linux/drivers/base/regmap/regmap-irq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21        struct mutex lock;
  22        struct irq_chip irq_chip;
  23
  24        struct regmap *map;
  25        const struct regmap_irq_chip *chip;
  26
  27        int irq_base;
  28        struct irq_domain *domain;
  29
  30        int irq;
  31        int wake_count;
  32
  33        void *status_reg_buf;
  34        unsigned int *main_status_buf;
  35        unsigned int *status_buf;
  36        unsigned int *mask_buf;
  37        unsigned int *mask_buf_def;
  38        unsigned int *wake_buf;
  39        unsigned int *type_buf;
  40        unsigned int *type_buf_def;
  41
  42        unsigned int irq_reg_stride;
  43        unsigned int type_reg_stride;
  44
  45        bool clear_status:1;
  46};
  47
  48static inline const
  49struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  50                                     int irq)
  51{
  52        return &data->chip->irqs[irq];
  53}
  54
  55static void regmap_irq_lock(struct irq_data *data)
  56{
  57        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  58
  59        mutex_lock(&d->lock);
  60}
  61
  62static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
  63                                  unsigned int reg, unsigned int mask,
  64                                  unsigned int val)
  65{
  66        if (d->chip->mask_writeonly)
  67                return regmap_write_bits(d->map, reg, mask, val);
  68        else
  69                return regmap_update_bits(d->map, reg, mask, val);
  70}
  71
  72static void regmap_irq_sync_unlock(struct irq_data *data)
  73{
  74        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  75        struct regmap *map = d->map;
  76        int i, ret;
  77        u32 reg;
  78        u32 unmask_offset;
  79        u32 val;
  80
  81        if (d->chip->runtime_pm) {
  82                ret = pm_runtime_get_sync(map->dev);
  83                if (ret < 0)
  84                        dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  85                                ret);
  86        }
  87
  88        if (d->clear_status) {
  89                for (i = 0; i < d->chip->num_regs; i++) {
  90                        reg = d->chip->status_base +
  91                                (i * map->reg_stride * d->irq_reg_stride);
  92
  93                        ret = regmap_read(map, reg, &val);
  94                        if (ret)
  95                                dev_err(d->map->dev,
  96                                        "Failed to clear the interrupt status bits\n");
  97                }
  98
  99                d->clear_status = false;
 100        }
 101
 102        /*
 103         * If there's been a change in the mask write it back to the
 104         * hardware.  We rely on the use of the regmap core cache to
 105         * suppress pointless writes.
 106         */
 107        for (i = 0; i < d->chip->num_regs; i++) {
 108                if (!d->chip->mask_base)
 109                        continue;
 110
 111                reg = d->chip->mask_base +
 112                        (i * map->reg_stride * d->irq_reg_stride);
 113                if (d->chip->mask_invert) {
 114                        ret = regmap_irq_update_bits(d, reg,
 115                                         d->mask_buf_def[i], ~d->mask_buf[i]);
 116                } else if (d->chip->unmask_base) {
 117                        /* set mask with mask_base register */
 118                        ret = regmap_irq_update_bits(d, reg,
 119                                        d->mask_buf_def[i], ~d->mask_buf[i]);
 120                        if (ret < 0)
 121                                dev_err(d->map->dev,
 122                                        "Failed to sync unmasks in %x\n",
 123                                        reg);
 124                        unmask_offset = d->chip->unmask_base -
 125                                                        d->chip->mask_base;
 126                        /* clear mask with unmask_base register */
 127                        ret = regmap_irq_update_bits(d,
 128                                        reg + unmask_offset,
 129                                        d->mask_buf_def[i],
 130                                        d->mask_buf[i]);
 131                } else {
 132                        ret = regmap_irq_update_bits(d, reg,
 133                                         d->mask_buf_def[i], d->mask_buf[i]);
 134                }
 135                if (ret != 0)
 136                        dev_err(d->map->dev, "Failed to sync masks in %x\n",
 137                                reg);
 138
 139                reg = d->chip->wake_base +
 140                        (i * map->reg_stride * d->irq_reg_stride);
 141                if (d->wake_buf) {
 142                        if (d->chip->wake_invert)
 143                                ret = regmap_irq_update_bits(d, reg,
 144                                                         d->mask_buf_def[i],
 145                                                         ~d->wake_buf[i]);
 146                        else
 147                                ret = regmap_irq_update_bits(d, reg,
 148                                                         d->mask_buf_def[i],
 149                                                         d->wake_buf[i]);
 150                        if (ret != 0)
 151                                dev_err(d->map->dev,
 152                                        "Failed to sync wakes in %x: %d\n",
 153                                        reg, ret);
 154                }
 155
 156                if (!d->chip->init_ack_masked)
 157                        continue;
 158                /*
 159                 * Ack all the masked interrupts unconditionally,
 160                 * OR if there is masked interrupt which hasn't been Acked,
 161                 * it'll be ignored in irq handler, then may introduce irq storm
 162                 */
 163                if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 164                        reg = d->chip->ack_base +
 165                                (i * map->reg_stride * d->irq_reg_stride);
 166                        /* some chips ack by write 0 */
 167                        if (d->chip->ack_invert)
 168                                ret = regmap_write(map, reg, ~d->mask_buf[i]);
 169                        else
 170                                ret = regmap_write(map, reg, d->mask_buf[i]);
 171                        if (ret != 0)
 172                                dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 173                                        reg, ret);
 174                }
 175        }
 176
 177        /* Don't update the type bits if we're using mask bits for irq type. */
 178        if (!d->chip->type_in_mask) {
 179                for (i = 0; i < d->chip->num_type_reg; i++) {
 180                        if (!d->type_buf_def[i])
 181                                continue;
 182                        reg = d->chip->type_base +
 183                                (i * map->reg_stride * d->type_reg_stride);
 184                        if (d->chip->type_invert)
 185                                ret = regmap_irq_update_bits(d, reg,
 186                                        d->type_buf_def[i], ~d->type_buf[i]);
 187                        else
 188                                ret = regmap_irq_update_bits(d, reg,
 189                                        d->type_buf_def[i], d->type_buf[i]);
 190                        if (ret != 0)
 191                                dev_err(d->map->dev, "Failed to sync type in %x\n",
 192                                        reg);
 193                }
 194        }
 195
 196        if (d->chip->runtime_pm)
 197                pm_runtime_put(map->dev);
 198
 199        /* If we've changed our wakeup count propagate it to the parent */
 200        if (d->wake_count < 0)
 201                for (i = d->wake_count; i < 0; i++)
 202                        irq_set_irq_wake(d->irq, 0);
 203        else if (d->wake_count > 0)
 204                for (i = 0; i < d->wake_count; i++)
 205                        irq_set_irq_wake(d->irq, 1);
 206
 207        d->wake_count = 0;
 208
 209        mutex_unlock(&d->lock);
 210}
 211
 212static void regmap_irq_enable(struct irq_data *data)
 213{
 214        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 215        struct regmap *map = d->map;
 216        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 217        unsigned int mask, type;
 218
 219        type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
 220
 221        /*
 222         * The type_in_mask flag means that the underlying hardware uses
 223         * separate mask bits for rising and falling edge interrupts, but
 224         * we want to make them into a single virtual interrupt with
 225         * configurable edge.
 226         *
 227         * If the interrupt we're enabling defines the falling or rising
 228         * masks then instead of using the regular mask bits for this
 229         * interrupt, use the value previously written to the type buffer
 230         * at the corresponding offset in regmap_irq_set_type().
 231         */
 232        if (d->chip->type_in_mask && type)
 233                mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
 234        else
 235                mask = irq_data->mask;
 236
 237        if (d->chip->clear_on_unmask)
 238                d->clear_status = true;
 239
 240        d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
 241}
 242
 243static void regmap_irq_disable(struct irq_data *data)
 244{
 245        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 246        struct regmap *map = d->map;
 247        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 248
 249        d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 250}
 251
 252static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 253{
 254        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 255        struct regmap *map = d->map;
 256        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 257        int reg;
 258        const struct regmap_irq_type *t = &irq_data->type;
 259
 260        if ((t->types_supported & type) != type)
 261                return 0;
 262
 263        reg = t->type_reg_offset / map->reg_stride;
 264
 265        if (t->type_reg_mask)
 266                d->type_buf[reg] &= ~t->type_reg_mask;
 267        else
 268                d->type_buf[reg] &= ~(t->type_falling_val |
 269                                      t->type_rising_val |
 270                                      t->type_level_low_val |
 271                                      t->type_level_high_val);
 272        switch (type) {
 273        case IRQ_TYPE_EDGE_FALLING:
 274                d->type_buf[reg] |= t->type_falling_val;
 275                break;
 276
 277        case IRQ_TYPE_EDGE_RISING:
 278                d->type_buf[reg] |= t->type_rising_val;
 279                break;
 280
 281        case IRQ_TYPE_EDGE_BOTH:
 282                d->type_buf[reg] |= (t->type_falling_val |
 283                                        t->type_rising_val);
 284                break;
 285
 286        case IRQ_TYPE_LEVEL_HIGH:
 287                d->type_buf[reg] |= t->type_level_high_val;
 288                break;
 289
 290        case IRQ_TYPE_LEVEL_LOW:
 291                d->type_buf[reg] |= t->type_level_low_val;
 292                break;
 293        default:
 294                return -EINVAL;
 295        }
 296        return 0;
 297}
 298
 299static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 300{
 301        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 302        struct regmap *map = d->map;
 303        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 304
 305        if (on) {
 306                if (d->wake_buf)
 307                        d->wake_buf[irq_data->reg_offset / map->reg_stride]
 308                                &= ~irq_data->mask;
 309                d->wake_count++;
 310        } else {
 311                if (d->wake_buf)
 312                        d->wake_buf[irq_data->reg_offset / map->reg_stride]
 313                                |= irq_data->mask;
 314                d->wake_count--;
 315        }
 316
 317        return 0;
 318}
 319
 320static const struct irq_chip regmap_irq_chip = {
 321        .irq_bus_lock           = regmap_irq_lock,
 322        .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
 323        .irq_disable            = regmap_irq_disable,
 324        .irq_enable             = regmap_irq_enable,
 325        .irq_set_type           = regmap_irq_set_type,
 326        .irq_set_wake           = regmap_irq_set_wake,
 327};
 328
 329static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 330                                           unsigned int b)
 331{
 332        const struct regmap_irq_chip *chip = data->chip;
 333        struct regmap *map = data->map;
 334        struct regmap_irq_sub_irq_map *subreg;
 335        int i, ret = 0;
 336
 337        if (!chip->sub_reg_offsets) {
 338                /* Assume linear mapping */
 339                ret = regmap_read(map, chip->status_base +
 340                                  (b * map->reg_stride * data->irq_reg_stride),
 341                                   &data->status_buf[b]);
 342        } else {
 343                subreg = &chip->sub_reg_offsets[b];
 344                for (i = 0; i < subreg->num_regs; i++) {
 345                        unsigned int offset = subreg->offset[i];
 346
 347                        ret = regmap_read(map, chip->status_base + offset,
 348                                          &data->status_buf[offset]);
 349                        if (ret)
 350                                break;
 351                }
 352        }
 353        return ret;
 354}
 355
 356static irqreturn_t regmap_irq_thread(int irq, void *d)
 357{
 358        struct regmap_irq_chip_data *data = d;
 359        const struct regmap_irq_chip *chip = data->chip;
 360        struct regmap *map = data->map;
 361        int ret, i;
 362        bool handled = false;
 363        u32 reg;
 364
 365        if (chip->handle_pre_irq)
 366                chip->handle_pre_irq(chip->irq_drv_data);
 367
 368        if (chip->runtime_pm) {
 369                ret = pm_runtime_get_sync(map->dev);
 370                if (ret < 0) {
 371                        dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 372                                ret);
 373                        goto exit;
 374                }
 375        }
 376
 377        /*
 378         * Read only registers with active IRQs if the chip has 'main status
 379         * register'. Else read in the statuses, using a single bulk read if
 380         * possible in order to reduce the I/O overheads.
 381         */
 382
 383        if (chip->num_main_regs) {
 384                unsigned int max_main_bits;
 385                unsigned long size;
 386
 387                size = chip->num_regs * sizeof(unsigned int);
 388
 389                max_main_bits = (chip->num_main_status_bits) ?
 390                                 chip->num_main_status_bits : chip->num_regs;
 391                /* Clear the status buf as we don't read all status regs */
 392                memset(data->status_buf, 0, size);
 393
 394                /* We could support bulk read for main status registers
 395                 * but I don't expect to see devices with really many main
 396                 * status registers so let's only support single reads for the
 397                 * sake of simplicity. and add bulk reads only if needed
 398                 */
 399                for (i = 0; i < chip->num_main_regs; i++) {
 400                        ret = regmap_read(map, chip->main_status +
 401                                  (i * map->reg_stride
 402                                   * data->irq_reg_stride),
 403                                  &data->main_status_buf[i]);
 404                        if (ret) {
 405                                dev_err(map->dev,
 406                                        "Failed to read IRQ status %d\n",
 407                                        ret);
 408                                goto exit;
 409                        }
 410                }
 411
 412                /* Read sub registers with active IRQs */
 413                for (i = 0; i < chip->num_main_regs; i++) {
 414                        unsigned int b;
 415                        const unsigned long mreg = data->main_status_buf[i];
 416
 417                        for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 418                                if (i * map->format.val_bytes * 8 + b >
 419                                    max_main_bits)
 420                                        break;
 421                                ret = read_sub_irq_data(data, b);
 422
 423                                if (ret != 0) {
 424                                        dev_err(map->dev,
 425                                                "Failed to read IRQ status %d\n",
 426                                                ret);
 427                                        goto exit;
 428                                }
 429                        }
 430
 431                }
 432        } else if (!map->use_single_read && map->reg_stride == 1 &&
 433                   data->irq_reg_stride == 1) {
 434
 435                u8 *buf8 = data->status_reg_buf;
 436                u16 *buf16 = data->status_reg_buf;
 437                u32 *buf32 = data->status_reg_buf;
 438
 439                BUG_ON(!data->status_reg_buf);
 440
 441                ret = regmap_bulk_read(map, chip->status_base,
 442                                       data->status_reg_buf,
 443                                       chip->num_regs);
 444                if (ret != 0) {
 445                        dev_err(map->dev, "Failed to read IRQ status: %d\n",
 446                                ret);
 447                        goto exit;
 448                }
 449
 450                for (i = 0; i < data->chip->num_regs; i++) {
 451                        switch (map->format.val_bytes) {
 452                        case 1:
 453                                data->status_buf[i] = buf8[i];
 454                                break;
 455                        case 2:
 456                                data->status_buf[i] = buf16[i];
 457                                break;
 458                        case 4:
 459                                data->status_buf[i] = buf32[i];
 460                                break;
 461                        default:
 462                                BUG();
 463                                goto exit;
 464                        }
 465                }
 466
 467        } else {
 468                for (i = 0; i < data->chip->num_regs; i++) {
 469                        ret = regmap_read(map, chip->status_base +
 470                                          (i * map->reg_stride
 471                                           * data->irq_reg_stride),
 472                                          &data->status_buf[i]);
 473
 474                        if (ret != 0) {
 475                                dev_err(map->dev,
 476                                        "Failed to read IRQ status: %d\n",
 477                                        ret);
 478                                goto exit;
 479                        }
 480                }
 481        }
 482
 483        /*
 484         * Ignore masked IRQs and ack if we need to; we ack early so
 485         * there is no race between handling and acknowleding the
 486         * interrupt.  We assume that typically few of the interrupts
 487         * will fire simultaneously so don't worry about overhead from
 488         * doing a write per register.
 489         */
 490        for (i = 0; i < data->chip->num_regs; i++) {
 491                data->status_buf[i] &= ~data->mask_buf[i];
 492
 493                if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 494                        reg = chip->ack_base +
 495                                (i * map->reg_stride * data->irq_reg_stride);
 496                        ret = regmap_write(map, reg, data->status_buf[i]);
 497                        if (ret != 0)
 498                                dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 499                                        reg, ret);
 500                }
 501        }
 502
 503        for (i = 0; i < chip->num_irqs; i++) {
 504                if (data->status_buf[chip->irqs[i].reg_offset /
 505                                     map->reg_stride] & chip->irqs[i].mask) {
 506                        handle_nested_irq(irq_find_mapping(data->domain, i));
 507                        handled = true;
 508                }
 509        }
 510
 511exit:
 512        if (chip->runtime_pm)
 513                pm_runtime_put(map->dev);
 514
 515        if (chip->handle_post_irq)
 516                chip->handle_post_irq(chip->irq_drv_data);
 517
 518        if (handled)
 519                return IRQ_HANDLED;
 520        else
 521                return IRQ_NONE;
 522}
 523
 524static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 525                          irq_hw_number_t hw)
 526{
 527        struct regmap_irq_chip_data *data = h->host_data;
 528
 529        irq_set_chip_data(virq, data);
 530        irq_set_chip(virq, &data->irq_chip);
 531        irq_set_nested_thread(virq, 1);
 532        irq_set_parent(virq, data->irq);
 533        irq_set_noprobe(virq);
 534
 535        return 0;
 536}
 537
 538static const struct irq_domain_ops regmap_domain_ops = {
 539        .map    = regmap_irq_map,
 540        .xlate  = irq_domain_xlate_onetwocell,
 541};
 542
 543/**
 544 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 545 *
 546 * @fwnode: The firmware node where the IRQ domain should be added to.
 547 * @map: The regmap for the device.
 548 * @irq: The IRQ the device uses to signal interrupts.
 549 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 550 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 551 * @chip: Configuration for the interrupt controller.
 552 * @data: Runtime data structure for the controller, allocated on success.
 553 *
 554 * Returns 0 on success or an errno on failure.
 555 *
 556 * In order for this to be efficient the chip really should use a
 557 * register cache.  The chip driver is responsible for restoring the
 558 * register values used by the IRQ controller over suspend and resume.
 559 */
 560int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 561                               struct regmap *map, int irq,
 562                               int irq_flags, int irq_base,
 563                               const struct regmap_irq_chip *chip,
 564                               struct regmap_irq_chip_data **data)
 565{
 566        struct regmap_irq_chip_data *d;
 567        int i;
 568        int ret = -ENOMEM;
 569        int num_type_reg;
 570        u32 reg;
 571        u32 unmask_offset;
 572
 573        if (chip->num_regs <= 0)
 574                return -EINVAL;
 575
 576        if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 577                return -EINVAL;
 578
 579        for (i = 0; i < chip->num_irqs; i++) {
 580                if (chip->irqs[i].reg_offset % map->reg_stride)
 581                        return -EINVAL;
 582                if (chip->irqs[i].reg_offset / map->reg_stride >=
 583                    chip->num_regs)
 584                        return -EINVAL;
 585        }
 586
 587        if (irq_base) {
 588                irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 589                if (irq_base < 0) {
 590                        dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 591                                 irq_base);
 592                        return irq_base;
 593                }
 594        }
 595
 596        d = kzalloc(sizeof(*d), GFP_KERNEL);
 597        if (!d)
 598                return -ENOMEM;
 599
 600        if (chip->num_main_regs) {
 601                d->main_status_buf = kcalloc(chip->num_main_regs,
 602                                             sizeof(unsigned int),
 603                                             GFP_KERNEL);
 604
 605                if (!d->main_status_buf)
 606                        goto err_alloc;
 607        }
 608
 609        d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 610                                GFP_KERNEL);
 611        if (!d->status_buf)
 612                goto err_alloc;
 613
 614        d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 615                              GFP_KERNEL);
 616        if (!d->mask_buf)
 617                goto err_alloc;
 618
 619        d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
 620                                  GFP_KERNEL);
 621        if (!d->mask_buf_def)
 622                goto err_alloc;
 623
 624        if (chip->wake_base) {
 625                d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 626                                      GFP_KERNEL);
 627                if (!d->wake_buf)
 628                        goto err_alloc;
 629        }
 630
 631        num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
 632        if (num_type_reg) {
 633                d->type_buf_def = kcalloc(num_type_reg,
 634                                          sizeof(unsigned int), GFP_KERNEL);
 635                if (!d->type_buf_def)
 636                        goto err_alloc;
 637
 638                d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
 639                                      GFP_KERNEL);
 640                if (!d->type_buf)
 641                        goto err_alloc;
 642        }
 643
 644        d->irq_chip = regmap_irq_chip;
 645        d->irq_chip.name = chip->name;
 646        d->irq = irq;
 647        d->map = map;
 648        d->chip = chip;
 649        d->irq_base = irq_base;
 650
 651        if (chip->irq_reg_stride)
 652                d->irq_reg_stride = chip->irq_reg_stride;
 653        else
 654                d->irq_reg_stride = 1;
 655
 656        if (chip->type_reg_stride)
 657                d->type_reg_stride = chip->type_reg_stride;
 658        else
 659                d->type_reg_stride = 1;
 660
 661        if (!map->use_single_read && map->reg_stride == 1 &&
 662            d->irq_reg_stride == 1) {
 663                d->status_reg_buf = kmalloc_array(chip->num_regs,
 664                                                  map->format.val_bytes,
 665                                                  GFP_KERNEL);
 666                if (!d->status_reg_buf)
 667                        goto err_alloc;
 668        }
 669
 670        mutex_init(&d->lock);
 671
 672        for (i = 0; i < chip->num_irqs; i++)
 673                d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 674                        |= chip->irqs[i].mask;
 675
 676        /* Mask all the interrupts by default */
 677        for (i = 0; i < chip->num_regs; i++) {
 678                d->mask_buf[i] = d->mask_buf_def[i];
 679                if (!chip->mask_base)
 680                        continue;
 681
 682                reg = chip->mask_base +
 683                        (i * map->reg_stride * d->irq_reg_stride);
 684                if (chip->mask_invert)
 685                        ret = regmap_irq_update_bits(d, reg,
 686                                         d->mask_buf[i], ~d->mask_buf[i]);
 687                else if (d->chip->unmask_base) {
 688                        unmask_offset = d->chip->unmask_base -
 689                                        d->chip->mask_base;
 690                        ret = regmap_irq_update_bits(d,
 691                                        reg + unmask_offset,
 692                                        d->mask_buf[i],
 693                                        d->mask_buf[i]);
 694                } else
 695                        ret = regmap_irq_update_bits(d, reg,
 696                                         d->mask_buf[i], d->mask_buf[i]);
 697                if (ret != 0) {
 698                        dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 699                                reg, ret);
 700                        goto err_alloc;
 701                }
 702
 703                if (!chip->init_ack_masked)
 704                        continue;
 705
 706                /* Ack masked but set interrupts */
 707                reg = chip->status_base +
 708                        (i * map->reg_stride * d->irq_reg_stride);
 709                ret = regmap_read(map, reg, &d->status_buf[i]);
 710                if (ret != 0) {
 711                        dev_err(map->dev, "Failed to read IRQ status: %d\n",
 712                                ret);
 713                        goto err_alloc;
 714                }
 715
 716                if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 717                        reg = chip->ack_base +
 718                                (i * map->reg_stride * d->irq_reg_stride);
 719                        if (chip->ack_invert)
 720                                ret = regmap_write(map, reg,
 721                                        ~(d->status_buf[i] & d->mask_buf[i]));
 722                        else
 723                                ret = regmap_write(map, reg,
 724                                        d->status_buf[i] & d->mask_buf[i]);
 725                        if (ret != 0) {
 726                                dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 727                                        reg, ret);
 728                                goto err_alloc;
 729                        }
 730                }
 731        }
 732
 733        /* Wake is disabled by default */
 734        if (d->wake_buf) {
 735                for (i = 0; i < chip->num_regs; i++) {
 736                        d->wake_buf[i] = d->mask_buf_def[i];
 737                        reg = chip->wake_base +
 738                                (i * map->reg_stride * d->irq_reg_stride);
 739
 740                        if (chip->wake_invert)
 741                                ret = regmap_irq_update_bits(d, reg,
 742                                                         d->mask_buf_def[i],
 743                                                         0);
 744                        else
 745                                ret = regmap_irq_update_bits(d, reg,
 746                                                         d->mask_buf_def[i],
 747                                                         d->wake_buf[i]);
 748                        if (ret != 0) {
 749                                dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 750                                        reg, ret);
 751                                goto err_alloc;
 752                        }
 753                }
 754        }
 755
 756        if (chip->num_type_reg && !chip->type_in_mask) {
 757                for (i = 0; i < chip->num_type_reg; ++i) {
 758                        reg = chip->type_base +
 759                                (i * map->reg_stride * d->type_reg_stride);
 760
 761                        ret = regmap_read(map, reg, &d->type_buf_def[i]);
 762
 763                        if (d->chip->type_invert)
 764                                d->type_buf_def[i] = ~d->type_buf_def[i];
 765
 766                        if (ret) {
 767                                dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
 768                                        reg, ret);
 769                                goto err_alloc;
 770                        }
 771                }
 772        }
 773
 774        if (irq_base)
 775                d->domain = irq_domain_add_legacy(to_of_node(fwnode),
 776                                                  chip->num_irqs, irq_base,
 777                                                  0, &regmap_domain_ops, d);
 778        else
 779                d->domain = irq_domain_add_linear(to_of_node(fwnode),
 780                                                  chip->num_irqs,
 781                                                  &regmap_domain_ops, d);
 782        if (!d->domain) {
 783                dev_err(map->dev, "Failed to create IRQ domain\n");
 784                ret = -ENOMEM;
 785                goto err_alloc;
 786        }
 787
 788        ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 789                                   irq_flags | IRQF_ONESHOT,
 790                                   chip->name, d);
 791        if (ret != 0) {
 792                dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 793                        irq, chip->name, ret);
 794                goto err_domain;
 795        }
 796
 797        *data = d;
 798
 799        return 0;
 800
 801err_domain:
 802        /* Should really dispose of the domain but... */
 803err_alloc:
 804        kfree(d->type_buf);
 805        kfree(d->type_buf_def);
 806        kfree(d->wake_buf);
 807        kfree(d->mask_buf_def);
 808        kfree(d->mask_buf);
 809        kfree(d->status_buf);
 810        kfree(d->status_reg_buf);
 811        kfree(d);
 812        return ret;
 813}
 814EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
 815
 816/**
 817 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 818 *
 819 * @map: The regmap for the device.
 820 * @irq: The IRQ the device uses to signal interrupts.
 821 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 822 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 823 * @chip: Configuration for the interrupt controller.
 824 * @data: Runtime data structure for the controller, allocated on success.
 825 *
 826 * Returns 0 on success or an errno on failure.
 827 *
 828 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 829 * node of the regmap is used.
 830 */
 831int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 832                        int irq_base, const struct regmap_irq_chip *chip,
 833                        struct regmap_irq_chip_data **data)
 834{
 835        return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
 836                                          irq_flags, irq_base, chip, data);
 837}
 838EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 839
 840/**
 841 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 842 *
 843 * @irq: Primary IRQ for the device
 844 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 845 *
 846 * This function also disposes of all mapped IRQs on the chip.
 847 */
 848void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 849{
 850        unsigned int virq;
 851        int hwirq;
 852
 853        if (!d)
 854                return;
 855
 856        free_irq(irq, d);
 857
 858        /* Dispose all virtual irq from irq domain before removing it */
 859        for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 860                /* Ignore hwirq if holes in the IRQ list */
 861                if (!d->chip->irqs[hwirq].mask)
 862                        continue;
 863
 864                /*
 865                 * Find the virtual irq of hwirq on chip and if it is
 866                 * there then dispose it
 867                 */
 868                virq = irq_find_mapping(d->domain, hwirq);
 869                if (virq)
 870                        irq_dispose_mapping(virq);
 871        }
 872
 873        irq_domain_remove(d->domain);
 874        kfree(d->type_buf);
 875        kfree(d->type_buf_def);
 876        kfree(d->wake_buf);
 877        kfree(d->mask_buf_def);
 878        kfree(d->mask_buf);
 879        kfree(d->status_reg_buf);
 880        kfree(d->status_buf);
 881        kfree(d);
 882}
 883EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 884
 885static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 886{
 887        struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 888
 889        regmap_del_irq_chip(d->irq, d);
 890}
 891
 892static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 893
 894{
 895        struct regmap_irq_chip_data **r = res;
 896
 897        if (!r || !*r) {
 898                WARN_ON(!r || !*r);
 899                return 0;
 900        }
 901        return *r == data;
 902}
 903
 904/**
 905 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
 906 *
 907 * @dev: The device pointer on which irq_chip belongs to.
 908 * @fwnode: The firmware node where the IRQ domain should be added to.
 909 * @map: The regmap for the device.
 910 * @irq: The IRQ the device uses to signal interrupts
 911 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 912 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 913 * @chip: Configuration for the interrupt controller.
 914 * @data: Runtime data structure for the controller, allocated on success
 915 *
 916 * Returns 0 on success or an errno on failure.
 917 *
 918 * The &regmap_irq_chip_data will be automatically released when the device is
 919 * unbound.
 920 */
 921int devm_regmap_add_irq_chip_fwnode(struct device *dev,
 922                                    struct fwnode_handle *fwnode,
 923                                    struct regmap *map, int irq,
 924                                    int irq_flags, int irq_base,
 925                                    const struct regmap_irq_chip *chip,
 926                                    struct regmap_irq_chip_data **data)
 927{
 928        struct regmap_irq_chip_data **ptr, *d;
 929        int ret;
 930
 931        ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
 932                           GFP_KERNEL);
 933        if (!ptr)
 934                return -ENOMEM;
 935
 936        ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
 937                                         chip, &d);
 938        if (ret < 0) {
 939                devres_free(ptr);
 940                return ret;
 941        }
 942
 943        *ptr = d;
 944        devres_add(dev, ptr);
 945        *data = d;
 946        return 0;
 947}
 948EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
 949
 950/**
 951 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
 952 *
 953 * @dev: The device pointer on which irq_chip belongs to.
 954 * @map: The regmap for the device.
 955 * @irq: The IRQ the device uses to signal interrupts
 956 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 957 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 958 * @chip: Configuration for the interrupt controller.
 959 * @data: Runtime data structure for the controller, allocated on success
 960 *
 961 * Returns 0 on success or an errno on failure.
 962 *
 963 * The &regmap_irq_chip_data will be automatically released when the device is
 964 * unbound.
 965 */
 966int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
 967                             int irq_flags, int irq_base,
 968                             const struct regmap_irq_chip *chip,
 969                             struct regmap_irq_chip_data **data)
 970{
 971        return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
 972                                               irq, irq_flags, irq_base, chip,
 973                                               data);
 974}
 975EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
 976
 977/**
 978 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
 979 *
 980 * @dev: Device for which which resource was allocated.
 981 * @irq: Primary IRQ for the device.
 982 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
 983 *
 984 * A resource managed version of regmap_del_irq_chip().
 985 */
 986void devm_regmap_del_irq_chip(struct device *dev, int irq,
 987                              struct regmap_irq_chip_data *data)
 988{
 989        int rc;
 990
 991        WARN_ON(irq != data->irq);
 992        rc = devres_release(dev, devm_regmap_irq_chip_release,
 993                            devm_regmap_irq_chip_match, data);
 994
 995        if (rc != 0)
 996                WARN_ON(rc);
 997}
 998EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
 999
1000/**
1001 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1002 *
1003 * @data: regmap irq controller to operate on.
1004 *
1005 * Useful for drivers to request their own IRQs.
1006 */
1007int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1008{
1009        WARN_ON(!data->irq_base);
1010        return data->irq_base;
1011}
1012EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1013
1014/**
1015 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1016 *
1017 * @data: regmap irq controller to operate on.
1018 * @irq: index of the interrupt requested in the chip IRQs.
1019 *
1020 * Useful for drivers to request their own IRQs.
1021 */
1022int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1023{
1024        /* Handle holes in the IRQ list */
1025        if (!data->chip->irqs[irq].mask)
1026                return -EINVAL;
1027
1028        return irq_create_mapping(data->domain, irq);
1029}
1030EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1031
1032/**
1033 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1034 *
1035 * @data: regmap_irq controller to operate on.
1036 *
1037 * Useful for drivers to request their own IRQs and for integration
1038 * with subsystems.  For ease of integration NULL is accepted as a
1039 * domain, allowing devices to just call this even if no domain is
1040 * allocated.
1041 */
1042struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1043{
1044        if (data)
1045                return data->domain;
1046        else
1047                return NULL;
1048}
1049EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1050