linux/crypto/crypto_engine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Handle async block request by crypto hardware engine.
   4 *
   5 * Copyright (C) 2016 Linaro, Inc.
   6 *
   7 * Author: Baolin Wang <baolin.wang@linaro.org>
   8 */
   9
  10#include <linux/err.h>
  11#include <linux/delay.h>
  12#include <crypto/engine.h>
  13#include <uapi/linux/sched/types.h>
  14#include "internal.h"
  15
  16#define CRYPTO_ENGINE_MAX_QLEN 10
  17
  18/**
  19 * crypto_finalize_request - finalize one request if the request is done
  20 * @engine: the hardware engine
  21 * @req: the request need to be finalized
  22 * @err: error number
  23 */
  24static void crypto_finalize_request(struct crypto_engine *engine,
  25                                    struct crypto_async_request *req, int err)
  26{
  27        unsigned long flags;
  28        bool finalize_req = false;
  29        int ret;
  30        struct crypto_engine_ctx *enginectx;
  31
  32        /*
  33         * If hardware cannot enqueue more requests
  34         * and retry mechanism is not supported
  35         * make sure we are completing the current request
  36         */
  37        if (!engine->retry_support) {
  38                spin_lock_irqsave(&engine->queue_lock, flags);
  39                if (engine->cur_req == req) {
  40                        finalize_req = true;
  41                        engine->cur_req = NULL;
  42                }
  43                spin_unlock_irqrestore(&engine->queue_lock, flags);
  44        }
  45
  46        if (finalize_req || engine->retry_support) {
  47                enginectx = crypto_tfm_ctx(req->tfm);
  48                if (enginectx->op.prepare_request &&
  49                    enginectx->op.unprepare_request) {
  50                        ret = enginectx->op.unprepare_request(engine, req);
  51                        if (ret)
  52                                dev_err(engine->dev, "failed to unprepare request\n");
  53                }
  54        }
  55        req->complete(req, err);
  56
  57        kthread_queue_work(engine->kworker, &engine->pump_requests);
  58}
  59
  60/**
  61 * crypto_pump_requests - dequeue one request from engine queue to process
  62 * @engine: the hardware engine
  63 * @in_kthread: true if we are in the context of the request pump thread
  64 *
  65 * This function checks if there is any request in the engine queue that
  66 * needs processing and if so call out to the driver to initialize hardware
  67 * and handle each request.
  68 */
  69static void crypto_pump_requests(struct crypto_engine *engine,
  70                                 bool in_kthread)
  71{
  72        struct crypto_async_request *async_req, *backlog;
  73        unsigned long flags;
  74        bool was_busy = false;
  75        int ret;
  76        struct crypto_engine_ctx *enginectx;
  77
  78        spin_lock_irqsave(&engine->queue_lock, flags);
  79
  80        /* Make sure we are not already running a request */
  81        if (!engine->retry_support && engine->cur_req)
  82                goto out;
  83
  84        /* If another context is idling then defer */
  85        if (engine->idling) {
  86                kthread_queue_work(engine->kworker, &engine->pump_requests);
  87                goto out;
  88        }
  89
  90        /* Check if the engine queue is idle */
  91        if (!crypto_queue_len(&engine->queue) || !engine->running) {
  92                if (!engine->busy)
  93                        goto out;
  94
  95                /* Only do teardown in the thread */
  96                if (!in_kthread) {
  97                        kthread_queue_work(engine->kworker,
  98                                           &engine->pump_requests);
  99                        goto out;
 100                }
 101
 102                engine->busy = false;
 103                engine->idling = true;
 104                spin_unlock_irqrestore(&engine->queue_lock, flags);
 105
 106                if (engine->unprepare_crypt_hardware &&
 107                    engine->unprepare_crypt_hardware(engine))
 108                        dev_err(engine->dev, "failed to unprepare crypt hardware\n");
 109
 110                spin_lock_irqsave(&engine->queue_lock, flags);
 111                engine->idling = false;
 112                goto out;
 113        }
 114
 115start_request:
 116        /* Get the fist request from the engine queue to handle */
 117        backlog = crypto_get_backlog(&engine->queue);
 118        async_req = crypto_dequeue_request(&engine->queue);
 119        if (!async_req)
 120                goto out;
 121
 122        /*
 123         * If hardware doesn't support the retry mechanism,
 124         * keep track of the request we are processing now.
 125         * We'll need it on completion (crypto_finalize_request).
 126         */
 127        if (!engine->retry_support)
 128                engine->cur_req = async_req;
 129
 130        if (backlog)
 131                backlog->complete(backlog, -EINPROGRESS);
 132
 133        if (engine->busy)
 134                was_busy = true;
 135        else
 136                engine->busy = true;
 137
 138        spin_unlock_irqrestore(&engine->queue_lock, flags);
 139
 140        /* Until here we get the request need to be encrypted successfully */
 141        if (!was_busy && engine->prepare_crypt_hardware) {
 142                ret = engine->prepare_crypt_hardware(engine);
 143                if (ret) {
 144                        dev_err(engine->dev, "failed to prepare crypt hardware\n");
 145                        goto req_err_2;
 146                }
 147        }
 148
 149        enginectx = crypto_tfm_ctx(async_req->tfm);
 150
 151        if (enginectx->op.prepare_request) {
 152                ret = enginectx->op.prepare_request(engine, async_req);
 153                if (ret) {
 154                        dev_err(engine->dev, "failed to prepare request: %d\n",
 155                                ret);
 156                        goto req_err_2;
 157                }
 158        }
 159        if (!enginectx->op.do_one_request) {
 160                dev_err(engine->dev, "failed to do request\n");
 161                ret = -EINVAL;
 162                goto req_err_1;
 163        }
 164
 165        ret = enginectx->op.do_one_request(engine, async_req);
 166
 167        /* Request unsuccessfully executed by hardware */
 168        if (ret < 0) {
 169                /*
 170                 * If hardware queue is full (-ENOSPC), requeue request
 171                 * regardless of backlog flag.
 172                 * Otherwise, unprepare and complete the request.
 173                 */
 174                if (!engine->retry_support ||
 175                    (ret != -ENOSPC)) {
 176                        dev_err(engine->dev,
 177                                "Failed to do one request from queue: %d\n",
 178                                ret);
 179                        goto req_err_1;
 180                }
 181                /*
 182                 * If retry mechanism is supported,
 183                 * unprepare current request and
 184                 * enqueue it back into crypto-engine queue.
 185                 */
 186                if (enginectx->op.unprepare_request) {
 187                        ret = enginectx->op.unprepare_request(engine,
 188                                                              async_req);
 189                        if (ret)
 190                                dev_err(engine->dev,
 191                                        "failed to unprepare request\n");
 192                }
 193                spin_lock_irqsave(&engine->queue_lock, flags);
 194                /*
 195                 * If hardware was unable to execute request, enqueue it
 196                 * back in front of crypto-engine queue, to keep the order
 197                 * of requests.
 198                 */
 199                crypto_enqueue_request_head(&engine->queue, async_req);
 200
 201                kthread_queue_work(engine->kworker, &engine->pump_requests);
 202                goto out;
 203        }
 204
 205        goto retry;
 206
 207req_err_1:
 208        if (enginectx->op.unprepare_request) {
 209                ret = enginectx->op.unprepare_request(engine, async_req);
 210                if (ret)
 211                        dev_err(engine->dev, "failed to unprepare request\n");
 212        }
 213
 214req_err_2:
 215        async_req->complete(async_req, ret);
 216
 217retry:
 218        /* If retry mechanism is supported, send new requests to engine */
 219        if (engine->retry_support) {
 220                spin_lock_irqsave(&engine->queue_lock, flags);
 221                goto start_request;
 222        }
 223        return;
 224
 225out:
 226        spin_unlock_irqrestore(&engine->queue_lock, flags);
 227
 228        /*
 229         * Batch requests is possible only if
 230         * hardware can enqueue multiple requests
 231         */
 232        if (engine->do_batch_requests) {
 233                ret = engine->do_batch_requests(engine);
 234                if (ret)
 235                        dev_err(engine->dev, "failed to do batch requests: %d\n",
 236                                ret);
 237        }
 238
 239        return;
 240}
 241
 242static void crypto_pump_work(struct kthread_work *work)
 243{
 244        struct crypto_engine *engine =
 245                container_of(work, struct crypto_engine, pump_requests);
 246
 247        crypto_pump_requests(engine, true);
 248}
 249
 250/**
 251 * crypto_transfer_request - transfer the new request into the engine queue
 252 * @engine: the hardware engine
 253 * @req: the request need to be listed into the engine queue
 254 */
 255static int crypto_transfer_request(struct crypto_engine *engine,
 256                                   struct crypto_async_request *req,
 257                                   bool need_pump)
 258{
 259        unsigned long flags;
 260        int ret;
 261
 262        spin_lock_irqsave(&engine->queue_lock, flags);
 263
 264        if (!engine->running) {
 265                spin_unlock_irqrestore(&engine->queue_lock, flags);
 266                return -ESHUTDOWN;
 267        }
 268
 269        ret = crypto_enqueue_request(&engine->queue, req);
 270
 271        if (!engine->busy && need_pump)
 272                kthread_queue_work(engine->kworker, &engine->pump_requests);
 273
 274        spin_unlock_irqrestore(&engine->queue_lock, flags);
 275        return ret;
 276}
 277
 278/**
 279 * crypto_transfer_request_to_engine - transfer one request to list
 280 * into the engine queue
 281 * @engine: the hardware engine
 282 * @req: the request need to be listed into the engine queue
 283 */
 284static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
 285                                             struct crypto_async_request *req)
 286{
 287        return crypto_transfer_request(engine, req, true);
 288}
 289
 290/**
 291 * crypto_transfer_aead_request_to_engine - transfer one aead_request
 292 * to list into the engine queue
 293 * @engine: the hardware engine
 294 * @req: the request need to be listed into the engine queue
 295 */
 296int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
 297                                           struct aead_request *req)
 298{
 299        return crypto_transfer_request_to_engine(engine, &req->base);
 300}
 301EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
 302
 303/**
 304 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
 305 * to list into the engine queue
 306 * @engine: the hardware engine
 307 * @req: the request need to be listed into the engine queue
 308 */
 309int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
 310                                               struct akcipher_request *req)
 311{
 312        return crypto_transfer_request_to_engine(engine, &req->base);
 313}
 314EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
 315
 316/**
 317 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
 318 * to list into the engine queue
 319 * @engine: the hardware engine
 320 * @req: the request need to be listed into the engine queue
 321 */
 322int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
 323                                           struct ahash_request *req)
 324{
 325        return crypto_transfer_request_to_engine(engine, &req->base);
 326}
 327EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
 328
 329/**
 330 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
 331 * to list into the engine queue
 332 * @engine: the hardware engine
 333 * @req: the request need to be listed into the engine queue
 334 */
 335int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
 336                                               struct skcipher_request *req)
 337{
 338        return crypto_transfer_request_to_engine(engine, &req->base);
 339}
 340EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
 341
 342/**
 343 * crypto_finalize_aead_request - finalize one aead_request if
 344 * the request is done
 345 * @engine: the hardware engine
 346 * @req: the request need to be finalized
 347 * @err: error number
 348 */
 349void crypto_finalize_aead_request(struct crypto_engine *engine,
 350                                  struct aead_request *req, int err)
 351{
 352        return crypto_finalize_request(engine, &req->base, err);
 353}
 354EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
 355
 356/**
 357 * crypto_finalize_akcipher_request - finalize one akcipher_request if
 358 * the request is done
 359 * @engine: the hardware engine
 360 * @req: the request need to be finalized
 361 * @err: error number
 362 */
 363void crypto_finalize_akcipher_request(struct crypto_engine *engine,
 364                                      struct akcipher_request *req, int err)
 365{
 366        return crypto_finalize_request(engine, &req->base, err);
 367}
 368EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
 369
 370/**
 371 * crypto_finalize_hash_request - finalize one ahash_request if
 372 * the request is done
 373 * @engine: the hardware engine
 374 * @req: the request need to be finalized
 375 * @err: error number
 376 */
 377void crypto_finalize_hash_request(struct crypto_engine *engine,
 378                                  struct ahash_request *req, int err)
 379{
 380        return crypto_finalize_request(engine, &req->base, err);
 381}
 382EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
 383
 384/**
 385 * crypto_finalize_skcipher_request - finalize one skcipher_request if
 386 * the request is done
 387 * @engine: the hardware engine
 388 * @req: the request need to be finalized
 389 * @err: error number
 390 */
 391void crypto_finalize_skcipher_request(struct crypto_engine *engine,
 392                                      struct skcipher_request *req, int err)
 393{
 394        return crypto_finalize_request(engine, &req->base, err);
 395}
 396EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
 397
 398/**
 399 * crypto_engine_start - start the hardware engine
 400 * @engine: the hardware engine need to be started
 401 *
 402 * Return 0 on success, else on fail.
 403 */
 404int crypto_engine_start(struct crypto_engine *engine)
 405{
 406        unsigned long flags;
 407
 408        spin_lock_irqsave(&engine->queue_lock, flags);
 409
 410        if (engine->running || engine->busy) {
 411                spin_unlock_irqrestore(&engine->queue_lock, flags);
 412                return -EBUSY;
 413        }
 414
 415        engine->running = true;
 416        spin_unlock_irqrestore(&engine->queue_lock, flags);
 417
 418        kthread_queue_work(engine->kworker, &engine->pump_requests);
 419
 420        return 0;
 421}
 422EXPORT_SYMBOL_GPL(crypto_engine_start);
 423
 424/**
 425 * crypto_engine_stop - stop the hardware engine
 426 * @engine: the hardware engine need to be stopped
 427 *
 428 * Return 0 on success, else on fail.
 429 */
 430int crypto_engine_stop(struct crypto_engine *engine)
 431{
 432        unsigned long flags;
 433        unsigned int limit = 500;
 434        int ret = 0;
 435
 436        spin_lock_irqsave(&engine->queue_lock, flags);
 437
 438        /*
 439         * If the engine queue is not empty or the engine is on busy state,
 440         * we need to wait for a while to pump the requests of engine queue.
 441         */
 442        while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
 443                spin_unlock_irqrestore(&engine->queue_lock, flags);
 444                msleep(20);
 445                spin_lock_irqsave(&engine->queue_lock, flags);
 446        }
 447
 448        if (crypto_queue_len(&engine->queue) || engine->busy)
 449                ret = -EBUSY;
 450        else
 451                engine->running = false;
 452
 453        spin_unlock_irqrestore(&engine->queue_lock, flags);
 454
 455        if (ret)
 456                dev_warn(engine->dev, "could not stop engine\n");
 457
 458        return ret;
 459}
 460EXPORT_SYMBOL_GPL(crypto_engine_stop);
 461
 462/**
 463 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
 464 * and initialize it by setting the maximum number of entries in the software
 465 * crypto-engine queue.
 466 * @dev: the device attached with one hardware engine
 467 * @retry_support: whether hardware has support for retry mechanism
 468 * @cbk_do_batch: pointer to a callback function to be invoked when executing a
 469 *                a batch of requests.
 470 *                This has the form:
 471 *                callback(struct crypto_engine *engine)
 472 *                where:
 473 *                @engine: the crypto engine structure.
 474 * @rt: whether this queue is set to run as a realtime task
 475 * @qlen: maximum size of the crypto-engine queue
 476 *
 477 * This must be called from context that can sleep.
 478 * Return: the crypto engine structure on success, else NULL.
 479 */
 480struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
 481                                                       bool retry_support,
 482                                                       int (*cbk_do_batch)(struct crypto_engine *engine),
 483                                                       bool rt, int qlen)
 484{
 485        struct crypto_engine *engine;
 486
 487        if (!dev)
 488                return NULL;
 489
 490        engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
 491        if (!engine)
 492                return NULL;
 493
 494        engine->dev = dev;
 495        engine->rt = rt;
 496        engine->running = false;
 497        engine->busy = false;
 498        engine->idling = false;
 499        engine->retry_support = retry_support;
 500        engine->priv_data = dev;
 501        /*
 502         * Batch requests is possible only if
 503         * hardware has support for retry mechanism.
 504         */
 505        engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
 506
 507        snprintf(engine->name, sizeof(engine->name),
 508                 "%s-engine", dev_name(dev));
 509
 510        crypto_init_queue(&engine->queue, qlen);
 511        spin_lock_init(&engine->queue_lock);
 512
 513        engine->kworker = kthread_create_worker(0, "%s", engine->name);
 514        if (IS_ERR(engine->kworker)) {
 515                dev_err(dev, "failed to create crypto request pump task\n");
 516                return NULL;
 517        }
 518        kthread_init_work(&engine->pump_requests, crypto_pump_work);
 519
 520        if (engine->rt) {
 521                dev_info(dev, "will run requests pump with realtime priority\n");
 522                sched_set_fifo(engine->kworker->task);
 523        }
 524
 525        return engine;
 526}
 527EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
 528
 529/**
 530 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
 531 * initialize it.
 532 * @dev: the device attached with one hardware engine
 533 * @rt: whether this queue is set to run as a realtime task
 534 *
 535 * This must be called from context that can sleep.
 536 * Return: the crypto engine structure on success, else NULL.
 537 */
 538struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
 539{
 540        return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
 541                                                CRYPTO_ENGINE_MAX_QLEN);
 542}
 543EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
 544
 545/**
 546 * crypto_engine_exit - free the resources of hardware engine when exit
 547 * @engine: the hardware engine need to be freed
 548 *
 549 * Return 0 for success.
 550 */
 551int crypto_engine_exit(struct crypto_engine *engine)
 552{
 553        int ret;
 554
 555        ret = crypto_engine_stop(engine);
 556        if (ret)
 557                return ret;
 558
 559        kthread_destroy_worker(engine->kworker);
 560
 561        return 0;
 562}
 563EXPORT_SYMBOL_GPL(crypto_engine_exit);
 564
 565MODULE_LICENSE("GPL");
 566MODULE_DESCRIPTION("Crypto hardware engine framework");
 567