linux/drivers/base/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sysfs.h>
  30
  31#include "base.h"
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42        return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
  48static LIST_HEAD(wait_for_suppliers);
  49static DEFINE_MUTEX(wfs_lock);
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static unsigned int defer_fw_devlink_count;
  53static LIST_HEAD(deferred_fw_devlink);
  54static DEFINE_MUTEX(defer_fw_devlink_lock);
  55static bool fw_devlink_is_permissive(void);
  56
  57#ifdef CONFIG_SRCU
  58static DEFINE_MUTEX(device_links_lock);
  59DEFINE_STATIC_SRCU(device_links_srcu);
  60
  61static inline void device_links_write_lock(void)
  62{
  63        mutex_lock(&device_links_lock);
  64}
  65
  66static inline void device_links_write_unlock(void)
  67{
  68        mutex_unlock(&device_links_lock);
  69}
  70
  71int device_links_read_lock(void) __acquires(&device_links_srcu)
  72{
  73        return srcu_read_lock(&device_links_srcu);
  74}
  75
  76void device_links_read_unlock(int idx) __releases(&device_links_srcu)
  77{
  78        srcu_read_unlock(&device_links_srcu, idx);
  79}
  80
  81int device_links_read_lock_held(void)
  82{
  83        return srcu_read_lock_held(&device_links_srcu);
  84}
  85#else /* !CONFIG_SRCU */
  86static DECLARE_RWSEM(device_links_lock);
  87
  88static inline void device_links_write_lock(void)
  89{
  90        down_write(&device_links_lock);
  91}
  92
  93static inline void device_links_write_unlock(void)
  94{
  95        up_write(&device_links_lock);
  96}
  97
  98int device_links_read_lock(void)
  99{
 100        down_read(&device_links_lock);
 101        return 0;
 102}
 103
 104void device_links_read_unlock(int not_used)
 105{
 106        up_read(&device_links_lock);
 107}
 108
 109#ifdef CONFIG_DEBUG_LOCK_ALLOC
 110int device_links_read_lock_held(void)
 111{
 112        return lockdep_is_held(&device_links_lock);
 113}
 114#endif
 115#endif /* !CONFIG_SRCU */
 116
 117/**
 118 * device_is_dependent - Check if one device depends on another one
 119 * @dev: Device to check dependencies for.
 120 * @target: Device to check against.
 121 *
 122 * Check if @target depends on @dev or any device dependent on it (its child or
 123 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 124 */
 125int device_is_dependent(struct device *dev, void *target)
 126{
 127        struct device_link *link;
 128        int ret;
 129
 130        if (dev == target)
 131                return 1;
 132
 133        ret = device_for_each_child(dev, target, device_is_dependent);
 134        if (ret)
 135                return ret;
 136
 137        list_for_each_entry(link, &dev->links.consumers, s_node) {
 138                if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 139                        continue;
 140
 141                if (link->consumer == target)
 142                        return 1;
 143
 144                ret = device_is_dependent(link->consumer, target);
 145                if (ret)
 146                        break;
 147        }
 148        return ret;
 149}
 150
 151static void device_link_init_status(struct device_link *link,
 152                                    struct device *consumer,
 153                                    struct device *supplier)
 154{
 155        switch (supplier->links.status) {
 156        case DL_DEV_PROBING:
 157                switch (consumer->links.status) {
 158                case DL_DEV_PROBING:
 159                        /*
 160                         * A consumer driver can create a link to a supplier
 161                         * that has not completed its probing yet as long as it
 162                         * knows that the supplier is already functional (for
 163                         * example, it has just acquired some resources from the
 164                         * supplier).
 165                         */
 166                        link->status = DL_STATE_CONSUMER_PROBE;
 167                        break;
 168                default:
 169                        link->status = DL_STATE_DORMANT;
 170                        break;
 171                }
 172                break;
 173        case DL_DEV_DRIVER_BOUND:
 174                switch (consumer->links.status) {
 175                case DL_DEV_PROBING:
 176                        link->status = DL_STATE_CONSUMER_PROBE;
 177                        break;
 178                case DL_DEV_DRIVER_BOUND:
 179                        link->status = DL_STATE_ACTIVE;
 180                        break;
 181                default:
 182                        link->status = DL_STATE_AVAILABLE;
 183                        break;
 184                }
 185                break;
 186        case DL_DEV_UNBINDING:
 187                link->status = DL_STATE_SUPPLIER_UNBIND;
 188                break;
 189        default:
 190                link->status = DL_STATE_DORMANT;
 191                break;
 192        }
 193}
 194
 195static int device_reorder_to_tail(struct device *dev, void *not_used)
 196{
 197        struct device_link *link;
 198
 199        /*
 200         * Devices that have not been registered yet will be put to the ends
 201         * of the lists during the registration, so skip them here.
 202         */
 203        if (device_is_registered(dev))
 204                devices_kset_move_last(dev);
 205
 206        if (device_pm_initialized(dev))
 207                device_pm_move_last(dev);
 208
 209        device_for_each_child(dev, NULL, device_reorder_to_tail);
 210        list_for_each_entry(link, &dev->links.consumers, s_node) {
 211                if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 212                        continue;
 213                device_reorder_to_tail(link->consumer, NULL);
 214        }
 215
 216        return 0;
 217}
 218
 219/**
 220 * device_pm_move_to_tail - Move set of devices to the end of device lists
 221 * @dev: Device to move
 222 *
 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 224 *
 225 * It moves the @dev along with all of its children and all of its consumers
 226 * to the ends of the device_kset and dpm_list, recursively.
 227 */
 228void device_pm_move_to_tail(struct device *dev)
 229{
 230        int idx;
 231
 232        idx = device_links_read_lock();
 233        device_pm_lock();
 234        device_reorder_to_tail(dev, NULL);
 235        device_pm_unlock();
 236        device_links_read_unlock(idx);
 237}
 238
 239#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
 240
 241static ssize_t status_show(struct device *dev,
 242                          struct device_attribute *attr, char *buf)
 243{
 244        char *status;
 245
 246        switch (to_devlink(dev)->status) {
 247        case DL_STATE_NONE:
 248                status = "not tracked"; break;
 249        case DL_STATE_DORMANT:
 250                status = "dormant"; break;
 251        case DL_STATE_AVAILABLE:
 252                status = "available"; break;
 253        case DL_STATE_CONSUMER_PROBE:
 254                status = "consumer probing"; break;
 255        case DL_STATE_ACTIVE:
 256                status = "active"; break;
 257        case DL_STATE_SUPPLIER_UNBIND:
 258                status = "supplier unbinding"; break;
 259        default:
 260                status = "unknown"; break;
 261        }
 262        return sprintf(buf, "%s\n", status);
 263}
 264static DEVICE_ATTR_RO(status);
 265
 266static ssize_t auto_remove_on_show(struct device *dev,
 267                                   struct device_attribute *attr, char *buf)
 268{
 269        struct device_link *link = to_devlink(dev);
 270        char *str;
 271
 272        if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 273                str = "supplier unbind";
 274        else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 275                str = "consumer unbind";
 276        else
 277                str = "never";
 278
 279        return sprintf(buf, "%s\n", str);
 280}
 281static DEVICE_ATTR_RO(auto_remove_on);
 282
 283static ssize_t runtime_pm_show(struct device *dev,
 284                               struct device_attribute *attr, char *buf)
 285{
 286        struct device_link *link = to_devlink(dev);
 287
 288        return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 289}
 290static DEVICE_ATTR_RO(runtime_pm);
 291
 292static ssize_t sync_state_only_show(struct device *dev,
 293                                    struct device_attribute *attr, char *buf)
 294{
 295        struct device_link *link = to_devlink(dev);
 296
 297        return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 298}
 299static DEVICE_ATTR_RO(sync_state_only);
 300
 301static struct attribute *devlink_attrs[] = {
 302        &dev_attr_status.attr,
 303        &dev_attr_auto_remove_on.attr,
 304        &dev_attr_runtime_pm.attr,
 305        &dev_attr_sync_state_only.attr,
 306        NULL,
 307};
 308ATTRIBUTE_GROUPS(devlink);
 309
 310static void device_link_free(struct device_link *link)
 311{
 312        while (refcount_dec_not_one(&link->rpm_active))
 313                pm_runtime_put(link->supplier);
 314
 315        put_device(link->consumer);
 316        put_device(link->supplier);
 317        kfree(link);
 318}
 319
 320#ifdef CONFIG_SRCU
 321static void __device_link_free_srcu(struct rcu_head *rhead)
 322{
 323        device_link_free(container_of(rhead, struct device_link, rcu_head));
 324}
 325
 326static void devlink_dev_release(struct device *dev)
 327{
 328        struct device_link *link = to_devlink(dev);
 329
 330        call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 331}
 332#else
 333static void devlink_dev_release(struct device *dev)
 334{
 335        device_link_free(to_devlink(dev));
 336}
 337#endif
 338
 339static struct class devlink_class = {
 340        .name = "devlink",
 341        .owner = THIS_MODULE,
 342        .dev_groups = devlink_groups,
 343        .dev_release = devlink_dev_release,
 344};
 345
 346static int devlink_add_symlinks(struct device *dev,
 347                                struct class_interface *class_intf)
 348{
 349        int ret;
 350        size_t len;
 351        struct device_link *link = to_devlink(dev);
 352        struct device *sup = link->supplier;
 353        struct device *con = link->consumer;
 354        char *buf;
 355
 356        len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
 357        len += strlen("supplier:") + 1;
 358        buf = kzalloc(len, GFP_KERNEL);
 359        if (!buf)
 360                return -ENOMEM;
 361
 362        ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 363        if (ret)
 364                goto out;
 365
 366        ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 367        if (ret)
 368                goto err_con;
 369
 370        snprintf(buf, len, "consumer:%s", dev_name(con));
 371        ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 372        if (ret)
 373                goto err_con_dev;
 374
 375        snprintf(buf, len, "supplier:%s", dev_name(sup));
 376        ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 377        if (ret)
 378                goto err_sup_dev;
 379
 380        goto out;
 381
 382err_sup_dev:
 383        snprintf(buf, len, "consumer:%s", dev_name(con));
 384        sysfs_remove_link(&sup->kobj, buf);
 385err_con_dev:
 386        sysfs_remove_link(&link->link_dev.kobj, "consumer");
 387err_con:
 388        sysfs_remove_link(&link->link_dev.kobj, "supplier");
 389out:
 390        kfree(buf);
 391        return ret;
 392}
 393
 394static void devlink_remove_symlinks(struct device *dev,
 395                                   struct class_interface *class_intf)
 396{
 397        struct device_link *link = to_devlink(dev);
 398        size_t len;
 399        struct device *sup = link->supplier;
 400        struct device *con = link->consumer;
 401        char *buf;
 402
 403        sysfs_remove_link(&link->link_dev.kobj, "consumer");
 404        sysfs_remove_link(&link->link_dev.kobj, "supplier");
 405
 406        len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
 407        len += strlen("supplier:") + 1;
 408        buf = kzalloc(len, GFP_KERNEL);
 409        if (!buf) {
 410                WARN(1, "Unable to properly free device link symlinks!\n");
 411                return;
 412        }
 413
 414        snprintf(buf, len, "supplier:%s", dev_name(sup));
 415        sysfs_remove_link(&con->kobj, buf);
 416        snprintf(buf, len, "consumer:%s", dev_name(con));
 417        sysfs_remove_link(&sup->kobj, buf);
 418        kfree(buf);
 419}
 420
 421static struct class_interface devlink_class_intf = {
 422        .class = &devlink_class,
 423        .add_dev = devlink_add_symlinks,
 424        .remove_dev = devlink_remove_symlinks,
 425};
 426
 427static int __init devlink_class_init(void)
 428{
 429        int ret;
 430
 431        ret = class_register(&devlink_class);
 432        if (ret)
 433                return ret;
 434
 435        ret = class_interface_register(&devlink_class_intf);
 436        if (ret)
 437                class_unregister(&devlink_class);
 438
 439        return ret;
 440}
 441postcore_initcall(devlink_class_init);
 442
 443#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 444                               DL_FLAG_AUTOREMOVE_SUPPLIER | \
 445                               DL_FLAG_AUTOPROBE_CONSUMER  | \
 446                               DL_FLAG_SYNC_STATE_ONLY)
 447
 448#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 449                            DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 450
 451/**
 452 * device_link_add - Create a link between two devices.
 453 * @consumer: Consumer end of the link.
 454 * @supplier: Supplier end of the link.
 455 * @flags: Link flags.
 456 *
 457 * The caller is responsible for the proper synchronization of the link creation
 458 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 459 * runtime PM framework to take the link into account.  Second, if the
 460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 461 * be forced into the active metastate and reference-counted upon the creation
 462 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 463 * ignored.
 464 *
 465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 466 * expected to release the link returned by it directly with the help of either
 467 * device_link_del() or device_link_remove().
 468 *
 469 * If that flag is not set, however, the caller of this function is handing the
 470 * management of the link over to the driver core entirely and its return value
 471 * can only be used to check whether or not the link is present.  In that case,
 472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 473 * flags can be used to indicate to the driver core when the link can be safely
 474 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 475 * that the link is not going to be used (by the given caller of this function)
 476 * after unbinding the consumer or supplier driver, respectively, from its
 477 * device, so the link can be deleted at that point.  If none of them is set,
 478 * the link will be maintained until one of the devices pointed to by it (either
 479 * the consumer or the supplier) is unregistered.
 480 *
 481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 484 * be used to request the driver core to automaticall probe for a consmer
 485 * driver after successfully binding a driver to the supplier device.
 486 *
 487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 489 * the same time is invalid and will cause NULL to be returned upfront.
 490 * However, if a device link between the given @consumer and @supplier pair
 491 * exists already when this function is called for them, the existing link will
 492 * be returned regardless of its current type and status (the link's flags may
 493 * be modified then).  The caller of this function is then expected to treat
 494 * the link as though it has just been created, so (in particular) if
 495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 496 * explicitly when not needed any more (as stated above).
 497 *
 498 * A side effect of the link creation is re-ordering of dpm_list and the
 499 * devices_kset list by moving the consumer device and all devices depending
 500 * on it to the ends of these lists (that does not happen to devices that have
 501 * not been registered when this function is called).
 502 *
 503 * The supplier device is required to be registered when this function is called
 504 * and NULL will be returned if that is not the case.  The consumer device need
 505 * not be registered, however.
 506 */
 507struct device_link *device_link_add(struct device *consumer,
 508                                    struct device *supplier, u32 flags)
 509{
 510        struct device_link *link;
 511
 512        if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 513            (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 514            (flags & DL_FLAG_SYNC_STATE_ONLY &&
 515             flags != DL_FLAG_SYNC_STATE_ONLY) ||
 516            (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 517             flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 518                      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 519                return NULL;
 520
 521        if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 522                if (pm_runtime_get_sync(supplier) < 0) {
 523                        pm_runtime_put_noidle(supplier);
 524                        return NULL;
 525                }
 526        }
 527
 528        if (!(flags & DL_FLAG_STATELESS))
 529                flags |= DL_FLAG_MANAGED;
 530
 531        device_links_write_lock();
 532        device_pm_lock();
 533
 534        /*
 535         * If the supplier has not been fully registered yet or there is a
 536         * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 537         * the supplier already in the graph, return NULL. If the link is a
 538         * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 539         * because it only affects sync_state() callbacks.
 540         */
 541        if (!device_pm_initialized(supplier)
 542            || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 543                  device_is_dependent(consumer, supplier))) {
 544                link = NULL;
 545                goto out;
 546        }
 547
 548        /*
 549         * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 550         * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 551         * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 552         */
 553        if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 554                flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 555
 556        list_for_each_entry(link, &supplier->links.consumers, s_node) {
 557                if (link->consumer != consumer)
 558                        continue;
 559
 560                if (flags & DL_FLAG_PM_RUNTIME) {
 561                        if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 562                                pm_runtime_new_link(consumer);
 563                                link->flags |= DL_FLAG_PM_RUNTIME;
 564                        }
 565                        if (flags & DL_FLAG_RPM_ACTIVE)
 566                                refcount_inc(&link->rpm_active);
 567                }
 568
 569                if (flags & DL_FLAG_STATELESS) {
 570                        kref_get(&link->kref);
 571                        if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 572                            !(link->flags & DL_FLAG_STATELESS)) {
 573                                link->flags |= DL_FLAG_STATELESS;
 574                                goto reorder;
 575                        } else {
 576                                link->flags |= DL_FLAG_STATELESS;
 577                                goto out;
 578                        }
 579                }
 580
 581                /*
 582                 * If the life time of the link following from the new flags is
 583                 * longer than indicated by the flags of the existing link,
 584                 * update the existing link to stay around longer.
 585                 */
 586                if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 587                        if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 588                                link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 589                                link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 590                        }
 591                } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 592                        link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 593                                         DL_FLAG_AUTOREMOVE_SUPPLIER);
 594                }
 595                if (!(link->flags & DL_FLAG_MANAGED)) {
 596                        kref_get(&link->kref);
 597                        link->flags |= DL_FLAG_MANAGED;
 598                        device_link_init_status(link, consumer, supplier);
 599                }
 600                if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 601                    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 602                        link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 603                        goto reorder;
 604                }
 605
 606                goto out;
 607        }
 608
 609        link = kzalloc(sizeof(*link), GFP_KERNEL);
 610        if (!link)
 611                goto out;
 612
 613        refcount_set(&link->rpm_active, 1);
 614
 615        get_device(supplier);
 616        link->supplier = supplier;
 617        INIT_LIST_HEAD(&link->s_node);
 618        get_device(consumer);
 619        link->consumer = consumer;
 620        INIT_LIST_HEAD(&link->c_node);
 621        link->flags = flags;
 622        kref_init(&link->kref);
 623
 624        link->link_dev.class = &devlink_class;
 625        device_set_pm_not_required(&link->link_dev);
 626        dev_set_name(&link->link_dev, "%s--%s",
 627                     dev_name(supplier), dev_name(consumer));
 628        if (device_register(&link->link_dev)) {
 629                put_device(consumer);
 630                put_device(supplier);
 631                kfree(link);
 632                link = NULL;
 633                goto out;
 634        }
 635
 636        if (flags & DL_FLAG_PM_RUNTIME) {
 637                if (flags & DL_FLAG_RPM_ACTIVE)
 638                        refcount_inc(&link->rpm_active);
 639
 640                pm_runtime_new_link(consumer);
 641        }
 642
 643        /* Determine the initial link state. */
 644        if (flags & DL_FLAG_STATELESS)
 645                link->status = DL_STATE_NONE;
 646        else
 647                device_link_init_status(link, consumer, supplier);
 648
 649        /*
 650         * Some callers expect the link creation during consumer driver probe to
 651         * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 652         */
 653        if (link->status == DL_STATE_CONSUMER_PROBE &&
 654            flags & DL_FLAG_PM_RUNTIME)
 655                pm_runtime_resume(supplier);
 656
 657        list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 658        list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 659
 660        if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 661                dev_dbg(consumer,
 662                        "Linked as a sync state only consumer to %s\n",
 663                        dev_name(supplier));
 664                goto out;
 665        }
 666
 667reorder:
 668        /*
 669         * Move the consumer and all of the devices depending on it to the end
 670         * of dpm_list and the devices_kset list.
 671         *
 672         * It is necessary to hold dpm_list locked throughout all that or else
 673         * we may end up suspending with a wrong ordering of it.
 674         */
 675        device_reorder_to_tail(consumer, NULL);
 676
 677        dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 678
 679out:
 680        device_pm_unlock();
 681        device_links_write_unlock();
 682
 683        if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 684                pm_runtime_put(supplier);
 685
 686        return link;
 687}
 688EXPORT_SYMBOL_GPL(device_link_add);
 689
 690/**
 691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
 692 * @consumer: Consumer device
 693 *
 694 * Marks the @consumer device as waiting for suppliers to become available by
 695 * adding it to the wait_for_suppliers list. The consumer device will never be
 696 * probed until it's removed from the wait_for_suppliers list.
 697 *
 698 * The caller is responsible for adding the links to the supplier devices once
 699 * they are available and removing the @consumer device from the
 700 * wait_for_suppliers list once links to all the suppliers have been created.
 701 *
 702 * This function is NOT meant to be called from the probe function of the
 703 * consumer but rather from code that creates/adds the consumer device.
 704 */
 705static void device_link_wait_for_supplier(struct device *consumer,
 706                                          bool need_for_probe)
 707{
 708        mutex_lock(&wfs_lock);
 709        list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
 710        consumer->links.need_for_probe = need_for_probe;
 711        mutex_unlock(&wfs_lock);
 712}
 713
 714static void device_link_wait_for_mandatory_supplier(struct device *consumer)
 715{
 716        device_link_wait_for_supplier(consumer, true);
 717}
 718
 719static void device_link_wait_for_optional_supplier(struct device *consumer)
 720{
 721        device_link_wait_for_supplier(consumer, false);
 722}
 723
 724/**
 725 * device_link_add_missing_supplier_links - Add links from consumer devices to
 726 *                                          supplier devices, leaving any
 727 *                                          consumer with inactive suppliers on
 728 *                                          the wait_for_suppliers list
 729 *
 730 * Loops through all consumers waiting on suppliers and tries to add all their
 731 * supplier links. If that succeeds, the consumer device is removed from
 732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
 733 * list.  Devices left on the wait_for_suppliers list will not be probed.
 734 *
 735 * The fwnode add_links callback is expected to return 0 if it has found and
 736 * added all the supplier links for the consumer device. It should return an
 737 * error if it isn't able to do so.
 738 *
 739 * The caller of device_link_wait_for_supplier() is expected to call this once
 740 * it's aware of potential suppliers becoming available.
 741 */
 742static void device_link_add_missing_supplier_links(void)
 743{
 744        struct device *dev, *tmp;
 745
 746        mutex_lock(&wfs_lock);
 747        list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
 748                                 links.needs_suppliers) {
 749                int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
 750                if (!ret)
 751                        list_del_init(&dev->links.needs_suppliers);
 752                else if (ret != -ENODEV || fw_devlink_is_permissive())
 753                        dev->links.need_for_probe = false;
 754        }
 755        mutex_unlock(&wfs_lock);
 756}
 757
 758#ifdef CONFIG_SRCU
 759static void __device_link_del(struct kref *kref)
 760{
 761        struct device_link *link = container_of(kref, struct device_link, kref);
 762
 763        dev_dbg(link->consumer, "Dropping the link to %s\n",
 764                dev_name(link->supplier));
 765
 766        if (link->flags & DL_FLAG_PM_RUNTIME)
 767                pm_runtime_drop_link(link->consumer);
 768
 769        list_del_rcu(&link->s_node);
 770        list_del_rcu(&link->c_node);
 771        device_unregister(&link->link_dev);
 772}
 773#else /* !CONFIG_SRCU */
 774static void __device_link_del(struct kref *kref)
 775{
 776        struct device_link *link = container_of(kref, struct device_link, kref);
 777
 778        dev_info(link->consumer, "Dropping the link to %s\n",
 779                 dev_name(link->supplier));
 780
 781        if (link->flags & DL_FLAG_PM_RUNTIME)
 782                pm_runtime_drop_link(link->consumer);
 783
 784        list_del(&link->s_node);
 785        list_del(&link->c_node);
 786        device_unregister(&link->link_dev);
 787}
 788#endif /* !CONFIG_SRCU */
 789
 790static void device_link_put_kref(struct device_link *link)
 791{
 792        if (link->flags & DL_FLAG_STATELESS)
 793                kref_put(&link->kref, __device_link_del);
 794        else
 795                WARN(1, "Unable to drop a managed device link reference\n");
 796}
 797
 798/**
 799 * device_link_del - Delete a stateless link between two devices.
 800 * @link: Device link to delete.
 801 *
 802 * The caller must ensure proper synchronization of this function with runtime
 803 * PM.  If the link was added multiple times, it needs to be deleted as often.
 804 * Care is required for hotplugged devices:  Their links are purged on removal
 805 * and calling device_link_del() is then no longer allowed.
 806 */
 807void device_link_del(struct device_link *link)
 808{
 809        device_links_write_lock();
 810        device_link_put_kref(link);
 811        device_links_write_unlock();
 812}
 813EXPORT_SYMBOL_GPL(device_link_del);
 814
 815/**
 816 * device_link_remove - Delete a stateless link between two devices.
 817 * @consumer: Consumer end of the link.
 818 * @supplier: Supplier end of the link.
 819 *
 820 * The caller must ensure proper synchronization of this function with runtime
 821 * PM.
 822 */
 823void device_link_remove(void *consumer, struct device *supplier)
 824{
 825        struct device_link *link;
 826
 827        if (WARN_ON(consumer == supplier))
 828                return;
 829
 830        device_links_write_lock();
 831
 832        list_for_each_entry(link, &supplier->links.consumers, s_node) {
 833                if (link->consumer == consumer) {
 834                        device_link_put_kref(link);
 835                        break;
 836                }
 837        }
 838
 839        device_links_write_unlock();
 840}
 841EXPORT_SYMBOL_GPL(device_link_remove);
 842
 843static void device_links_missing_supplier(struct device *dev)
 844{
 845        struct device_link *link;
 846
 847        list_for_each_entry(link, &dev->links.suppliers, c_node) {
 848                if (link->status != DL_STATE_CONSUMER_PROBE)
 849                        continue;
 850
 851                if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 852                        WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 853                } else {
 854                        WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 855                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
 856                }
 857        }
 858}
 859
 860/**
 861 * device_links_check_suppliers - Check presence of supplier drivers.
 862 * @dev: Consumer device.
 863 *
 864 * Check links from this device to any suppliers.  Walk the list of the device's
 865 * links to suppliers and see if all of them are available.  If not, simply
 866 * return -EPROBE_DEFER.
 867 *
 868 * We need to guarantee that the supplier will not go away after the check has
 869 * been positive here.  It only can go away in __device_release_driver() and
 870 * that function  checks the device's links to consumers.  This means we need to
 871 * mark the link as "consumer probe in progress" to make the supplier removal
 872 * wait for us to complete (or bad things may happen).
 873 *
 874 * Links without the DL_FLAG_MANAGED flag set are ignored.
 875 */
 876int device_links_check_suppliers(struct device *dev)
 877{
 878        struct device_link *link;
 879        int ret = 0;
 880
 881        /*
 882         * Device waiting for supplier to become available is not allowed to
 883         * probe.
 884         */
 885        mutex_lock(&wfs_lock);
 886        if (!list_empty(&dev->links.needs_suppliers) &&
 887            dev->links.need_for_probe) {
 888                mutex_unlock(&wfs_lock);
 889                return -EPROBE_DEFER;
 890        }
 891        mutex_unlock(&wfs_lock);
 892
 893        device_links_write_lock();
 894
 895        list_for_each_entry(link, &dev->links.suppliers, c_node) {
 896                if (!(link->flags & DL_FLAG_MANAGED))
 897                        continue;
 898
 899                if (link->status != DL_STATE_AVAILABLE &&
 900                    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
 901                        device_links_missing_supplier(dev);
 902                        ret = -EPROBE_DEFER;
 903                        break;
 904                }
 905                WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 906        }
 907        dev->links.status = DL_DEV_PROBING;
 908
 909        device_links_write_unlock();
 910        return ret;
 911}
 912
 913/**
 914 * __device_links_queue_sync_state - Queue a device for sync_state() callback
 915 * @dev: Device to call sync_state() on
 916 * @list: List head to queue the @dev on
 917 *
 918 * Queues a device for a sync_state() callback when the device links write lock
 919 * isn't held. This allows the sync_state() execution flow to use device links
 920 * APIs.  The caller must ensure this function is called with
 921 * device_links_write_lock() held.
 922 *
 923 * This function does a get_device() to make sure the device is not freed while
 924 * on this list.
 925 *
 926 * So the caller must also ensure that device_links_flush_sync_list() is called
 927 * as soon as the caller releases device_links_write_lock().  This is necessary
 928 * to make sure the sync_state() is called in a timely fashion and the
 929 * put_device() is called on this device.
 930 */
 931static void __device_links_queue_sync_state(struct device *dev,
 932                                            struct list_head *list)
 933{
 934        struct device_link *link;
 935
 936        if (!dev_has_sync_state(dev))
 937                return;
 938        if (dev->state_synced)
 939                return;
 940
 941        list_for_each_entry(link, &dev->links.consumers, s_node) {
 942                if (!(link->flags & DL_FLAG_MANAGED))
 943                        continue;
 944                if (link->status != DL_STATE_ACTIVE)
 945                        return;
 946        }
 947
 948        /*
 949         * Set the flag here to avoid adding the same device to a list more
 950         * than once. This can happen if new consumers get added to the device
 951         * and probed before the list is flushed.
 952         */
 953        dev->state_synced = true;
 954
 955        if (WARN_ON(!list_empty(&dev->links.defer_hook)))
 956                return;
 957
 958        get_device(dev);
 959        list_add_tail(&dev->links.defer_hook, list);
 960}
 961
 962/**
 963 * device_links_flush_sync_list - Call sync_state() on a list of devices
 964 * @list: List of devices to call sync_state() on
 965 * @dont_lock_dev: Device for which lock is already held by the caller
 966 *
 967 * Calls sync_state() on all the devices that have been queued for it. This
 968 * function is used in conjunction with __device_links_queue_sync_state(). The
 969 * @dont_lock_dev parameter is useful when this function is called from a
 970 * context where a device lock is already held.
 971 */
 972static void device_links_flush_sync_list(struct list_head *list,
 973                                         struct device *dont_lock_dev)
 974{
 975        struct device *dev, *tmp;
 976
 977        list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
 978                list_del_init(&dev->links.defer_hook);
 979
 980                if (dev != dont_lock_dev)
 981                        device_lock(dev);
 982
 983                if (dev->bus->sync_state)
 984                        dev->bus->sync_state(dev);
 985                else if (dev->driver && dev->driver->sync_state)
 986                        dev->driver->sync_state(dev);
 987
 988                if (dev != dont_lock_dev)
 989                        device_unlock(dev);
 990
 991                put_device(dev);
 992        }
 993}
 994
 995void device_links_supplier_sync_state_pause(void)
 996{
 997        device_links_write_lock();
 998        defer_sync_state_count++;
 999        device_links_write_unlock();
1000}
1001
1002void device_links_supplier_sync_state_resume(void)
1003{
1004        struct device *dev, *tmp;
1005        LIST_HEAD(sync_list);
1006
1007        device_links_write_lock();
1008        if (!defer_sync_state_count) {
1009                WARN(true, "Unmatched sync_state pause/resume!");
1010                goto out;
1011        }
1012        defer_sync_state_count--;
1013        if (defer_sync_state_count)
1014                goto out;
1015
1016        list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1017                /*
1018                 * Delete from deferred_sync list before queuing it to
1019                 * sync_list because defer_hook is used for both lists.
1020                 */
1021                list_del_init(&dev->links.defer_hook);
1022                __device_links_queue_sync_state(dev, &sync_list);
1023        }
1024out:
1025        device_links_write_unlock();
1026
1027        device_links_flush_sync_list(&sync_list, NULL);
1028}
1029
1030static int sync_state_resume_initcall(void)
1031{
1032        device_links_supplier_sync_state_resume();
1033        return 0;
1034}
1035late_initcall(sync_state_resume_initcall);
1036
1037static void __device_links_supplier_defer_sync(struct device *sup)
1038{
1039        if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1040                list_add_tail(&sup->links.defer_hook, &deferred_sync);
1041}
1042
1043static void device_link_drop_managed(struct device_link *link)
1044{
1045        link->flags &= ~DL_FLAG_MANAGED;
1046        WRITE_ONCE(link->status, DL_STATE_NONE);
1047        kref_put(&link->kref, __device_link_del);
1048}
1049
1050static ssize_t waiting_for_supplier_show(struct device *dev,
1051                                         struct device_attribute *attr,
1052                                         char *buf)
1053{
1054        bool val;
1055
1056        device_lock(dev);
1057        mutex_lock(&wfs_lock);
1058        val = !list_empty(&dev->links.needs_suppliers)
1059              && dev->links.need_for_probe;
1060        mutex_unlock(&wfs_lock);
1061        device_unlock(dev);
1062        return sprintf(buf, "%u\n", val);
1063}
1064static DEVICE_ATTR_RO(waiting_for_supplier);
1065
1066/**
1067 * device_links_driver_bound - Update device links after probing its driver.
1068 * @dev: Device to update the links for.
1069 *
1070 * The probe has been successful, so update links from this device to any
1071 * consumers by changing their status to "available".
1072 *
1073 * Also change the status of @dev's links to suppliers to "active".
1074 *
1075 * Links without the DL_FLAG_MANAGED flag set are ignored.
1076 */
1077void device_links_driver_bound(struct device *dev)
1078{
1079        struct device_link *link, *ln;
1080        LIST_HEAD(sync_list);
1081
1082        /*
1083         * If a device probes successfully, it's expected to have created all
1084         * the device links it needs to or make new device links as it needs
1085         * them. So, it no longer needs to wait on any suppliers.
1086         */
1087        mutex_lock(&wfs_lock);
1088        list_del_init(&dev->links.needs_suppliers);
1089        mutex_unlock(&wfs_lock);
1090        device_remove_file(dev, &dev_attr_waiting_for_supplier);
1091
1092        device_links_write_lock();
1093
1094        list_for_each_entry(link, &dev->links.consumers, s_node) {
1095                if (!(link->flags & DL_FLAG_MANAGED))
1096                        continue;
1097
1098                /*
1099                 * Links created during consumer probe may be in the "consumer
1100                 * probe" state to start with if the supplier is still probing
1101                 * when they are created and they may become "active" if the
1102                 * consumer probe returns first.  Skip them here.
1103                 */
1104                if (link->status == DL_STATE_CONSUMER_PROBE ||
1105                    link->status == DL_STATE_ACTIVE)
1106                        continue;
1107
1108                WARN_ON(link->status != DL_STATE_DORMANT);
1109                WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1110
1111                if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1112                        driver_deferred_probe_add(link->consumer);
1113        }
1114
1115        if (defer_sync_state_count)
1116                __device_links_supplier_defer_sync(dev);
1117        else
1118                __device_links_queue_sync_state(dev, &sync_list);
1119
1120        list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1121                struct device *supplier;
1122
1123                if (!(link->flags & DL_FLAG_MANAGED))
1124                        continue;
1125
1126                supplier = link->supplier;
1127                if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1128                        /*
1129                         * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1130                         * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1131                         * save to drop the managed link completely.
1132                         */
1133                        device_link_drop_managed(link);
1134                } else {
1135                        WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1136                        WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1137                }
1138
1139                /*
1140                 * This needs to be done even for the deleted
1141                 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1142                 * device link that was preventing the supplier from getting a
1143                 * sync_state() call.
1144                 */
1145                if (defer_sync_state_count)
1146                        __device_links_supplier_defer_sync(supplier);
1147                else
1148                        __device_links_queue_sync_state(supplier, &sync_list);
1149        }
1150
1151        dev->links.status = DL_DEV_DRIVER_BOUND;
1152
1153        device_links_write_unlock();
1154
1155        device_links_flush_sync_list(&sync_list, dev);
1156}
1157
1158/**
1159 * __device_links_no_driver - Update links of a device without a driver.
1160 * @dev: Device without a drvier.
1161 *
1162 * Delete all non-persistent links from this device to any suppliers.
1163 *
1164 * Persistent links stay around, but their status is changed to "available",
1165 * unless they already are in the "supplier unbind in progress" state in which
1166 * case they need not be updated.
1167 *
1168 * Links without the DL_FLAG_MANAGED flag set are ignored.
1169 */
1170static void __device_links_no_driver(struct device *dev)
1171{
1172        struct device_link *link, *ln;
1173
1174        list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1175                if (!(link->flags & DL_FLAG_MANAGED))
1176                        continue;
1177
1178                if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1179                        device_link_drop_managed(link);
1180                        continue;
1181                }
1182
1183                if (link->status != DL_STATE_CONSUMER_PROBE &&
1184                    link->status != DL_STATE_ACTIVE)
1185                        continue;
1186
1187                if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1188                        WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1189                } else {
1190                        WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1191                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
1192                }
1193        }
1194
1195        dev->links.status = DL_DEV_NO_DRIVER;
1196}
1197
1198/**
1199 * device_links_no_driver - Update links after failing driver probe.
1200 * @dev: Device whose driver has just failed to probe.
1201 *
1202 * Clean up leftover links to consumers for @dev and invoke
1203 * %__device_links_no_driver() to update links to suppliers for it as
1204 * appropriate.
1205 *
1206 * Links without the DL_FLAG_MANAGED flag set are ignored.
1207 */
1208void device_links_no_driver(struct device *dev)
1209{
1210        struct device_link *link;
1211
1212        device_links_write_lock();
1213
1214        list_for_each_entry(link, &dev->links.consumers, s_node) {
1215                if (!(link->flags & DL_FLAG_MANAGED))
1216                        continue;
1217
1218                /*
1219                 * The probe has failed, so if the status of the link is
1220                 * "consumer probe" or "active", it must have been added by
1221                 * a probing consumer while this device was still probing.
1222                 * Change its state to "dormant", as it represents a valid
1223                 * relationship, but it is not functionally meaningful.
1224                 */
1225                if (link->status == DL_STATE_CONSUMER_PROBE ||
1226                    link->status == DL_STATE_ACTIVE)
1227                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
1228        }
1229
1230        __device_links_no_driver(dev);
1231
1232        device_links_write_unlock();
1233}
1234
1235/**
1236 * device_links_driver_cleanup - Update links after driver removal.
1237 * @dev: Device whose driver has just gone away.
1238 *
1239 * Update links to consumers for @dev by changing their status to "dormant" and
1240 * invoke %__device_links_no_driver() to update links to suppliers for it as
1241 * appropriate.
1242 *
1243 * Links without the DL_FLAG_MANAGED flag set are ignored.
1244 */
1245void device_links_driver_cleanup(struct device *dev)
1246{
1247        struct device_link *link, *ln;
1248
1249        device_links_write_lock();
1250
1251        list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1252                if (!(link->flags & DL_FLAG_MANAGED))
1253                        continue;
1254
1255                WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1256                WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1257
1258                /*
1259                 * autoremove the links between this @dev and its consumer
1260                 * devices that are not active, i.e. where the link state
1261                 * has moved to DL_STATE_SUPPLIER_UNBIND.
1262                 */
1263                if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1264                    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1265                        device_link_drop_managed(link);
1266
1267                WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268        }
1269
1270        list_del_init(&dev->links.defer_hook);
1271        __device_links_no_driver(dev);
1272
1273        device_links_write_unlock();
1274}
1275
1276/**
1277 * device_links_busy - Check if there are any busy links to consumers.
1278 * @dev: Device to check.
1279 *
1280 * Check each consumer of the device and return 'true' if its link's status
1281 * is one of "consumer probe" or "active" (meaning that the given consumer is
1282 * probing right now or its driver is present).  Otherwise, change the link
1283 * state to "supplier unbind" to prevent the consumer from being probed
1284 * successfully going forward.
1285 *
1286 * Return 'false' if there are no probing or active consumers.
1287 *
1288 * Links without the DL_FLAG_MANAGED flag set are ignored.
1289 */
1290bool device_links_busy(struct device *dev)
1291{
1292        struct device_link *link;
1293        bool ret = false;
1294
1295        device_links_write_lock();
1296
1297        list_for_each_entry(link, &dev->links.consumers, s_node) {
1298                if (!(link->flags & DL_FLAG_MANAGED))
1299                        continue;
1300
1301                if (link->status == DL_STATE_CONSUMER_PROBE
1302                    || link->status == DL_STATE_ACTIVE) {
1303                        ret = true;
1304                        break;
1305                }
1306                WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1307        }
1308
1309        dev->links.status = DL_DEV_UNBINDING;
1310
1311        device_links_write_unlock();
1312        return ret;
1313}
1314
1315/**
1316 * device_links_unbind_consumers - Force unbind consumers of the given device.
1317 * @dev: Device to unbind the consumers of.
1318 *
1319 * Walk the list of links to consumers for @dev and if any of them is in the
1320 * "consumer probe" state, wait for all device probes in progress to complete
1321 * and start over.
1322 *
1323 * If that's not the case, change the status of the link to "supplier unbind"
1324 * and check if the link was in the "active" state.  If so, force the consumer
1325 * driver to unbind and start over (the consumer will not re-probe as we have
1326 * changed the state of the link already).
1327 *
1328 * Links without the DL_FLAG_MANAGED flag set are ignored.
1329 */
1330void device_links_unbind_consumers(struct device *dev)
1331{
1332        struct device_link *link;
1333
1334 start:
1335        device_links_write_lock();
1336
1337        list_for_each_entry(link, &dev->links.consumers, s_node) {
1338                enum device_link_state status;
1339
1340                if (!(link->flags & DL_FLAG_MANAGED) ||
1341                    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1342                        continue;
1343
1344                status = link->status;
1345                if (status == DL_STATE_CONSUMER_PROBE) {
1346                        device_links_write_unlock();
1347
1348                        wait_for_device_probe();
1349                        goto start;
1350                }
1351                WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1352                if (status == DL_STATE_ACTIVE) {
1353                        struct device *consumer = link->consumer;
1354
1355                        get_device(consumer);
1356
1357                        device_links_write_unlock();
1358
1359                        device_release_driver_internal(consumer, NULL,
1360                                                       consumer->parent);
1361                        put_device(consumer);
1362                        goto start;
1363                }
1364        }
1365
1366        device_links_write_unlock();
1367}
1368
1369/**
1370 * device_links_purge - Delete existing links to other devices.
1371 * @dev: Target device.
1372 */
1373static void device_links_purge(struct device *dev)
1374{
1375        struct device_link *link, *ln;
1376
1377        if (dev->class == &devlink_class)
1378                return;
1379
1380        mutex_lock(&wfs_lock);
1381        list_del(&dev->links.needs_suppliers);
1382        mutex_unlock(&wfs_lock);
1383
1384        /*
1385         * Delete all of the remaining links from this device to any other
1386         * devices (either consumers or suppliers).
1387         */
1388        device_links_write_lock();
1389
1390        list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1391                WARN_ON(link->status == DL_STATE_ACTIVE);
1392                __device_link_del(&link->kref);
1393        }
1394
1395        list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1396                WARN_ON(link->status != DL_STATE_DORMANT &&
1397                        link->status != DL_STATE_NONE);
1398                __device_link_del(&link->kref);
1399        }
1400
1401        device_links_write_unlock();
1402}
1403
1404static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1405static int __init fw_devlink_setup(char *arg)
1406{
1407        if (!arg)
1408                return -EINVAL;
1409
1410        if (strcmp(arg, "off") == 0) {
1411                fw_devlink_flags = 0;
1412        } else if (strcmp(arg, "permissive") == 0) {
1413                fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1414        } else if (strcmp(arg, "on") == 0) {
1415                fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1416        } else if (strcmp(arg, "rpm") == 0) {
1417                fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1418                                   DL_FLAG_PM_RUNTIME;
1419        }
1420        return 0;
1421}
1422early_param("fw_devlink", fw_devlink_setup);
1423
1424u32 fw_devlink_get_flags(void)
1425{
1426        return fw_devlink_flags;
1427}
1428
1429static bool fw_devlink_is_permissive(void)
1430{
1431        return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1432}
1433
1434static void fw_devlink_link_device(struct device *dev)
1435{
1436        int fw_ret;
1437
1438        if (!fw_devlink_flags)
1439                return;
1440
1441        mutex_lock(&defer_fw_devlink_lock);
1442        if (!defer_fw_devlink_count)
1443                device_link_add_missing_supplier_links();
1444
1445        /*
1446         * The device's fwnode not having add_links() doesn't affect if other
1447         * consumers can find this device as a supplier.  So, this check is
1448         * intentionally placed after device_link_add_missing_supplier_links().
1449         */
1450        if (!fwnode_has_op(dev->fwnode, add_links))
1451                goto out;
1452
1453        /*
1454         * If fw_devlink is being deferred, assume all devices have mandatory
1455         * suppliers they need to link to later. Then, when the fw_devlink is
1456         * resumed, all these devices will get a chance to try and link to any
1457         * suppliers they have.
1458         */
1459        if (!defer_fw_devlink_count) {
1460                fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1461                if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1462                        fw_ret = -EAGAIN;
1463        } else {
1464                fw_ret = -ENODEV;
1465                /*
1466                 * defer_hook is not used to add device to deferred_sync list
1467                 * until device is bound. Since deferred fw devlink also blocks
1468                 * probing, same list hook can be used for deferred_fw_devlink.
1469                 */
1470                list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1471        }
1472
1473        if (fw_ret == -ENODEV)
1474                device_link_wait_for_mandatory_supplier(dev);
1475        else if (fw_ret)
1476                device_link_wait_for_optional_supplier(dev);
1477
1478out:
1479        mutex_unlock(&defer_fw_devlink_lock);
1480}
1481
1482/**
1483 * fw_devlink_pause - Pause parsing of fwnode to create device links
1484 *
1485 * Calling this function defers any fwnode parsing to create device links until
1486 * fw_devlink_resume() is called. Both these functions are ref counted and the
1487 * caller needs to match the calls.
1488 *
1489 * While fw_devlink is paused:
1490 * - Any device that is added won't have its fwnode parsed to create device
1491 *   links.
1492 * - The probe of the device will also be deferred during this period.
1493 * - Any devices that were already added, but waiting for suppliers won't be
1494 *   able to link to newly added devices.
1495 *
1496 * Once fw_devlink_resume():
1497 * - All the fwnodes that was not parsed will be parsed.
1498 * - All the devices that were deferred probing will be reattempted if they
1499 *   aren't waiting for any more suppliers.
1500 *
1501 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1502 * when a lot of devices that need to link to each other are added in a short
1503 * interval of time. For example, adding all the top level devices in a system.
1504 *
1505 * For example, if N devices are added and:
1506 * - All the consumers are added before their suppliers
1507 * - All the suppliers of the N devices are part of the N devices
1508 *
1509 * Then:
1510 *
1511 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1512 *   will only need one parsing of its fwnode because it is guaranteed to find
1513 *   all the supplier devices already registered and ready to link to. It won't
1514 *   have to do another pass later to find one or more suppliers it couldn't
1515 *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1516 *   parses.
1517 *
1518 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1519 *   end up doing O(N^2) parses of fwnodes because every device that's added is
1520 *   guaranteed to trigger a parse of the fwnode of every device added before
1521 *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1522 *   device is parsed, all it descendant devices might need to have their
1523 *   fwnodes parsed too (even if the devices themselves aren't added).
1524 */
1525void fw_devlink_pause(void)
1526{
1527        mutex_lock(&defer_fw_devlink_lock);
1528        defer_fw_devlink_count++;
1529        mutex_unlock(&defer_fw_devlink_lock);
1530}
1531
1532/** fw_devlink_resume - Resume parsing of fwnode to create device links
1533 *
1534 * This function is used in conjunction with fw_devlink_pause() and is ref
1535 * counted. See documentation for fw_devlink_pause() for more details.
1536 */
1537void fw_devlink_resume(void)
1538{
1539        struct device *dev, *tmp;
1540        LIST_HEAD(probe_list);
1541
1542        mutex_lock(&defer_fw_devlink_lock);
1543        if (!defer_fw_devlink_count) {
1544                WARN(true, "Unmatched fw_devlink pause/resume!");
1545                goto out;
1546        }
1547
1548        defer_fw_devlink_count--;
1549        if (defer_fw_devlink_count)
1550                goto out;
1551
1552        device_link_add_missing_supplier_links();
1553        list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1554out:
1555        mutex_unlock(&defer_fw_devlink_lock);
1556
1557        /*
1558         * bus_probe_device() can cause new devices to get added and they'll
1559         * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1560         * the defer_fw_devlink_lock.
1561         */
1562        list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1563                list_del_init(&dev->links.defer_hook);
1564                bus_probe_device(dev);
1565        }
1566}
1567/* Device links support end. */
1568
1569int (*platform_notify)(struct device *dev) = NULL;
1570int (*platform_notify_remove)(struct device *dev) = NULL;
1571static struct kobject *dev_kobj;
1572struct kobject *sysfs_dev_char_kobj;
1573struct kobject *sysfs_dev_block_kobj;
1574
1575static DEFINE_MUTEX(device_hotplug_lock);
1576
1577void lock_device_hotplug(void)
1578{
1579        mutex_lock(&device_hotplug_lock);
1580}
1581
1582void unlock_device_hotplug(void)
1583{
1584        mutex_unlock(&device_hotplug_lock);
1585}
1586
1587int lock_device_hotplug_sysfs(void)
1588{
1589        if (mutex_trylock(&device_hotplug_lock))
1590                return 0;
1591
1592        /* Avoid busy looping (5 ms of sleep should do). */
1593        msleep(5);
1594        return restart_syscall();
1595}
1596
1597#ifdef CONFIG_BLOCK
1598static inline int device_is_not_partition(struct device *dev)
1599{
1600        return !(dev->type == &part_type);
1601}
1602#else
1603static inline int device_is_not_partition(struct device *dev)
1604{
1605        return 1;
1606}
1607#endif
1608
1609static int
1610device_platform_notify(struct device *dev, enum kobject_action action)
1611{
1612        int ret;
1613
1614        ret = acpi_platform_notify(dev, action);
1615        if (ret)
1616                return ret;
1617
1618        ret = software_node_notify(dev, action);
1619        if (ret)
1620                return ret;
1621
1622        if (platform_notify && action == KOBJ_ADD)
1623                platform_notify(dev);
1624        else if (platform_notify_remove && action == KOBJ_REMOVE)
1625                platform_notify_remove(dev);
1626        return 0;
1627}
1628
1629/**
1630 * dev_driver_string - Return a device's driver name, if at all possible
1631 * @dev: struct device to get the name of
1632 *
1633 * Will return the device's driver's name if it is bound to a device.  If
1634 * the device is not bound to a driver, it will return the name of the bus
1635 * it is attached to.  If it is not attached to a bus either, an empty
1636 * string will be returned.
1637 */
1638const char *dev_driver_string(const struct device *dev)
1639{
1640        struct device_driver *drv;
1641
1642        /* dev->driver can change to NULL underneath us because of unbinding,
1643         * so be careful about accessing it.  dev->bus and dev->class should
1644         * never change once they are set, so they don't need special care.
1645         */
1646        drv = READ_ONCE(dev->driver);
1647        return drv ? drv->name :
1648                        (dev->bus ? dev->bus->name :
1649                        (dev->class ? dev->class->name : ""));
1650}
1651EXPORT_SYMBOL(dev_driver_string);
1652
1653#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1654
1655static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1656                             char *buf)
1657{
1658        struct device_attribute *dev_attr = to_dev_attr(attr);
1659        struct device *dev = kobj_to_dev(kobj);
1660        ssize_t ret = -EIO;
1661
1662        if (dev_attr->show)
1663                ret = dev_attr->show(dev, dev_attr, buf);
1664        if (ret >= (ssize_t)PAGE_SIZE) {
1665                printk("dev_attr_show: %pS returned bad count\n",
1666                                dev_attr->show);
1667        }
1668        return ret;
1669}
1670
1671static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1672                              const char *buf, size_t count)
1673{
1674        struct device_attribute *dev_attr = to_dev_attr(attr);
1675        struct device *dev = kobj_to_dev(kobj);
1676        ssize_t ret = -EIO;
1677
1678        if (dev_attr->store)
1679                ret = dev_attr->store(dev, dev_attr, buf, count);
1680        return ret;
1681}
1682
1683static const struct sysfs_ops dev_sysfs_ops = {
1684        .show   = dev_attr_show,
1685        .store  = dev_attr_store,
1686};
1687
1688#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1689
1690ssize_t device_store_ulong(struct device *dev,
1691                           struct device_attribute *attr,
1692                           const char *buf, size_t size)
1693{
1694        struct dev_ext_attribute *ea = to_ext_attr(attr);
1695        int ret;
1696        unsigned long new;
1697
1698        ret = kstrtoul(buf, 0, &new);
1699        if (ret)
1700                return ret;
1701        *(unsigned long *)(ea->var) = new;
1702        /* Always return full write size even if we didn't consume all */
1703        return size;
1704}
1705EXPORT_SYMBOL_GPL(device_store_ulong);
1706
1707ssize_t device_show_ulong(struct device *dev,
1708                          struct device_attribute *attr,
1709                          char *buf)
1710{
1711        struct dev_ext_attribute *ea = to_ext_attr(attr);
1712        return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1713}
1714EXPORT_SYMBOL_GPL(device_show_ulong);
1715
1716ssize_t device_store_int(struct device *dev,
1717                         struct device_attribute *attr,
1718                         const char *buf, size_t size)
1719{
1720        struct dev_ext_attribute *ea = to_ext_attr(attr);
1721        int ret;
1722        long new;
1723
1724        ret = kstrtol(buf, 0, &new);
1725        if (ret)
1726                return ret;
1727
1728        if (new > INT_MAX || new < INT_MIN)
1729                return -EINVAL;
1730        *(int *)(ea->var) = new;
1731        /* Always return full write size even if we didn't consume all */
1732        return size;
1733}
1734EXPORT_SYMBOL_GPL(device_store_int);
1735
1736ssize_t device_show_int(struct device *dev,
1737                        struct device_attribute *attr,
1738                        char *buf)
1739{
1740        struct dev_ext_attribute *ea = to_ext_attr(attr);
1741
1742        return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1743}
1744EXPORT_SYMBOL_GPL(device_show_int);
1745
1746ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1747                          const char *buf, size_t size)
1748{
1749        struct dev_ext_attribute *ea = to_ext_attr(attr);
1750
1751        if (strtobool(buf, ea->var) < 0)
1752                return -EINVAL;
1753
1754        return size;
1755}
1756EXPORT_SYMBOL_GPL(device_store_bool);
1757
1758ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1759                         char *buf)
1760{
1761        struct dev_ext_attribute *ea = to_ext_attr(attr);
1762
1763        return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1764}
1765EXPORT_SYMBOL_GPL(device_show_bool);
1766
1767/**
1768 * device_release - free device structure.
1769 * @kobj: device's kobject.
1770 *
1771 * This is called once the reference count for the object
1772 * reaches 0. We forward the call to the device's release
1773 * method, which should handle actually freeing the structure.
1774 */
1775static void device_release(struct kobject *kobj)
1776{
1777        struct device *dev = kobj_to_dev(kobj);
1778        struct device_private *p = dev->p;
1779
1780        /*
1781         * Some platform devices are driven without driver attached
1782         * and managed resources may have been acquired.  Make sure
1783         * all resources are released.
1784         *
1785         * Drivers still can add resources into device after device
1786         * is deleted but alive, so release devres here to avoid
1787         * possible memory leak.
1788         */
1789        devres_release_all(dev);
1790
1791        if (dev->release)
1792                dev->release(dev);
1793        else if (dev->type && dev->type->release)
1794                dev->type->release(dev);
1795        else if (dev->class && dev->class->dev_release)
1796                dev->class->dev_release(dev);
1797        else
1798                WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1799                        dev_name(dev));
1800        kfree(p);
1801}
1802
1803static const void *device_namespace(struct kobject *kobj)
1804{
1805        struct device *dev = kobj_to_dev(kobj);
1806        const void *ns = NULL;
1807
1808        if (dev->class && dev->class->ns_type)
1809                ns = dev->class->namespace(dev);
1810
1811        return ns;
1812}
1813
1814static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1815{
1816        struct device *dev = kobj_to_dev(kobj);
1817
1818        if (dev->class && dev->class->get_ownership)
1819                dev->class->get_ownership(dev, uid, gid);
1820}
1821
1822static struct kobj_type device_ktype = {
1823        .release        = device_release,
1824        .sysfs_ops      = &dev_sysfs_ops,
1825        .namespace      = device_namespace,
1826        .get_ownership  = device_get_ownership,
1827};
1828
1829
1830static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1831{
1832        struct kobj_type *ktype = get_ktype(kobj);
1833
1834        if (ktype == &device_ktype) {
1835                struct device *dev = kobj_to_dev(kobj);
1836                if (dev->bus)
1837                        return 1;
1838                if (dev->class)
1839                        return 1;
1840        }
1841        return 0;
1842}
1843
1844static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1845{
1846        struct device *dev = kobj_to_dev(kobj);
1847
1848        if (dev->bus)
1849                return dev->bus->name;
1850        if (dev->class)
1851                return dev->class->name;
1852        return NULL;
1853}
1854
1855static int dev_uevent(struct kset *kset, struct kobject *kobj,
1856                      struct kobj_uevent_env *env)
1857{
1858        struct device *dev = kobj_to_dev(kobj);
1859        int retval = 0;
1860
1861        /* add device node properties if present */
1862        if (MAJOR(dev->devt)) {
1863                const char *tmp;
1864                const char *name;
1865                umode_t mode = 0;
1866                kuid_t uid = GLOBAL_ROOT_UID;
1867                kgid_t gid = GLOBAL_ROOT_GID;
1868
1869                add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1870                add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1871                name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1872                if (name) {
1873                        add_uevent_var(env, "DEVNAME=%s", name);
1874                        if (mode)
1875                                add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1876                        if (!uid_eq(uid, GLOBAL_ROOT_UID))
1877                                add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1878                        if (!gid_eq(gid, GLOBAL_ROOT_GID))
1879                                add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1880                        kfree(tmp);
1881                }
1882        }
1883
1884        if (dev->type && dev->type->name)
1885                add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1886
1887        if (dev->driver)
1888                add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1889
1890        /* Add common DT information about the device */
1891        of_device_uevent(dev, env);
1892
1893        /* have the bus specific function add its stuff */
1894        if (dev->bus && dev->bus->uevent) {
1895                retval = dev->bus->uevent(dev, env);
1896                if (retval)
1897                        pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1898                                 dev_name(dev), __func__, retval);
1899        }
1900
1901        /* have the class specific function add its stuff */
1902        if (dev->class && dev->class->dev_uevent) {
1903                retval = dev->class->dev_uevent(dev, env);
1904                if (retval)
1905                        pr_debug("device: '%s': %s: class uevent() "
1906                                 "returned %d\n", dev_name(dev),
1907                                 __func__, retval);
1908        }
1909
1910        /* have the device type specific function add its stuff */
1911        if (dev->type && dev->type->uevent) {
1912                retval = dev->type->uevent(dev, env);
1913                if (retval)
1914                        pr_debug("device: '%s': %s: dev_type uevent() "
1915                                 "returned %d\n", dev_name(dev),
1916                                 __func__, retval);
1917        }
1918
1919        return retval;
1920}
1921
1922static const struct kset_uevent_ops device_uevent_ops = {
1923        .filter =       dev_uevent_filter,
1924        .name =         dev_uevent_name,
1925        .uevent =       dev_uevent,
1926};
1927
1928static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1929                           char *buf)
1930{
1931        struct kobject *top_kobj;
1932        struct kset *kset;
1933        struct kobj_uevent_env *env = NULL;
1934        int i;
1935        size_t count = 0;
1936        int retval;
1937
1938        /* search the kset, the device belongs to */
1939        top_kobj = &dev->kobj;
1940        while (!top_kobj->kset && top_kobj->parent)
1941                top_kobj = top_kobj->parent;
1942        if (!top_kobj->kset)
1943                goto out;
1944
1945        kset = top_kobj->kset;
1946        if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1947                goto out;
1948
1949        /* respect filter */
1950        if (kset->uevent_ops && kset->uevent_ops->filter)
1951                if (!kset->uevent_ops->filter(kset, &dev->kobj))
1952                        goto out;
1953
1954        env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1955        if (!env)
1956                return -ENOMEM;
1957
1958        /* let the kset specific function add its keys */
1959        retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1960        if (retval)
1961                goto out;
1962
1963        /* copy keys to file */
1964        for (i = 0; i < env->envp_idx; i++)
1965                count += sprintf(&buf[count], "%s\n", env->envp[i]);
1966out:
1967        kfree(env);
1968        return count;
1969}
1970
1971static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1972                            const char *buf, size_t count)
1973{
1974        int rc;
1975
1976        rc = kobject_synth_uevent(&dev->kobj, buf, count);
1977
1978        if (rc) {
1979                dev_err(dev, "uevent: failed to send synthetic uevent\n");
1980                return rc;
1981        }
1982
1983        return count;
1984}
1985static DEVICE_ATTR_RW(uevent);
1986
1987static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1988                           char *buf)
1989{
1990        bool val;
1991
1992        device_lock(dev);
1993        val = !dev->offline;
1994        device_unlock(dev);
1995        return sprintf(buf, "%u\n", val);
1996}
1997
1998static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1999                            const char *buf, size_t count)
2000{
2001        bool val;
2002        int ret;
2003
2004        ret = strtobool(buf, &val);
2005        if (ret < 0)
2006                return ret;
2007
2008        ret = lock_device_hotplug_sysfs();
2009        if (ret)
2010                return ret;
2011
2012        ret = val ? device_online(dev) : device_offline(dev);
2013        unlock_device_hotplug();
2014        return ret < 0 ? ret : count;
2015}
2016static DEVICE_ATTR_RW(online);
2017
2018int device_add_groups(struct device *dev, const struct attribute_group **groups)
2019{
2020        return sysfs_create_groups(&dev->kobj, groups);
2021}
2022EXPORT_SYMBOL_GPL(device_add_groups);
2023
2024void device_remove_groups(struct device *dev,
2025                          const struct attribute_group **groups)
2026{
2027        sysfs_remove_groups(&dev->kobj, groups);
2028}
2029EXPORT_SYMBOL_GPL(device_remove_groups);
2030
2031union device_attr_group_devres {
2032        const struct attribute_group *group;
2033        const struct attribute_group **groups;
2034};
2035
2036static int devm_attr_group_match(struct device *dev, void *res, void *data)
2037{
2038        return ((union device_attr_group_devres *)res)->group == data;
2039}
2040
2041static void devm_attr_group_remove(struct device *dev, void *res)
2042{
2043        union device_attr_group_devres *devres = res;
2044        const struct attribute_group *group = devres->group;
2045
2046        dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2047        sysfs_remove_group(&dev->kobj, group);
2048}
2049
2050static void devm_attr_groups_remove(struct device *dev, void *res)
2051{
2052        union device_attr_group_devres *devres = res;
2053        const struct attribute_group **groups = devres->groups;
2054
2055        dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2056        sysfs_remove_groups(&dev->kobj, groups);
2057}
2058
2059/**
2060 * devm_device_add_group - given a device, create a managed attribute group
2061 * @dev:        The device to create the group for
2062 * @grp:        The attribute group to create
2063 *
2064 * This function creates a group for the first time.  It will explicitly
2065 * warn and error if any of the attribute files being created already exist.
2066 *
2067 * Returns 0 on success or error code on failure.
2068 */
2069int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2070{
2071        union device_attr_group_devres *devres;
2072        int error;
2073
2074        devres = devres_alloc(devm_attr_group_remove,
2075                              sizeof(*devres), GFP_KERNEL);
2076        if (!devres)
2077                return -ENOMEM;
2078
2079        error = sysfs_create_group(&dev->kobj, grp);
2080        if (error) {
2081                devres_free(devres);
2082                return error;
2083        }
2084
2085        devres->group = grp;
2086        devres_add(dev, devres);
2087        return 0;
2088}
2089EXPORT_SYMBOL_GPL(devm_device_add_group);
2090
2091/**
2092 * devm_device_remove_group: remove a managed group from a device
2093 * @dev:        device to remove the group from
2094 * @grp:        group to remove
2095 *
2096 * This function removes a group of attributes from a device. The attributes
2097 * previously have to have been created for this group, otherwise it will fail.
2098 */
2099void devm_device_remove_group(struct device *dev,
2100                              const struct attribute_group *grp)
2101{
2102        WARN_ON(devres_release(dev, devm_attr_group_remove,
2103                               devm_attr_group_match,
2104                               /* cast away const */ (void *)grp));
2105}
2106EXPORT_SYMBOL_GPL(devm_device_remove_group);
2107
2108/**
2109 * devm_device_add_groups - create a bunch of managed attribute groups
2110 * @dev:        The device to create the group for
2111 * @groups:     The attribute groups to create, NULL terminated
2112 *
2113 * This function creates a bunch of managed attribute groups.  If an error
2114 * occurs when creating a group, all previously created groups will be
2115 * removed, unwinding everything back to the original state when this
2116 * function was called.  It will explicitly warn and error if any of the
2117 * attribute files being created already exist.
2118 *
2119 * Returns 0 on success or error code from sysfs_create_group on failure.
2120 */
2121int devm_device_add_groups(struct device *dev,
2122                           const struct attribute_group **groups)
2123{
2124        union device_attr_group_devres *devres;
2125        int error;
2126
2127        devres = devres_alloc(devm_attr_groups_remove,
2128                              sizeof(*devres), GFP_KERNEL);
2129        if (!devres)
2130                return -ENOMEM;
2131
2132        error = sysfs_create_groups(&dev->kobj, groups);
2133        if (error) {
2134                devres_free(devres);
2135                return error;
2136        }
2137
2138        devres->groups = groups;
2139        devres_add(dev, devres);
2140        return 0;
2141}
2142EXPORT_SYMBOL_GPL(devm_device_add_groups);
2143
2144/**
2145 * devm_device_remove_groups - remove a list of managed groups
2146 *
2147 * @dev:        The device for the groups to be removed from
2148 * @groups:     NULL terminated list of groups to be removed
2149 *
2150 * If groups is not NULL, remove the specified groups from the device.
2151 */
2152void devm_device_remove_groups(struct device *dev,
2153                               const struct attribute_group **groups)
2154{
2155        WARN_ON(devres_release(dev, devm_attr_groups_remove,
2156                               devm_attr_group_match,
2157                               /* cast away const */ (void *)groups));
2158}
2159EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2160
2161static int device_add_attrs(struct device *dev)
2162{
2163        struct class *class = dev->class;
2164        const struct device_type *type = dev->type;
2165        int error;
2166
2167        if (class) {
2168                error = device_add_groups(dev, class->dev_groups);
2169                if (error)
2170                        return error;
2171        }
2172
2173        if (type) {
2174                error = device_add_groups(dev, type->groups);
2175                if (error)
2176                        goto err_remove_class_groups;
2177        }
2178
2179        error = device_add_groups(dev, dev->groups);
2180        if (error)
2181                goto err_remove_type_groups;
2182
2183        if (device_supports_offline(dev) && !dev->offline_disabled) {
2184                error = device_create_file(dev, &dev_attr_online);
2185                if (error)
2186                        goto err_remove_dev_groups;
2187        }
2188
2189        if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2190                error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2191                if (error)
2192                        goto err_remove_dev_online;
2193        }
2194
2195        return 0;
2196
2197 err_remove_dev_online:
2198        device_remove_file(dev, &dev_attr_online);
2199 err_remove_dev_groups:
2200        device_remove_groups(dev, dev->groups);
2201 err_remove_type_groups:
2202        if (type)
2203                device_remove_groups(dev, type->groups);
2204 err_remove_class_groups:
2205        if (class)
2206                device_remove_groups(dev, class->dev_groups);
2207
2208        return error;
2209}
2210
2211static void device_remove_attrs(struct device *dev)
2212{
2213        struct class *class = dev->class;
2214        const struct device_type *type = dev->type;
2215
2216        device_remove_file(dev, &dev_attr_waiting_for_supplier);
2217        device_remove_file(dev, &dev_attr_online);
2218        device_remove_groups(dev, dev->groups);
2219
2220        if (type)
2221                device_remove_groups(dev, type->groups);
2222
2223        if (class)
2224                device_remove_groups(dev, class->dev_groups);
2225}
2226
2227static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2228                        char *buf)
2229{
2230        return print_dev_t(buf, dev->devt);
2231}
2232static DEVICE_ATTR_RO(dev);
2233
2234/* /sys/devices/ */
2235struct kset *devices_kset;
2236
2237/**
2238 * devices_kset_move_before - Move device in the devices_kset's list.
2239 * @deva: Device to move.
2240 * @devb: Device @deva should come before.
2241 */
2242static void devices_kset_move_before(struct device *deva, struct device *devb)
2243{
2244        if (!devices_kset)
2245                return;
2246        pr_debug("devices_kset: Moving %s before %s\n",
2247                 dev_name(deva), dev_name(devb));
2248        spin_lock(&devices_kset->list_lock);
2249        list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2250        spin_unlock(&devices_kset->list_lock);
2251}
2252
2253/**
2254 * devices_kset_move_after - Move device in the devices_kset's list.
2255 * @deva: Device to move
2256 * @devb: Device @deva should come after.
2257 */
2258static void devices_kset_move_after(struct device *deva, struct device *devb)
2259{
2260        if (!devices_kset)
2261                return;
2262        pr_debug("devices_kset: Moving %s after %s\n",
2263                 dev_name(deva), dev_name(devb));
2264        spin_lock(&devices_kset->list_lock);
2265        list_move(&deva->kobj.entry, &devb->kobj.entry);
2266        spin_unlock(&devices_kset->list_lock);
2267}
2268
2269/**
2270 * devices_kset_move_last - move the device to the end of devices_kset's list.
2271 * @dev: device to move
2272 */
2273void devices_kset_move_last(struct device *dev)
2274{
2275        if (!devices_kset)
2276                return;
2277        pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2278        spin_lock(&devices_kset->list_lock);
2279        list_move_tail(&dev->kobj.entry, &devices_kset->list);
2280        spin_unlock(&devices_kset->list_lock);
2281}
2282
2283/**
2284 * device_create_file - create sysfs attribute file for device.
2285 * @dev: device.
2286 * @attr: device attribute descriptor.
2287 */
2288int device_create_file(struct device *dev,
2289                       const struct device_attribute *attr)
2290{
2291        int error = 0;
2292
2293        if (dev) {
2294                WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2295                        "Attribute %s: write permission without 'store'\n",
2296                        attr->attr.name);
2297                WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2298                        "Attribute %s: read permission without 'show'\n",
2299                        attr->attr.name);
2300                error = sysfs_create_file(&dev->kobj, &attr->attr);
2301        }
2302
2303        return error;
2304}
2305EXPORT_SYMBOL_GPL(device_create_file);
2306
2307/**
2308 * device_remove_file - remove sysfs attribute file.
2309 * @dev: device.
2310 * @attr: device attribute descriptor.
2311 */
2312void device_remove_file(struct device *dev,
2313                        const struct device_attribute *attr)
2314{
2315        if (dev)
2316                sysfs_remove_file(&dev->kobj, &attr->attr);
2317}
2318EXPORT_SYMBOL_GPL(device_remove_file);
2319
2320/**
2321 * device_remove_file_self - remove sysfs attribute file from its own method.
2322 * @dev: device.
2323 * @attr: device attribute descriptor.
2324 *
2325 * See kernfs_remove_self() for details.
2326 */
2327bool device_remove_file_self(struct device *dev,
2328                             const struct device_attribute *attr)
2329{
2330        if (dev)
2331                return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2332        else
2333                return false;
2334}
2335EXPORT_SYMBOL_GPL(device_remove_file_self);
2336
2337/**
2338 * device_create_bin_file - create sysfs binary attribute file for device.
2339 * @dev: device.
2340 * @attr: device binary attribute descriptor.
2341 */
2342int device_create_bin_file(struct device *dev,
2343                           const struct bin_attribute *attr)
2344{
2345        int error = -EINVAL;
2346        if (dev)
2347                error = sysfs_create_bin_file(&dev->kobj, attr);
2348        return error;
2349}
2350EXPORT_SYMBOL_GPL(device_create_bin_file);
2351
2352/**
2353 * device_remove_bin_file - remove sysfs binary attribute file
2354 * @dev: device.
2355 * @attr: device binary attribute descriptor.
2356 */
2357void device_remove_bin_file(struct device *dev,
2358                            const struct bin_attribute *attr)
2359{
2360        if (dev)
2361                sysfs_remove_bin_file(&dev->kobj, attr);
2362}
2363EXPORT_SYMBOL_GPL(device_remove_bin_file);
2364
2365static void klist_children_get(struct klist_node *n)
2366{
2367        struct device_private *p = to_device_private_parent(n);
2368        struct device *dev = p->device;
2369
2370        get_device(dev);
2371}
2372
2373static void klist_children_put(struct klist_node *n)
2374{
2375        struct device_private *p = to_device_private_parent(n);
2376        struct device *dev = p->device;
2377
2378        put_device(dev);
2379}
2380
2381/**
2382 * device_initialize - init device structure.
2383 * @dev: device.
2384 *
2385 * This prepares the device for use by other layers by initializing
2386 * its fields.
2387 * It is the first half of device_register(), if called by
2388 * that function, though it can also be called separately, so one
2389 * may use @dev's fields. In particular, get_device()/put_device()
2390 * may be used for reference counting of @dev after calling this
2391 * function.
2392 *
2393 * All fields in @dev must be initialized by the caller to 0, except
2394 * for those explicitly set to some other value.  The simplest
2395 * approach is to use kzalloc() to allocate the structure containing
2396 * @dev.
2397 *
2398 * NOTE: Use put_device() to give up your reference instead of freeing
2399 * @dev directly once you have called this function.
2400 */
2401void device_initialize(struct device *dev)
2402{
2403        dev->kobj.kset = devices_kset;
2404        kobject_init(&dev->kobj, &device_ktype);
2405        INIT_LIST_HEAD(&dev->dma_pools);
2406        mutex_init(&dev->mutex);
2407#ifdef CONFIG_PROVE_LOCKING
2408        mutex_init(&dev->lockdep_mutex);
2409#endif
2410        lockdep_set_novalidate_class(&dev->mutex);
2411        spin_lock_init(&dev->devres_lock);
2412        INIT_LIST_HEAD(&dev->devres_head);
2413        device_pm_init(dev);
2414        set_dev_node(dev, -1);
2415#ifdef CONFIG_GENERIC_MSI_IRQ
2416        INIT_LIST_HEAD(&dev->msi_list);
2417#endif
2418        INIT_LIST_HEAD(&dev->links.consumers);
2419        INIT_LIST_HEAD(&dev->links.suppliers);
2420        INIT_LIST_HEAD(&dev->links.needs_suppliers);
2421        INIT_LIST_HEAD(&dev->links.defer_hook);
2422        dev->links.status = DL_DEV_NO_DRIVER;
2423}
2424EXPORT_SYMBOL_GPL(device_initialize);
2425
2426struct kobject *virtual_device_parent(struct device *dev)
2427{
2428        static struct kobject *virtual_dir = NULL;
2429
2430        if (!virtual_dir)
2431                virtual_dir = kobject_create_and_add("virtual",
2432                                                     &devices_kset->kobj);
2433
2434        return virtual_dir;
2435}
2436
2437struct class_dir {
2438        struct kobject kobj;
2439        struct class *class;
2440};
2441
2442#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2443
2444static void class_dir_release(struct kobject *kobj)
2445{
2446        struct class_dir *dir = to_class_dir(kobj);
2447        kfree(dir);
2448}
2449
2450static const
2451struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2452{
2453        struct class_dir *dir = to_class_dir(kobj);
2454        return dir->class->ns_type;
2455}
2456
2457static struct kobj_type class_dir_ktype = {
2458        .release        = class_dir_release,
2459        .sysfs_ops      = &kobj_sysfs_ops,
2460        .child_ns_type  = class_dir_child_ns_type
2461};
2462
2463static struct kobject *
2464class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2465{
2466        struct class_dir *dir;
2467        int retval;
2468
2469        dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2470        if (!dir)
2471                return ERR_PTR(-ENOMEM);
2472
2473        dir->class = class;
2474        kobject_init(&dir->kobj, &class_dir_ktype);
2475
2476        dir->kobj.kset = &class->p->glue_dirs;
2477
2478        retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2479        if (retval < 0) {
2480                kobject_put(&dir->kobj);
2481                return ERR_PTR(retval);
2482        }
2483        return &dir->kobj;
2484}
2485
2486static DEFINE_MUTEX(gdp_mutex);
2487
2488static struct kobject *get_device_parent(struct device *dev,
2489                                         struct device *parent)
2490{
2491        if (dev->class) {
2492                struct kobject *kobj = NULL;
2493                struct kobject *parent_kobj;
2494                struct kobject *k;
2495
2496#ifdef CONFIG_BLOCK
2497                /* block disks show up in /sys/block */
2498                if (sysfs_deprecated && dev->class == &block_class) {
2499                        if (parent && parent->class == &block_class)
2500                                return &parent->kobj;
2501                        return &block_class.p->subsys.kobj;
2502                }
2503#endif
2504
2505                /*
2506                 * If we have no parent, we live in "virtual".
2507                 * Class-devices with a non class-device as parent, live
2508                 * in a "glue" directory to prevent namespace collisions.
2509                 */
2510                if (parent == NULL)
2511                        parent_kobj = virtual_device_parent(dev);
2512                else if (parent->class && !dev->class->ns_type)
2513                        return &parent->kobj;
2514                else
2515                        parent_kobj = &parent->kobj;
2516
2517                mutex_lock(&gdp_mutex);
2518
2519                /* find our class-directory at the parent and reference it */
2520                spin_lock(&dev->class->p->glue_dirs.list_lock);
2521                list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2522                        if (k->parent == parent_kobj) {
2523                                kobj = kobject_get(k);
2524                                break;
2525                        }
2526                spin_unlock(&dev->class->p->glue_dirs.list_lock);
2527                if (kobj) {
2528                        mutex_unlock(&gdp_mutex);
2529                        return kobj;
2530                }
2531
2532                /* or create a new class-directory at the parent device */
2533                k = class_dir_create_and_add(dev->class, parent_kobj);
2534                /* do not emit an uevent for this simple "glue" directory */
2535                mutex_unlock(&gdp_mutex);
2536                return k;
2537        }
2538
2539        /* subsystems can specify a default root directory for their devices */
2540        if (!parent && dev->bus && dev->bus->dev_root)
2541                return &dev->bus->dev_root->kobj;
2542
2543        if (parent)
2544                return &parent->kobj;
2545        return NULL;
2546}
2547
2548static inline bool live_in_glue_dir(struct kobject *kobj,
2549                                    struct device *dev)
2550{
2551        if (!kobj || !dev->class ||
2552            kobj->kset != &dev->class->p->glue_dirs)
2553                return false;
2554        return true;
2555}
2556
2557static inline struct kobject *get_glue_dir(struct device *dev)
2558{
2559        return dev->kobj.parent;
2560}
2561
2562/*
2563 * make sure cleaning up dir as the last step, we need to make
2564 * sure .release handler of kobject is run with holding the
2565 * global lock
2566 */
2567static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2568{
2569        unsigned int ref;
2570
2571        /* see if we live in a "glue" directory */
2572        if (!live_in_glue_dir(glue_dir, dev))
2573                return;
2574
2575        mutex_lock(&gdp_mutex);
2576        /**
2577         * There is a race condition between removing glue directory
2578         * and adding a new device under the glue directory.
2579         *
2580         * CPU1:                                         CPU2:
2581         *
2582         * device_add()
2583         *   get_device_parent()
2584         *     class_dir_create_and_add()
2585         *       kobject_add_internal()
2586         *         create_dir()    // create glue_dir
2587         *
2588         *                                               device_add()
2589         *                                                 get_device_parent()
2590         *                                                   kobject_get() // get glue_dir
2591         *
2592         * device_del()
2593         *   cleanup_glue_dir()
2594         *     kobject_del(glue_dir)
2595         *
2596         *                                               kobject_add()
2597         *                                                 kobject_add_internal()
2598         *                                                   create_dir() // in glue_dir
2599         *                                                     sysfs_create_dir_ns()
2600         *                                                       kernfs_create_dir_ns(sd)
2601         *
2602         *       sysfs_remove_dir() // glue_dir->sd=NULL
2603         *       sysfs_put()        // free glue_dir->sd
2604         *
2605         *                                                         // sd is freed
2606         *                                                         kernfs_new_node(sd)
2607         *                                                           kernfs_get(glue_dir)
2608         *                                                           kernfs_add_one()
2609         *                                                           kernfs_put()
2610         *
2611         * Before CPU1 remove last child device under glue dir, if CPU2 add
2612         * a new device under glue dir, the glue_dir kobject reference count
2613         * will be increase to 2 in kobject_get(k). And CPU2 has been called
2614         * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2615         * and sysfs_put(). This result in glue_dir->sd is freed.
2616         *
2617         * Then the CPU2 will see a stale "empty" but still potentially used
2618         * glue dir around in kernfs_new_node().
2619         *
2620         * In order to avoid this happening, we also should make sure that
2621         * kernfs_node for glue_dir is released in CPU1 only when refcount
2622         * for glue_dir kobj is 1.
2623         */
2624        ref = kref_read(&glue_dir->kref);
2625        if (!kobject_has_children(glue_dir) && !--ref)
2626                kobject_del(glue_dir);
2627        kobject_put(glue_dir);
2628        mutex_unlock(&gdp_mutex);
2629}
2630
2631static int device_add_class_symlinks(struct device *dev)
2632{
2633        struct device_node *of_node = dev_of_node(dev);
2634        int error;
2635
2636        if (of_node) {
2637                error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2638                if (error)
2639                        dev_warn(dev, "Error %d creating of_node link\n",error);
2640                /* An error here doesn't warrant bringing down the device */
2641        }
2642
2643        if (!dev->class)
2644                return 0;
2645
2646        error = sysfs_create_link(&dev->kobj,
2647                                  &dev->class->p->subsys.kobj,
2648                                  "subsystem");
2649        if (error)
2650                goto out_devnode;
2651
2652        if (dev->parent && device_is_not_partition(dev)) {
2653                error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2654                                          "device");
2655                if (error)
2656                        goto out_subsys;
2657        }
2658
2659#ifdef CONFIG_BLOCK
2660        /* /sys/block has directories and does not need symlinks */
2661        if (sysfs_deprecated && dev->class == &block_class)
2662                return 0;
2663#endif
2664
2665        /* link in the class directory pointing to the device */
2666        error = sysfs_create_link(&dev->class->p->subsys.kobj,
2667                                  &dev->kobj, dev_name(dev));
2668        if (error)
2669                goto out_device;
2670
2671        return 0;
2672
2673out_device:
2674        sysfs_remove_link(&dev->kobj, "device");
2675
2676out_subsys:
2677        sysfs_remove_link(&dev->kobj, "subsystem");
2678out_devnode:
2679        sysfs_remove_link(&dev->kobj, "of_node");
2680        return error;
2681}
2682
2683static void device_remove_class_symlinks(struct device *dev)
2684{
2685        if (dev_of_node(dev))
2686                sysfs_remove_link(&dev->kobj, "of_node");
2687
2688        if (!dev->class)
2689                return;
2690
2691        if (dev->parent && device_is_not_partition(dev))
2692                sysfs_remove_link(&dev->kobj, "device");
2693        sysfs_remove_link(&dev->kobj, "subsystem");
2694#ifdef CONFIG_BLOCK
2695        if (sysfs_deprecated && dev->class == &block_class)
2696                return;
2697#endif
2698        sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2699}
2700
2701/**
2702 * dev_set_name - set a device name
2703 * @dev: device
2704 * @fmt: format string for the device's name
2705 */
2706int dev_set_name(struct device *dev, const char *fmt, ...)
2707{
2708        va_list vargs;
2709        int err;
2710
2711        va_start(vargs, fmt);
2712        err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2713        va_end(vargs);
2714        return err;
2715}
2716EXPORT_SYMBOL_GPL(dev_set_name);
2717
2718/**
2719 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2720 * @dev: device
2721 *
2722 * By default we select char/ for new entries.  Setting class->dev_obj
2723 * to NULL prevents an entry from being created.  class->dev_kobj must
2724 * be set (or cleared) before any devices are registered to the class
2725 * otherwise device_create_sys_dev_entry() and
2726 * device_remove_sys_dev_entry() will disagree about the presence of
2727 * the link.
2728 */
2729static struct kobject *device_to_dev_kobj(struct device *dev)
2730{
2731        struct kobject *kobj;
2732
2733        if (dev->class)
2734                kobj = dev->class->dev_kobj;
2735        else
2736                kobj = sysfs_dev_char_kobj;
2737
2738        return kobj;
2739}
2740
2741static int device_create_sys_dev_entry(struct device *dev)
2742{
2743        struct kobject *kobj = device_to_dev_kobj(dev);
2744        int error = 0;
2745        char devt_str[15];
2746
2747        if (kobj) {
2748                format_dev_t(devt_str, dev->devt);
2749                error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2750        }
2751
2752        return error;
2753}
2754
2755static void device_remove_sys_dev_entry(struct device *dev)
2756{
2757        struct kobject *kobj = device_to_dev_kobj(dev);
2758        char devt_str[15];
2759
2760        if (kobj) {
2761                format_dev_t(devt_str, dev->devt);
2762                sysfs_remove_link(kobj, devt_str);
2763        }
2764}
2765
2766static int device_private_init(struct device *dev)
2767{
2768        dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2769        if (!dev->p)
2770                return -ENOMEM;
2771        dev->p->device = dev;
2772        klist_init(&dev->p->klist_children, klist_children_get,
2773                   klist_children_put);
2774        INIT_LIST_HEAD(&dev->p->deferred_probe);
2775        return 0;
2776}
2777
2778/**
2779 * device_add - add device to device hierarchy.
2780 * @dev: device.
2781 *
2782 * This is part 2 of device_register(), though may be called
2783 * separately _iff_ device_initialize() has been called separately.
2784 *
2785 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2786 * to the global and sibling lists for the device, then
2787 * adds it to the other relevant subsystems of the driver model.
2788 *
2789 * Do not call this routine or device_register() more than once for
2790 * any device structure.  The driver model core is not designed to work
2791 * with devices that get unregistered and then spring back to life.
2792 * (Among other things, it's very hard to guarantee that all references
2793 * to the previous incarnation of @dev have been dropped.)  Allocate
2794 * and register a fresh new struct device instead.
2795 *
2796 * NOTE: _Never_ directly free @dev after calling this function, even
2797 * if it returned an error! Always use put_device() to give up your
2798 * reference instead.
2799 *
2800 * Rule of thumb is: if device_add() succeeds, you should call
2801 * device_del() when you want to get rid of it. If device_add() has
2802 * *not* succeeded, use *only* put_device() to drop the reference
2803 * count.
2804 */
2805int device_add(struct device *dev)
2806{
2807        struct device *parent;
2808        struct kobject *kobj;
2809        struct class_interface *class_intf;
2810        int error = -EINVAL;
2811        struct kobject *glue_dir = NULL;
2812
2813        dev = get_device(dev);
2814        if (!dev)
2815                goto done;
2816
2817        if (!dev->p) {
2818                error = device_private_init(dev);
2819                if (error)
2820                        goto done;
2821        }
2822
2823        /*
2824         * for statically allocated devices, which should all be converted
2825         * some day, we need to initialize the name. We prevent reading back
2826         * the name, and force the use of dev_name()
2827         */
2828        if (dev->init_name) {
2829                dev_set_name(dev, "%s", dev->init_name);
2830                dev->init_name = NULL;
2831        }
2832
2833        /* subsystems can specify simple device enumeration */
2834        if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2835                dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2836
2837        if (!dev_name(dev)) {
2838                error = -EINVAL;
2839                goto name_error;
2840        }
2841
2842        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2843
2844        parent = get_device(dev->parent);
2845        kobj = get_device_parent(dev, parent);
2846        if (IS_ERR(kobj)) {
2847                error = PTR_ERR(kobj);
2848                goto parent_error;
2849        }
2850        if (kobj)
2851                dev->kobj.parent = kobj;
2852
2853        /* use parent numa_node */
2854        if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2855                set_dev_node(dev, dev_to_node(parent));
2856
2857        /* first, register with generic layer. */
2858        /* we require the name to be set before, and pass NULL */
2859        error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2860        if (error) {
2861                glue_dir = get_glue_dir(dev);
2862                goto Error;
2863        }
2864
2865        /* notify platform of device entry */
2866        error = device_platform_notify(dev, KOBJ_ADD);
2867        if (error)
2868                goto platform_error;
2869
2870        error = device_create_file(dev, &dev_attr_uevent);
2871        if (error)
2872                goto attrError;
2873
2874        error = device_add_class_symlinks(dev);
2875        if (error)
2876                goto SymlinkError;
2877        error = device_add_attrs(dev);
2878        if (error)
2879                goto AttrsError;
2880        error = bus_add_device(dev);
2881        if (error)
2882                goto BusError;
2883        error = dpm_sysfs_add(dev);
2884        if (error)
2885                goto DPMError;
2886        device_pm_add(dev);
2887
2888        if (MAJOR(dev->devt)) {
2889                error = device_create_file(dev, &dev_attr_dev);
2890                if (error)
2891                        goto DevAttrError;
2892
2893                error = device_create_sys_dev_entry(dev);
2894                if (error)
2895                        goto SysEntryError;
2896
2897                devtmpfs_create_node(dev);
2898        }
2899
2900        /* Notify clients of device addition.  This call must come
2901         * after dpm_sysfs_add() and before kobject_uevent().
2902         */
2903        if (dev->bus)
2904                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2905                                             BUS_NOTIFY_ADD_DEVICE, dev);
2906
2907        kobject_uevent(&dev->kobj, KOBJ_ADD);
2908
2909        /*
2910         * Check if any of the other devices (consumers) have been waiting for
2911         * this device (supplier) to be added so that they can create a device
2912         * link to it.
2913         *
2914         * This needs to happen after device_pm_add() because device_link_add()
2915         * requires the supplier be registered before it's called.
2916         *
2917         * But this also needs to happen before bus_probe_device() to make sure
2918         * waiting consumers can link to it before the driver is bound to the
2919         * device and the driver sync_state callback is called for this device.
2920         */
2921        if (dev->fwnode && !dev->fwnode->dev) {
2922                dev->fwnode->dev = dev;
2923                fw_devlink_link_device(dev);
2924        }
2925
2926        bus_probe_device(dev);
2927        if (parent)
2928                klist_add_tail(&dev->p->knode_parent,
2929                               &parent->p->klist_children);
2930
2931        if (dev->class) {
2932                mutex_lock(&dev->class->p->mutex);
2933                /* tie the class to the device */
2934                klist_add_tail(&dev->p->knode_class,
2935                               &dev->class->p->klist_devices);
2936
2937                /* notify any interfaces that the device is here */
2938                list_for_each_entry(class_intf,
2939                                    &dev->class->p->interfaces, node)
2940                        if (class_intf->add_dev)
2941                                class_intf->add_dev(dev, class_intf);
2942                mutex_unlock(&dev->class->p->mutex);
2943        }
2944done:
2945        put_device(dev);
2946        return error;
2947 SysEntryError:
2948        if (MAJOR(dev->devt))
2949                device_remove_file(dev, &dev_attr_dev);
2950 DevAttrError:
2951        device_pm_remove(dev);
2952        dpm_sysfs_remove(dev);
2953 DPMError:
2954        bus_remove_device(dev);
2955 BusError:
2956        device_remove_attrs(dev);
2957 AttrsError:
2958        device_remove_class_symlinks(dev);
2959 SymlinkError:
2960        device_remove_file(dev, &dev_attr_uevent);
2961 attrError:
2962        device_platform_notify(dev, KOBJ_REMOVE);
2963platform_error:
2964        kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2965        glue_dir = get_glue_dir(dev);
2966        kobject_del(&dev->kobj);
2967 Error:
2968        cleanup_glue_dir(dev, glue_dir);
2969parent_error:
2970        put_device(parent);
2971name_error:
2972        kfree(dev->p);
2973        dev->p = NULL;
2974        goto done;
2975}
2976EXPORT_SYMBOL_GPL(device_add);
2977
2978/**
2979 * device_register - register a device with the system.
2980 * @dev: pointer to the device structure
2981 *
2982 * This happens in two clean steps - initialize the device
2983 * and add it to the system. The two steps can be called
2984 * separately, but this is the easiest and most common.
2985 * I.e. you should only call the two helpers separately if
2986 * have a clearly defined need to use and refcount the device
2987 * before it is added to the hierarchy.
2988 *
2989 * For more information, see the kerneldoc for device_initialize()
2990 * and device_add().
2991 *
2992 * NOTE: _Never_ directly free @dev after calling this function, even
2993 * if it returned an error! Always use put_device() to give up the
2994 * reference initialized in this function instead.
2995 */
2996int device_register(struct device *dev)
2997{
2998        device_initialize(dev);
2999        return device_add(dev);
3000}
3001EXPORT_SYMBOL_GPL(device_register);
3002
3003/**
3004 * get_device - increment reference count for device.
3005 * @dev: device.
3006 *
3007 * This simply forwards the call to kobject_get(), though
3008 * we do take care to provide for the case that we get a NULL
3009 * pointer passed in.
3010 */
3011struct device *get_device(struct device *dev)
3012{
3013        return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3014}
3015EXPORT_SYMBOL_GPL(get_device);
3016
3017/**
3018 * put_device - decrement reference count.
3019 * @dev: device in question.
3020 */
3021void put_device(struct device *dev)
3022{
3023        /* might_sleep(); */
3024        if (dev)
3025                kobject_put(&dev->kobj);
3026}
3027EXPORT_SYMBOL_GPL(put_device);
3028
3029bool kill_device(struct device *dev)
3030{
3031        /*
3032         * Require the device lock and set the "dead" flag to guarantee that
3033         * the update behavior is consistent with the other bitfields near
3034         * it and that we cannot have an asynchronous probe routine trying
3035         * to run while we are tearing out the bus/class/sysfs from
3036         * underneath the device.
3037         */
3038        lockdep_assert_held(&dev->mutex);
3039
3040        if (dev->p->dead)
3041                return false;
3042        dev->p->dead = true;
3043        return true;
3044}
3045EXPORT_SYMBOL_GPL(kill_device);
3046
3047/**
3048 * device_del - delete device from system.
3049 * @dev: device.
3050 *
3051 * This is the first part of the device unregistration
3052 * sequence. This removes the device from the lists we control
3053 * from here, has it removed from the other driver model
3054 * subsystems it was added to in device_add(), and removes it
3055 * from the kobject hierarchy.
3056 *
3057 * NOTE: this should be called manually _iff_ device_add() was
3058 * also called manually.
3059 */
3060void device_del(struct device *dev)
3061{
3062        struct device *parent = dev->parent;
3063        struct kobject *glue_dir = NULL;
3064        struct class_interface *class_intf;
3065
3066        device_lock(dev);
3067        kill_device(dev);
3068        device_unlock(dev);
3069
3070        if (dev->fwnode && dev->fwnode->dev == dev)
3071                dev->fwnode->dev = NULL;
3072
3073        /* Notify clients of device removal.  This call must come
3074         * before dpm_sysfs_remove().
3075         */
3076        if (dev->bus)
3077                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3078                                             BUS_NOTIFY_DEL_DEVICE, dev);
3079
3080        dpm_sysfs_remove(dev);
3081        if (parent)
3082                klist_del(&dev->p->knode_parent);
3083        if (MAJOR(dev->devt)) {
3084                devtmpfs_delete_node(dev);
3085                device_remove_sys_dev_entry(dev);
3086                device_remove_file(dev, &dev_attr_dev);
3087        }
3088        if (dev->class) {
3089                device_remove_class_symlinks(dev);
3090
3091                mutex_lock(&dev->class->p->mutex);
3092                /* notify any interfaces that the device is now gone */
3093                list_for_each_entry(class_intf,
3094                                    &dev->class->p->interfaces, node)
3095                        if (class_intf->remove_dev)
3096                                class_intf->remove_dev(dev, class_intf);
3097                /* remove the device from the class list */
3098                klist_del(&dev->p->knode_class);
3099                mutex_unlock(&dev->class->p->mutex);
3100        }
3101        device_remove_file(dev, &dev_attr_uevent);
3102        device_remove_attrs(dev);
3103        bus_remove_device(dev);
3104        device_pm_remove(dev);
3105        driver_deferred_probe_del(dev);
3106        device_platform_notify(dev, KOBJ_REMOVE);
3107        device_remove_properties(dev);
3108        device_links_purge(dev);
3109
3110        if (dev->bus)
3111                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3112                                             BUS_NOTIFY_REMOVED_DEVICE, dev);
3113        kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3114        glue_dir = get_glue_dir(dev);
3115        kobject_del(&dev->kobj);
3116        cleanup_glue_dir(dev, glue_dir);
3117        put_device(parent);
3118}
3119EXPORT_SYMBOL_GPL(device_del);
3120
3121/**
3122 * device_unregister - unregister device from system.
3123 * @dev: device going away.
3124 *
3125 * We do this in two parts, like we do device_register(). First,
3126 * we remove it from all the subsystems with device_del(), then
3127 * we decrement the reference count via put_device(). If that
3128 * is the final reference count, the device will be cleaned up
3129 * via device_release() above. Otherwise, the structure will
3130 * stick around until the final reference to the device is dropped.
3131 */
3132void device_unregister(struct device *dev)
3133{
3134        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3135        device_del(dev);
3136        put_device(dev);
3137}
3138EXPORT_SYMBOL_GPL(device_unregister);
3139
3140static struct device *prev_device(struct klist_iter *i)
3141{
3142        struct klist_node *n = klist_prev(i);
3143        struct device *dev = NULL;
3144        struct device_private *p;
3145
3146        if (n) {
3147                p = to_device_private_parent(n);
3148                dev = p->device;
3149        }
3150        return dev;
3151}
3152
3153static struct device *next_device(struct klist_iter *i)
3154{
3155        struct klist_node *n = klist_next(i);
3156        struct device *dev = NULL;
3157        struct device_private *p;
3158
3159        if (n) {
3160                p = to_device_private_parent(n);
3161                dev = p->device;
3162        }
3163        return dev;
3164}
3165
3166/**
3167 * device_get_devnode - path of device node file
3168 * @dev: device
3169 * @mode: returned file access mode
3170 * @uid: returned file owner
3171 * @gid: returned file group
3172 * @tmp: possibly allocated string
3173 *
3174 * Return the relative path of a possible device node.
3175 * Non-default names may need to allocate a memory to compose
3176 * a name. This memory is returned in tmp and needs to be
3177 * freed by the caller.
3178 */
3179const char *device_get_devnode(struct device *dev,
3180                               umode_t *mode, kuid_t *uid, kgid_t *gid,
3181                               const char **tmp)
3182{
3183        char *s;
3184
3185        *tmp = NULL;
3186
3187        /* the device type may provide a specific name */
3188        if (dev->type && dev->type->devnode)
3189                *tmp = dev->type->devnode(dev, mode, uid, gid);
3190        if (*tmp)
3191                return *tmp;
3192
3193        /* the class may provide a specific name */
3194        if (dev->class && dev->class->devnode)
3195                *tmp = dev->class->devnode(dev, mode);
3196        if (*tmp)
3197                return *tmp;
3198
3199        /* return name without allocation, tmp == NULL */
3200        if (strchr(dev_name(dev), '!') == NULL)
3201                return dev_name(dev);
3202
3203        /* replace '!' in the name with '/' */
3204        s = kstrdup(dev_name(dev), GFP_KERNEL);
3205        if (!s)
3206                return NULL;
3207        strreplace(s, '!', '/');
3208        return *tmp = s;
3209}
3210
3211/**
3212 * device_for_each_child - device child iterator.
3213 * @parent: parent struct device.
3214 * @fn: function to be called for each device.
3215 * @data: data for the callback.
3216 *
3217 * Iterate over @parent's child devices, and call @fn for each,
3218 * passing it @data.
3219 *
3220 * We check the return of @fn each time. If it returns anything
3221 * other than 0, we break out and return that value.
3222 */
3223int device_for_each_child(struct device *parent, void *data,
3224                          int (*fn)(struct device *dev, void *data))
3225{
3226        struct klist_iter i;
3227        struct device *child;
3228        int error = 0;
3229
3230        if (!parent->p)
3231                return 0;
3232
3233        klist_iter_init(&parent->p->klist_children, &i);
3234        while (!error && (child = next_device(&i)))
3235                error = fn(child, data);
3236        klist_iter_exit(&i);
3237        return error;
3238}
3239EXPORT_SYMBOL_GPL(device_for_each_child);
3240
3241/**
3242 * device_for_each_child_reverse - device child iterator in reversed order.
3243 * @parent: parent struct device.
3244 * @fn: function to be called for each device.
3245 * @data: data for the callback.
3246 *
3247 * Iterate over @parent's child devices, and call @fn for each,
3248 * passing it @data.
3249 *
3250 * We check the return of @fn each time. If it returns anything
3251 * other than 0, we break out and return that value.
3252 */
3253int device_for_each_child_reverse(struct device *parent, void *data,
3254                                  int (*fn)(struct device *dev, void *data))
3255{
3256        struct klist_iter i;
3257        struct device *child;
3258        int error = 0;
3259
3260        if (!parent->p)
3261                return 0;
3262
3263        klist_iter_init(&parent->p->klist_children, &i);
3264        while ((child = prev_device(&i)) && !error)
3265                error = fn(child, data);
3266        klist_iter_exit(&i);
3267        return error;
3268}
3269EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3270
3271/**
3272 * device_find_child - device iterator for locating a particular device.
3273 * @parent: parent struct device
3274 * @match: Callback function to check device
3275 * @data: Data to pass to match function
3276 *
3277 * This is similar to the device_for_each_child() function above, but it
3278 * returns a reference to a device that is 'found' for later use, as
3279 * determined by the @match callback.
3280 *
3281 * The callback should return 0 if the device doesn't match and non-zero
3282 * if it does.  If the callback returns non-zero and a reference to the
3283 * current device can be obtained, this function will return to the caller
3284 * and not iterate over any more devices.
3285 *
3286 * NOTE: you will need to drop the reference with put_device() after use.
3287 */
3288struct device *device_find_child(struct device *parent, void *data,
3289                                 int (*match)(struct device *dev, void *data))
3290{
3291        struct klist_iter i;
3292        struct device *child;
3293
3294        if (!parent)
3295                return NULL;
3296
3297        klist_iter_init(&parent->p->klist_children, &i);
3298        while ((child = next_device(&i)))
3299                if (match(child, data) && get_device(child))
3300                        break;
3301        klist_iter_exit(&i);
3302        return child;
3303}
3304EXPORT_SYMBOL_GPL(device_find_child);
3305
3306/**
3307 * device_find_child_by_name - device iterator for locating a child device.
3308 * @parent: parent struct device
3309 * @name: name of the child device
3310 *
3311 * This is similar to the device_find_child() function above, but it
3312 * returns a reference to a device that has the name @name.
3313 *
3314 * NOTE: you will need to drop the reference with put_device() after use.
3315 */
3316struct device *device_find_child_by_name(struct device *parent,
3317                                         const char *name)
3318{
3319        struct klist_iter i;
3320        struct device *child;
3321
3322        if (!parent)
3323                return NULL;
3324
3325        klist_iter_init(&parent->p->klist_children, &i);
3326        while ((child = next_device(&i)))
3327                if (!strcmp(dev_name(child), name) && get_device(child))
3328                        break;
3329        klist_iter_exit(&i);
3330        return child;
3331}
3332EXPORT_SYMBOL_GPL(device_find_child_by_name);
3333
3334int __init devices_init(void)
3335{
3336        devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3337        if (!devices_kset)
3338                return -ENOMEM;
3339        dev_kobj = kobject_create_and_add("dev", NULL);
3340        if (!dev_kobj)
3341                goto dev_kobj_err;
3342        sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3343        if (!sysfs_dev_block_kobj)
3344                goto block_kobj_err;
3345        sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3346        if (!sysfs_dev_char_kobj)
3347                goto char_kobj_err;
3348
3349        return 0;
3350
3351 char_kobj_err:
3352        kobject_put(sysfs_dev_block_kobj);
3353 block_kobj_err:
3354        kobject_put(dev_kobj);
3355 dev_kobj_err:
3356        kset_unregister(devices_kset);
3357        return -ENOMEM;
3358}
3359
3360static int device_check_offline(struct device *dev, void *not_used)
3361{
3362        int ret;
3363
3364        ret = device_for_each_child(dev, NULL, device_check_offline);
3365        if (ret)
3366                return ret;
3367
3368        return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3369}
3370
3371/**
3372 * device_offline - Prepare the device for hot-removal.
3373 * @dev: Device to be put offline.
3374 *
3375 * Execute the device bus type's .offline() callback, if present, to prepare
3376 * the device for a subsequent hot-removal.  If that succeeds, the device must
3377 * not be used until either it is removed or its bus type's .online() callback
3378 * is executed.
3379 *
3380 * Call under device_hotplug_lock.
3381 */
3382int device_offline(struct device *dev)
3383{
3384        int ret;
3385
3386        if (dev->offline_disabled)
3387                return -EPERM;
3388
3389        ret = device_for_each_child(dev, NULL, device_check_offline);
3390        if (ret)
3391                return ret;
3392
3393        device_lock(dev);
3394        if (device_supports_offline(dev)) {
3395                if (dev->offline) {
3396                        ret = 1;
3397                } else {
3398                        ret = dev->bus->offline(dev);
3399                        if (!ret) {
3400                                kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3401                                dev->offline = true;
3402                        }
3403                }
3404        }
3405        device_unlock(dev);
3406
3407        return ret;
3408}
3409
3410/**
3411 * device_online - Put the device back online after successful device_offline().
3412 * @dev: Device to be put back online.
3413 *
3414 * If device_offline() has been successfully executed for @dev, but the device
3415 * has not been removed subsequently, execute its bus type's .online() callback
3416 * to indicate that the device can be used again.
3417 *
3418 * Call under device_hotplug_lock.
3419 */
3420int device_online(struct device *dev)
3421{
3422        int ret = 0;
3423
3424        device_lock(dev);
3425        if (device_supports_offline(dev)) {
3426                if (dev->offline) {
3427                        ret = dev->bus->online(dev);
3428                        if (!ret) {
3429                                kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3430                                dev->offline = false;
3431                        }
3432                } else {
3433                        ret = 1;
3434                }
3435        }
3436        device_unlock(dev);
3437
3438        return ret;
3439}
3440
3441struct root_device {
3442        struct device dev;
3443        struct module *owner;
3444};
3445
3446static inline struct root_device *to_root_device(struct device *d)
3447{
3448        return container_of(d, struct root_device, dev);
3449}
3450
3451static void root_device_release(struct device *dev)
3452{
3453        kfree(to_root_device(dev));
3454}
3455
3456/**
3457 * __root_device_register - allocate and register a root device
3458 * @name: root device name
3459 * @owner: owner module of the root device, usually THIS_MODULE
3460 *
3461 * This function allocates a root device and registers it
3462 * using device_register(). In order to free the returned
3463 * device, use root_device_unregister().
3464 *
3465 * Root devices are dummy devices which allow other devices
3466 * to be grouped under /sys/devices. Use this function to
3467 * allocate a root device and then use it as the parent of
3468 * any device which should appear under /sys/devices/{name}
3469 *
3470 * The /sys/devices/{name} directory will also contain a
3471 * 'module' symlink which points to the @owner directory
3472 * in sysfs.
3473 *
3474 * Returns &struct device pointer on success, or ERR_PTR() on error.
3475 *
3476 * Note: You probably want to use root_device_register().
3477 */
3478struct device *__root_device_register(const char *name, struct module *owner)
3479{
3480        struct root_device *root;
3481        int err = -ENOMEM;
3482
3483        root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3484        if (!root)
3485                return ERR_PTR(err);
3486
3487        err = dev_set_name(&root->dev, "%s", name);
3488        if (err) {
3489                kfree(root);
3490                return ERR_PTR(err);
3491        }
3492
3493        root->dev.release = root_device_release;
3494
3495        err = device_register(&root->dev);
3496        if (err) {
3497                put_device(&root->dev);
3498                return ERR_PTR(err);
3499        }
3500
3501#ifdef CONFIG_MODULES   /* gotta find a "cleaner" way to do this */
3502        if (owner) {
3503                struct module_kobject *mk = &owner->mkobj;
3504
3505                err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3506                if (err) {
3507                        device_unregister(&root->dev);
3508                        return ERR_PTR(err);
3509                }
3510                root->owner = owner;
3511        }
3512#endif
3513
3514        return &root->dev;
3515}
3516EXPORT_SYMBOL_GPL(__root_device_register);
3517
3518/**
3519 * root_device_unregister - unregister and free a root device
3520 * @dev: device going away
3521 *
3522 * This function unregisters and cleans up a device that was created by
3523 * root_device_register().
3524 */
3525void root_device_unregister(struct device *dev)
3526{
3527        struct root_device *root = to_root_device(dev);
3528
3529        if (root->owner)
3530                sysfs_remove_link(&root->dev.kobj, "module");
3531
3532        device_unregister(dev);
3533}
3534EXPORT_SYMBOL_GPL(root_device_unregister);
3535
3536
3537static void device_create_release(struct device *dev)
3538{
3539        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3540        kfree(dev);
3541}
3542
3543static __printf(6, 0) struct device *
3544device_create_groups_vargs(struct class *class, struct device *parent,
3545                           dev_t devt, void *drvdata,
3546                           const struct attribute_group **groups,
3547                           const char *fmt, va_list args)
3548{
3549        struct device *dev = NULL;
3550        int retval = -ENODEV;
3551
3552        if (class == NULL || IS_ERR(class))
3553                goto error;
3554
3555        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3556        if (!dev) {
3557                retval = -ENOMEM;
3558                goto error;
3559        }
3560
3561        device_initialize(dev);
3562        dev->devt = devt;
3563        dev->class = class;
3564        dev->parent = parent;
3565        dev->groups = groups;
3566        dev->release = device_create_release;
3567        dev_set_drvdata(dev, drvdata);
3568
3569        retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3570        if (retval)
3571                goto error;
3572
3573        retval = device_add(dev);
3574        if (retval)
3575                goto error;
3576
3577        return dev;
3578
3579error:
3580        put_device(dev);
3581        return ERR_PTR(retval);
3582}
3583
3584/**
3585 * device_create - creates a device and registers it with sysfs
3586 * @class: pointer to the struct class that this device should be registered to
3587 * @parent: pointer to the parent struct device of this new device, if any
3588 * @devt: the dev_t for the char device to be added
3589 * @drvdata: the data to be added to the device for callbacks
3590 * @fmt: string for the device's name
3591 *
3592 * This function can be used by char device classes.  A struct device
3593 * will be created in sysfs, registered to the specified class.
3594 *
3595 * A "dev" file will be created, showing the dev_t for the device, if
3596 * the dev_t is not 0,0.
3597 * If a pointer to a parent struct device is passed in, the newly created
3598 * struct device will be a child of that device in sysfs.
3599 * The pointer to the struct device will be returned from the call.
3600 * Any further sysfs files that might be required can be created using this
3601 * pointer.
3602 *
3603 * Returns &struct device pointer on success, or ERR_PTR() on error.
3604 *
3605 * Note: the struct class passed to this function must have previously
3606 * been created with a call to class_create().
3607 */
3608struct device *device_create(struct class *class, struct device *parent,
3609                             dev_t devt, void *drvdata, const char *fmt, ...)
3610{
3611        va_list vargs;
3612        struct device *dev;
3613
3614        va_start(vargs, fmt);
3615        dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3616                                          fmt, vargs);
3617        va_end(vargs);
3618        return dev;
3619}
3620EXPORT_SYMBOL_GPL(device_create);
3621
3622/**
3623 * device_create_with_groups - creates a device and registers it with sysfs
3624 * @class: pointer to the struct class that this device should be registered to
3625 * @parent: pointer to the parent struct device of this new device, if any
3626 * @devt: the dev_t for the char device to be added
3627 * @drvdata: the data to be added to the device for callbacks
3628 * @groups: NULL-terminated list of attribute groups to be created
3629 * @fmt: string for the device's name
3630 *
3631 * This function can be used by char device classes.  A struct device
3632 * will be created in sysfs, registered to the specified class.
3633 * Additional attributes specified in the groups parameter will also
3634 * be created automatically.
3635 *
3636 * A "dev" file will be created, showing the dev_t for the device, if
3637 * the dev_t is not 0,0.
3638 * If a pointer to a parent struct device is passed in, the newly created
3639 * struct device will be a child of that device in sysfs.
3640 * The pointer to the struct device will be returned from the call.
3641 * Any further sysfs files that might be required can be created using this
3642 * pointer.
3643 *
3644 * Returns &struct device pointer on success, or ERR_PTR() on error.
3645 *
3646 * Note: the struct class passed to this function must have previously
3647 * been created with a call to class_create().
3648 */
3649struct device *device_create_with_groups(struct class *class,
3650                                         struct device *parent, dev_t devt,
3651                                         void *drvdata,
3652                                         const struct attribute_group **groups,
3653                                         const char *fmt, ...)
3654{
3655        va_list vargs;
3656        struct device *dev;
3657
3658        va_start(vargs, fmt);
3659        dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3660                                         fmt, vargs);
3661        va_end(vargs);
3662        return dev;
3663}
3664EXPORT_SYMBOL_GPL(device_create_with_groups);
3665
3666/**
3667 * device_destroy - removes a device that was created with device_create()
3668 * @class: pointer to the struct class that this device was registered with
3669 * @devt: the dev_t of the device that was previously registered
3670 *
3671 * This call unregisters and cleans up a device that was created with a
3672 * call to device_create().
3673 */
3674void device_destroy(struct class *class, dev_t devt)
3675{
3676        struct device *dev;
3677
3678        dev = class_find_device_by_devt(class, devt);
3679        if (dev) {
3680                put_device(dev);
3681                device_unregister(dev);
3682        }
3683}
3684EXPORT_SYMBOL_GPL(device_destroy);
3685
3686/**
3687 * device_rename - renames a device
3688 * @dev: the pointer to the struct device to be renamed
3689 * @new_name: the new name of the device
3690 *
3691 * It is the responsibility of the caller to provide mutual
3692 * exclusion between two different calls of device_rename
3693 * on the same device to ensure that new_name is valid and
3694 * won't conflict with other devices.
3695 *
3696 * Note: Don't call this function.  Currently, the networking layer calls this
3697 * function, but that will change.  The following text from Kay Sievers offers
3698 * some insight:
3699 *
3700 * Renaming devices is racy at many levels, symlinks and other stuff are not
3701 * replaced atomically, and you get a "move" uevent, but it's not easy to
3702 * connect the event to the old and new device. Device nodes are not renamed at
3703 * all, there isn't even support for that in the kernel now.
3704 *
3705 * In the meantime, during renaming, your target name might be taken by another
3706 * driver, creating conflicts. Or the old name is taken directly after you
3707 * renamed it -- then you get events for the same DEVPATH, before you even see
3708 * the "move" event. It's just a mess, and nothing new should ever rely on
3709 * kernel device renaming. Besides that, it's not even implemented now for
3710 * other things than (driver-core wise very simple) network devices.
3711 *
3712 * We are currently about to change network renaming in udev to completely
3713 * disallow renaming of devices in the same namespace as the kernel uses,
3714 * because we can't solve the problems properly, that arise with swapping names
3715 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3716 * be allowed to some other name than eth[0-9]*, for the aforementioned
3717 * reasons.
3718 *
3719 * Make up a "real" name in the driver before you register anything, or add
3720 * some other attributes for userspace to find the device, or use udev to add
3721 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3722 * don't even want to get into that and try to implement the missing pieces in
3723 * the core. We really have other pieces to fix in the driver core mess. :)
3724 */
3725int device_rename(struct device *dev, const char *new_name)
3726{
3727        struct kobject *kobj = &dev->kobj;
3728        char *old_device_name = NULL;
3729        int error;
3730
3731        dev = get_device(dev);
3732        if (!dev)
3733                return -EINVAL;
3734
3735        dev_dbg(dev, "renaming to %s\n", new_name);
3736
3737        old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3738        if (!old_device_name) {
3739                error = -ENOMEM;
3740                goto out;
3741        }
3742
3743        if (dev->class) {
3744                error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3745                                             kobj, old_device_name,
3746                                             new_name, kobject_namespace(kobj));
3747                if (error)
3748                        goto out;
3749        }
3750
3751        error = kobject_rename(kobj, new_name);
3752        if (error)
3753                goto out;
3754
3755out:
3756        put_device(dev);
3757
3758        kfree(old_device_name);
3759
3760        return error;
3761}
3762EXPORT_SYMBOL_GPL(device_rename);
3763
3764static int device_move_class_links(struct device *dev,
3765                                   struct device *old_parent,
3766                                   struct device *new_parent)
3767{
3768        int error = 0;
3769
3770        if (old_parent)
3771                sysfs_remove_link(&dev->kobj, "device");
3772        if (new_parent)
3773                error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3774                                          "device");
3775        return error;
3776}
3777
3778/**
3779 * device_move - moves a device to a new parent
3780 * @dev: the pointer to the struct device to be moved
3781 * @new_parent: the new parent of the device (can be NULL)
3782 * @dpm_order: how to reorder the dpm_list
3783 */
3784int device_move(struct device *dev, struct device *new_parent,
3785                enum dpm_order dpm_order)
3786{
3787        int error;
3788        struct device *old_parent;
3789        struct kobject *new_parent_kobj;
3790
3791        dev = get_device(dev);
3792        if (!dev)
3793                return -EINVAL;
3794
3795        device_pm_lock();
3796        new_parent = get_device(new_parent);
3797        new_parent_kobj = get_device_parent(dev, new_parent);
3798        if (IS_ERR(new_parent_kobj)) {
3799                error = PTR_ERR(new_parent_kobj);
3800                put_device(new_parent);
3801                goto out;
3802        }
3803
3804        pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3805                 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3806        error = kobject_move(&dev->kobj, new_parent_kobj);
3807        if (error) {
3808                cleanup_glue_dir(dev, new_parent_kobj);
3809                put_device(new_parent);
3810                goto out;
3811        }
3812        old_parent = dev->parent;
3813        dev->parent = new_parent;
3814        if (old_parent)
3815                klist_remove(&dev->p->knode_parent);
3816        if (new_parent) {
3817                klist_add_tail(&dev->p->knode_parent,
3818                               &new_parent->p->klist_children);
3819                set_dev_node(dev, dev_to_node(new_parent));
3820        }
3821
3822        if (dev->class) {
3823                error = device_move_class_links(dev, old_parent, new_parent);
3824                if (error) {
3825                        /* We ignore errors on cleanup since we're hosed anyway... */
3826                        device_move_class_links(dev, new_parent, old_parent);
3827                        if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3828                                if (new_parent)
3829                                        klist_remove(&dev->p->knode_parent);
3830                                dev->parent = old_parent;
3831                                if (old_parent) {
3832                                        klist_add_tail(&dev->p->knode_parent,
3833                                                       &old_parent->p->klist_children);
3834                                        set_dev_node(dev, dev_to_node(old_parent));
3835                                }
3836                        }
3837                        cleanup_glue_dir(dev, new_parent_kobj);
3838                        put_device(new_parent);
3839                        goto out;
3840                }
3841        }
3842        switch (dpm_order) {
3843        case DPM_ORDER_NONE:
3844                break;
3845        case DPM_ORDER_DEV_AFTER_PARENT:
3846                device_pm_move_after(dev, new_parent);
3847                devices_kset_move_after(dev, new_parent);
3848                break;
3849        case DPM_ORDER_PARENT_BEFORE_DEV:
3850                device_pm_move_before(new_parent, dev);
3851                devices_kset_move_before(new_parent, dev);
3852                break;
3853        case DPM_ORDER_DEV_LAST:
3854                device_pm_move_last(dev);
3855                devices_kset_move_last(dev);
3856                break;
3857        }
3858
3859        put_device(old_parent);
3860out:
3861        device_pm_unlock();
3862        put_device(dev);
3863        return error;
3864}
3865EXPORT_SYMBOL_GPL(device_move);
3866
3867static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3868                                     kgid_t kgid)
3869{
3870        struct kobject *kobj = &dev->kobj;
3871        struct class *class = dev->class;
3872        const struct device_type *type = dev->type;
3873        int error;
3874
3875        if (class) {
3876                /*
3877                 * Change the device groups of the device class for @dev to
3878                 * @kuid/@kgid.
3879                 */
3880                error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3881                                                  kgid);
3882                if (error)
3883                        return error;
3884        }
3885
3886        if (type) {
3887                /*
3888                 * Change the device groups of the device type for @dev to
3889                 * @kuid/@kgid.
3890                 */
3891                error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3892                                                  kgid);
3893                if (error)
3894                        return error;
3895        }
3896
3897        /* Change the device groups of @dev to @kuid/@kgid. */
3898        error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3899        if (error)
3900                return error;
3901
3902        if (device_supports_offline(dev) && !dev->offline_disabled) {
3903                /* Change online device attributes of @dev to @kuid/@kgid. */
3904                error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3905                                                kuid, kgid);
3906                if (error)
3907                        return error;
3908        }
3909
3910        return 0;
3911}
3912
3913/**
3914 * device_change_owner - change the owner of an existing device.
3915 * @dev: device.
3916 * @kuid: new owner's kuid
3917 * @kgid: new owner's kgid
3918 *
3919 * This changes the owner of @dev and its corresponding sysfs entries to
3920 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3921 * core.
3922 *
3923 * Returns 0 on success or error code on failure.
3924 */
3925int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3926{
3927        int error;
3928        struct kobject *kobj = &dev->kobj;
3929
3930        dev = get_device(dev);
3931        if (!dev)
3932                return -EINVAL;
3933
3934        /*
3935         * Change the kobject and the default attributes and groups of the
3936         * ktype associated with it to @kuid/@kgid.
3937         */
3938        error = sysfs_change_owner(kobj, kuid, kgid);
3939        if (error)
3940                goto out;
3941
3942        /*
3943         * Change the uevent file for @dev to the new owner. The uevent file
3944         * was created in a separate step when @dev got added and we mirror
3945         * that step here.
3946         */
3947        error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3948                                        kgid);
3949        if (error)
3950                goto out;
3951
3952        /*
3953         * Change the device groups, the device groups associated with the
3954         * device class, and the groups associated with the device type of @dev
3955         * to @kuid/@kgid.
3956         */
3957        error = device_attrs_change_owner(dev, kuid, kgid);
3958        if (error)
3959                goto out;
3960
3961        error = dpm_sysfs_change_owner(dev, kuid, kgid);
3962        if (error)
3963                goto out;
3964
3965#ifdef CONFIG_BLOCK
3966        if (sysfs_deprecated && dev->class == &block_class)
3967                goto out;
3968#endif
3969
3970        /*
3971         * Change the owner of the symlink located in the class directory of
3972         * the device class associated with @dev which points to the actual
3973         * directory entry for @dev to @kuid/@kgid. This ensures that the
3974         * symlink shows the same permissions as its target.
3975         */
3976        error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3977                                        dev_name(dev), kuid, kgid);
3978        if (error)
3979                goto out;
3980
3981out:
3982        put_device(dev);
3983        return error;
3984}
3985EXPORT_SYMBOL_GPL(device_change_owner);
3986
3987/**
3988 * device_shutdown - call ->shutdown() on each device to shutdown.
3989 */
3990void device_shutdown(void)
3991{
3992        struct device *dev, *parent;
3993
3994        wait_for_device_probe();
3995        device_block_probing();
3996
3997        cpufreq_suspend();
3998
3999        spin_lock(&devices_kset->list_lock);
4000        /*
4001         * Walk the devices list backward, shutting down each in turn.
4002         * Beware that device unplug events may also start pulling
4003         * devices offline, even as the system is shutting down.
4004         */
4005        while (!list_empty(&devices_kset->list)) {
4006                dev = list_entry(devices_kset->list.prev, struct device,
4007                                kobj.entry);
4008
4009                /*
4010                 * hold reference count of device's parent to
4011                 * prevent it from being freed because parent's
4012                 * lock is to be held
4013                 */
4014                parent = get_device(dev->parent);
4015                get_device(dev);
4016                /*
4017                 * Make sure the device is off the kset list, in the
4018                 * event that dev->*->shutdown() doesn't remove it.
4019                 */
4020                list_del_init(&dev->kobj.entry);
4021                spin_unlock(&devices_kset->list_lock);
4022
4023                /* hold lock to avoid race with probe/release */
4024                if (parent)
4025                        device_lock(parent);
4026                device_lock(dev);
4027
4028                /* Don't allow any more runtime suspends */
4029                pm_runtime_get_noresume(dev);
4030                pm_runtime_barrier(dev);
4031
4032                if (dev->class && dev->class->shutdown_pre) {
4033                        if (initcall_debug)
4034                                dev_info(dev, "shutdown_pre\n");
4035                        dev->class->shutdown_pre(dev);
4036                }
4037                if (dev->bus && dev->bus->shutdown) {
4038                        if (initcall_debug)
4039                                dev_info(dev, "shutdown\n");
4040                        dev->bus->shutdown(dev);
4041                } else if (dev->driver && dev->driver->shutdown) {
4042                        if (initcall_debug)
4043                                dev_info(dev, "shutdown\n");
4044                        dev->driver->shutdown(dev);
4045                }
4046
4047                device_unlock(dev);
4048                if (parent)
4049                        device_unlock(parent);
4050
4051                put_device(dev);
4052                put_device(parent);
4053
4054                spin_lock(&devices_kset->list_lock);
4055        }
4056        spin_unlock(&devices_kset->list_lock);
4057}
4058
4059/*
4060 * Device logging functions
4061 */
4062
4063#ifdef CONFIG_PRINTK
4064static int
4065create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4066{
4067        const char *subsys;
4068        size_t pos = 0;
4069
4070        if (dev->class)
4071                subsys = dev->class->name;
4072        else if (dev->bus)
4073                subsys = dev->bus->name;
4074        else
4075                return 0;
4076
4077        pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4078        if (pos >= hdrlen)
4079                goto overflow;
4080
4081        /*
4082         * Add device identifier DEVICE=:
4083         *   b12:8         block dev_t
4084         *   c127:3        char dev_t
4085         *   n8            netdev ifindex
4086         *   +sound:card0  subsystem:devname
4087         */
4088        if (MAJOR(dev->devt)) {
4089                char c;
4090
4091                if (strcmp(subsys, "block") == 0)
4092                        c = 'b';
4093                else
4094                        c = 'c';
4095                pos++;
4096                pos += snprintf(hdr + pos, hdrlen - pos,
4097                                "DEVICE=%c%u:%u",
4098                                c, MAJOR(dev->devt), MINOR(dev->devt));
4099        } else if (strcmp(subsys, "net") == 0) {
4100                struct net_device *net = to_net_dev(dev);
4101
4102                pos++;
4103                pos += snprintf(hdr + pos, hdrlen - pos,
4104                                "DEVICE=n%u", net->ifindex);
4105        } else {
4106                pos++;
4107                pos += snprintf(hdr + pos, hdrlen - pos,
4108                                "DEVICE=+%s:%s", subsys, dev_name(dev));
4109        }
4110
4111        if (pos >= hdrlen)
4112                goto overflow;
4113
4114        return pos;
4115
4116overflow:
4117        dev_WARN(dev, "device/subsystem name too long");
4118        return 0;
4119}
4120
4121int dev_vprintk_emit(int level, const struct device *dev,
4122                     const char *fmt, va_list args)
4123{
4124        char hdr[128];
4125        size_t hdrlen;
4126
4127        hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4128
4129        return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4130}
4131EXPORT_SYMBOL(dev_vprintk_emit);
4132
4133int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4134{
4135        va_list args;
4136        int r;
4137
4138        va_start(args, fmt);
4139
4140        r = dev_vprintk_emit(level, dev, fmt, args);
4141
4142        va_end(args);
4143
4144        return r;
4145}
4146EXPORT_SYMBOL(dev_printk_emit);
4147
4148static void __dev_printk(const char *level, const struct device *dev,
4149                        struct va_format *vaf)
4150{
4151        if (dev)
4152                dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4153                                dev_driver_string(dev), dev_name(dev), vaf);
4154        else
4155                printk("%s(NULL device *): %pV", level, vaf);
4156}
4157
4158void dev_printk(const char *level, const struct device *dev,
4159                const char *fmt, ...)
4160{
4161        struct va_format vaf;
4162        va_list args;
4163
4164        va_start(args, fmt);
4165
4166        vaf.fmt = fmt;
4167        vaf.va = &args;
4168
4169        __dev_printk(level, dev, &vaf);
4170
4171        va_end(args);
4172}
4173EXPORT_SYMBOL(dev_printk);
4174
4175#define define_dev_printk_level(func, kern_level)               \
4176void func(const struct device *dev, const char *fmt, ...)       \
4177{                                                               \
4178        struct va_format vaf;                                   \
4179        va_list args;                                           \
4180                                                                \
4181        va_start(args, fmt);                                    \
4182                                                                \
4183        vaf.fmt = fmt;                                          \
4184        vaf.va = &args;                                         \
4185                                                                \
4186        __dev_printk(kern_level, dev, &vaf);                    \
4187                                                                \
4188        va_end(args);                                           \
4189}                                                               \
4190EXPORT_SYMBOL(func);
4191
4192define_dev_printk_level(_dev_emerg, KERN_EMERG);
4193define_dev_printk_level(_dev_alert, KERN_ALERT);
4194define_dev_printk_level(_dev_crit, KERN_CRIT);
4195define_dev_printk_level(_dev_err, KERN_ERR);
4196define_dev_printk_level(_dev_warn, KERN_WARNING);
4197define_dev_printk_level(_dev_notice, KERN_NOTICE);
4198define_dev_printk_level(_dev_info, KERN_INFO);
4199
4200#endif
4201
4202/**
4203 * dev_err_probe - probe error check and log helper
4204 * @dev: the pointer to the struct device
4205 * @err: error value to test
4206 * @fmt: printf-style format string
4207 * @...: arguments as specified in the format string
4208 *
4209 * This helper implements common pattern present in probe functions for error
4210 * checking: print debug or error message depending if the error value is
4211 * -EPROBE_DEFER and propagate error upwards.
4212 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4213 * checked later by reading devices_deferred debugfs attribute.
4214 * It replaces code sequence:
4215 *      if (err != -EPROBE_DEFER)
4216 *              dev_err(dev, ...);
4217 *      else
4218 *              dev_dbg(dev, ...);
4219 *      return err;
4220 * with
4221 *      return dev_err_probe(dev, err, ...);
4222 *
4223 * Returns @err.
4224 *
4225 */
4226int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4227{
4228        struct va_format vaf;
4229        va_list args;
4230
4231        va_start(args, fmt);
4232        vaf.fmt = fmt;
4233        vaf.va = &args;
4234
4235        if (err != -EPROBE_DEFER) {
4236                dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4237        } else {
4238                device_set_deferred_probe_reason(dev, &vaf);
4239                dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4240        }
4241
4242        va_end(args);
4243
4244        return err;
4245}
4246EXPORT_SYMBOL_GPL(dev_err_probe);
4247
4248static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4249{
4250        return fwnode && !IS_ERR(fwnode->secondary);
4251}
4252
4253/**
4254 * set_primary_fwnode - Change the primary firmware node of a given device.
4255 * @dev: Device to handle.
4256 * @fwnode: New primary firmware node of the device.
4257 *
4258 * Set the device's firmware node pointer to @fwnode, but if a secondary
4259 * firmware node of the device is present, preserve it.
4260 */
4261void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4262{
4263        struct fwnode_handle *fn = dev->fwnode;
4264
4265        if (fwnode) {
4266                if (fwnode_is_primary(fn))
4267                        fn = fn->secondary;
4268
4269                if (fn) {
4270                        WARN_ON(fwnode->secondary);
4271                        fwnode->secondary = fn;
4272                }
4273                dev->fwnode = fwnode;
4274        } else {
4275                if (fwnode_is_primary(fn)) {
4276                        dev->fwnode = fn->secondary;
4277                        fn->secondary = NULL;
4278                } else {
4279                        dev->fwnode = NULL;
4280                }
4281        }
4282}
4283EXPORT_SYMBOL_GPL(set_primary_fwnode);
4284
4285/**
4286 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4287 * @dev: Device to handle.
4288 * @fwnode: New secondary firmware node of the device.
4289 *
4290 * If a primary firmware node of the device is present, set its secondary
4291 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4292 * @fwnode.
4293 */
4294void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4295{
4296        if (fwnode)
4297                fwnode->secondary = ERR_PTR(-ENODEV);
4298
4299        if (fwnode_is_primary(dev->fwnode))
4300                dev->fwnode->secondary = fwnode;
4301        else
4302                dev->fwnode = fwnode;
4303}
4304EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4305
4306/**
4307 * device_set_of_node_from_dev - reuse device-tree node of another device
4308 * @dev: device whose device-tree node is being set
4309 * @dev2: device whose device-tree node is being reused
4310 *
4311 * Takes another reference to the new device-tree node after first dropping
4312 * any reference held to the old node.
4313 */
4314void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4315{
4316        of_node_put(dev->of_node);
4317        dev->of_node = of_node_get(dev2->of_node);
4318        dev->of_node_reused = true;
4319}
4320EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4321
4322int device_match_name(struct device *dev, const void *name)
4323{
4324        return sysfs_streq(dev_name(dev), name);
4325}
4326EXPORT_SYMBOL_GPL(device_match_name);
4327
4328int device_match_of_node(struct device *dev, const void *np)
4329{
4330        return dev->of_node == np;
4331}
4332EXPORT_SYMBOL_GPL(device_match_of_node);
4333
4334int device_match_fwnode(struct device *dev, const void *fwnode)
4335{
4336        return dev_fwnode(dev) == fwnode;
4337}
4338EXPORT_SYMBOL_GPL(device_match_fwnode);
4339
4340int device_match_devt(struct device *dev, const void *pdevt)
4341{
4342        return dev->devt == *(dev_t *)pdevt;
4343}
4344EXPORT_SYMBOL_GPL(device_match_devt);
4345
4346int device_match_acpi_dev(struct device *dev, const void *adev)
4347{
4348        return ACPI_COMPANION(dev) == adev;
4349}
4350EXPORT_SYMBOL(device_match_acpi_dev);
4351
4352int device_match_any(struct device *dev, const void *unused)
4353{
4354        return 1;
4355}
4356EXPORT_SYMBOL_GPL(device_match_any);
4357