linux/drivers/clocksource/dw_apb_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) Copyright 2009 Intel Corporation
   4 * Author: Jacob Pan (jacob.jun.pan@intel.com)
   5 *
   6 * Shared with ARM platforms, Jamie Iles, Picochip 2011
   7 *
   8 * Support for the Synopsys DesignWare APB Timers.
   9 */
  10#include <linux/dw_apb_timer.h>
  11#include <linux/delay.h>
  12#include <linux/kernel.h>
  13#include <linux/interrupt.h>
  14#include <linux/irq.h>
  15#include <linux/io.h>
  16#include <linux/slab.h>
  17
  18#define APBT_MIN_PERIOD                 4
  19#define APBT_MIN_DELTA_USEC             200
  20
  21#define APBTMR_N_LOAD_COUNT             0x00
  22#define APBTMR_N_CURRENT_VALUE          0x04
  23#define APBTMR_N_CONTROL                0x08
  24#define APBTMR_N_EOI                    0x0c
  25#define APBTMR_N_INT_STATUS             0x10
  26
  27#define APBTMRS_INT_STATUS              0xa0
  28#define APBTMRS_EOI                     0xa4
  29#define APBTMRS_RAW_INT_STATUS          0xa8
  30#define APBTMRS_COMP_VERSION            0xac
  31
  32#define APBTMR_CONTROL_ENABLE           (1 << 0)
  33/* 1: periodic, 0:free running. */
  34#define APBTMR_CONTROL_MODE_PERIODIC    (1 << 1)
  35#define APBTMR_CONTROL_INT              (1 << 2)
  36
  37static inline struct dw_apb_clock_event_device *
  38ced_to_dw_apb_ced(struct clock_event_device *evt)
  39{
  40        return container_of(evt, struct dw_apb_clock_event_device, ced);
  41}
  42
  43static inline struct dw_apb_clocksource *
  44clocksource_to_dw_apb_clocksource(struct clocksource *cs)
  45{
  46        return container_of(cs, struct dw_apb_clocksource, cs);
  47}
  48
  49static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
  50{
  51        return readl(timer->base + offs);
  52}
  53
  54static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
  55                        unsigned long offs)
  56{
  57        writel(val, timer->base + offs);
  58}
  59
  60static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
  61{
  62        return readl_relaxed(timer->base + offs);
  63}
  64
  65static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
  66                        unsigned long offs)
  67{
  68        writel_relaxed(val, timer->base + offs);
  69}
  70
  71static void apbt_disable_int(struct dw_apb_timer *timer)
  72{
  73        u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
  74
  75        ctrl |= APBTMR_CONTROL_INT;
  76        apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
  77}
  78
  79/**
  80 * dw_apb_clockevent_pause() - stop the clock_event_device from running
  81 *
  82 * @dw_ced:     The APB clock to stop generating events.
  83 */
  84void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
  85{
  86        disable_irq(dw_ced->timer.irq);
  87        apbt_disable_int(&dw_ced->timer);
  88}
  89
  90static void apbt_eoi(struct dw_apb_timer *timer)
  91{
  92        apbt_readl_relaxed(timer, APBTMR_N_EOI);
  93}
  94
  95static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
  96{
  97        struct clock_event_device *evt = data;
  98        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
  99
 100        if (!evt->event_handler) {
 101                pr_info("Spurious APBT timer interrupt %d\n", irq);
 102                return IRQ_NONE;
 103        }
 104
 105        if (dw_ced->eoi)
 106                dw_ced->eoi(&dw_ced->timer);
 107
 108        evt->event_handler(evt);
 109        return IRQ_HANDLED;
 110}
 111
 112static void apbt_enable_int(struct dw_apb_timer *timer)
 113{
 114        u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
 115        /* clear pending intr */
 116        apbt_readl(timer, APBTMR_N_EOI);
 117        ctrl &= ~APBTMR_CONTROL_INT;
 118        apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
 119}
 120
 121static int apbt_shutdown(struct clock_event_device *evt)
 122{
 123        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 124        u32 ctrl;
 125
 126        pr_debug("%s CPU %d state=shutdown\n", __func__,
 127                 cpumask_first(evt->cpumask));
 128
 129        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 130        ctrl &= ~APBTMR_CONTROL_ENABLE;
 131        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 132        return 0;
 133}
 134
 135static int apbt_set_oneshot(struct clock_event_device *evt)
 136{
 137        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 138        u32 ctrl;
 139
 140        pr_debug("%s CPU %d state=oneshot\n", __func__,
 141                 cpumask_first(evt->cpumask));
 142
 143        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 144        /*
 145         * set free running mode, this mode will let timer reload max
 146         * timeout which will give time (3min on 25MHz clock) to rearm
 147         * the next event, therefore emulate the one-shot mode.
 148         */
 149        ctrl &= ~APBTMR_CONTROL_ENABLE;
 150        ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 151
 152        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 153        /* write again to set free running mode */
 154        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 155
 156        /*
 157         * DW APB p. 46, load counter with all 1s before starting free
 158         * running mode.
 159         */
 160        apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
 161        ctrl &= ~APBTMR_CONTROL_INT;
 162        ctrl |= APBTMR_CONTROL_ENABLE;
 163        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 164        return 0;
 165}
 166
 167static int apbt_set_periodic(struct clock_event_device *evt)
 168{
 169        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 170        unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
 171        u32 ctrl;
 172
 173        pr_debug("%s CPU %d state=periodic\n", __func__,
 174                 cpumask_first(evt->cpumask));
 175
 176        ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 177        ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
 178        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 179        /*
 180         * DW APB p. 46, have to disable timer before load counter,
 181         * may cause sync problem.
 182         */
 183        ctrl &= ~APBTMR_CONTROL_ENABLE;
 184        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 185        udelay(1);
 186        pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
 187        apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
 188        ctrl |= APBTMR_CONTROL_ENABLE;
 189        apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 190        return 0;
 191}
 192
 193static int apbt_resume(struct clock_event_device *evt)
 194{
 195        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 196
 197        pr_debug("%s CPU %d state=resume\n", __func__,
 198                 cpumask_first(evt->cpumask));
 199
 200        apbt_enable_int(&dw_ced->timer);
 201        return 0;
 202}
 203
 204static int apbt_next_event(unsigned long delta,
 205                           struct clock_event_device *evt)
 206{
 207        u32 ctrl;
 208        struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 209
 210        /* Disable timer */
 211        ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
 212        ctrl &= ~APBTMR_CONTROL_ENABLE;
 213        apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 214        /* write new count */
 215        apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
 216        ctrl |= APBTMR_CONTROL_ENABLE;
 217        apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 218
 219        return 0;
 220}
 221
 222/**
 223 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
 224 *
 225 * @cpu:        The CPU the events will be targeted at or -1 if CPU affiliation
 226 *              isn't required.
 227 * @name:       The name used for the timer and the IRQ for it.
 228 * @rating:     The rating to give the timer.
 229 * @base:       I/O base for the timer registers.
 230 * @irq:        The interrupt number to use for the timer.
 231 * @freq:       The frequency that the timer counts at.
 232 *
 233 * This creates a clock_event_device for using with the generic clock layer
 234 * but does not start and register it.  This should be done with
 235 * dw_apb_clockevent_register() as the next step.  If this is the first time
 236 * it has been called for a timer then the IRQ will be requested, if not it
 237 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
 238 * releasing the IRQ.
 239 */
 240struct dw_apb_clock_event_device *
 241dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
 242                       void __iomem *base, int irq, unsigned long freq)
 243{
 244        struct dw_apb_clock_event_device *dw_ced =
 245                kzalloc(sizeof(*dw_ced), GFP_KERNEL);
 246        int err;
 247
 248        if (!dw_ced)
 249                return NULL;
 250
 251        dw_ced->timer.base = base;
 252        dw_ced->timer.irq = irq;
 253        dw_ced->timer.freq = freq;
 254
 255        clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
 256        dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
 257                                                       &dw_ced->ced);
 258        dw_ced->ced.max_delta_ticks = 0x7fffffff;
 259        dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
 260        dw_ced->ced.min_delta_ticks = 5000;
 261        dw_ced->ced.cpumask = cpu < 0 ? cpu_possible_mask : cpumask_of(cpu);
 262        dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
 263                                CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
 264        dw_ced->ced.set_state_shutdown = apbt_shutdown;
 265        dw_ced->ced.set_state_periodic = apbt_set_periodic;
 266        dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
 267        dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
 268        dw_ced->ced.tick_resume = apbt_resume;
 269        dw_ced->ced.set_next_event = apbt_next_event;
 270        dw_ced->ced.irq = dw_ced->timer.irq;
 271        dw_ced->ced.rating = rating;
 272        dw_ced->ced.name = name;
 273
 274        dw_ced->eoi = apbt_eoi;
 275        err = request_irq(irq, dw_apb_clockevent_irq,
 276                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 277                          dw_ced->ced.name, &dw_ced->ced);
 278        if (err) {
 279                pr_err("failed to request timer irq\n");
 280                kfree(dw_ced);
 281                dw_ced = NULL;
 282        }
 283
 284        return dw_ced;
 285}
 286
 287/**
 288 * dw_apb_clockevent_resume() - resume a clock that has been paused.
 289 *
 290 * @dw_ced:     The APB clock to resume.
 291 */
 292void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
 293{
 294        enable_irq(dw_ced->timer.irq);
 295}
 296
 297/**
 298 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
 299 *
 300 * @dw_ced:     The APB clock to stop generating the events.
 301 */
 302void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
 303{
 304        free_irq(dw_ced->timer.irq, &dw_ced->ced);
 305}
 306
 307/**
 308 * dw_apb_clockevent_register() - register the clock with the generic layer
 309 *
 310 * @dw_ced:     The APB clock to register as a clock_event_device.
 311 */
 312void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
 313{
 314        apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
 315        clockevents_register_device(&dw_ced->ced);
 316        apbt_enable_int(&dw_ced->timer);
 317}
 318
 319/**
 320 * dw_apb_clocksource_start() - start the clocksource counting.
 321 *
 322 * @dw_cs:      The clocksource to start.
 323 *
 324 * This is used to start the clocksource before registration and can be used
 325 * to enable calibration of timers.
 326 */
 327void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
 328{
 329        /*
 330         * start count down from 0xffff_ffff. this is done by toggling the
 331         * enable bit then load initial load count to ~0.
 332         */
 333        u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
 334
 335        ctrl &= ~APBTMR_CONTROL_ENABLE;
 336        apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
 337        apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
 338        /* enable, mask interrupt */
 339        ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 340        ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
 341        apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
 342        /* read it once to get cached counter value initialized */
 343        dw_apb_clocksource_read(dw_cs);
 344}
 345
 346static u64 __apbt_read_clocksource(struct clocksource *cs)
 347{
 348        u32 current_count;
 349        struct dw_apb_clocksource *dw_cs =
 350                clocksource_to_dw_apb_clocksource(cs);
 351
 352        current_count = apbt_readl_relaxed(&dw_cs->timer,
 353                                        APBTMR_N_CURRENT_VALUE);
 354
 355        return (u64)~current_count;
 356}
 357
 358static void apbt_restart_clocksource(struct clocksource *cs)
 359{
 360        struct dw_apb_clocksource *dw_cs =
 361                clocksource_to_dw_apb_clocksource(cs);
 362
 363        dw_apb_clocksource_start(dw_cs);
 364}
 365
 366/**
 367 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
 368 *
 369 * @rating:     The rating to give the clocksource.
 370 * @name:       The name for the clocksource.
 371 * @base:       The I/O base for the timer registers.
 372 * @freq:       The frequency that the timer counts at.
 373 *
 374 * This creates a clocksource using an APB timer but does not yet register it
 375 * with the clocksource system.  This should be done with
 376 * dw_apb_clocksource_register() as the next step.
 377 */
 378struct dw_apb_clocksource *
 379dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
 380                        unsigned long freq)
 381{
 382        struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
 383
 384        if (!dw_cs)
 385                return NULL;
 386
 387        dw_cs->timer.base = base;
 388        dw_cs->timer.freq = freq;
 389        dw_cs->cs.name = name;
 390        dw_cs->cs.rating = rating;
 391        dw_cs->cs.read = __apbt_read_clocksource;
 392        dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
 393        dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
 394        dw_cs->cs.resume = apbt_restart_clocksource;
 395
 396        return dw_cs;
 397}
 398
 399/**
 400 * dw_apb_clocksource_register() - register the APB clocksource.
 401 *
 402 * @dw_cs:      The clocksource to register.
 403 */
 404void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
 405{
 406        clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
 407}
 408
 409/**
 410 * dw_apb_clocksource_read() - read the current value of a clocksource.
 411 *
 412 * @dw_cs:      The clocksource to read.
 413 */
 414u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
 415{
 416        return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
 417}
 418