linux/drivers/crypto/atmel-aes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_device.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY      300
  45
  46#define ATMEL_AES_BUFFER_ORDER  2
  47#define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
  49#define CFB8_BLOCK_SIZE         1
  50#define CFB16_BLOCK_SIZE        2
  51#define CFB32_BLOCK_SIZE        4
  52#define CFB64_BLOCK_SIZE        8
  53
  54#define SIZE_IN_WORDS(x)        ((x) >> 2)
  55
  56/* AES flags */
  57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  58#define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
  59#define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
  60#define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  61#define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
  62#define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
  63#define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
  64#define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  65#define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  66#define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  67#define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  68#define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  69#define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
  70#define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
  71#define AES_FLAGS_XTS           AES_MR_OPMOD_XTS
  72
  73#define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
  74                                 AES_FLAGS_ENCRYPT |            \
  75                                 AES_FLAGS_GTAGEN)
  76
  77#define AES_FLAGS_BUSY          BIT(3)
  78#define AES_FLAGS_DUMP_REG      BIT(4)
  79#define AES_FLAGS_OWN_SHA       BIT(5)
  80
  81#define AES_FLAGS_PERSISTENT    AES_FLAGS_BUSY
  82
  83#define ATMEL_AES_QUEUE_LENGTH  50
  84
  85#define ATMEL_AES_DMA_THRESHOLD         256
  86
  87
  88struct atmel_aes_caps {
  89        bool                    has_dualbuff;
  90        bool                    has_cfb64;
  91        bool                    has_gcm;
  92        bool                    has_xts;
  93        bool                    has_authenc;
  94        u32                     max_burst_size;
  95};
  96
  97struct atmel_aes_dev;
  98
  99
 100typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 101
 102
 103struct atmel_aes_base_ctx {
 104        struct atmel_aes_dev    *dd;
 105        atmel_aes_fn_t          start;
 106        int                     keylen;
 107        u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
 108        u16                     block_size;
 109        bool                    is_aead;
 110};
 111
 112struct atmel_aes_ctx {
 113        struct atmel_aes_base_ctx       base;
 114};
 115
 116struct atmel_aes_ctr_ctx {
 117        struct atmel_aes_base_ctx       base;
 118
 119        __be32                  iv[AES_BLOCK_SIZE / sizeof(u32)];
 120        size_t                  offset;
 121        struct scatterlist      src[2];
 122        struct scatterlist      dst[2];
 123        u32                     blocks;
 124};
 125
 126struct atmel_aes_gcm_ctx {
 127        struct atmel_aes_base_ctx       base;
 128
 129        struct scatterlist      src[2];
 130        struct scatterlist      dst[2];
 131
 132        __be32                  j0[AES_BLOCK_SIZE / sizeof(u32)];
 133        u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
 134        __be32                  ghash[AES_BLOCK_SIZE / sizeof(u32)];
 135        size_t                  textlen;
 136
 137        const __be32            *ghash_in;
 138        __be32                  *ghash_out;
 139        atmel_aes_fn_t          ghash_resume;
 140};
 141
 142struct atmel_aes_xts_ctx {
 143        struct atmel_aes_base_ctx       base;
 144
 145        u32                     key2[AES_KEYSIZE_256 / sizeof(u32)];
 146};
 147
 148#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 149struct atmel_aes_authenc_ctx {
 150        struct atmel_aes_base_ctx       base;
 151        struct atmel_sha_authenc_ctx    *auth;
 152};
 153#endif
 154
 155struct atmel_aes_reqctx {
 156        unsigned long           mode;
 157        u8                      lastc[AES_BLOCK_SIZE];
 158};
 159
 160#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 161struct atmel_aes_authenc_reqctx {
 162        struct atmel_aes_reqctx base;
 163
 164        struct scatterlist      src[2];
 165        struct scatterlist      dst[2];
 166        size_t                  textlen;
 167        u32                     digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 168
 169        /* auth_req MUST be place last. */
 170        struct ahash_request    auth_req;
 171};
 172#endif
 173
 174struct atmel_aes_dma {
 175        struct dma_chan         *chan;
 176        struct scatterlist      *sg;
 177        int                     nents;
 178        unsigned int            remainder;
 179        unsigned int            sg_len;
 180};
 181
 182struct atmel_aes_dev {
 183        struct list_head        list;
 184        unsigned long           phys_base;
 185        void __iomem            *io_base;
 186
 187        struct crypto_async_request     *areq;
 188        struct atmel_aes_base_ctx       *ctx;
 189
 190        bool                    is_async;
 191        atmel_aes_fn_t          resume;
 192        atmel_aes_fn_t          cpu_transfer_complete;
 193
 194        struct device           *dev;
 195        struct clk              *iclk;
 196        int                     irq;
 197
 198        unsigned long           flags;
 199
 200        spinlock_t              lock;
 201        struct crypto_queue     queue;
 202
 203        struct tasklet_struct   done_task;
 204        struct tasklet_struct   queue_task;
 205
 206        size_t                  total;
 207        size_t                  datalen;
 208        u32                     *data;
 209
 210        struct atmel_aes_dma    src;
 211        struct atmel_aes_dma    dst;
 212
 213        size_t                  buflen;
 214        void                    *buf;
 215        struct scatterlist      aligned_sg;
 216        struct scatterlist      *real_dst;
 217
 218        struct atmel_aes_caps   caps;
 219
 220        u32                     hw_version;
 221};
 222
 223struct atmel_aes_drv {
 224        struct list_head        dev_list;
 225        spinlock_t              lock;
 226};
 227
 228static struct atmel_aes_drv atmel_aes = {
 229        .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 230        .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 231};
 232
 233#ifdef VERBOSE_DEBUG
 234static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 235{
 236        switch (offset) {
 237        case AES_CR:
 238                return "CR";
 239
 240        case AES_MR:
 241                return "MR";
 242
 243        case AES_ISR:
 244                return "ISR";
 245
 246        case AES_IMR:
 247                return "IMR";
 248
 249        case AES_IER:
 250                return "IER";
 251
 252        case AES_IDR:
 253                return "IDR";
 254
 255        case AES_KEYWR(0):
 256        case AES_KEYWR(1):
 257        case AES_KEYWR(2):
 258        case AES_KEYWR(3):
 259        case AES_KEYWR(4):
 260        case AES_KEYWR(5):
 261        case AES_KEYWR(6):
 262        case AES_KEYWR(7):
 263                snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 264                break;
 265
 266        case AES_IDATAR(0):
 267        case AES_IDATAR(1):
 268        case AES_IDATAR(2):
 269        case AES_IDATAR(3):
 270                snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 271                break;
 272
 273        case AES_ODATAR(0):
 274        case AES_ODATAR(1):
 275        case AES_ODATAR(2):
 276        case AES_ODATAR(3):
 277                snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 278                break;
 279
 280        case AES_IVR(0):
 281        case AES_IVR(1):
 282        case AES_IVR(2):
 283        case AES_IVR(3):
 284                snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 285                break;
 286
 287        case AES_AADLENR:
 288                return "AADLENR";
 289
 290        case AES_CLENR:
 291                return "CLENR";
 292
 293        case AES_GHASHR(0):
 294        case AES_GHASHR(1):
 295        case AES_GHASHR(2):
 296        case AES_GHASHR(3):
 297                snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 298                break;
 299
 300        case AES_TAGR(0):
 301        case AES_TAGR(1):
 302        case AES_TAGR(2):
 303        case AES_TAGR(3):
 304                snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 305                break;
 306
 307        case AES_CTRR:
 308                return "CTRR";
 309
 310        case AES_GCMHR(0):
 311        case AES_GCMHR(1):
 312        case AES_GCMHR(2):
 313        case AES_GCMHR(3):
 314                snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 315                break;
 316
 317        case AES_EMR:
 318                return "EMR";
 319
 320        case AES_TWR(0):
 321        case AES_TWR(1):
 322        case AES_TWR(2):
 323        case AES_TWR(3):
 324                snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 325                break;
 326
 327        case AES_ALPHAR(0):
 328        case AES_ALPHAR(1):
 329        case AES_ALPHAR(2):
 330        case AES_ALPHAR(3):
 331                snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 332                break;
 333
 334        default:
 335                snprintf(tmp, sz, "0x%02x", offset);
 336                break;
 337        }
 338
 339        return tmp;
 340}
 341#endif /* VERBOSE_DEBUG */
 342
 343/* Shared functions */
 344
 345static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 346{
 347        u32 value = readl_relaxed(dd->io_base + offset);
 348
 349#ifdef VERBOSE_DEBUG
 350        if (dd->flags & AES_FLAGS_DUMP_REG) {
 351                char tmp[16];
 352
 353                dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 354                         atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 355        }
 356#endif /* VERBOSE_DEBUG */
 357
 358        return value;
 359}
 360
 361static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 362                                        u32 offset, u32 value)
 363{
 364#ifdef VERBOSE_DEBUG
 365        if (dd->flags & AES_FLAGS_DUMP_REG) {
 366                char tmp[16];
 367
 368                dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 369                         atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 370        }
 371#endif /* VERBOSE_DEBUG */
 372
 373        writel_relaxed(value, dd->io_base + offset);
 374}
 375
 376static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 377                                        u32 *value, int count)
 378{
 379        for (; count--; value++, offset += 4)
 380                *value = atmel_aes_read(dd, offset);
 381}
 382
 383static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 384                              const u32 *value, int count)
 385{
 386        for (; count--; value++, offset += 4)
 387                atmel_aes_write(dd, offset, *value);
 388}
 389
 390static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 391                                        void *value)
 392{
 393        atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 394}
 395
 396static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 397                                         const void *value)
 398{
 399        atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 400}
 401
 402static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 403                                                atmel_aes_fn_t resume)
 404{
 405        u32 isr = atmel_aes_read(dd, AES_ISR);
 406
 407        if (unlikely(isr & AES_INT_DATARDY))
 408                return resume(dd);
 409
 410        dd->resume = resume;
 411        atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 412        return -EINPROGRESS;
 413}
 414
 415static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 416{
 417        len &= block_size - 1;
 418        return len ? block_size - len : 0;
 419}
 420
 421static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
 422{
 423        struct atmel_aes_dev *aes_dd = NULL;
 424        struct atmel_aes_dev *tmp;
 425
 426        spin_lock_bh(&atmel_aes.lock);
 427        if (!ctx->dd) {
 428                list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
 429                        aes_dd = tmp;
 430                        break;
 431                }
 432                ctx->dd = aes_dd;
 433        } else {
 434                aes_dd = ctx->dd;
 435        }
 436
 437        spin_unlock_bh(&atmel_aes.lock);
 438
 439        return aes_dd;
 440}
 441
 442static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 443{
 444        int err;
 445
 446        err = clk_enable(dd->iclk);
 447        if (err)
 448                return err;
 449
 450        atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 451        atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 452
 453        return 0;
 454}
 455
 456static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 457{
 458        return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 459}
 460
 461static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 462{
 463        int err;
 464
 465        err = atmel_aes_hw_init(dd);
 466        if (err)
 467                return err;
 468
 469        dd->hw_version = atmel_aes_get_version(dd);
 470
 471        dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 472
 473        clk_disable(dd->iclk);
 474        return 0;
 475}
 476
 477static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 478                                      const struct atmel_aes_reqctx *rctx)
 479{
 480        /* Clear all but persistent flags and set request flags. */
 481        dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 482}
 483
 484static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 485{
 486        return (dd->flags & AES_FLAGS_ENCRYPT);
 487}
 488
 489#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 490static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 491#endif
 492
 493static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 494{
 495        struct skcipher_request *req = skcipher_request_cast(dd->areq);
 496        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 497        struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 498        unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 499
 500        if (req->cryptlen < ivsize)
 501                return;
 502
 503        if (rctx->mode & AES_FLAGS_ENCRYPT) {
 504                scatterwalk_map_and_copy(req->iv, req->dst,
 505                                         req->cryptlen - ivsize, ivsize, 0);
 506        } else {
 507                if (req->src == req->dst)
 508                        memcpy(req->iv, rctx->lastc, ivsize);
 509                else
 510                        scatterwalk_map_and_copy(req->iv, req->src,
 511                                                 req->cryptlen - ivsize,
 512                                                 ivsize, 0);
 513        }
 514}
 515
 516static inline struct atmel_aes_ctr_ctx *
 517atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 518{
 519        return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 520}
 521
 522static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 523{
 524        struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 525        struct skcipher_request *req = skcipher_request_cast(dd->areq);
 526        struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 527        unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 528        int i;
 529
 530        /*
 531         * The CTR transfer works in fragments of data of maximum 1 MByte
 532         * because of the 16 bit CTR counter embedded in the IP. When reaching
 533         * here, ctx->blocks contains the number of blocks of the last fragment
 534         * processed, there is no need to explicit cast it to u16.
 535         */
 536        for (i = 0; i < ctx->blocks; i++)
 537                crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 538
 539        memcpy(req->iv, ctx->iv, ivsize);
 540}
 541
 542static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 543{
 544        struct skcipher_request *req = skcipher_request_cast(dd->areq);
 545        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 546
 547#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 548        if (dd->ctx->is_aead)
 549                atmel_aes_authenc_complete(dd, err);
 550#endif
 551
 552        clk_disable(dd->iclk);
 553        dd->flags &= ~AES_FLAGS_BUSY;
 554
 555        if (!err && !dd->ctx->is_aead &&
 556            (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 557                if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 558                        atmel_aes_set_iv_as_last_ciphertext_block(dd);
 559                else
 560                        atmel_aes_ctr_update_req_iv(dd);
 561        }
 562
 563        if (dd->is_async)
 564                dd->areq->complete(dd->areq, err);
 565
 566        tasklet_schedule(&dd->queue_task);
 567
 568        return err;
 569}
 570
 571static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 572                                     const __be32 *iv, const u32 *key, int keylen)
 573{
 574        u32 valmr = 0;
 575
 576        /* MR register must be set before IV registers */
 577        if (keylen == AES_KEYSIZE_128)
 578                valmr |= AES_MR_KEYSIZE_128;
 579        else if (keylen == AES_KEYSIZE_192)
 580                valmr |= AES_MR_KEYSIZE_192;
 581        else
 582                valmr |= AES_MR_KEYSIZE_256;
 583
 584        valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 585
 586        if (use_dma) {
 587                valmr |= AES_MR_SMOD_IDATAR0;
 588                if (dd->caps.has_dualbuff)
 589                        valmr |= AES_MR_DUALBUFF;
 590        } else {
 591                valmr |= AES_MR_SMOD_AUTO;
 592        }
 593
 594        atmel_aes_write(dd, AES_MR, valmr);
 595
 596        atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 597
 598        if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 599                atmel_aes_write_block(dd, AES_IVR(0), iv);
 600}
 601
 602static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 603                                        const __be32 *iv)
 604
 605{
 606        atmel_aes_write_ctrl_key(dd, use_dma, iv,
 607                                 dd->ctx->key, dd->ctx->keylen);
 608}
 609
 610/* CPU transfer */
 611
 612static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 613{
 614        int err = 0;
 615        u32 isr;
 616
 617        for (;;) {
 618                atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 619                dd->data += 4;
 620                dd->datalen -= AES_BLOCK_SIZE;
 621
 622                if (dd->datalen < AES_BLOCK_SIZE)
 623                        break;
 624
 625                atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 626
 627                isr = atmel_aes_read(dd, AES_ISR);
 628                if (!(isr & AES_INT_DATARDY)) {
 629                        dd->resume = atmel_aes_cpu_transfer;
 630                        atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 631                        return -EINPROGRESS;
 632                }
 633        }
 634
 635        if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 636                                 dd->buf, dd->total))
 637                err = -EINVAL;
 638
 639        if (err)
 640                return atmel_aes_complete(dd, err);
 641
 642        return dd->cpu_transfer_complete(dd);
 643}
 644
 645static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 646                               struct scatterlist *src,
 647                               struct scatterlist *dst,
 648                               size_t len,
 649                               atmel_aes_fn_t resume)
 650{
 651        size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 652
 653        if (unlikely(len == 0))
 654                return -EINVAL;
 655
 656        sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 657
 658        dd->total = len;
 659        dd->real_dst = dst;
 660        dd->cpu_transfer_complete = resume;
 661        dd->datalen = len + padlen;
 662        dd->data = (u32 *)dd->buf;
 663        atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 664        return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 665}
 666
 667
 668/* DMA transfer */
 669
 670static void atmel_aes_dma_callback(void *data);
 671
 672static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 673                                    struct scatterlist *sg,
 674                                    size_t len,
 675                                    struct atmel_aes_dma *dma)
 676{
 677        int nents;
 678
 679        if (!IS_ALIGNED(len, dd->ctx->block_size))
 680                return false;
 681
 682        for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 683                if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 684                        return false;
 685
 686                if (len <= sg->length) {
 687                        if (!IS_ALIGNED(len, dd->ctx->block_size))
 688                                return false;
 689
 690                        dma->nents = nents+1;
 691                        dma->remainder = sg->length - len;
 692                        sg->length = len;
 693                        return true;
 694                }
 695
 696                if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 697                        return false;
 698
 699                len -= sg->length;
 700        }
 701
 702        return false;
 703}
 704
 705static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 706{
 707        struct scatterlist *sg = dma->sg;
 708        int nents = dma->nents;
 709
 710        if (!dma->remainder)
 711                return;
 712
 713        while (--nents > 0 && sg)
 714                sg = sg_next(sg);
 715
 716        if (!sg)
 717                return;
 718
 719        sg->length += dma->remainder;
 720}
 721
 722static int atmel_aes_map(struct atmel_aes_dev *dd,
 723                         struct scatterlist *src,
 724                         struct scatterlist *dst,
 725                         size_t len)
 726{
 727        bool src_aligned, dst_aligned;
 728        size_t padlen;
 729
 730        dd->total = len;
 731        dd->src.sg = src;
 732        dd->dst.sg = dst;
 733        dd->real_dst = dst;
 734
 735        src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 736        if (src == dst)
 737                dst_aligned = src_aligned;
 738        else
 739                dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 740        if (!src_aligned || !dst_aligned) {
 741                padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 742
 743                if (dd->buflen < len + padlen)
 744                        return -ENOMEM;
 745
 746                if (!src_aligned) {
 747                        sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 748                        dd->src.sg = &dd->aligned_sg;
 749                        dd->src.nents = 1;
 750                        dd->src.remainder = 0;
 751                }
 752
 753                if (!dst_aligned) {
 754                        dd->dst.sg = &dd->aligned_sg;
 755                        dd->dst.nents = 1;
 756                        dd->dst.remainder = 0;
 757                }
 758
 759                sg_init_table(&dd->aligned_sg, 1);
 760                sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 761        }
 762
 763        if (dd->src.sg == dd->dst.sg) {
 764                dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 765                                            DMA_BIDIRECTIONAL);
 766                dd->dst.sg_len = dd->src.sg_len;
 767                if (!dd->src.sg_len)
 768                        return -EFAULT;
 769        } else {
 770                dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 771                                            DMA_TO_DEVICE);
 772                if (!dd->src.sg_len)
 773                        return -EFAULT;
 774
 775                dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 776                                            DMA_FROM_DEVICE);
 777                if (!dd->dst.sg_len) {
 778                        dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 779                                     DMA_TO_DEVICE);
 780                        return -EFAULT;
 781                }
 782        }
 783
 784        return 0;
 785}
 786
 787static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 788{
 789        if (dd->src.sg == dd->dst.sg) {
 790                dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 791                             DMA_BIDIRECTIONAL);
 792
 793                if (dd->src.sg != &dd->aligned_sg)
 794                        atmel_aes_restore_sg(&dd->src);
 795        } else {
 796                dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 797                             DMA_FROM_DEVICE);
 798
 799                if (dd->dst.sg != &dd->aligned_sg)
 800                        atmel_aes_restore_sg(&dd->dst);
 801
 802                dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 803                             DMA_TO_DEVICE);
 804
 805                if (dd->src.sg != &dd->aligned_sg)
 806                        atmel_aes_restore_sg(&dd->src);
 807        }
 808
 809        if (dd->dst.sg == &dd->aligned_sg)
 810                sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 811                                    dd->buf, dd->total);
 812}
 813
 814static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 815                                        enum dma_slave_buswidth addr_width,
 816                                        enum dma_transfer_direction dir,
 817                                        u32 maxburst)
 818{
 819        struct dma_async_tx_descriptor *desc;
 820        struct dma_slave_config config;
 821        dma_async_tx_callback callback;
 822        struct atmel_aes_dma *dma;
 823        int err;
 824
 825        memset(&config, 0, sizeof(config));
 826        config.src_addr_width = addr_width;
 827        config.dst_addr_width = addr_width;
 828        config.src_maxburst = maxburst;
 829        config.dst_maxburst = maxburst;
 830
 831        switch (dir) {
 832        case DMA_MEM_TO_DEV:
 833                dma = &dd->src;
 834                callback = NULL;
 835                config.dst_addr = dd->phys_base + AES_IDATAR(0);
 836                break;
 837
 838        case DMA_DEV_TO_MEM:
 839                dma = &dd->dst;
 840                callback = atmel_aes_dma_callback;
 841                config.src_addr = dd->phys_base + AES_ODATAR(0);
 842                break;
 843
 844        default:
 845                return -EINVAL;
 846        }
 847
 848        err = dmaengine_slave_config(dma->chan, &config);
 849        if (err)
 850                return err;
 851
 852        desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 853                                       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 854        if (!desc)
 855                return -ENOMEM;
 856
 857        desc->callback = callback;
 858        desc->callback_param = dd;
 859        dmaengine_submit(desc);
 860        dma_async_issue_pending(dma->chan);
 861
 862        return 0;
 863}
 864
 865static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 866                               struct scatterlist *src,
 867                               struct scatterlist *dst,
 868                               size_t len,
 869                               atmel_aes_fn_t resume)
 870{
 871        enum dma_slave_buswidth addr_width;
 872        u32 maxburst;
 873        int err;
 874
 875        switch (dd->ctx->block_size) {
 876        case CFB8_BLOCK_SIZE:
 877                addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 878                maxburst = 1;
 879                break;
 880
 881        case CFB16_BLOCK_SIZE:
 882                addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 883                maxburst = 1;
 884                break;
 885
 886        case CFB32_BLOCK_SIZE:
 887        case CFB64_BLOCK_SIZE:
 888                addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 889                maxburst = 1;
 890                break;
 891
 892        case AES_BLOCK_SIZE:
 893                addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 894                maxburst = dd->caps.max_burst_size;
 895                break;
 896
 897        default:
 898                err = -EINVAL;
 899                goto exit;
 900        }
 901
 902        err = atmel_aes_map(dd, src, dst, len);
 903        if (err)
 904                goto exit;
 905
 906        dd->resume = resume;
 907
 908        /* Set output DMA transfer first */
 909        err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 910                                           maxburst);
 911        if (err)
 912                goto unmap;
 913
 914        /* Then set input DMA transfer */
 915        err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 916                                           maxburst);
 917        if (err)
 918                goto output_transfer_stop;
 919
 920        return -EINPROGRESS;
 921
 922output_transfer_stop:
 923        dmaengine_terminate_sync(dd->dst.chan);
 924unmap:
 925        atmel_aes_unmap(dd);
 926exit:
 927        return atmel_aes_complete(dd, err);
 928}
 929
 930static void atmel_aes_dma_callback(void *data)
 931{
 932        struct atmel_aes_dev *dd = data;
 933
 934        atmel_aes_unmap(dd);
 935        dd->is_async = true;
 936        (void)dd->resume(dd);
 937}
 938
 939static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 940                                  struct crypto_async_request *new_areq)
 941{
 942        struct crypto_async_request *areq, *backlog;
 943        struct atmel_aes_base_ctx *ctx;
 944        unsigned long flags;
 945        bool start_async;
 946        int err, ret = 0;
 947
 948        spin_lock_irqsave(&dd->lock, flags);
 949        if (new_areq)
 950                ret = crypto_enqueue_request(&dd->queue, new_areq);
 951        if (dd->flags & AES_FLAGS_BUSY) {
 952                spin_unlock_irqrestore(&dd->lock, flags);
 953                return ret;
 954        }
 955        backlog = crypto_get_backlog(&dd->queue);
 956        areq = crypto_dequeue_request(&dd->queue);
 957        if (areq)
 958                dd->flags |= AES_FLAGS_BUSY;
 959        spin_unlock_irqrestore(&dd->lock, flags);
 960
 961        if (!areq)
 962                return ret;
 963
 964        if (backlog)
 965                backlog->complete(backlog, -EINPROGRESS);
 966
 967        ctx = crypto_tfm_ctx(areq->tfm);
 968
 969        dd->areq = areq;
 970        dd->ctx = ctx;
 971        start_async = (areq != new_areq);
 972        dd->is_async = start_async;
 973
 974        /* WARNING: ctx->start() MAY change dd->is_async. */
 975        err = ctx->start(dd);
 976        return (start_async) ? ret : err;
 977}
 978
 979
 980/* AES async block ciphers */
 981
 982static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 983{
 984        return atmel_aes_complete(dd, 0);
 985}
 986
 987static int atmel_aes_start(struct atmel_aes_dev *dd)
 988{
 989        struct skcipher_request *req = skcipher_request_cast(dd->areq);
 990        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 991        bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 992                        dd->ctx->block_size != AES_BLOCK_SIZE);
 993        int err;
 994
 995        atmel_aes_set_mode(dd, rctx);
 996
 997        err = atmel_aes_hw_init(dd);
 998        if (err)
 999                return atmel_aes_complete(dd, err);
1000
1001        atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
1002        if (use_dma)
1003                return atmel_aes_dma_start(dd, req->src, req->dst,
1004                                           req->cryptlen,
1005                                           atmel_aes_transfer_complete);
1006
1007        return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1008                                   atmel_aes_transfer_complete);
1009}
1010
1011static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1012{
1013        struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1014        struct skcipher_request *req = skcipher_request_cast(dd->areq);
1015        struct scatterlist *src, *dst;
1016        size_t datalen;
1017        u32 ctr;
1018        u16 start, end;
1019        bool use_dma, fragmented = false;
1020
1021        /* Check for transfer completion. */
1022        ctx->offset += dd->total;
1023        if (ctx->offset >= req->cryptlen)
1024                return atmel_aes_transfer_complete(dd);
1025
1026        /* Compute data length. */
1027        datalen = req->cryptlen - ctx->offset;
1028        ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1029        ctr = be32_to_cpu(ctx->iv[3]);
1030
1031        /* Check 16bit counter overflow. */
1032        start = ctr & 0xffff;
1033        end = start + ctx->blocks - 1;
1034
1035        if (ctx->blocks >> 16 || end < start) {
1036                ctr |= 0xffff;
1037                datalen = AES_BLOCK_SIZE * (0x10000 - start);
1038                fragmented = true;
1039        }
1040
1041        use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1042
1043        /* Jump to offset. */
1044        src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1045        dst = ((req->src == req->dst) ? src :
1046               scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1047
1048        /* Configure hardware. */
1049        atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1050        if (unlikely(fragmented)) {
1051                /*
1052                 * Increment the counter manually to cope with the hardware
1053                 * counter overflow.
1054                 */
1055                ctx->iv[3] = cpu_to_be32(ctr);
1056                crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1057        }
1058
1059        if (use_dma)
1060                return atmel_aes_dma_start(dd, src, dst, datalen,
1061                                           atmel_aes_ctr_transfer);
1062
1063        return atmel_aes_cpu_start(dd, src, dst, datalen,
1064                                   atmel_aes_ctr_transfer);
1065}
1066
1067static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1068{
1069        struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1070        struct skcipher_request *req = skcipher_request_cast(dd->areq);
1071        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1072        int err;
1073
1074        atmel_aes_set_mode(dd, rctx);
1075
1076        err = atmel_aes_hw_init(dd);
1077        if (err)
1078                return atmel_aes_complete(dd, err);
1079
1080        memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1081        ctx->offset = 0;
1082        dd->total = 0;
1083        return atmel_aes_ctr_transfer(dd);
1084}
1085
1086static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1087{
1088        struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1089        struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1090        struct atmel_aes_reqctx *rctx;
1091        struct atmel_aes_dev *dd;
1092
1093        switch (mode & AES_FLAGS_OPMODE_MASK) {
1094        case AES_FLAGS_CFB8:
1095                ctx->block_size = CFB8_BLOCK_SIZE;
1096                break;
1097
1098        case AES_FLAGS_CFB16:
1099                ctx->block_size = CFB16_BLOCK_SIZE;
1100                break;
1101
1102        case AES_FLAGS_CFB32:
1103                ctx->block_size = CFB32_BLOCK_SIZE;
1104                break;
1105
1106        case AES_FLAGS_CFB64:
1107                ctx->block_size = CFB64_BLOCK_SIZE;
1108                break;
1109
1110        default:
1111                ctx->block_size = AES_BLOCK_SIZE;
1112                break;
1113        }
1114        ctx->is_aead = false;
1115
1116        dd = atmel_aes_find_dev(ctx);
1117        if (!dd)
1118                return -ENODEV;
1119
1120        rctx = skcipher_request_ctx(req);
1121        rctx->mode = mode;
1122
1123        if ((mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB &&
1124            !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1125                unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1126
1127                if (req->cryptlen >= ivsize)
1128                        scatterwalk_map_and_copy(rctx->lastc, req->src,
1129                                                 req->cryptlen - ivsize,
1130                                                 ivsize, 0);
1131        }
1132
1133        return atmel_aes_handle_queue(dd, &req->base);
1134}
1135
1136static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1137                           unsigned int keylen)
1138{
1139        struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1140
1141        if (keylen != AES_KEYSIZE_128 &&
1142            keylen != AES_KEYSIZE_192 &&
1143            keylen != AES_KEYSIZE_256)
1144                return -EINVAL;
1145
1146        memcpy(ctx->key, key, keylen);
1147        ctx->keylen = keylen;
1148
1149        return 0;
1150}
1151
1152static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1153{
1154        return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1155}
1156
1157static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1158{
1159        return atmel_aes_crypt(req, AES_FLAGS_ECB);
1160}
1161
1162static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1163{
1164        return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1165}
1166
1167static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1168{
1169        return atmel_aes_crypt(req, AES_FLAGS_CBC);
1170}
1171
1172static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1173{
1174        return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1175}
1176
1177static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1178{
1179        return atmel_aes_crypt(req, AES_FLAGS_OFB);
1180}
1181
1182static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1183{
1184        return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1185}
1186
1187static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1188{
1189        return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1190}
1191
1192static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1193{
1194        return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1195}
1196
1197static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1198{
1199        return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1200}
1201
1202static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1203{
1204        return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1205}
1206
1207static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1208{
1209        return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1210}
1211
1212static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1213{
1214        return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1215}
1216
1217static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1218{
1219        return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1220}
1221
1222static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1223{
1224        return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1225}
1226
1227static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1228{
1229        return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1230}
1231
1232static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1233{
1234        return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1235}
1236
1237static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1238{
1239        return atmel_aes_crypt(req, AES_FLAGS_CTR);
1240}
1241
1242static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1243{
1244        struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1245
1246        crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1247        ctx->base.start = atmel_aes_start;
1248
1249        return 0;
1250}
1251
1252static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1253{
1254        struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1255
1256        crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1257        ctx->base.start = atmel_aes_ctr_start;
1258
1259        return 0;
1260}
1261
1262static struct skcipher_alg aes_algs[] = {
1263{
1264        .base.cra_name          = "ecb(aes)",
1265        .base.cra_driver_name   = "atmel-ecb-aes",
1266        .base.cra_blocksize     = AES_BLOCK_SIZE,
1267        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1268
1269        .init                   = atmel_aes_init_tfm,
1270        .min_keysize            = AES_MIN_KEY_SIZE,
1271        .max_keysize            = AES_MAX_KEY_SIZE,
1272        .setkey                 = atmel_aes_setkey,
1273        .encrypt                = atmel_aes_ecb_encrypt,
1274        .decrypt                = atmel_aes_ecb_decrypt,
1275},
1276{
1277        .base.cra_name          = "cbc(aes)",
1278        .base.cra_driver_name   = "atmel-cbc-aes",
1279        .base.cra_blocksize     = AES_BLOCK_SIZE,
1280        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1281
1282        .init                   = atmel_aes_init_tfm,
1283        .min_keysize            = AES_MIN_KEY_SIZE,
1284        .max_keysize            = AES_MAX_KEY_SIZE,
1285        .setkey                 = atmel_aes_setkey,
1286        .encrypt                = atmel_aes_cbc_encrypt,
1287        .decrypt                = atmel_aes_cbc_decrypt,
1288        .ivsize                 = AES_BLOCK_SIZE,
1289},
1290{
1291        .base.cra_name          = "ofb(aes)",
1292        .base.cra_driver_name   = "atmel-ofb-aes",
1293        .base.cra_blocksize     = AES_BLOCK_SIZE,
1294        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1295
1296        .init                   = atmel_aes_init_tfm,
1297        .min_keysize            = AES_MIN_KEY_SIZE,
1298        .max_keysize            = AES_MAX_KEY_SIZE,
1299        .setkey                 = atmel_aes_setkey,
1300        .encrypt                = atmel_aes_ofb_encrypt,
1301        .decrypt                = atmel_aes_ofb_decrypt,
1302        .ivsize                 = AES_BLOCK_SIZE,
1303},
1304{
1305        .base.cra_name          = "cfb(aes)",
1306        .base.cra_driver_name   = "atmel-cfb-aes",
1307        .base.cra_blocksize     = AES_BLOCK_SIZE,
1308        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1309
1310        .init                   = atmel_aes_init_tfm,
1311        .min_keysize            = AES_MIN_KEY_SIZE,
1312        .max_keysize            = AES_MAX_KEY_SIZE,
1313        .setkey                 = atmel_aes_setkey,
1314        .encrypt                = atmel_aes_cfb_encrypt,
1315        .decrypt                = atmel_aes_cfb_decrypt,
1316        .ivsize                 = AES_BLOCK_SIZE,
1317},
1318{
1319        .base.cra_name          = "cfb32(aes)",
1320        .base.cra_driver_name   = "atmel-cfb32-aes",
1321        .base.cra_blocksize     = CFB32_BLOCK_SIZE,
1322        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1323
1324        .init                   = atmel_aes_init_tfm,
1325        .min_keysize            = AES_MIN_KEY_SIZE,
1326        .max_keysize            = AES_MAX_KEY_SIZE,
1327        .setkey                 = atmel_aes_setkey,
1328        .encrypt                = atmel_aes_cfb32_encrypt,
1329        .decrypt                = atmel_aes_cfb32_decrypt,
1330        .ivsize                 = AES_BLOCK_SIZE,
1331},
1332{
1333        .base.cra_name          = "cfb16(aes)",
1334        .base.cra_driver_name   = "atmel-cfb16-aes",
1335        .base.cra_blocksize     = CFB16_BLOCK_SIZE,
1336        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1337
1338        .init                   = atmel_aes_init_tfm,
1339        .min_keysize            = AES_MIN_KEY_SIZE,
1340        .max_keysize            = AES_MAX_KEY_SIZE,
1341        .setkey                 = atmel_aes_setkey,
1342        .encrypt                = atmel_aes_cfb16_encrypt,
1343        .decrypt                = atmel_aes_cfb16_decrypt,
1344        .ivsize                 = AES_BLOCK_SIZE,
1345},
1346{
1347        .base.cra_name          = "cfb8(aes)",
1348        .base.cra_driver_name   = "atmel-cfb8-aes",
1349        .base.cra_blocksize     = CFB8_BLOCK_SIZE,
1350        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1351
1352        .init                   = atmel_aes_init_tfm,
1353        .min_keysize            = AES_MIN_KEY_SIZE,
1354        .max_keysize            = AES_MAX_KEY_SIZE,
1355        .setkey                 = atmel_aes_setkey,
1356        .encrypt                = atmel_aes_cfb8_encrypt,
1357        .decrypt                = atmel_aes_cfb8_decrypt,
1358        .ivsize                 = AES_BLOCK_SIZE,
1359},
1360{
1361        .base.cra_name          = "ctr(aes)",
1362        .base.cra_driver_name   = "atmel-ctr-aes",
1363        .base.cra_blocksize     = 1,
1364        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctr_ctx),
1365
1366        .init                   = atmel_aes_ctr_init_tfm,
1367        .min_keysize            = AES_MIN_KEY_SIZE,
1368        .max_keysize            = AES_MAX_KEY_SIZE,
1369        .setkey                 = atmel_aes_setkey,
1370        .encrypt                = atmel_aes_ctr_encrypt,
1371        .decrypt                = atmel_aes_ctr_decrypt,
1372        .ivsize                 = AES_BLOCK_SIZE,
1373},
1374};
1375
1376static struct skcipher_alg aes_cfb64_alg = {
1377        .base.cra_name          = "cfb64(aes)",
1378        .base.cra_driver_name   = "atmel-cfb64-aes",
1379        .base.cra_blocksize     = CFB64_BLOCK_SIZE,
1380        .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1381
1382        .init                   = atmel_aes_init_tfm,
1383        .min_keysize            = AES_MIN_KEY_SIZE,
1384        .max_keysize            = AES_MAX_KEY_SIZE,
1385        .setkey                 = atmel_aes_setkey,
1386        .encrypt                = atmel_aes_cfb64_encrypt,
1387        .decrypt                = atmel_aes_cfb64_decrypt,
1388        .ivsize                 = AES_BLOCK_SIZE,
1389};
1390
1391
1392/* gcm aead functions */
1393
1394static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1395                               const u32 *data, size_t datalen,
1396                               const __be32 *ghash_in, __be32 *ghash_out,
1397                               atmel_aes_fn_t resume);
1398static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1399static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1400
1401static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1402static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1403static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1404static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1405static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1406static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1407static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1408
1409static inline struct atmel_aes_gcm_ctx *
1410atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1411{
1412        return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1413}
1414
1415static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1416                               const u32 *data, size_t datalen,
1417                               const __be32 *ghash_in, __be32 *ghash_out,
1418                               atmel_aes_fn_t resume)
1419{
1420        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1421
1422        dd->data = (u32 *)data;
1423        dd->datalen = datalen;
1424        ctx->ghash_in = ghash_in;
1425        ctx->ghash_out = ghash_out;
1426        ctx->ghash_resume = resume;
1427
1428        atmel_aes_write_ctrl(dd, false, NULL);
1429        return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1430}
1431
1432static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1433{
1434        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1435
1436        /* Set the data length. */
1437        atmel_aes_write(dd, AES_AADLENR, dd->total);
1438        atmel_aes_write(dd, AES_CLENR, 0);
1439
1440        /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1441        if (ctx->ghash_in)
1442                atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1443
1444        return atmel_aes_gcm_ghash_finalize(dd);
1445}
1446
1447static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1448{
1449        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1450        u32 isr;
1451
1452        /* Write data into the Input Data Registers. */
1453        while (dd->datalen > 0) {
1454                atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1455                dd->data += 4;
1456                dd->datalen -= AES_BLOCK_SIZE;
1457
1458                isr = atmel_aes_read(dd, AES_ISR);
1459                if (!(isr & AES_INT_DATARDY)) {
1460                        dd->resume = atmel_aes_gcm_ghash_finalize;
1461                        atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1462                        return -EINPROGRESS;
1463                }
1464        }
1465
1466        /* Read the computed hash from GHASHRx. */
1467        atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1468
1469        return ctx->ghash_resume(dd);
1470}
1471
1472
1473static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1474{
1475        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1476        struct aead_request *req = aead_request_cast(dd->areq);
1477        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1478        struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1479        size_t ivsize = crypto_aead_ivsize(tfm);
1480        size_t datalen, padlen;
1481        const void *iv = req->iv;
1482        u8 *data = dd->buf;
1483        int err;
1484
1485        atmel_aes_set_mode(dd, rctx);
1486
1487        err = atmel_aes_hw_init(dd);
1488        if (err)
1489                return atmel_aes_complete(dd, err);
1490
1491        if (likely(ivsize == GCM_AES_IV_SIZE)) {
1492                memcpy(ctx->j0, iv, ivsize);
1493                ctx->j0[3] = cpu_to_be32(1);
1494                return atmel_aes_gcm_process(dd);
1495        }
1496
1497        padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1498        datalen = ivsize + padlen + AES_BLOCK_SIZE;
1499        if (datalen > dd->buflen)
1500                return atmel_aes_complete(dd, -EINVAL);
1501
1502        memcpy(data, iv, ivsize);
1503        memset(data + ivsize, 0, padlen + sizeof(u64));
1504        ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1505
1506        return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1507                                   NULL, ctx->j0, atmel_aes_gcm_process);
1508}
1509
1510static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1511{
1512        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513        struct aead_request *req = aead_request_cast(dd->areq);
1514        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515        bool enc = atmel_aes_is_encrypt(dd);
1516        u32 authsize;
1517
1518        /* Compute text length. */
1519        authsize = crypto_aead_authsize(tfm);
1520        ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1521
1522        /*
1523         * According to tcrypt test suite, the GCM Automatic Tag Generation
1524         * fails when both the message and its associated data are empty.
1525         */
1526        if (likely(req->assoclen != 0 || ctx->textlen != 0))
1527                dd->flags |= AES_FLAGS_GTAGEN;
1528
1529        atmel_aes_write_ctrl(dd, false, NULL);
1530        return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1531}
1532
1533static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1534{
1535        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536        struct aead_request *req = aead_request_cast(dd->areq);
1537        __be32 j0_lsw, *j0 = ctx->j0;
1538        size_t padlen;
1539
1540        /* Write incr32(J0) into IV. */
1541        j0_lsw = j0[3];
1542        j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1543        atmel_aes_write_block(dd, AES_IVR(0), j0);
1544        j0[3] = j0_lsw;
1545
1546        /* Set aad and text lengths. */
1547        atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1548        atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1549
1550        /* Check whether AAD are present. */
1551        if (unlikely(req->assoclen == 0)) {
1552                dd->datalen = 0;
1553                return atmel_aes_gcm_data(dd);
1554        }
1555
1556        /* Copy assoc data and add padding. */
1557        padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1558        if (unlikely(req->assoclen + padlen > dd->buflen))
1559                return atmel_aes_complete(dd, -EINVAL);
1560        sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1561
1562        /* Write assoc data into the Input Data register. */
1563        dd->data = (u32 *)dd->buf;
1564        dd->datalen = req->assoclen + padlen;
1565        return atmel_aes_gcm_data(dd);
1566}
1567
1568static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1569{
1570        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1571        struct aead_request *req = aead_request_cast(dd->areq);
1572        bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1573        struct scatterlist *src, *dst;
1574        u32 isr, mr;
1575
1576        /* Write AAD first. */
1577        while (dd->datalen > 0) {
1578                atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1579                dd->data += 4;
1580                dd->datalen -= AES_BLOCK_SIZE;
1581
1582                isr = atmel_aes_read(dd, AES_ISR);
1583                if (!(isr & AES_INT_DATARDY)) {
1584                        dd->resume = atmel_aes_gcm_data;
1585                        atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1586                        return -EINPROGRESS;
1587                }
1588        }
1589
1590        /* GMAC only. */
1591        if (unlikely(ctx->textlen == 0))
1592                return atmel_aes_gcm_tag_init(dd);
1593
1594        /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1595        src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1596        dst = ((req->src == req->dst) ? src :
1597               scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1598
1599        if (use_dma) {
1600                /* Update the Mode Register for DMA transfers. */
1601                mr = atmel_aes_read(dd, AES_MR);
1602                mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1603                mr |= AES_MR_SMOD_IDATAR0;
1604                if (dd->caps.has_dualbuff)
1605                        mr |= AES_MR_DUALBUFF;
1606                atmel_aes_write(dd, AES_MR, mr);
1607
1608                return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1609                                           atmel_aes_gcm_tag_init);
1610        }
1611
1612        return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1613                                   atmel_aes_gcm_tag_init);
1614}
1615
1616static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1617{
1618        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619        struct aead_request *req = aead_request_cast(dd->areq);
1620        __be64 *data = dd->buf;
1621
1622        if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1623                if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1624                        dd->resume = atmel_aes_gcm_tag_init;
1625                        atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1626                        return -EINPROGRESS;
1627                }
1628
1629                return atmel_aes_gcm_finalize(dd);
1630        }
1631
1632        /* Read the GCM Intermediate Hash Word Registers. */
1633        atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1634
1635        data[0] = cpu_to_be64(req->assoclen * 8);
1636        data[1] = cpu_to_be64(ctx->textlen * 8);
1637
1638        return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1639                                   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1640}
1641
1642static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1643{
1644        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1645        unsigned long flags;
1646
1647        /*
1648         * Change mode to CTR to complete the tag generation.
1649         * Use J0 as Initialization Vector.
1650         */
1651        flags = dd->flags;
1652        dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1653        dd->flags |= AES_FLAGS_CTR;
1654        atmel_aes_write_ctrl(dd, false, ctx->j0);
1655        dd->flags = flags;
1656
1657        atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1658        return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1659}
1660
1661static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1662{
1663        struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1664        struct aead_request *req = aead_request_cast(dd->areq);
1665        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1666        bool enc = atmel_aes_is_encrypt(dd);
1667        u32 offset, authsize, itag[4], *otag = ctx->tag;
1668        int err;
1669
1670        /* Read the computed tag. */
1671        if (likely(dd->flags & AES_FLAGS_GTAGEN))
1672                atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1673        else
1674                atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1675
1676        offset = req->assoclen + ctx->textlen;
1677        authsize = crypto_aead_authsize(tfm);
1678        if (enc) {
1679                scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1680                err = 0;
1681        } else {
1682                scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1683                err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1684        }
1685
1686        return atmel_aes_complete(dd, err);
1687}
1688
1689static int atmel_aes_gcm_crypt(struct aead_request *req,
1690                               unsigned long mode)
1691{
1692        struct atmel_aes_base_ctx *ctx;
1693        struct atmel_aes_reqctx *rctx;
1694        struct atmel_aes_dev *dd;
1695
1696        ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1697        ctx->block_size = AES_BLOCK_SIZE;
1698        ctx->is_aead = true;
1699
1700        dd = atmel_aes_find_dev(ctx);
1701        if (!dd)
1702                return -ENODEV;
1703
1704        rctx = aead_request_ctx(req);
1705        rctx->mode = AES_FLAGS_GCM | mode;
1706
1707        return atmel_aes_handle_queue(dd, &req->base);
1708}
1709
1710static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1711                                unsigned int keylen)
1712{
1713        struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1714
1715        if (keylen != AES_KEYSIZE_256 &&
1716            keylen != AES_KEYSIZE_192 &&
1717            keylen != AES_KEYSIZE_128)
1718                return -EINVAL;
1719
1720        memcpy(ctx->key, key, keylen);
1721        ctx->keylen = keylen;
1722
1723        return 0;
1724}
1725
1726static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1727                                     unsigned int authsize)
1728{
1729        return crypto_gcm_check_authsize(authsize);
1730}
1731
1732static int atmel_aes_gcm_encrypt(struct aead_request *req)
1733{
1734        return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1735}
1736
1737static int atmel_aes_gcm_decrypt(struct aead_request *req)
1738{
1739        return atmel_aes_gcm_crypt(req, 0);
1740}
1741
1742static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1743{
1744        struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1745
1746        crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1747        ctx->base.start = atmel_aes_gcm_start;
1748
1749        return 0;
1750}
1751
1752static struct aead_alg aes_gcm_alg = {
1753        .setkey         = atmel_aes_gcm_setkey,
1754        .setauthsize    = atmel_aes_gcm_setauthsize,
1755        .encrypt        = atmel_aes_gcm_encrypt,
1756        .decrypt        = atmel_aes_gcm_decrypt,
1757        .init           = atmel_aes_gcm_init,
1758        .ivsize         = GCM_AES_IV_SIZE,
1759        .maxauthsize    = AES_BLOCK_SIZE,
1760
1761        .base = {
1762                .cra_name               = "gcm(aes)",
1763                .cra_driver_name        = "atmel-gcm-aes",
1764                .cra_blocksize          = 1,
1765                .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1766        },
1767};
1768
1769
1770/* xts functions */
1771
1772static inline struct atmel_aes_xts_ctx *
1773atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1774{
1775        return container_of(ctx, struct atmel_aes_xts_ctx, base);
1776}
1777
1778static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1779
1780static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1781{
1782        struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1783        struct skcipher_request *req = skcipher_request_cast(dd->areq);
1784        struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1785        unsigned long flags;
1786        int err;
1787
1788        atmel_aes_set_mode(dd, rctx);
1789
1790        err = atmel_aes_hw_init(dd);
1791        if (err)
1792                return atmel_aes_complete(dd, err);
1793
1794        /* Compute the tweak value from req->iv with ecb(aes). */
1795        flags = dd->flags;
1796        dd->flags &= ~AES_FLAGS_MODE_MASK;
1797        dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1798        atmel_aes_write_ctrl_key(dd, false, NULL,
1799                                 ctx->key2, ctx->base.keylen);
1800        dd->flags = flags;
1801
1802        atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1803        return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1804}
1805
1806static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1807{
1808        struct skcipher_request *req = skcipher_request_cast(dd->areq);
1809        bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1810        u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1811        static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1812        u8 *tweak_bytes = (u8 *)tweak;
1813        int i;
1814
1815        /* Read the computed ciphered tweak value. */
1816        atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1817        /*
1818         * Hardware quirk:
1819         * the order of the ciphered tweak bytes need to be reversed before
1820         * writing them into the ODATARx registers.
1821         */
1822        for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1823                u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1824
1825                tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1826                tweak_bytes[i] = tmp;
1827        }
1828
1829        /* Process the data. */
1830        atmel_aes_write_ctrl(dd, use_dma, NULL);
1831        atmel_aes_write_block(dd, AES_TWR(0), tweak);
1832        atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1833        if (use_dma)
1834                return atmel_aes_dma_start(dd, req->src, req->dst,
1835                                           req->cryptlen,
1836                                           atmel_aes_transfer_complete);
1837
1838        return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1839                                   atmel_aes_transfer_complete);
1840}
1841
1842static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1843                                unsigned int keylen)
1844{
1845        struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1846        int err;
1847
1848        err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1849        if (err)
1850                return err;
1851
1852        memcpy(ctx->base.key, key, keylen/2);
1853        memcpy(ctx->key2, key + keylen/2, keylen/2);
1854        ctx->base.keylen = keylen/2;
1855
1856        return 0;
1857}
1858
1859static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1860{
1861        return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1862}
1863
1864static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1865{
1866        return atmel_aes_crypt(req, AES_FLAGS_XTS);
1867}
1868
1869static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1870{
1871        struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1872
1873        crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1874        ctx->base.start = atmel_aes_xts_start;
1875
1876        return 0;
1877}
1878
1879static struct skcipher_alg aes_xts_alg = {
1880        .base.cra_name          = "xts(aes)",
1881        .base.cra_driver_name   = "atmel-xts-aes",
1882        .base.cra_blocksize     = AES_BLOCK_SIZE,
1883        .base.cra_ctxsize       = sizeof(struct atmel_aes_xts_ctx),
1884
1885        .min_keysize            = 2 * AES_MIN_KEY_SIZE,
1886        .max_keysize            = 2 * AES_MAX_KEY_SIZE,
1887        .ivsize                 = AES_BLOCK_SIZE,
1888        .setkey                 = atmel_aes_xts_setkey,
1889        .encrypt                = atmel_aes_xts_encrypt,
1890        .decrypt                = atmel_aes_xts_decrypt,
1891        .init                   = atmel_aes_xts_init_tfm,
1892};
1893
1894#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1895/* authenc aead functions */
1896
1897static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1898static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1899                                  bool is_async);
1900static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1901                                      bool is_async);
1902static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1903static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1904                                   bool is_async);
1905
1906static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1907{
1908        struct aead_request *req = aead_request_cast(dd->areq);
1909        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1910
1911        if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1912                atmel_sha_authenc_abort(&rctx->auth_req);
1913        dd->flags &= ~AES_FLAGS_OWN_SHA;
1914}
1915
1916static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1917{
1918        struct aead_request *req = aead_request_cast(dd->areq);
1919        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1920        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1921        struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1922        int err;
1923
1924        atmel_aes_set_mode(dd, &rctx->base);
1925
1926        err = atmel_aes_hw_init(dd);
1927        if (err)
1928                return atmel_aes_complete(dd, err);
1929
1930        return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1931                                          atmel_aes_authenc_init, dd);
1932}
1933
1934static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1935                                  bool is_async)
1936{
1937        struct aead_request *req = aead_request_cast(dd->areq);
1938        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1939
1940        if (is_async)
1941                dd->is_async = true;
1942        if (err)
1943                return atmel_aes_complete(dd, err);
1944
1945        /* If here, we've got the ownership of the SHA device. */
1946        dd->flags |= AES_FLAGS_OWN_SHA;
1947
1948        /* Configure the SHA device. */
1949        return atmel_sha_authenc_init(&rctx->auth_req,
1950                                      req->src, req->assoclen,
1951                                      rctx->textlen,
1952                                      atmel_aes_authenc_transfer, dd);
1953}
1954
1955static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1956                                      bool is_async)
1957{
1958        struct aead_request *req = aead_request_cast(dd->areq);
1959        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1960        bool enc = atmel_aes_is_encrypt(dd);
1961        struct scatterlist *src, *dst;
1962        __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1963        u32 emr;
1964
1965        if (is_async)
1966                dd->is_async = true;
1967        if (err)
1968                return atmel_aes_complete(dd, err);
1969
1970        /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1971        src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1972        dst = src;
1973
1974        if (req->src != req->dst)
1975                dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1976
1977        /* Configure the AES device. */
1978        memcpy(iv, req->iv, sizeof(iv));
1979
1980        /*
1981         * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1982         * 'true' even if the data transfer is actually performed by the CPU (so
1983         * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1984         * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1985         * must be set to *_MR_SMOD_IDATAR0.
1986         */
1987        atmel_aes_write_ctrl(dd, true, iv);
1988        emr = AES_EMR_PLIPEN;
1989        if (!enc)
1990                emr |= AES_EMR_PLIPD;
1991        atmel_aes_write(dd, AES_EMR, emr);
1992
1993        /* Transfer data. */
1994        return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1995                                   atmel_aes_authenc_digest);
1996}
1997
1998static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1999{
2000        struct aead_request *req = aead_request_cast(dd->areq);
2001        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003        /* atmel_sha_authenc_final() releases the SHA device. */
2004        dd->flags &= ~AES_FLAGS_OWN_SHA;
2005        return atmel_sha_authenc_final(&rctx->auth_req,
2006                                       rctx->digest, sizeof(rctx->digest),
2007                                       atmel_aes_authenc_final, dd);
2008}
2009
2010static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2011                                   bool is_async)
2012{
2013        struct aead_request *req = aead_request_cast(dd->areq);
2014        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2015        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2016        bool enc = atmel_aes_is_encrypt(dd);
2017        u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2018        u32 offs, authsize;
2019
2020        if (is_async)
2021                dd->is_async = true;
2022        if (err)
2023                goto complete;
2024
2025        offs = req->assoclen + rctx->textlen;
2026        authsize = crypto_aead_authsize(tfm);
2027        if (enc) {
2028                scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2029        } else {
2030                scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2031                if (crypto_memneq(idigest, odigest, authsize))
2032                        err = -EBADMSG;
2033        }
2034
2035complete:
2036        return atmel_aes_complete(dd, err);
2037}
2038
2039static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2040                                    unsigned int keylen)
2041{
2042        struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2043        struct crypto_authenc_keys keys;
2044        int err;
2045
2046        if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2047                goto badkey;
2048
2049        if (keys.enckeylen > sizeof(ctx->base.key))
2050                goto badkey;
2051
2052        /* Save auth key. */
2053        err = atmel_sha_authenc_setkey(ctx->auth,
2054                                       keys.authkey, keys.authkeylen,
2055                                       crypto_aead_get_flags(tfm));
2056        if (err) {
2057                memzero_explicit(&keys, sizeof(keys));
2058                return err;
2059        }
2060
2061        /* Save enc key. */
2062        ctx->base.keylen = keys.enckeylen;
2063        memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2064
2065        memzero_explicit(&keys, sizeof(keys));
2066        return 0;
2067
2068badkey:
2069        memzero_explicit(&keys, sizeof(keys));
2070        return -EINVAL;
2071}
2072
2073static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2074                                      unsigned long auth_mode)
2075{
2076        struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2077        unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2078
2079        ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2080        if (IS_ERR(ctx->auth))
2081                return PTR_ERR(ctx->auth);
2082
2083        crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2084                                      auth_reqsize));
2085        ctx->base.start = atmel_aes_authenc_start;
2086
2087        return 0;
2088}
2089
2090static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2091{
2092        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2093}
2094
2095static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2096{
2097        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2098}
2099
2100static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2101{
2102        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2103}
2104
2105static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2106{
2107        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2108}
2109
2110static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2111{
2112        return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2113}
2114
2115static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2116{
2117        struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2118
2119        atmel_sha_authenc_free(ctx->auth);
2120}
2121
2122static int atmel_aes_authenc_crypt(struct aead_request *req,
2123                                   unsigned long mode)
2124{
2125        struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2126        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2127        struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2128        u32 authsize = crypto_aead_authsize(tfm);
2129        bool enc = (mode & AES_FLAGS_ENCRYPT);
2130        struct atmel_aes_dev *dd;
2131
2132        /* Compute text length. */
2133        if (!enc && req->cryptlen < authsize)
2134                return -EINVAL;
2135        rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2136
2137        /*
2138         * Currently, empty messages are not supported yet:
2139         * the SHA auto-padding can be used only on non-empty messages.
2140         * Hence a special case needs to be implemented for empty message.
2141         */
2142        if (!rctx->textlen && !req->assoclen)
2143                return -EINVAL;
2144
2145        rctx->base.mode = mode;
2146        ctx->block_size = AES_BLOCK_SIZE;
2147        ctx->is_aead = true;
2148
2149        dd = atmel_aes_find_dev(ctx);
2150        if (!dd)
2151                return -ENODEV;
2152
2153        return atmel_aes_handle_queue(dd, &req->base);
2154}
2155
2156static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2157{
2158        return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2159}
2160
2161static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2162{
2163        return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2164}
2165
2166static struct aead_alg aes_authenc_algs[] = {
2167{
2168        .setkey         = atmel_aes_authenc_setkey,
2169        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2170        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2171        .init           = atmel_aes_authenc_hmac_sha1_init_tfm,
2172        .exit           = atmel_aes_authenc_exit_tfm,
2173        .ivsize         = AES_BLOCK_SIZE,
2174        .maxauthsize    = SHA1_DIGEST_SIZE,
2175
2176        .base = {
2177                .cra_name               = "authenc(hmac(sha1),cbc(aes))",
2178                .cra_driver_name        = "atmel-authenc-hmac-sha1-cbc-aes",
2179                .cra_blocksize          = AES_BLOCK_SIZE,
2180                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2181        },
2182},
2183{
2184        .setkey         = atmel_aes_authenc_setkey,
2185        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2186        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2187        .init           = atmel_aes_authenc_hmac_sha224_init_tfm,
2188        .exit           = atmel_aes_authenc_exit_tfm,
2189        .ivsize         = AES_BLOCK_SIZE,
2190        .maxauthsize    = SHA224_DIGEST_SIZE,
2191
2192        .base = {
2193                .cra_name               = "authenc(hmac(sha224),cbc(aes))",
2194                .cra_driver_name        = "atmel-authenc-hmac-sha224-cbc-aes",
2195                .cra_blocksize          = AES_BLOCK_SIZE,
2196                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2197        },
2198},
2199{
2200        .setkey         = atmel_aes_authenc_setkey,
2201        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2202        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2203        .init           = atmel_aes_authenc_hmac_sha256_init_tfm,
2204        .exit           = atmel_aes_authenc_exit_tfm,
2205        .ivsize         = AES_BLOCK_SIZE,
2206        .maxauthsize    = SHA256_DIGEST_SIZE,
2207
2208        .base = {
2209                .cra_name               = "authenc(hmac(sha256),cbc(aes))",
2210                .cra_driver_name        = "atmel-authenc-hmac-sha256-cbc-aes",
2211                .cra_blocksize          = AES_BLOCK_SIZE,
2212                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2213        },
2214},
2215{
2216        .setkey         = atmel_aes_authenc_setkey,
2217        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2218        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2219        .init           = atmel_aes_authenc_hmac_sha384_init_tfm,
2220        .exit           = atmel_aes_authenc_exit_tfm,
2221        .ivsize         = AES_BLOCK_SIZE,
2222        .maxauthsize    = SHA384_DIGEST_SIZE,
2223
2224        .base = {
2225                .cra_name               = "authenc(hmac(sha384),cbc(aes))",
2226                .cra_driver_name        = "atmel-authenc-hmac-sha384-cbc-aes",
2227                .cra_blocksize          = AES_BLOCK_SIZE,
2228                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2229        },
2230},
2231{
2232        .setkey         = atmel_aes_authenc_setkey,
2233        .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2234        .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2235        .init           = atmel_aes_authenc_hmac_sha512_init_tfm,
2236        .exit           = atmel_aes_authenc_exit_tfm,
2237        .ivsize         = AES_BLOCK_SIZE,
2238        .maxauthsize    = SHA512_DIGEST_SIZE,
2239
2240        .base = {
2241                .cra_name               = "authenc(hmac(sha512),cbc(aes))",
2242                .cra_driver_name        = "atmel-authenc-hmac-sha512-cbc-aes",
2243                .cra_blocksize          = AES_BLOCK_SIZE,
2244                .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2245        },
2246},
2247};
2248#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2249
2250/* Probe functions */
2251
2252static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2253{
2254        dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2255        dd->buflen = ATMEL_AES_BUFFER_SIZE;
2256        dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2257
2258        if (!dd->buf) {
2259                dev_err(dd->dev, "unable to alloc pages.\n");
2260                return -ENOMEM;
2261        }
2262
2263        return 0;
2264}
2265
2266static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2267{
2268        free_page((unsigned long)dd->buf);
2269}
2270
2271static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2272{
2273        int ret;
2274
2275        /* Try to grab 2 DMA channels */
2276        dd->src.chan = dma_request_chan(dd->dev, "tx");
2277        if (IS_ERR(dd->src.chan)) {
2278                ret = PTR_ERR(dd->src.chan);
2279                goto err_dma_in;
2280        }
2281
2282        dd->dst.chan = dma_request_chan(dd->dev, "rx");
2283        if (IS_ERR(dd->dst.chan)) {
2284                ret = PTR_ERR(dd->dst.chan);
2285                goto err_dma_out;
2286        }
2287
2288        return 0;
2289
2290err_dma_out:
2291        dma_release_channel(dd->src.chan);
2292err_dma_in:
2293        dev_err(dd->dev, "no DMA channel available\n");
2294        return ret;
2295}
2296
2297static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2298{
2299        dma_release_channel(dd->dst.chan);
2300        dma_release_channel(dd->src.chan);
2301}
2302
2303static void atmel_aes_queue_task(unsigned long data)
2304{
2305        struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2306
2307        atmel_aes_handle_queue(dd, NULL);
2308}
2309
2310static void atmel_aes_done_task(unsigned long data)
2311{
2312        struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2313
2314        dd->is_async = true;
2315        (void)dd->resume(dd);
2316}
2317
2318static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2319{
2320        struct atmel_aes_dev *aes_dd = dev_id;
2321        u32 reg;
2322
2323        reg = atmel_aes_read(aes_dd, AES_ISR);
2324        if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2325                atmel_aes_write(aes_dd, AES_IDR, reg);
2326                if (AES_FLAGS_BUSY & aes_dd->flags)
2327                        tasklet_schedule(&aes_dd->done_task);
2328                else
2329                        dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2330                return IRQ_HANDLED;
2331        }
2332
2333        return IRQ_NONE;
2334}
2335
2336static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2337{
2338        int i;
2339
2340#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2341        if (dd->caps.has_authenc)
2342                for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2343                        crypto_unregister_aead(&aes_authenc_algs[i]);
2344#endif
2345
2346        if (dd->caps.has_xts)
2347                crypto_unregister_skcipher(&aes_xts_alg);
2348
2349        if (dd->caps.has_gcm)
2350                crypto_unregister_aead(&aes_gcm_alg);
2351
2352        if (dd->caps.has_cfb64)
2353                crypto_unregister_skcipher(&aes_cfb64_alg);
2354
2355        for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2356                crypto_unregister_skcipher(&aes_algs[i]);
2357}
2358
2359static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2360{
2361        alg->cra_flags = CRYPTO_ALG_ASYNC;
2362        alg->cra_alignmask = 0xf;
2363        alg->cra_priority = ATMEL_AES_PRIORITY;
2364        alg->cra_module = THIS_MODULE;
2365}
2366
2367static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2368{
2369        int err, i, j;
2370
2371        for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2372                atmel_aes_crypto_alg_init(&aes_algs[i].base);
2373
2374                err = crypto_register_skcipher(&aes_algs[i]);
2375                if (err)
2376                        goto err_aes_algs;
2377        }
2378
2379        if (dd->caps.has_cfb64) {
2380                atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2381
2382                err = crypto_register_skcipher(&aes_cfb64_alg);
2383                if (err)
2384                        goto err_aes_cfb64_alg;
2385        }
2386
2387        if (dd->caps.has_gcm) {
2388                atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2389
2390                err = crypto_register_aead(&aes_gcm_alg);
2391                if (err)
2392                        goto err_aes_gcm_alg;
2393        }
2394
2395        if (dd->caps.has_xts) {
2396                atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2397
2398                err = crypto_register_skcipher(&aes_xts_alg);
2399                if (err)
2400                        goto err_aes_xts_alg;
2401        }
2402
2403#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2404        if (dd->caps.has_authenc) {
2405                for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2406                        atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2407
2408                        err = crypto_register_aead(&aes_authenc_algs[i]);
2409                        if (err)
2410                                goto err_aes_authenc_alg;
2411                }
2412        }
2413#endif
2414
2415        return 0;
2416
2417#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2418        /* i = ARRAY_SIZE(aes_authenc_algs); */
2419err_aes_authenc_alg:
2420        for (j = 0; j < i; j++)
2421                crypto_unregister_aead(&aes_authenc_algs[j]);
2422        crypto_unregister_skcipher(&aes_xts_alg);
2423#endif
2424err_aes_xts_alg:
2425        crypto_unregister_aead(&aes_gcm_alg);
2426err_aes_gcm_alg:
2427        crypto_unregister_skcipher(&aes_cfb64_alg);
2428err_aes_cfb64_alg:
2429        i = ARRAY_SIZE(aes_algs);
2430err_aes_algs:
2431        for (j = 0; j < i; j++)
2432                crypto_unregister_skcipher(&aes_algs[j]);
2433
2434        return err;
2435}
2436
2437static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2438{
2439        dd->caps.has_dualbuff = 0;
2440        dd->caps.has_cfb64 = 0;
2441        dd->caps.has_gcm = 0;
2442        dd->caps.has_xts = 0;
2443        dd->caps.has_authenc = 0;
2444        dd->caps.max_burst_size = 1;
2445
2446        /* keep only major version number */
2447        switch (dd->hw_version & 0xff0) {
2448        case 0x500:
2449                dd->caps.has_dualbuff = 1;
2450                dd->caps.has_cfb64 = 1;
2451                dd->caps.has_gcm = 1;
2452                dd->caps.has_xts = 1;
2453                dd->caps.has_authenc = 1;
2454                dd->caps.max_burst_size = 4;
2455                break;
2456        case 0x200:
2457                dd->caps.has_dualbuff = 1;
2458                dd->caps.has_cfb64 = 1;
2459                dd->caps.has_gcm = 1;
2460                dd->caps.max_burst_size = 4;
2461                break;
2462        case 0x130:
2463                dd->caps.has_dualbuff = 1;
2464                dd->caps.has_cfb64 = 1;
2465                dd->caps.max_burst_size = 4;
2466                break;
2467        case 0x120:
2468                break;
2469        default:
2470                dev_warn(dd->dev,
2471                                "Unmanaged aes version, set minimum capabilities\n");
2472                break;
2473        }
2474}
2475
2476#if defined(CONFIG_OF)
2477static const struct of_device_id atmel_aes_dt_ids[] = {
2478        { .compatible = "atmel,at91sam9g46-aes" },
2479        { /* sentinel */ }
2480};
2481MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2482#endif
2483
2484static int atmel_aes_probe(struct platform_device *pdev)
2485{
2486        struct atmel_aes_dev *aes_dd;
2487        struct device *dev = &pdev->dev;
2488        struct resource *aes_res;
2489        int err;
2490
2491        aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2492        if (!aes_dd)
2493                return -ENOMEM;
2494
2495        aes_dd->dev = dev;
2496
2497        platform_set_drvdata(pdev, aes_dd);
2498
2499        INIT_LIST_HEAD(&aes_dd->list);
2500        spin_lock_init(&aes_dd->lock);
2501
2502        tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2503                                        (unsigned long)aes_dd);
2504        tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2505                                        (unsigned long)aes_dd);
2506
2507        crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2508
2509        /* Get the base address */
2510        aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2511        if (!aes_res) {
2512                dev_err(dev, "no MEM resource info\n");
2513                err = -ENODEV;
2514                goto err_tasklet_kill;
2515        }
2516        aes_dd->phys_base = aes_res->start;
2517
2518        /* Get the IRQ */
2519        aes_dd->irq = platform_get_irq(pdev,  0);
2520        if (aes_dd->irq < 0) {
2521                err = aes_dd->irq;
2522                goto err_tasklet_kill;
2523        }
2524
2525        err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2526                               IRQF_SHARED, "atmel-aes", aes_dd);
2527        if (err) {
2528                dev_err(dev, "unable to request aes irq.\n");
2529                goto err_tasklet_kill;
2530        }
2531
2532        /* Initializing the clock */
2533        aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2534        if (IS_ERR(aes_dd->iclk)) {
2535                dev_err(dev, "clock initialization failed.\n");
2536                err = PTR_ERR(aes_dd->iclk);
2537                goto err_tasklet_kill;
2538        }
2539
2540        aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2541        if (IS_ERR(aes_dd->io_base)) {
2542                dev_err(dev, "can't ioremap\n");
2543                err = PTR_ERR(aes_dd->io_base);
2544                goto err_tasklet_kill;
2545        }
2546
2547        err = clk_prepare(aes_dd->iclk);
2548        if (err)
2549                goto err_tasklet_kill;
2550
2551        err = atmel_aes_hw_version_init(aes_dd);
2552        if (err)
2553                goto err_iclk_unprepare;
2554
2555        atmel_aes_get_cap(aes_dd);
2556
2557#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2558        if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2559                err = -EPROBE_DEFER;
2560                goto err_iclk_unprepare;
2561        }
2562#endif
2563
2564        err = atmel_aes_buff_init(aes_dd);
2565        if (err)
2566                goto err_iclk_unprepare;
2567
2568        err = atmel_aes_dma_init(aes_dd);
2569        if (err)
2570                goto err_buff_cleanup;
2571
2572        spin_lock(&atmel_aes.lock);
2573        list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2574        spin_unlock(&atmel_aes.lock);
2575
2576        err = atmel_aes_register_algs(aes_dd);
2577        if (err)
2578                goto err_algs;
2579
2580        dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2581                        dma_chan_name(aes_dd->src.chan),
2582                        dma_chan_name(aes_dd->dst.chan));
2583
2584        return 0;
2585
2586err_algs:
2587        spin_lock(&atmel_aes.lock);
2588        list_del(&aes_dd->list);
2589        spin_unlock(&atmel_aes.lock);
2590        atmel_aes_dma_cleanup(aes_dd);
2591err_buff_cleanup:
2592        atmel_aes_buff_cleanup(aes_dd);
2593err_iclk_unprepare:
2594        clk_unprepare(aes_dd->iclk);
2595err_tasklet_kill:
2596        tasklet_kill(&aes_dd->done_task);
2597        tasklet_kill(&aes_dd->queue_task);
2598
2599        return err;
2600}
2601
2602static int atmel_aes_remove(struct platform_device *pdev)
2603{
2604        struct atmel_aes_dev *aes_dd;
2605
2606        aes_dd = platform_get_drvdata(pdev);
2607        if (!aes_dd)
2608                return -ENODEV;
2609        spin_lock(&atmel_aes.lock);
2610        list_del(&aes_dd->list);
2611        spin_unlock(&atmel_aes.lock);
2612
2613        atmel_aes_unregister_algs(aes_dd);
2614
2615        tasklet_kill(&aes_dd->done_task);
2616        tasklet_kill(&aes_dd->queue_task);
2617
2618        atmel_aes_dma_cleanup(aes_dd);
2619        atmel_aes_buff_cleanup(aes_dd);
2620
2621        clk_unprepare(aes_dd->iclk);
2622
2623        return 0;
2624}
2625
2626static struct platform_driver atmel_aes_driver = {
2627        .probe          = atmel_aes_probe,
2628        .remove         = atmel_aes_remove,
2629        .driver         = {
2630                .name   = "atmel_aes",
2631                .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2632        },
2633};
2634
2635module_platform_driver(atmel_aes_driver);
2636
2637MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2638MODULE_LICENSE("GPL v2");
2639MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2640