation attempt failed, so we need to
1307                 * rerun the hardware queue when a tag is freed. The
1308                 * waitqueue takes care of that. If the queue is run
1309                 * before we add this entry back on the dispatch list,
1310                 * we'll re-run it below.
1311                 */
1312                if (!blk_mq_mark_tag_wait(hctx, rq)) {
1313                        /*
1314                         * All budgets not got from this function will be put
1315                         * together during handling partial dispatch
1316                         */
1317                        if (need_budget)
1318                                blk_mq_put_dispatch_budget(rq->q);
1319                        return PREP_DISPATCH_NO_TAG;
1320                }
1321        }
1322
1323        return PREP_DISPATCH_OK;
1324}
1325
1326/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1327static void blk_mq_release_budgets(struct request_queue *q,
1328                unsigned int nr_budgets)
1329{
1330        int i;
1331
1332        for (i = 0; i < nr_budgets; i++)
1333                blk_mq_put_dispatch_budget(q);
1334}
1335
1336/*
1337 * Returns true if we did some work AND can potentially do more.
1338 */
1339bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1340                             unsigned int nr_budgets)
1341{
1342        enum prep_dispatch prep;
1343        struct request_queue *q = hctx->queue;
1344        struct request *rq, *nxt;
1345        int errors, queued;
1346        blk_status_t ret = BLK_STS_OK;
1347        LIST_HEAD(zone_list);
1348
1349        if (list_empty(list))
1350                return false;
1351
1352        /*
1353         * Now process all the entries, sending them to the driver.
1354         */
1355        errors = queued = 0;
1356        do {
1357                struct blk_mq_queue_data bd;
1358
1359                rq = list_first_entry(list, struct request, queuelist);
1360
1361                WARN_ON_ONCE(hctx != rq->mq_hctx);
1362                prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1363                if (prep != PREP_DISPATCH_OK)
1364                        break;
1365
1366                list_del_init(&rq->queuelist);
1367
1368                bd.rq = rq;
1369
1370                /*
1371                 * Flag last if we have no more requests, or if we have more
1372                 * but can't assign a driver tag to it.
1373                 */
1374                if (list_empty(list))
1375                        bd.last = true;
1376                else {
1377                        nxt = list_first_entry(list, struct request, queuelist);
1378                        bd.last = !blk_mq_get_driver_tag(nxt);
1379                }
1380
1381                /*
1382                 * once the request is queued to lld, no need to cover the
1383                 * budget any more
1384                 */
1385                if (nr_budgets)
1386                        nr_budgets--;
1387                ret = q->mq_ops->queue_rq(hctx, &bd);
1388                switch (ret) {
1389                case BLK_STS_OK:
1390                        queued++;
1391                        break;
1392                case BLK_STS_RESOURCE:
1393                case BLK_STS_DEV_RESOURCE:
1394                        blk_mq_handle_dev_resource(rq, list);
1395                        goto out;
1396                case BLK_STS_ZONE_RESOURCE:
1397                        /*
1398                         * Move the request to zone_list and keep going through
1399                         * the dispatch list to find more requests the drive can
1400                         * accept.
1401                         */
1402                        blk_mq_handle_zone_resource(rq, &zone_list);
1403                        break;
1404                default:
1405                        errors++;
1406                        blk_mq_end_request(rq, BLK_STS_IOERR);
1407                }
1408        } while (!list_empty(list));
1409out:
1410        if (!list_empty(&zone_list))
1411                list_splice_tail_init(&zone_list, list);
1412
1413        hctx->dispatched[queued_to_index(queued)]++;
1414
1415        /* If we didn't flush the entire list, we could have told the driver
1416         * there was more coming, but that turned out to be a lie.
1417         */
1418        if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1419                q->mq_ops->commit_rqs(hctx);
1420        /*
1421         * Any items that need requeuing? Stuff them into hctx->dispatch,
1422         * that is where we will continue on next queue run.
1423         */
1424        if (!list_empty(list)) {
1425                bool needs_restart;
1426                /* For non-shared tags, the RESTART check will suffice */
1427                bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1428                        (hctx->flags & BLK_MQ_F_TAG_SHARED);
1429                bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1430
1431                blk_mq_release_budgets(q, nr_budgets);
1432
1433                spin_lock(&hctx->lock);
1434                list_splice_tail_init(list, &hctx->dispatch);
1435                spin_unlock(&hctx->lock);
1436
1437                /*
1438                 * Order adding requests to hctx->dispatch and checking
1439                 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1440                 * in blk_mq_sched_restart(). Avoid restart code path to
1441                 * miss the new added requests to hctx->dispatch, meantime
1442                 * SCHED_RESTART is observed here.
1443                 */
1444                smp_mb();
1445
1446                /*
1447                 * If SCHED_RESTART was set by the caller of this function and
1448                 * it is no longer set that means that it was cleared by another
1449                 * thread and hence that a queue rerun is needed.
1450                 *
1451                 * If 'no_tag' is set, that means that we failed getting
1452                 * a driver tag with an I/O scheduler attached. If our dispatch
1453                 * waitqueue is no longer active, ensure that we run the queue
1454                 * AFTER adding our entries back to the list.
1455                 *
1456                 * If no I/O scheduler has been configured it is possible that
1457                 * the hardware queue got stopped and restarted before requests
1458                 * were pushed back onto the dispatch list. Rerun the queue to
1459                 * avoid starvation. Notes:
1460                 * - blk_mq_run_hw_queue() checks whether or not a queue has
1461                 *   been stopped before rerunning a queue.
1462                 * - Some but not all block drivers stop a queue before
1463                 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1464                 *   and dm-rq.
1465                 *
1466                 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1467                 * bit is set, run queue after a delay to avoid IO stalls
1468                 * that could otherwise occur if the queue is idle.  We'll do
1469                 * similar if we couldn't get budget and SCHED_RESTART is set.
1470                 */
1471                needs_restart = blk_mq_sched_needs_restart(hctx);
1472                if (!needs_restart ||
1473                    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1474                        blk_mq_run_hw_queue(hctx, true);
1475                else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1476                                           no_budget_avail))
1477                        blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1478
1479                blk_mq_update_dispatch_busy(hctx, true);
1480                return false;
1481        } else
1482                blk_mq_update_dispatch_busy(hctx, false);
1483
1484        return (queued + errors) != 0;
1485}
1486
1487/**
1488 * __blk_mq_run_hw_queue - Run a hardware queue.
1489 * @hctx: Pointer to the hardware queue to run.
1490 *
1491 * Send pending requests to the hardware.
1492 */
1493static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1494{
1495        int srcu_idx;
1496
1497        /*
1498         * We should be running this queue from one of the CPUs that
1499         * are mapped to it.
1500         *
1501         * There are at least two related races now between setting
1502         * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1503         * __blk_mq_run_hw_queue():
1504         *
1505         * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1506         *   but later it becomes online, then this warning is harmless
1507         *   at all
1508         *
1509         * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1510         *   but later it becomes offline, then the warning can't be
1511         *   triggered, and we depend on blk-mq timeout handler to
1512         *   handle dispatched requests to this hctx
1513         */
1514        if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1515                cpu_online(hctx->next_cpu)) {
1516                printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1517                        raw_smp_processor_id(),
1518                        cpumask_empty(hctx->cpumask) ? "inactive": "active");
1519                dump_stack();
1520        }
1521
1522        /*
1523         * We can't run the queue inline with ints disabled. Ensure that
1524         * we catch bad users of this early.
1525         */
1526        WARN_ON_ONCE(in_interrupt());
1527
1528        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1529
1530        hctx_lock(hctx, &srcu_idx);
1531        blk_mq_sched_dispatch_requests(hctx);
1532        hctx_unlock(hctx, srcu_idx);
1533}
1534
1535static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1536{
1537        int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1538
1539        if (cpu >= nr_cpu_ids)
1540                cpu = cpumask_first(hctx->cpumask);
1541        return cpu;
1542}
1543
1544/*
1545 * It'd be great if the workqueue API had a way to pass
1546 * in a mask and had some smarts for more clever placement.
1547 * For now we just round-robin here, switching for every
1548 * BLK_MQ_CPU_WORK_BATCH queued items.
1549 */
1550static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1551{
1552        bool tried = false;
1553        int next_cpu = hctx->next_cpu;
1554
1555        if (hctx->queue->nr_hw_queues == 1)
1556                return WORK_CPU_UNBOUND;
1557
1558        if (--hctx->next_cpu_batch <= 0) {
1559select_cpu:
1560                next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1561                                cpu_online_mask);
1562                if (next_cpu >= nr_cpu_ids)
1563                        next_cpu = blk_mq_first_mapped_cpu(hctx);
1564                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1565        }
1566
1567        /*
1568         * Do unbound schedule if we can't find a online CPU for this hctx,
1569         * and it should only happen in the path of handling CPU DEAD.
1570         */
1571        if (!cpu_online(next_cpu)) {
1572                if (!tried) {
1573                        tried = true;
1574                        goto select_cpu;
1575                }
1576
1577                /*
1578                 * Make sure to re-select CPU next time once after CPUs
1579                 * in hctx->cpumask become online again.
1580                 */
1581                hctx->next_cpu = next_cpu;
1582                hctx->next_cpu_batch = 1;
1583                return WORK_CPU_UNBOUND;
1584        }
1585
1586        hctx->next_cpu = next_cpu;
1587        return next_cpu;
1588}
1589
1590/**
1591 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1592 * @hctx: Pointer to the hardware queue to run.
1593 * @async: If we want to run the queue asynchronously.
1594 * @msecs: Microseconds of delay to wait before running the queue.
1595 *
1596 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1597 * with a delay of @msecs.
1598 */
1599static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1600                                        unsigned long msecs)
1601{
1602        if (unlikely(blk_mq_hctx_stopped(hctx)))
1603                return;
1604
1605        if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1606                int cpu = get_cpu();
1607                if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1608                        __blk_mq_run_hw_queue(hctx);
1609                        put_cpu();
1610                        return;
1611                }
1612
1613                put_cpu();
1614        }
1615
1616        kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1617                                    msecs_to_jiffies(msecs));
1618}
1619
1620/**
1621 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1622 * @hctx: Pointer to the hardware queue to run.
1623 * @msecs: Microseconds of delay to wait before running the queue.
1624 *
1625 * Run a hardware queue asynchronously with a delay of @msecs.
1626 */
1627void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1628{
1629        __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1630}
1631EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1632
1633/**
1634 * blk_mq_run_hw_queue - Start to run a hardware queue.
1635 * @hctx: Pointer to the hardware queue to run.
1636 * @async: If we want to run the queue asynchronously.
1637 *
1638 * Check if the request queue is not in a quiesced state and if there are
1639 * pending requests to be sent. If this is true, run the queue to send requests
1640 * to hardware.
1641 */
1642void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1643{
1644        int srcu_idx;
1645        bool need_run;
1646
1647        /*
1648         * When queue is quiesced, we may be switching io scheduler, or
1649         * updating nr_hw_queues, or other things, and we can't run queue
1650         * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1651         *
1652         * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1653         * quiesced.
1654         */
1655        hctx_lock(hctx, &srcu_idx);
1656        need_run = !blk_queue_quiesced(hctx->queue) &&
1657                blk_mq_hctx_has_pending(hctx);
1658        hctx_unlock(hctx, srcu_idx);
1659
1660        if (need_run)
1661                __blk_mq_delay_run_hw_queue(hctx, async, 0);
1662}
1663EXPORT_SYMBOL(blk_mq_run_hw_queue);
1664
1665/**
1666 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1667 * @q: Pointer to the request queue to run.
1668 * @async: If we want to run the queue asynchronously.
1669 */
1670void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1671{
1672        struct blk_mq_hw_ctx *hctx;
1673        int i;
1674
1675        queue_for_each_hw_ctx(q, hctx, i) {
1676                if (blk_mq_hctx_stopped(hctx))
1677                        continue;
1678
1679                blk_mq_run_hw_queue(hctx, async);
1680        }
1681}
1682EXPORT_SYMBOL(blk_mq_run_hw_queues);
1683
1684/**
1685 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1686 * @q: Pointer to the request queue to run.
1687 * @msecs: Microseconds of delay to wait before running the queues.
1688 */
1689void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1690{
1691        struct blk_mq_hw_ctx *hctx;
1692        int i;
1693
1694        queue_for_each_hw_ctx(q, hctx, i) {
1695                if (blk_mq_hctx_stopped(hctx))
1696                        continue;
1697
1698                blk_mq_delay_run_hw_queue(hctx, msecs);
1699        }
1700}
1701EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1702
1703/**
1704 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1705 * @q: request queue.
1706 *
1707 * The caller is responsible for serializing this function against
1708 * blk_mq_{start,stop}_hw_queue().
1709 */
1710bool blk_mq_queue_stopped(struct request_queue *q)
1711{
1712        struct blk_mq_hw_ctx *hctx;
1713        int i;
1714
1715        queue_for_each_hw_ctx(q, hctx, i)
1716                if (blk_mq_hctx_stopped(hctx))
1717                        return true;
1718
1719        return false;
1720}
1721EXPORT_SYMBOL(blk_mq_queue_stopped);
1722
1723/*
1724 * This function is often used for pausing .queue_rq() by driver when
1725 * there isn't enough resource or some conditions aren't satisfied, and
1726 * BLK_STS_RESOURCE is usually returned.
1727 *
1728 * We do not guarantee that dispatch can be drained or blocked
1729 * after blk_mq_stop_hw_queue() returns. Please use
1730 * blk_mq_quiesce_queue() for that requirement.
1731 */
1732void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1733{
1734        cancel_delayed_work(&hctx->run_work);
1735
1736        set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1737}
1738EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1739
1740/*
1741 * This function is often used for pausing .queue_rq() by driver when
1742 * there isn't enough resource or some conditions aren't satisfied, and
1743 * BLK_STS_RESOURCE is usually returned.
1744 *
1745 * We do not guarantee that dispatch can be drained or blocked
1746 * after blk_mq_stop_hw_queues() returns. Please use
1747 * blk_mq_quiesce_queue() for that requirement.
1748 */
1749void blk_mq_stop_hw_queues(struct request_queue *q)
1750{
1751        struct blk_mq_hw_ctx *hctx;
1752        int i;
1753
1754        queue_for_each_hw_ctx(q, hctx, i)
1755                blk_mq_stop_hw_queue(hctx);
1756}
1757EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1758
1759void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1760{
1761        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1762
1763        blk_mq_run_hw_queue(hctx, false);
1764}
1765EXPORT_SYMBOL(blk_mq_start_hw_queue);
1766
1767void blk_mq_start_hw_queues(struct request_queue *q)
1768{
1769        struct blk_mq_hw_ctx *hctx;
1770        int i;
1771
1772        queue_for_each_hw_ctx(q, hctx, i)
1773                blk_mq_start_hw_queue(hctx);
1774}
1775EXPORT_SYMBOL(blk_mq_start_hw_queues);
1776
1777void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1778{
1779        if (!blk_mq_hctx_stopped(hctx))
1780                return;
1781
1782        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1783        blk_mq_run_hw_queue(hctx, async);
1784}
1785EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1786
1787void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1788{
1789        struct blk_mq_hw_ctx *hctx;
1790        int i;
1791
1792        queue_for_each_hw_ctx(q, hctx, i)
1793                blk_mq_start_stopped_hw_queue(hctx, async);
1794}
1795EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1796
1797static void blk_mq_run_work_fn(struct work_struct *work)
1798{
1799        struct blk_mq_hw_ctx *hctx;
1800
1801        hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1802
1803        /*
1804         * If we are stopped, don't run the queue.
1805         */
1806        if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1807                return;
1808
1809        __blk_mq_run_hw_queue(hctx);
1810}
1811
1812static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1813                                            struct request *rq,
1814                                            bool at_head)
1815{
1816        struct blk_mq_ctx *ctx = rq->mq_ctx;
1817        enum hctx_type type = hctx->type;
1818
1819        lockdep_assert_held(&ctx->lock);
1820
1821        trace_block_rq_insert(hctx->queue, rq);
1822
1823        if (at_head)
1824                list_add(&rq->queuelist, &ctx->rq_lists[type]);
1825        else
1826                list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1827}
1828
1829void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1830                             bool at_head)
1831{
1832        struct blk_mq_ctx *ctx = rq->mq_ctx;
1833
1834        lockdep_assert_held(&ctx->lock);
1835
1836        __blk_mq_insert_req_list(hctx, rq, at_head);
1837        blk_mq_hctx_mark_pending(hctx, ctx);
1838}
1839
1840/**
1841 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1842 * @rq: Pointer to request to be inserted.
1843 * @at_head: true if the request should be inserted at the head of the list.
1844 * @run_queue: If we should run the hardware queue after inserting the request.
1845 *
1846 * Should only be used carefully, when the caller knows we want to
1847 * bypass a potential IO scheduler on the target device.
1848 */
1849void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1850                                  bool run_queue)
1851{
1852        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1853
1854        spin_lock(&hctx->lock);
1855        if (at_head)
1856                list_add(&rq->queuelist, &hctx->dispatch);
1857        else
1858                list_add_tail(&rq->queuelist, &hctx->dispatch);
1859        spin_unlock(&hctx->lock);
1860
1861        if (run_queue)
1862                blk_mq_run_hw_queue(hctx, false);
1863}
1864
1865void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1866                            struct list_head *list)
1867
1868{
1869        struct request *rq;
1870        enum hctx_type type = hctx->type;
1871
1872        /*
1873         * preemption doesn't flush plug list, so it's possible ctx->cpu is
1874         * offline now
1875         */
1876        list_for_each_entry(rq, list, queuelist) {
1877                BUG_ON(rq->mq_ctx != ctx);
1878                trace_block_rq_insert(hctx->queue, rq);
1879        }
1880
1881        spin_lock(&ctx->lock);
1882        list_splice_tail_init(list, &ctx->rq_lists[type]);
1883        blk_mq_hctx_mark_pending(hctx, ctx);
1884        spin_unlock(&ctx->lock);
1885}
1886
1887static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1888{
1889        struct request *rqa = container_of(a, struct request, queuelist);
1890        struct request *rqb = container_of(b, struct request, queuelist);
1891
1892        if (rqa->mq_ctx != rqb->mq_ctx)
1893                return rqa->mq_ctx > rqb->mq_ctx;
1894        if (rqa->mq_hctx != rqb->mq_hctx)
1895                return rqa->mq_hctx > rqb->mq_hctx;
1896
1897        return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1898}
1899
1900void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1901{
1902        LIST_HEAD(list);
1903
1904        if (list_empty(&plug->mq_list))
1905                return;
1906        list_splice_init(&plug->mq_list, &list);
1907
1908        if (plug->rq_count > 2 && plug->multiple_queues)
1909                list_sort(NULL, &list, plug_rq_cmp);
1910
1911        plug->rq_count = 0;
1912
1913        do {
1914                struct list_head rq_list;
1915                struct request *rq, *head_rq = list_entry_rq(list.next);
1916                struct list_head *pos = &head_rq->queuelist; /* skip first */
1917                struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1918                struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1919                unsigned int depth = 1;
1920
1921                list_for_each_continue(pos, &list) {
1922                        rq = list_entry_rq(pos);
1923                        BUG_ON(!rq->q);
1924                        if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1925                                break;
1926                        depth++;
1927                }
1928
1929                list_cut_before(&rq_list, &list, pos);
1930                trace_block_unplug(head_rq->q, depth, !from_schedule);
1931                blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1932                                                from_schedule);
1933        } while(!list_empty(&list));
1934}
1935
1936static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1937                unsigned int nr_segs)
1938{
1939        if (bio->bi_opf & REQ_RAHEAD)
1940                rq->cmd_flags |= REQ_FAILFAST_MASK;
1941
1942        rq->__sector = bio->bi_iter.bi_sector;
1943        rq->write_hint = bio->bi_write_hint;
1944        blk_rq_bio_prep(rq, bio, nr_segs);
1945        blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1946
1947        blk_account_io_start(rq);
1948}
1949
1950static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1951                                            struct request *rq,
1952                                            blk_qc_t *cookie, bool last)
1953{
1954        struct request_queue *q = rq->q;
1955        struct blk_mq_queue_data bd = {
1956                .rq = rq,
1957                .last = last,
1958        };
1959        blk_qc_t new_cookie;
1960        blk_status_t ret;
1961
1962        new_cookie = request_to_qc_t(hctx, rq);
1963
1964        /*
1965         * For OK queue, we are done. For error, caller may kill it.
1966         * Any other error (busy), just add it to our list as we
1967         * previously would have done.
1968         */
1969        ret = q->mq_ops->queue_rq(hctx, &bd);
1970        switch (ret) {
1971        case BLK_STS_OK:
1972                blk_mq_update_dispatch_busy(hctx, false);
1973                *cookie = new_cookie;
1974                break;
1975        case BLK_STS_RESOURCE:
1976        case BLK_STS_DEV_RESOURCE:
1977                blk_mq_update_dispatch_busy(hctx, true);
1978                __blk_mq_requeue_request(rq);
1979                break;
1980        default:
1981                blk_mq_update_dispatch_busy(hctx, false);
1982                *cookie = BLK_QC_T_NONE;
1983                break;
1984        }
1985
1986        return ret;
1987}
1988
1989static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1990                                                struct request *rq,
1991                                                blk_qc_t *cookie,
1992                                                bool bypass_insert, bool last)
1993{
1994        struct request_queue *q = rq->q;
1995        bool run_queue = true;
1996
1997        /*
1998         * RCU or SRCU read lock is needed before checking quiesced flag.
1999         *
2000         * When queue is stopped or quiesced, ignore 'bypass_insert' from
2001         * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2002         * and avoid driver to try to dispatch again.
2003         */
2004        if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2005                run_queue = false;
2006                bypass_insert = false;
2007                goto insert;
2008        }
2009
2010        if (q->elevator && !bypass_insert)
2011                goto insert;
2012
2013        if (!blk_mq_get_dispatch_budget(q))
2014                goto insert;
2015
2016        if (!blk_mq_get_driver_tag(rq)) {
2017                blk_mq_put_dispatch_budget(q);
2018                goto insert;
2019        }
2020
2021        return __blk_mq_issue_directly(hctx, rq, cookie, last);
2022insert:
2023        if (bypass_insert)
2024                return BLK_STS_RESOURCE;
2025
2026        blk_mq_sched_insert_request(rq, false, run_queue, false);
2027
2028        return BLK_STS_OK;
2029}
2030
2031/**
2032 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2033 * @hctx: Pointer of the associated hardware queue.
2034 * @rq: Pointer to request to be sent.
2035 * @cookie: Request queue cookie.
2036 *
2037 * If the device has enough resources to accept a new request now, send the
2038 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2039 * we can try send it another time in the future. Requests inserted at this
2040 * queue have higher priority.
2041 */
2042static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2043                struct request *rq, blk_qc_t *cookie)
2044{
2045        blk_status_t ret;
2046        int srcu_idx;
2047
2048        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2049
2050        hctx_lock(hctx, &srcu_idx);
2051
2052        ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2053        if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2054                blk_mq_request_bypass_insert(rq, false, true);
2055        else if (ret != BLK_STS_OK)
2056                blk_mq_end_request(rq, ret);
2057
2058        hctx_unlock(hctx, srcu_idx);
2059}
2060
2061blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2062{
2063        blk_status_t ret;
2064        int srcu_idx;
2065        blk_qc_t unused_cookie;
2066        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2067
2068        hctx_lock(hctx, &srcu_idx);
2069        ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2070        hctx_unlock(hctx, srcu_idx);
2071
2072        return ret;
2073}
2074
2075void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2076                struct list_head *list)
2077{
2078        int queued = 0;
2079        int errors = 0;
2080
2081        while (!list_empty(list)) {
2082                blk_status_t ret;
2083                struct request *rq = list_first_entry(list, struct request,
2084                                queuelist);
2085
2086                list_del_init(&rq->queuelist);
2087                ret = blk_mq_request_issue_directly(rq, list_empty(list));
2088                if (ret != BLK_STS_OK) {
2089                        if (ret == BLK_STS_RESOURCE ||
2090                                        ret == BLK_STS_DEV_RESOURCE) {
2091                                blk_mq_request_bypass_insert(rq, false,
2092                                                        list_empty(list));
2093                                break;
2094                        }
2095                        blk_mq_end_request(rq, ret);
2096                        errors++;
2097                } else
2098                        queued++;
2099        }
2100
2101        /*
2102         * If we didn't flush the entire list, we could have told
2103         * the driver there was more coming, but that turned out to
2104         * be a lie.
2105         */
2106        if ((!list_empty(list) || errors) &&
2107             hctx->queue->mq_ops->commit_rqs && queued)
2108                hctx->queue->mq_ops->commit_rqs(hctx);
2109}
2110
2111static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2112{
2113        list_add_tail(&rq->queuelist, &plug->mq_list);
2114        plug->rq_count++;
2115        if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2116                struct request *tmp;
2117
2118                tmp = list_first_entry(&plug->mq_list, struct request,
2119                                                queuelist);
2120                if (tmp->q != rq->q)
2121                        plug->multiple_queues = true;
2122        }
2123}
2124
2125/**
2126 * blk_mq_submit_bio - Create and send a request to block device.
2127 * @bio: Bio pointer.
2128 *
2129 * Builds up a request structure from @q and @bio and send to the device. The
2130 * request may not be queued directly to hardware if:
2131 * * This request can be merged with another one
2132 * * We want to place request at plug queue for possible future merging
2133 * * There is an IO scheduler active at this queue
2134 *
2135 * It will not queue the request if there is an error with the bio, or at the
2136 * request creation.
2137 *
2138 * Returns: Request queue cookie.
2139 */
2140blk_qc_t blk_mq_submit_bio(struct bio *bio)
2141{
2142        struct request_queue *q = bio->bi_disk->queue;
2143        const int is_sync = op_is_sync(bio->bi_opf);
2144        const int is_flush_fua = op_is_flush(bio->bi_opf);
2145        struct blk_mq_alloc_data data = {
2146                .q              = q,
2147        };
2148        struct request *rq;
2149        struct blk_plug *plug;
2150        struct request *same_queue_rq = NULL;
2151        unsigned int nr_segs;
2152        blk_qc_t cookie;
2153        blk_status_t ret;
2154
2155        blk_queue_bounce(q, &bio);
2156        __blk_queue_split(&bio, &nr_segs);
2157
2158        if (!bio_integrity_prep(bio))
2159                goto queue_exit;
2160
2161        if (!is_flush_fua && !blk_queue_nomerges(q) &&
2162            blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2163                goto queue_exit;
2164
2165        if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2166                goto queue_exit;
2167
2168        rq_qos_throttle(q, bio);
2169
2170        data.cmd_flags = bio->bi_opf;
2171        rq = __blk_mq_alloc_request(&data);
2172        if (unlikely(!rq)) {
2173                rq_qos_cleanup(q, bio);
2174                if (bio->bi_opf & REQ_NOWAIT)
2175                        bio_wouldblock_error(bio);
2176                goto queue_exit;
2177        }
2178
2179        trace_block_getrq(q, bio, bio->bi_opf);
2180
2181        rq_qos_track(q, rq, bio);
2182
2183        cookie = request_to_qc_t(data.hctx, rq);
2184
2185        blk_mq_bio_to_request(rq, bio, nr_segs);
2186
2187        ret = blk_crypto_init_request(rq);
2188        if (ret != BLK_STS_OK) {
2189                bio->bi_status = ret;
2190                bio_endio(bio);
2191                blk_mq_free_request(rq);
2192                return BLK_QC_T_NONE;
2193        }
2194
2195        plug = blk_mq_plug(q, bio);
2196        if (unlikely(is_flush_fua)) {
2197                /* Bypass scheduler for flush requests */
2198                blk_insert_flush(rq);
2199                blk_mq_run_hw_queue(data.hctx, true);
2200        } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2201                                !blk_queue_nonrot(q))) {
2202                /*
2203                 * Use plugging if we have a ->commit_rqs() hook as well, as
2204                 * we know the driver uses bd->last in a smart fashion.
2205                 *
2206                 * Use normal plugging if this disk is slow HDD, as sequential
2207                 * IO may benefit a lot from plug merging.
2208                 */
2209                unsigned int request_count = plug->rq_count;
2210                struct request *last = NULL;
2211
2212                if (!request_count)
2213                        trace_block_plug(q);
2214                else
2215                        last = list_entry_rq(plug->mq_list.prev);
2216
2217                if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2218                    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2219                        blk_flush_plug_list(plug, false);
2220                        trace_block_plug(q);
2221                }
2222
2223                blk_add_rq_to_plug(plug, rq);
2224        } else if (q->elevator) {
2225                /* Insert the request at the IO scheduler queue */
2226                blk_mq_sched_insert_request(rq, false, true, true);
2227        } else if (plug && !blk_queue_nomerges(q)) {
2228                /*
2229                 * We do limited plugging. If the bio can be merged, do that.
2230                 * Otherwise the existing request in the plug list will be
2231                 * issued. So the plug list will have one request at most
2232                 * The plug list might get flushed before this. If that happens,
2233                 * the plug list is empty, and same_queue_rq is invalid.
2234                 */
2235                if (list_empty(&plug->mq_list))
2236                        same_queue_rq = NULL;
2237                if (same_queue_rq) {
2238                        list_del_init(&same_queue_rq->queuelist);
2239                        plug->rq_count--;
2240                }
2241                blk_add_rq_to_plug(plug, rq);
2242                trace_block_plug(q);
2243
2244                if (same_queue_rq) {
2245                        data.hctx = same_queue_rq->mq_hctx;
2246                        trace_block_unplug(q, 1, true);
2247                        blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2248                                        &cookie);
2249                }
2250        } else if ((q->nr_hw_queues > 1 && is_sync) ||
2251                        !data.hctx->dispatch_busy) {
2252                /*
2253                 * There is no scheduler and we can try to send directly
2254                 * to the hardware.
2255                 */
2256                blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2257        } else {
2258                /* Default case. */
2259                blk_mq_sched_insert_request(rq, false, true, true);
2260        }
2261
2262        return cookie;
2263queue_exit:
2264        blk_queue_exit(q);
2265        return BLK_QC_T_NONE;
2266}
2267EXPORT_SYMBOL_GPL(blk_mq_submit_bio); /* only for request based dm */
2268
2269void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2270                     unsigned int hctx_idx)
2271{
2272        struct page *page;
2273
2274        if (tags->rqs && set->ops->exit_request) {
2275                int i;
2276
2277                for (i = 0; i < tags->nr_tags; i++) {
2278                        struct request *rq = tags->static_rqs[i];
2279
2280                        if (!rq)
2281                                continue;
2282                        set->ops->exit_request(set, rq, hctx_idx);
2283                        tags->static_rqs[i] = NULL;
2284                }
2285        }
2286
2287        while (!list_empty(&tags->page_list)) {
2288                page = list_first_entry(&tags->page_list, struct page, lru);
2289                list_del_init(&page->lru);
2290                /*
2291                 * Remove kmemleak object previously allocated in
2292                 * blk_mq_alloc_rqs().
2293                 */
2294                kmemleak_free(page_address(page));
2295                __free_pages(page, page->private);
2296        }
2297}
2298
2299void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2300{
2301        kfree(tags->rqs);
2302        tags->rqs = NULL;
2303        kfree(tags->static_rqs);
2304        tags->static_rqs = NULL;
2305
2306        blk_mq_free_tags(tags);
2307}
2308
2309struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2310                                        unsigned int hctx_idx,
2311                                        unsigned int nr_tags,
2312                                        unsigned int reserved_tags)
2313{
2314        struct blk_mq_tags *tags;
2315        int node;
2316
2317        node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2318        if (node == NUMA_NO_NODE)
2319                node = set->numa_node;
2320
2321        tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2322                                BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2323        if (!tags)
2324                return NULL;
2325
2326        tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2327                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2328                                 node);
2329        if (!tags->rqs) {
2330                blk_mq_free_tags(tags);
2331                return NULL;
2332        }
2333
2334        tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2335                                        GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2336                                        node);
2337        if (!tags->static_rqs) {
2338                kfree(tags->rqs);
2339                blk_mq_free_tags(tags);
2340                return NULL;
2341        }
2342
2343        return tags;
2344}
2345
2346static size_t order_to_size(unsigned int order)
2347{
2348        return (size_t)PAGE_SIZE << order;
2349}
2350
2351static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2352                               unsigned int hctx_idx, int node)
2353{
2354        int ret;
2355
2356        if (set->ops->init_request) {
2357                ret = set->ops->init_request(set, rq, hctx_idx, node);
2358                if (ret)
2359                        return ret;
2360        }
2361
2362        WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2363        return 0;
2364}
2365
2366int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2367                     unsigned int hctx_idx, unsigned int depth)
2368{
2369        unsigned int i, j, entries_per_page, max_order = 4;
2370        size_t rq_size, left;
2371        int node;
2372
2373        node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2374        if (node == NUMA_NO_NODE)
2375                node = set->numa_node;
2376
2377        INIT_LIST_HEAD(&tags->page_list);
2378
2379        /*
2380         * rq_size is the size of the request plus driver payload, rounded
2381         * to the cacheline size
2382         */
2383        rq_size = round_up(sizeof(struct request) + set->cmd_size,
2384                                cache_line_size());
2385        left = rq_size * depth;
2386
2387        for (i = 0; i < depth; ) {
2388                int this_order = max_order;
2389                struct page *page;
2390                int to_do;
2391                void *p;
2392
2393                while (this_order && left < order_to_size(this_order - 1))
2394                        this_order--;
2395
2396                do {
2397                        page = alloc_pages_node(node,
2398                                GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2399                                this_order);
2400                        if (page)
2401                                break;
2402                        if (!this_order--)
2403                                break;
2404                        if (order_to_size(this_order) < rq_size)
2405                                break;
2406                } while (1);
2407
2408                if (!page)
2409                        goto fail;
2410
2411                page->private = this_order;
2412                list_add_tail(&page->lru, &tags->page_list);
2413
2414                p = page_address(page);
2415                /*
2416                 * Allow kmemleak to scan these pages as they contain pointers
2417                 * to additional allocations like via ops->init_request().
2418                 */
2419                kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2420                entries_per_page = order_to_size(this_order) / rq_size;
2421                to_do = min(entries_per_page, depth - i);
2422                left -= to_do * rq_size;
2423                for (j = 0; j < to_do; j++) {
2424                        struct request *rq = p;
2425
2426                        tags->static_rqs[i] = rq;
2427                        if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2428                                tags->static_rqs[i] = NULL;
2429                                goto fail;
2430                        }
2431
2432                        p += rq_size;
2433                        i++;
2434                }
2435        }
2436        return 0;
2437
2438fail:
2439        blk_mq_free_rqs(set, tags, hctx_idx);
2440        return -ENOMEM;
2441}
2442
2443struct rq_iter_data {
2444        struct blk_mq_hw_ctx *hctx;
2445        bool has_rq;
2446};
2447
2448static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2449{
2450        struct rq_iter_data *iter_data = data;
2451
2452        if (rq->mq_hctx != iter_data->hctx)
2453                return true;
2454        iter_data->has_rq = true;
2455        return false;
2456}
2457
2458static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2459{
2460        struct blk_mq_tags *tags = hctx->sched_tags ?
2461                        hctx->sched_tags : hctx->tags;
2462        struct rq_iter_data data = {
2463                .hctx   = hctx,
2464        };
2465
2466        blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2467        return data.has_rq;
2468}
2469
2470static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2471                struct blk_mq_hw_ctx *hctx)
2472{
2473        if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2474                return false;
2475        if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2476                return false;
2477        return true;
2478}
2479
2480static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2481{
2482        struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2483                        struct blk_mq_hw_ctx, cpuhp_online);
2484
2485        if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2486            !blk_mq_last_cpu_in_hctx(cpu, hctx))
2487                return 0;
2488
2489        /*
2490         * Prevent new request from being allocated on the current hctx.
2491         *
2492         * The smp_mb__after_atomic() Pairs with the implied barrier in
2493         * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2494         * seen once we return from the tag allocator.
2495         */
2496        set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2497        smp_mb__after_atomic();
2498
2499        /*
2500         * Try to grab a reference to the queue and wait for any outstanding
2501         * requests.  If we could not grab a reference the queue has been
2502         * frozen and there are no requests.
2503         */
2504        if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2505                while (blk_mq_hctx_has_requests(hctx))
2506                        msleep(5);
2507                percpu_ref_put(&hctx->queue->q_usage_counter);
2508        }
2509
2510        return 0;
2511}
2512
2513static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2514{
2515        struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2516                        struct blk_mq_hw_ctx, cpuhp_online);
2517
2518        if (cpumask_test_cpu(cpu, hctx->cpumask))
2519                clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2520        return 0;
2521}
2522
2523/*
2524 * 'cpu' is going away. splice any existing rq_list entries from this
2525 * software queue to the hw queue dispatch list, and ensure that it
2526 * gets run.
2527 */
2528static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2529{
2530        struct blk_mq_hw_ctx *hctx;
2531        struct blk_mq_ctx *ctx;
2532        LIST_HEAD(tmp);
2533        enum hctx_type type;
2534
2535        hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2536        if (!cpumask_test_cpu(cpu, hctx->cpumask))
2537                return 0;
2538
2539        ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2540        type = hctx->type;
2541
2542        spin_lock(&ctx->lock);
2543        if (!list_empty(&ctx->rq_lists[type])) {
2544                list_splice_init(&ctx->rq_lists[type], &tmp);
2545                blk_mq_hctx_clear_pending(hctx, ctx);
2546        }
2547        spin_unlock(&ctx->lock);
2548
2549        if (list_empty(&tmp))
2550                return 0;
2551
2552        spin_lock(&hctx->lock);
2553        list_splice_tail_init(&tmp, &hctx->dispatch);
2554        spin_unlock(&hctx->lock);
2555
2556        blk_mq_run_hw_queue(hctx, true);
2557        return 0;
2558}
2559
2560static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2561{
2562        if (!(hctx->flags & BLK_MQ_F_STACKING))
2563                cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2564                                                    &hctx->cpuhp_online);
2565        cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2566                                            &hctx->cpuhp_dead);
2567}
2568
2569/* hctx->ctxs will be freed in queue's release handler */
2570static void blk_mq_exit_hctx(struct request_queue *q,
2571                struct blk_mq_tag_set *set,
2572                struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2573{
2574        if (blk_mq_hw_queue_mapped(hctx))
2575                blk_mq_tag_idle(hctx);
2576
2577        if (set->ops->exit_request)
2578                set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2579
2580        if (set->ops->exit_hctx)
2581                set->ops->exit_hctx(hctx, hctx_idx);
2582
2583        blk_mq_remove_cpuhp(hctx);
2584
2585        spin_lock(&q->unused_hctx_lock);
2586        list_add(&hctx->hctx_list, &q->unused_hctx_list);
2587        spin_unlock(&q->unused_hctx_lock);
2588}
2589
2590static void blk_mq_exit_hw_queues(struct request_queue *q,
2591                struct blk_mq_tag_set *set, int nr_queue)
2592{
2593        struct blk_mq_hw_ctx *hctx;
2594        unsigned int i;
2595
2596        queue_for_each_hw_ctx(q, hctx, i) {
2597                if (i == nr_queue)
2598                        break;
2599                blk_mq_debugfs_unregister_hctx(hctx);
2600                blk_mq_exit_hctx(q, set, hctx, i);
2601        }
2602}
2603
2604static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2605{
2606        int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2607
2608        BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2609                           __alignof__(struct blk_mq_hw_ctx)) !=
2610                     sizeof(struct blk_mq_hw_ctx));
2611
2612        if (tag_set->flags & BLK_MQ_F_BLOCKING)
2613                hw_ctx_size += sizeof(struct srcu_struct);
2614
2615        return hw_ctx_size;
2616}
2617
2618static int blk_mq_init_hctx(struct request_queue *q,
2619                struct blk_mq_tag_set *set,
2620                struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2621{
2622        hctx->queue_num = hctx_idx;
2623
2624        if (!(hctx->flags & BLK_MQ_F_STACKING))
2625                cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2626                                &hctx->cpuhp_online);
2627        cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2628
2629        hctx->tags = set->tags[hctx_idx];
2630
2631        if (set->ops->init_hctx &&
2632            set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2633                goto unregister_cpu_notifier;
2634
2635        if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2636                                hctx->numa_node))
2637                goto exit_hctx;
2638        return 0;
2639
2640 exit_hctx:
2641        if (set->ops->exit_hctx)
2642                set->ops->exit_hctx(hctx, hctx_idx);
2643 unregister_cpu_notifier:
2644        blk_mq_remove_cpuhp(hctx);
2645        return -1;
2646}
2647
2648static struct blk_mq_hw_ctx *
2649blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2650                int node)
2651{
2652        struct blk_mq_hw_ctx *hctx;
2653        gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2654
2655        hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2656        if (!hctx)
2657                goto fail_alloc_hctx;
2658
2659        if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2660                goto free_hctx;
2661
2662        atomic_set(&hctx->nr_active, 0);
2663        if (node == NUMA_NO_NODE)
2664                node = set->numa_node;
2665        hctx->numa_node = node;
2666
2667        INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2668        spin_lock_init(&hctx->lock);
2669        INIT_LIST_HEAD(&hctx->dispatch);
2670        hctx->queue = q;
2671        hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2672
2673        INIT_LIST_HEAD(&hctx->hctx_list);
2674
2675        /*
2676         * Allocate space for all possible cpus to avoid allocation at
2677         * runtime
2678         */
2679        hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2680                        gfp, node);
2681        if (!hctx->ctxs)
2682                goto free_cpumask;
2683
2684        if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2685                                gfp, node))
2686                goto free_ctxs;
2687        hctx->nr_ctx = 0;
2688
2689        spin_lock_init(&hctx->dispatch_wait_lock);
2690        init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2691        INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2692
2693        hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2694        if (!hctx->fq)
2695                goto free_bitmap;
2696
2697        if (hctx->flags & BLK_MQ_F_BLOCKING)
2698                init_srcu_struct(hctx->srcu);
2699        blk_mq_hctx_kobj_init(hctx);
2700
2701        return hctx;
2702
2703 free_bitmap:
2704        sbitmap_free(&hctx->ctx_map);
2705 free_ctxs:
2706        kfree(hctx->ctxs);
2707 free_cpumask:
2708        free_cpumask_var(hctx->cpumask);
2709 free_hctx:
2710        kfree(hctx);
2711 fail_alloc_hctx:
2712        return NULL;
2713}
2714
2715static void blk_mq_init_cpu_queues(struct request_queue *q,
2716                                   unsigned int nr_hw_queues)
2717{
2718        struct blk_mq_tag_set *set = q->tag_set;
2719        unsigned int i, j;
2720
2721        for_each_possible_cpu(i) {
2722                struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2723                struct blk_mq_hw_ctx *hctx;
2724                int k;
2725
2726                __ctx->cpu = i;
2727                spin_lock_init(&__ctx->lock);
2728                for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2729                        INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2730
2731                __ctx->queue = q;
2732
2733                /*
2734                 * Set local node, IFF we have more than one hw queue. If
2735                 * not, we remain on the home node of the device
2736                 */
2737                for (j = 0; j < set->nr_maps; j++) {
2738                        hctx = blk_mq_map_queue_type(q, j, i);
2739                        if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2740                                hctx->numa_node = local_memory_node(cpu_to_node(i));
2741                }
2742        }
2743}
2744
2745static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2746                                        int hctx_idx)
2747{
2748        int ret = 0;
2749
2750        set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2751                                        set->queue_depth, set->reserved_tags);
2752        if (!set->tags[hctx_idx])
2753                return false;
2754
2755        ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2756                                set->queue_depth);
2757        if (!ret)
2758                return true;
2759
2760        blk_mq_free_rq_map(set->tags[hctx_idx]);
2761        set->tags[hctx_idx] = NULL;
2762        return false;
2763}
2764
2765static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2766                                         unsigned int hctx_idx)
2767{
2768        if (set->tags && set->tags[hctx_idx]) {
2769                blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2770                blk_mq_free_rq_map(set->tags[hctx_idx]);
2771                set->tags[hctx_idx] = NULL;
2772        }
2773}
2774
2775static void blk_mq_map_swqueue(struct request_queue *q)
2776{
2777        unsigned int i, j, hctx_idx;
2778        struct blk_mq_hw_ctx *hctx;
2779        struct blk_mq_ctx *ctx;
2780        struct blk_mq_tag_set *set = q->tag_set;
2781
2782        queue_for_each_hw_ctx(q, hctx, i) {
2783                cpumask_clear(hctx->cpumask);
2784                hctx->nr_ctx = 0;
2785                hctx->dispatch_from = NULL;
2786        }
2787
2788        /*
2789         * Map software to hardware queues.
2790         *
2791         * If the cpu isn't present, the cpu is mapped to first hctx.
2792         */
2793        for_each_possible_cpu(i) {
2794
2795                ctx = per_cpu_ptr(q->queue_ctx, i);
2796                for (j = 0; j < set->nr_maps; j++) {
2797                        if (!set->map[j].nr_queues) {
2798                                ctx->hctxs[j] = blk_mq_map_queue_type(q,
2799                                                HCTX_TYPE_DEFAULT, i);
2800                                continue;
2801                        }
2802                        hctx_idx = set->map[j].mq_map[i];
2803                        /* unmapped hw queue can be remapped after CPU topo changed */
2804                        if (!set->tags[hctx_idx] &&
2805                            !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2806                                /*
2807                                 * If tags initialization fail for some hctx,
2808                                 * that hctx won't be brought online.  In this
2809                                 * case, remap the current ctx to hctx[0] which
2810                                 * is guaranteed to always have tags allocated
2811                                 */
2812                                set->map[j].mq_map[i] = 0;
2813                        }
2814
2815                        hctx = blk_mq_map_queue_type(q, j, i);
2816                        ctx->hctxs[j] = hctx;
2817                        /*
2818                         * If the CPU is already set in the mask, then we've
2819                         * mapped this one already. This can happen if
2820                         * devices share queues across queue maps.
2821                         */
2822                        if (cpumask_test_cpu(i, hctx->cpumask))
2823                                continue;
2824
2825                        cpumask_set_cpu(i, hctx->cpumask);
2826                        hctx->type = j;
2827                        ctx->index_hw[hctx->type] = hctx->nr_ctx;
2828                        hctx->ctxs[hctx->nr_ctx++] = ctx;
2829
2830                        /*
2831                         * If the nr_ctx type overflows, we have exceeded the
2832                         * amount of sw queues we can support.
2833                         */
2834                        BUG_ON(!hctx->nr_ctx);
2835                }
2836
2837                for (; j < HCTX_MAX_TYPES; j++)
2838                        ctx->hctxs[j] = blk_mq_map_queue_type(q,
2839                                        HCTX_TYPE_DEFAULT, i);
2840        }
2841
2842        queue_for_each_hw_ctx(q, hctx, i) {
2843                /*
2844                 * If no software queues are mapped to this hardware queue,
2845                 * disable it and free the request entries.
2846                 */
2847                if (!hctx->nr_ctx) {
2848                        /* Never unmap queue 0.  We need it as a
2849                         * fallback in case of a new remap fails
2850                         * allocation
2851                         */
2852                        if (i && set->tags[i])
2853                                blk_mq_free_map_and_requests(set, i);
2854
2855                        hctx->tags = NULL;
2856                        continue;
2857                }
2858
2859                hctx->tags = set->tags[i];
2860                WARN_ON(!hctx->tags);
2861
2862                /*
2863                 * Set the map size to the number of mapped software queues.
2864                 * This is more accurate and more efficient than looping
2865                 * over all possibly mapped software queues.
2866                 */
2867                sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2868
2869                /*
2870                 * Initialize batch roundrobin counts
2871                 */
2872                hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2873                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2874        }
2875}
2876
2877/*
2878 * Caller needs to ensure that we're either frozen/quiesced, or that
2879 * the queue isn't live yet.
2880 */
2881static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2882{
2883        struct blk_mq_hw_ctx *hctx;
2884        int i;
2885
2886        queue_for_each_hw_ctx(q, hctx, i) {
2887                if (shared)
2888                        hctx->flags |= BLK_MQ_F_TAG_SHARED;
2889                else
2890                        hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2891        }
2892}
2893
2894static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2895                                        bool shared)
2896{
2897        struct request_queue *q;
2898
2899        lockdep_assert_held(&set->tag_list_lock);
2900
2901        list_for_each_entry(q, &set->tag_list, tag_set_list) {
2902                blk_mq_freeze_queue(q);
2903                queue_set_hctx_shared(q, shared);
2904                blk_mq_unfreeze_queue(q);
2905        }
2906}
2907
2908static void blk_mq_del_queue_tag_set(struct request_queue *q)
2909{
2910        struct blk_mq_tag_set *set = q->tag_set;
2911
2912        mutex_lock(&set->tag_list_lock);
2913        list_del(&q->tag_set_list);
2914        if (list_is_singular(&set->tag_list)) {
2915                /* just transitioned to unshared */
2916                set->flags &= ~BLK_MQ_F_TAG_SHARED;
2917                /* update existing queue */
2918                blk_mq_update_tag_set_depth(set, false);
2919        }
2920        mutex_unlock(&set->tag_list_lock);
2921        INIT_LIST_HEAD(&q->tag_set_list);
2922}
2923
2924static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2925                                     struct request_queue *q)
2926{
2927        mutex_lock(&set->tag_list_lock);
2928
2929        /*
2930         * Check to see if we're transitioning to shared (from 1 to 2 queues).
2931         */
2932        if (!list_empty(&set->tag_list) &&
2933            !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2934                set->flags |= BLK_MQ_F_TAG_SHARED;
2935                /* update existing queue */
2936                blk_mq_update_tag_set_depth(set, true);
2937        }
2938        if (set->flags & BLK_MQ_F_TAG_SHARED)
2939                queue_set_hctx_shared(q, true);
2940        list_add_tail(&q->tag_set_list, &set->tag_list);
2941
2942        mutex_unlock(&set->tag_list_lock);
2943}
2944
2945/* All allocations will be freed in release handler of q->mq_kobj */
2946static int blk_mq_alloc_ctxs(struct request_queue *q)
2947{
2948        struct blk_mq_ctxs *ctxs;
2949        int cpu;
2950
2951        ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2952        if (!ctxs)
2953                return -ENOMEM;
2954
2955        ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2956        if (!ctxs->queue_ctx)
2957                goto fail;
2958
2959        for_each_possible_cpu(cpu) {
2960                struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2961                ctx->ctxs = ctxs;
2962        }
2963
2964        q->mq_kobj = &ctxs->kobj;
2965        q->queue_ctx = ctxs->queue_ctx;
2966
2967        return 0;
2968 fail:
2969        kfree(ctxs);
2970        return -ENOMEM;
2971}
2972
2973/*
2974 * It is the actual release handler for mq, but we do it from
2975 * request queue's release handler for avoiding use-after-free
2976 * and headache because q->mq_kobj shouldn't have been introduced,
2977 * but we can't group ctx/kctx kobj without it.
2978 */
2979void blk_mq_release(struct request_queue *q)
2980{
2981        struct blk_mq_hw_ctx *hctx, *next;
2982        int i;
2983
2984        queue_for_each_hw_ctx(q, hctx, i)
2985                WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2986
2987        /* all hctx are in .unused_hctx_list now */
2988        list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2989                list_del_init(&hctx->hctx_list);
2990                kobject_put(&hctx->kobj);
2991        }
2992
2993        kfree(q->queue_hw_ctx);
2994
2995        /*
2996         * release .mq_kobj and sw queue's kobject now because
2997         * both share lifetime with request queue.
2998         */
2999        blk_mq_sysfs_deinit(q);
3000}
3001
3002struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3003                void *queuedata)
3004{
3005        struct request_queue *uninit_q, *q;
3006
3007        uninit_q = blk_alloc_queue(set->numa_node);
3008        if (!uninit_q)
3009                return ERR_PTR(-ENOMEM);
3010        uninit_q->queuedata = queuedata;
3011
3012        /*
3013         * Initialize the queue without an elevator. device_add_disk() will do
3014         * the initialization.
3015         */
3016        q = blk_mq_init_allocated_queue(set, uninit_q, false);
3017        if (IS_ERR(q))
3018                blk_cleanup_queue(uninit_q);
3019
3020        return q;
3021}
3022EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3023
3024struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3025{
3026        return blk_mq_init_queue_data(set, NULL);
3027}
3028EXPORT_SYMBOL(blk_mq_init_queue);
3029
3030/*
3031 * Helper for setting up a queue with mq ops, given queue depth, and
3032 * the passed in mq ops flags.
3033 */
3034struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3035                                           const struct blk_mq_ops *ops,
3036                                           unsigned int queue_depth,
3037                                           unsigned int set_flags)
3038{
3039        struct request_queue *q;
3040        int ret;
3041
3042        memset(set, 0, sizeof(*set));
3043        set->ops = ops;
3044        set->nr_hw_queues = 1;
3045        set->nr_maps = 1;
3046        set->queue_depth = queue_depth;
3047        set->numa_node = NUMA_NO_NODE;
3048        set->flags = set_flags;
3049
3050        ret = blk_mq_alloc_tag_set(set);
3051        if (ret)
3052                return ERR_PTR(ret);
3053
3054        q = blk_mq_init_queue(set);
3055        if (IS_ERR(q)) {
3056                blk_mq_free_tag_set(set);
3057                return q;
3058        }
3059
3060        return q;
3061}
3062EXPORT_SYMBOL(blk_mq_init_sq_queue);
3063
3064static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3065                struct blk_mq_tag_set *set, struct request_queue *q,
3066                int hctx_idx, int node)
3067{
3068        struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3069
3070        /* reuse dead hctx first */
3071        spin_lock(&q->unused_hctx_lock);
3072        list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3073                if (tmp->numa_node == node) {
3074                        hctx = tmp;
3075                        break;
3076                }
3077        }
3078        if (hctx)
3079                list_del_init(&hctx->hctx_list);
3080        spin_unlock(&q->unused_hctx_lock);
3081
3082        if (!hctx)
3083                hctx = blk_mq_alloc_hctx(q, set, node);
3084        if (!hctx)
3085                goto fail;
3086
3087        if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3088                goto free_hctx;
3089
3090        return hctx;
3091
3092 free_hctx:
3093        kobject_put(&hctx->kobj);
3094 fail:
3095        return NULL;
3096}
3097
3098static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3099                                                struct request_queue *q)
3100{
3101        int i, j, end;
3102        struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3103
3104        if (q->nr_hw_queues < set->nr_hw_queues) {
3105                struct blk_mq_hw_ctx **new_hctxs;
3106
3107                new_hctxs = kcalloc_node(set->nr_hw_queues,
3108                                       sizeof(*new_hctxs), GFP_KERNEL,
3109                                       set->numa_node);
3110                if (!new_hctxs)
3111                        return;
3112                if (hctxs)
3113                        memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3114                               sizeof(*hctxs));
3115                q->queue_hw_ctx = new_hctxs;
3116                kfree(hctxs);
3117                hctxs = new_hctxs;
3118        }
3119
3120        /* protect against switching io scheduler  */
3121        mutex_lock(&q->sysfs_lock);
3122        for (i = 0; i < set->nr_hw_queues; i++) {
3123                int node;
3124                struct blk_mq_hw_ctx *hctx;
3125
3126                node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3127                /*
3128                 * If the hw queue has been mapped to another numa node,
3129                 * we need to realloc the hctx. If allocation fails, fallback
3130                 * to use the previous one.
3131                 */
3132                if (hctxs[i] && (hctxs[i]->numa_node == node))
3133                        continue;
3134
3135                hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3136                if (hctx) {
3137                        if (hctxs[i])
3138                                blk_mq_exit_hctx(q, set, hctxs[i], i);
3139                        hctxs[i] = hctx;
3140                } else {
3141                        if (hctxs[i])
3142                                pr_warn("Allocate new hctx on node %d fails,\
3143                                                fallback to previous one on node %d\n",
3144                                                node, hctxs[i]->numa_node);
3145                        else
3146                                break;
3147                }
3148        }
3149        /*
3150         * Increasing nr_hw_queues fails. Free the newly allocated
3151         * hctxs and keep the previous q->nr_hw_queues.
3152         */
3153        if (i != set->nr_hw_queues) {
3154                j = q->nr_hw_queues;
3155                end = i;
3156        } else {
3157                j = i;
3158                end = q->nr_hw_queues;
3159                q->nr_hw_queues = set->nr_hw_queues;
3160        }
3161
3162        for (; j < end; j++) {
3163                struct blk_mq_hw_ctx *hctx = hctxs[j];
3164
3165                if (hctx) {
3166                        if (hctx->tags)
3167                                blk_mq_free_map_and_requests(set, j);
3168                        blk_mq_exit_hctx(q, set, hctx, j);
3169                        hctxs[j] = NULL;
3170                }
3171        }
3172        mutex_unlock(&q->sysfs_lock);
3173}
3174
3175struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3176                                                  struct request_queue *q,
3177                                                  bool elevator_init)
3178{
3179        /* mark the queue as mq asap */
3180        q->mq_ops = set->ops;
3181
3182        q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3183                                             blk_mq_poll_stats_bkt,
3184                                             BLK_MQ_POLL_STATS_BKTS, q);
3185        if (!q->poll_cb)
3186                goto err_exit;
3187
3188        if (blk_mq_alloc_ctxs(q))
3189                goto err_poll;
3190
3191        /* init q->mq_kobj and sw queues' kobjects */
3192        blk_mq_sysfs_init(q);
3193
3194        INIT_LIST_HEAD(&q->unused_hctx_list);
3195        spin_lock_init(&q->unused_hctx_lock);
3196
3197        blk_mq_realloc_hw_ctxs(set, q);
3198        if (!q->nr_hw_queues)
3199                goto err_hctxs;
3200
3201        INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3202        blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3203
3204        q->tag_set = set;
3205
3206        q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3207        if (set->nr_maps > HCTX_TYPE_POLL &&
3208            set->map[HCTX_TYPE_POLL].nr_queues)
3209                blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3210
3211        q->sg_reserved_size = INT_MAX;
3212
3213        INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3214        INIT_LIST_HEAD(&q->requeue_list);
3215        spin_lock_init(&q->requeue_lock);
3216
3217        q->nr_requests = set->queue_depth;
3218
3219        /*
3220         * Default to classic polling
3221         */
3222        q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3223
3224        blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3225        blk_mq_add_queue_tag_set(set, q);
3226        blk_mq_map_swqueue(q);
3227
3228        if (elevator_init)
3229                elevator_init_mq(q);
3230
3231        return q;
3232
3233err_hctxs:
3234        kfree(q->queue_hw_ctx);
3235        q->nr_hw_queues = 0;
3236        blk_mq_sysfs_deinit(q);
3237err_poll:
3238        blk_stat_free_callback(q->poll_cb);
3239        q->poll_cb = NULL;
3240err_exit:
3241        q->mq_ops = NULL;
3242        return ERR_PTR(-ENOMEM);
3243}
3244EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3245
3246/* tags can _not_ be used after returning from blk_mq_exit_queue */
3247void blk_mq_exit_queue(struct request_queue *q)
3248{
3249        struct blk_mq_tag_set   *set = q->tag_set;
3250
3251        blk_mq_del_queue_tag_set(q);
3252        blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3253}
3254
3255static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3256{
3257        int i;
3258
3259        for (i = 0; i < set->nr_hw_queues; i++)
3260                if (!__blk_mq_alloc_map_and_request(set, i))
3261                        goto out_unwind;
3262
3263        return 0;
3264
3265out_unwind:
3266        while (--i >= 0)
3267                blk_mq_free_map_and_requests(set, i);
3268
3269        return -ENOMEM;
3270}
3271
3272/*
3273 * Allocate the request maps associated with this tag_set. Note that this
3274 * may reduce the depth asked for, if memory is tight. set->queue_depth
3275 * will be updated to reflect the allocated depth.
3276 */
3277static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3278{
3279        unsigned int depth;
3280        int err;
3281
3282        depth = set->queue_depth;
3283        do {
3284                err = __blk_mq_alloc_rq_maps(set);
3285                if (!err)
3286                        break;
3287
3288                set->queue_depth >>= 1;
3289                if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3290                        err = -ENOMEM;
3291                        break;
3292                }
3293        } while (set->queue_depth);
3294
3295        if (!set->queue_depth || err) {
3296                pr_err("blk-mq: failed to allocate request map\n");
3297                return -ENOMEM;
3298        }
3299
3300        if (depth != set->queue_depth)
3301                pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3302                                                depth, set->queue_depth);
3303
3304        return 0;
3305}
3306
3307static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3308{
3309        /*
3310         * blk_mq_map_queues() and multiple .map_queues() implementations
3311         * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3312         * number of hardware queues.
3313         */
3314        if (set->nr_maps == 1)
3315                set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3316
3317        if (set->ops->map_queues && !is_kdump_kernel()) {
3318                int i;
3319
3320                /*
3321                 * transport .map_queues is usually done in the following
3322                 * way:
3323                 *
3324                 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3325                 *      mask = get_cpu_mask(queue)
3326                 *      for_each_cpu(cpu, mask)
3327                 *              set->map[x].mq_map[cpu] = queue;
3328                 * }
3329                 *
3330                 * When we need to remap, the table has to be cleared for
3331                 * killing stale mapping since one CPU may not be mapped
3332                 * to any hw queue.
3333                 */
3334                for (i = 0; i < set->nr_maps; i++)
3335                        blk_mq_clear_mq_map(&set->map[i]);
3336
3337                return set->ops->map_queues(set);
3338        } else {
3339                BUG_ON(set->nr_maps > 1);
3340                return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3341        }
3342}
3343
3344static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3345                                  int cur_nr_hw_queues, int new_nr_hw_queues)
3346{
3347        struct blk_mq_tags **new_tags;
3348
3349        if (cur_nr_hw_queues >= new_nr_hw_queues)
3350                return 0;
3351
3352        new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3353                                GFP_KERNEL, set->numa_node);
3354        if (!new_tags)
3355                return -ENOMEM;
3356
3357        if (set->tags)
3358                memcpy(new_tags, set->tags, cur_nr_hw_queues *
3359                       sizeof(*set->tags));
3360        kfree(set->tags);
3361        set->tags = new_tags;
3362        set->nr_hw_queues = new_nr_hw_queues;
3363
3364        return 0;
3365}
3366
3367/*
3368 * Alloc a tag set to be associated with one or more request queues.
3369 * May fail with EINVAL for various error conditions. May adjust the
3370 * requested depth down, if it's too large. In that case, the set
3371 * value will be stored in set->queue_depth.
3372 */
3373int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3374{
3375        int i, ret;
3376
3377        BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3378
3379        if (!set->nr_hw_queues)
3380                return -EINVAL;
3381        if (!set->queue_depth)
3382                return -EINVAL;
3383        if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3384                return -EINVAL;
3385
3386        if (!set->ops->queue_rq)
3387                return -EINVAL;
3388
3389        if (!set->ops->get_budget ^ !set->ops->put_budget)
3390                return -EINVAL;
3391
3392        if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3393                pr_info("blk-mq: reduced tag depth to %u\n",
3394                        BLK_MQ_MAX_DEPTH);
3395                set->queue_depth = BLK_MQ_MAX_DEPTH;
3396        }
3397
3398        if (!set->nr_maps)
3399                set->nr_maps = 1;
3400        else if (set->nr_maps > HCTX_MAX_TYPES)
3401                return -EINVAL;
3402
3403        /*
3404         * If a crashdump is active, then we are potentially in a very
3405         * memory constrained environment. Limit us to 1 queue and
3406         * 64 tags to prevent using too much memory.
3407         */
3408        if (is_kdump_kernel()) {
3409                set->nr_hw_queues = 1;
3410                set->nr_maps = 1;
3411                set->queue_depth = min(64U, set->queue_depth);
3412        }
3413        /*
3414         * There is no use for more h/w queues than cpus if we just have
3415         * a single map
3416         */
3417        if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3418                set->nr_hw_queues = nr_cpu_ids;
3419
3420        if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3421                return -ENOMEM;
3422
3423        ret = -ENOMEM;
3424        for (i = 0; i < set->nr_maps; i++) {
3425                set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3426                                                  sizeof(set->map[i].mq_map[0]),
3427                                                  GFP_KERNEL, set->numa_node);
3428                if (!set->map[i].mq_map)
3429                        goto out_free_mq_map;
3430                set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3431        }
3432
3433        ret = blk_mq_update_queue_map(set);
3434        if (ret)
3435                goto out_free_mq_map;
3436
3437        ret = blk_mq_alloc_map_and_requests(set);
3438        if (ret)
3439                goto out_free_mq_map;
3440
3441        mutex_init(&set->tag_list_lock);
3442        INIT_LIST_HEAD(&set->tag_list);
3443
3444        return 0;
3445
3446out_free_mq_map:
3447        for (i = 0; i < set->nr_maps; i++) {
3448                kfree(set->map[i].mq_map);
3449                set->map[i].mq_map = NULL;
3450        }
3451        kfree(set->tags);
3452        set->tags = NULL;
3453        return ret;
3454}
3455EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3456
3457void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3458{
3459        int i, j;
3460
3461        for (i = 0; i < set->nr_hw_queues; i++)
3462                blk_mq_free_map_and_requests(set, i);
3463
3464        for (j = 0; j < set->nr_maps; j++) {
3465                kfree(set->map[j].mq_map);
3466                set->map[j].mq_map = NULL;
3467        }
3468
3469        kfree(set->tags);
3470        set->tags = NULL;
3471}
3472EXPORT_SYMBOL(blk_mq_free_tag_set);
3473
3474int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3475{
3476        struct blk_mq_tag_set *set = q->tag_set;
3477        struct blk_mq_hw_ctx *hctx;
3478        int i, ret;
3479
3480        if (!set)
3481                return -EINVAL;
3482
3483        if (q->nr_requests == nr)
3484                return 0;
3485
3486        blk_mq_freeze_queue(q);
3487        blk_mq_quiesce_queue(q);
3488
3489        ret = 0;
3490        queue_for_each_hw_ctx(q, hctx, i) {
3491                if (!hctx->tags)
3492                        continue;
3493                /*
3494                 * If we're using an MQ scheduler, just update the scheduler
3495                 * queue depth. This is similar to what the old code would do.
3496                 */
3497                if (!hctx->sched_tags) {
3498                        ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3499                                                        false);
3500                } else {
3501                        ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3502                                                        nr, true);
3503                }
3504                if (ret)
3505                        break;
3506                if (q->elevator && q->elevator->type->ops.depth_updated)
3507                        q->elevator->type->ops.depth_updated(hctx);
3508        }
3509
3510        if (!ret)
3511                q->nr_requests = nr;
3512
3513        blk_mq_unquiesce_queue(q);
3514        blk_mq_unfreeze_queue(q);
3515
3516        return ret;
3517}
3518
3519/*
3520 * request_queue and elevator_type pair.
3521 * It is just used by __blk_mq_update_nr_hw_queues to cache
3522 * the elevator_type associated with a request_queue.
3523 */
3524struct blk_mq_qe_pair {
3525        struct list_head node;
3526        struct request_queue *q;
3527        struct elevator_type *type;
3528};
3529
3530/*
3531 * Cache the elevator_type in qe pair list and switch the
3532 * io scheduler to 'none'
3533 */
3534static bool blk_mq_elv_switch_none(struct list_head *head,
3535                struct request_queue *q)
3536{
3537        struct blk_mq_qe_pair *qe;
3538
3539        if (!q->elevator)
3540                return true;
3541
3542        qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3543        if (!qe)
3544                return false;
3545
3546        INIT_LIST_HEAD(&qe->node);
3547        qe->q = q;
3548        qe->type = q->elevator->type;
3549        list_add(&qe->node, head);
3550
3551        mutex_lock(&q->sysfs_lock);
3552        /*
3553         * After elevator_switch_mq, the previous elevator_queue will be
3554         * released by elevator_release. The reference of the io scheduler
3555         * module get by elevator_get will also be put. So we need to get
3556         * a reference of the io scheduler module here to prevent it to be
3557         * removed.
3558         */
3559        __module_get(qe->type->elevator_owner);
3560        elevator_switch_mq(q, NULL);
3561        mutex_unlock(&q->sysfs_lock);
3562
3563        return true;
3564}
3565
3566static void blk_mq_elv_switch_back(struct list_head *head,
3567                struct request_queue *q)
3568{
3569        struct blk_mq_qe_pair *qe;
3570        struct elevator_type *t = NULL;
3571
3572        list_for_each_entry(qe, head, node)
3573                if (qe->q == q) {
3574                        t = qe->type;
3575                        break;
3576                }
3577
3578        if (!t)
3579                return;
3580
3581        list_del(&qe->node);
3582        kfree(qe);
3583
3584        mutex_lock(&q->sysfs_lock);
3585        elevator_switch_mq(q, t);
3586        mutex_unlock(&q->sysfs_lock);
3587}
3588
3589static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3590                                                        int nr_hw_queues)
3591{
3592        struct request_queue *q;
3593        LIST_HEAD(head);
3594        int prev_nr_hw_queues;
3595
3596        lockdep_assert_held(&set->tag_list_lock);
3597
3598        if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3599                nr_hw_queues = nr_cpu_ids;
3600        if (nr_hw_queues < 1)
3601                return;
3602        if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3603                return;
3604
3605        list_for_each_entry(q, &set->tag_list, tag_set_list)
3606                blk_mq_freeze_queue(q);
3607        /*
3608         * Switch IO scheduler to 'none', cleaning up the data associated
3609         * with the previous scheduler. We will switch back once we are done
3610         * updating the new sw to hw queue mappings.
3611         */
3612        list_for_each_entry(q, &set->tag_list, tag_set_list)
3613                if (!blk_mq_elv_switch_none(&head, q))
3614                        goto switch_back;
3615
3616        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3617                blk_mq_debugfs_unregister_hctxs(q);
3618                blk_mq_sysfs_unregister(q);
3619        }
3620
3621        prev_nr_hw_queues = set->nr_hw_queues;
3622        if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3623            0)
3624                goto reregister;
3625
3626        set->nr_hw_queues = nr_hw_queues;
3627fallback:
3628        blk_mq_update_queue_map(set);
3629        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3630                blk_mq_realloc_hw_ctxs(set, q);
3631                if (q->nr_hw_queues != set->nr_hw_queues) {
3632                        pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3633                                        nr_hw_queues, prev_nr_hw_queues);
3634                        set->nr_hw_queues = prev_nr_hw_queues;
3635                        blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3636                        goto fallback;
3637                }
3638                blk_mq_map_swqueue(q);
3639        }
3640
3641reregister:
3642        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3643                blk_mq_sysfs_register(q);
3644                blk_mq_debugfs_register_hctxs(q);
3645        }
3646
3647switch_back:
3648        list_for_each_entry(q, &set->tag_list, tag_set_list)
3649                blk_mq_elv_switch_back(&head, q);
3650
3651        list_for_each_entry(q, &set->tag_list, tag_set_list)
3652                blk_mq_unfreeze_queue(q);
3653}
3654
3655void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3656{
3657        mutex_lock(&set->tag_list_lock);
3658        __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3659        mutex_unlock(&set->tag_list_lock);
3660}
3661EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3662
3663/* Enable polling stats and return whether they were already enabled. */
3664static bool blk_poll_stats_enable(struct request_queue *q)
3665{
3666        if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3667            blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3668                return true;
3669        blk_stat_add_callback(q, q->poll_cb);
3670        return false;
3671}
3672
3673static void blk_mq_poll_stats_start(struct request_queue *q)
3674{
3675        /*
3676         * We don't arm the callback if polling stats are not enabled or the
3677         * callback is already active.
3678         */
3679        if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3680            blk_stat_is_active(q->poll_cb))
3681                return;
3682
3683        blk_stat_activate_msecs(q->poll_cb, 100);
3684}
3685
3686static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3687{
3688        struct request_queue *q = cb->data;
3689        int bucket;
3690
3691        for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3692                if (cb->stat[bucket].nr_samples)
3693                        q->poll_stat[bucket] = cb->stat[bucket];
3694        }
3695}
3696
3697static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3698                                       struct request *rq)
3699{
3700        unsigned long ret = 0;
3701        int bucket;
3702
3703        /*
3704         * If stats collection isn't on, don't sleep but turn it on for
3705         * future users
3706         */
3707        if (!blk_poll_stats_enable(q))
3708                return 0;
3709
3710        /*
3711         * As an optimistic guess, use half of the mean service time
3712         * for this type of request. We can (and should) make this smarter.
3713         * For instance, if the completion latencies are tight, we can
3714         * get closer than just half the mean. This is especially
3715         * important on devices where the completion latencies are longer
3716         * than ~10 usec. We do use the stats for the relevant IO size
3717         * if available which does lead to better estimates.
3718         */
3719        bucket = blk_mq_poll_stats_bkt(rq);
3720        if (bucket < 0)
3721                return ret;
3722
3723        if (q->poll_stat[bucket].nr_samples)
3724                ret = (q->poll_stat[bucket].mean + 1) / 2;
3725
3726        return ret;
3727}
3728
3729static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3730                                     struct request *rq)
3731{
3732        struct hrtimer_sleeper hs;
3733        enum hrtimer_mode mode;
3734        unsigned int nsecs;
3735        ktime_t kt;
3736
3737        if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3738                return false;
3739
3740        /*
3741         * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3742         *
3743         *  0:  use half of prev avg
3744         * >0:  use this specific value
3745         */
3746        if (q->poll_nsec > 0)
3747                nsecs = q->poll_nsec;
3748        else
3749                nsecs = blk_mq_poll_nsecs(q, rq);
3750
3751        if (!nsecs)
3752                return false;
3753
3754        rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3755
3756        /*
3757         * This will be replaced with the stats tracking code, using
3758         * 'avg_completion_time / 2' as the pre-sleep target.
3759         */
3760        kt = nsecs;
3761
3762        mode = HRTIMER_MODE_REL;
3763        hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3764        hrtimer_set_expires(&hs.timer, kt);
3765
3766        do {
3767                if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3768                        break;
3769                set_current_state(TASK_UNINTERRUPTIBLE);
3770                hrtimer_sleeper_start_expires(&hs, mode);
3771                if (hs.task)
3772                        io_schedule();
3773                hrtimer_cancel(&hs.timer);
3774                mode = HRTIMER_MODE_ABS;
3775        } while (hs.task && !signal_pending(current));
3776
3777        __set_current_state(TASK_RUNNING);
3778        destroy_hrtimer_on_stack(&hs.timer);
3779        return true;
3780}
3781
3782static bool blk_mq_poll_hybrid(struct request_queue *q,
3783                               struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3784{
3785        struct request *rq;
3786
3787        if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3788                return false;
3789
3790        if (!blk_qc_t_is_internal(cookie))
3791                rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3792        else {
3793                rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3794                /*
3795                 * With scheduling, if the request has completed, we'll
3796                 * get a NULL return here, as we clear the sched tag when
3797                 * that happens. The request still remains valid, like always,
3798                 * so we should be safe with just the NULL check.
3799                 */
3800                if (!rq)
3801                        return false;
3802        }
3803
3804        return blk_mq_poll_hybrid_sleep(q, rq);
3805}
3806
3807/**
3808 * blk_poll - poll for IO completions
3809 * @q:  the queue
3810 * @cookie: cookie passed back at IO submission time
3811 * @spin: whether to spin for completions
3812 *
3813 * Description:
3814 *    Poll for completions on the passed in queue. Returns number of
3815 *    completed entries found. If @spin is true, then blk_poll will continue
3816 *    looping until at least one completion is found, unless the task is
3817 *    otherwise marked running (or we need to reschedule).
3818 */
3819int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3820{
3821        struct blk_mq_hw_ctx *hctx;
3822        long state;
3823
3824        if (!blk_qc_t_valid(cookie) ||
3825            !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3826                return 0;
3827
3828        if (current->plug)
3829                blk_flush_plug_list(current->plug, false);
3830
3831        hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3832
3833        /*
3834         * If we sleep, have the caller restart the poll loop to reset
3835         * the state. Like for the other success return cases, the
3836         * caller is responsible for checking if the IO completed. If
3837         * the IO isn't complete, we'll get called again and will go
3838         * straight to the busy poll loop.
3839         */
3840        if (blk_mq_poll_hybrid(q, hctx, cookie))
3841                return 1;
3842
3843        hctx->poll_considered++;
3844
3845        state = current->state;
3846        do {
3847                int ret;
3848
3849                hctx->poll_invoked++;
3850
3851                ret = q->mq_ops->poll(hctx);
3852                if (ret > 0) {
3853                        hctx->poll_success++;
3854                        __set_current_state(TASK_RUNNING);
3855                        return ret;
3856                }
3857
3858                if (signal_pending_state(state, current))
3859                        __set_current_state(TASK_RUNNING);
3860
3861                if (current->state == TASK_RUNNING)
3862                        return 1;
3863                if (ret < 0 || !spin)
3864                        break;
3865                cpu_relax();
3866        } while (!need_resched());
3867
3868        __set_current_state(TASK_RUNNING);
3869        return 0;
3870}
3871EXPORT_SYMBOL_GPL(blk_poll);
3872
3873unsigned int blk_mq_rq_cpu(struct request *rq)
3874{
3875        return rq->mq_ctx->cpu;
3876}
3877EXPORT_SYMBOL(blk_mq_rq_cpu);
3878
3879static int __init blk_mq_init(void)
3880{
3881        int i;
3882
3883        for_each_possible_cpu(i)
3884                INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3885        open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3886
3887        cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3888                                  "block/softirq:dead", NULL,
3889                                  blk_softirq_cpu_dead);
3890        cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3891                                blk_mq_hctx_notify_dead);
3892        cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3893                                blk_mq_hctx_notify_online,
3894                                blk_mq_hctx_notify_offline);
3895        return 0;
3896}
3897subsys_initcall(blk_mq_init);
3898