linux/drivers/crypto/hifn_795x.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
   4 * All rights reserved.
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/mod_devicetable.h>
  11#include <linux/interrupt.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/delay.h>
  15#include <linux/mm.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/scatterlist.h>
  18#include <linux/highmem.h>
  19#include <linux/crypto.h>
  20#include <linux/hw_random.h>
  21#include <linux/ktime.h>
  22
  23#include <crypto/algapi.h>
  24#include <crypto/internal/des.h>
  25#include <crypto/internal/skcipher.h>
  26
  27static char hifn_pll_ref[sizeof("extNNN")] = "ext";
  28module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
  29MODULE_PARM_DESC(hifn_pll_ref,
  30                 "PLL reference clock (pci[freq] or ext[freq], default ext)");
  31
  32static atomic_t hifn_dev_number;
  33
  34#define ACRYPTO_OP_DECRYPT      0
  35#define ACRYPTO_OP_ENCRYPT      1
  36#define ACRYPTO_OP_HMAC         2
  37#define ACRYPTO_OP_RNG          3
  38
  39#define ACRYPTO_MODE_ECB                0
  40#define ACRYPTO_MODE_CBC                1
  41#define ACRYPTO_MODE_CFB                2
  42#define ACRYPTO_MODE_OFB                3
  43
  44#define ACRYPTO_TYPE_AES_128    0
  45#define ACRYPTO_TYPE_AES_192    1
  46#define ACRYPTO_TYPE_AES_256    2
  47#define ACRYPTO_TYPE_3DES       3
  48#define ACRYPTO_TYPE_DES        4
  49
  50#define PCI_VENDOR_ID_HIFN              0x13A3
  51#define PCI_DEVICE_ID_HIFN_7955         0x0020
  52#define PCI_DEVICE_ID_HIFN_7956         0x001d
  53
  54/* I/O region sizes */
  55
  56#define HIFN_BAR0_SIZE                  0x1000
  57#define HIFN_BAR1_SIZE                  0x2000
  58#define HIFN_BAR2_SIZE                  0x8000
  59
  60/* DMA registres */
  61
  62#define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
  63#define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
  64#define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
  65#define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
  66#define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
  67#define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
  68#define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
  69#define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
  70#define HIFN_CHIP_ID                    0x98    /* Chip ID */
  71
  72/*
  73 * Processing Unit Registers (offset from BASEREG0)
  74 */
  75#define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
  76#define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
  77#define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
  78#define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
  79#define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
  80#define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
  81#define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
  82#define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
  83#define HIFN_0_SPACESIZE        0x20    /* Register space size */
  84
  85/* Processing Unit Control Register (HIFN_0_PUCTRL) */
  86#define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
  87#define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
  88#define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
  89#define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
  90#define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
  91
  92/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
  93#define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
  94#define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
  95#define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
  96#define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
  97#define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
  98#define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
  99#define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
 100#define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
 101#define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
 102#define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
 103
 104/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
 105#define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
 106#define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
 107#define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
 108#define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
 109#define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
 110#define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
 111#define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
 112#define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
 113#define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
 114#define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
 115#define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
 116#define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
 117#define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
 118#define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
 119#define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
 120#define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
 121#define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
 122#define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
 123#define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
 124#define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
 125#define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
 126#define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
 127#define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
 128
 129/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
 130#define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
 131#define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
 132#define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
 133#define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
 134#define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
 135#define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
 136#define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
 137#define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
 138#define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
 139#define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
 140
 141/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
 142#define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
 143#define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
 144#define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
 145#define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
 146#define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
 147#define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
 148#define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
 149#define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
 150#define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
 151#define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
 152#define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
 153#define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
 154#define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
 155#define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
 156#define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
 157#define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
 158#define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
 159
 160/* FIFO Status Register (HIFN_0_FIFOSTAT) */
 161#define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
 162#define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
 163
 164/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
 165#define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
 166
 167/*
 168 * DMA Interface Registers (offset from BASEREG1)
 169 */
 170#define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
 171#define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
 172#define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
 173#define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
 174#define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
 175#define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
 176#define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
 177#define HIFN_1_PLL              0x4c    /* 795x: PLL config */
 178#define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
 179#define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
 180#define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
 181#define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
 182#define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
 183#define HIFN_1_REVID            0x98    /* Revision ID */
 184#define HIFN_1_UNLOCK_SECRET1   0xf4
 185#define HIFN_1_UNLOCK_SECRET2   0xfc
 186#define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
 187#define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
 188#define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
 189#define HIFN_1_PUB_OP           0x308   /* Public Operand */
 190#define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
 191#define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
 192#define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
 193#define HIFN_1_RNG_DATA         0x318   /* RNG data */
 194#define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
 195#define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
 196
 197/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
 198#define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
 199#define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
 200#define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
 201#define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
 202#define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
 203#define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
 204#define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
 205#define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
 206#define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
 207#define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
 208#define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
 209#define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
 210#define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
 211#define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
 212#define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
 213#define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
 214#define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
 215#define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
 216#define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
 217#define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
 218#define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
 219#define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
 220#define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
 221#define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
 222#define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
 223#define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
 224#define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
 225#define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
 226#define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
 227#define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
 228#define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
 229#define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
 230#define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
 231#define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
 232#define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
 233#define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
 234#define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
 235#define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
 236
 237/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
 238#define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
 239#define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
 240#define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
 241#define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
 242#define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
 243#define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
 244#define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
 245#define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
 246#define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
 247#define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
 248#define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
 249#define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
 250#define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
 251#define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
 252#define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
 253#define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
 254#define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
 255#define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
 256#define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
 257#define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
 258#define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
 259#define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
 260
 261/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
 262#define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
 263#define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
 264#define HIFN_DMACNFG_UNLOCK     0x00000800
 265#define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
 266#define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
 267#define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
 268#define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
 269#define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
 270
 271/* PLL configuration register */
 272#define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
 273#define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
 274#define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
 275#define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
 276#define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
 277#define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
 278#define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
 279#define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
 280#define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
 281#define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
 282#define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
 283#define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
 284#define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
 285#define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
 286#define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
 287#define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
 288#define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
 289
 290#define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
 291
 292/* Public key reset register (HIFN_1_PUB_RESET) */
 293#define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
 294
 295/* Public base address register (HIFN_1_PUB_BASE) */
 296#define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
 297
 298/* Public operand length register (HIFN_1_PUB_OPLEN) */
 299#define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
 300#define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
 301#define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
 302#define HIFN_PUBOPLEN_EXP_S     7               /* exponent length shift */
 303#define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
 304#define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
 305
 306/* Public operation register (HIFN_1_PUB_OP) */
 307#define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
 308#define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
 309#define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
 310#define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
 311#define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
 312#define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
 313#define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
 314#define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
 315#define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
 316#define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
 317#define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
 318#define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
 319#define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
 320#define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
 321#define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
 322#define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
 323#define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
 324#define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
 325#define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
 326#define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
 327
 328/* Public status register (HIFN_1_PUB_STATUS) */
 329#define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
 330#define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
 331
 332/* Public interrupt enable register (HIFN_1_PUB_IEN) */
 333#define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
 334
 335/* Random number generator config register (HIFN_1_RNG_CONFIG) */
 336#define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
 337
 338#define HIFN_NAMESIZE                   32
 339#define HIFN_MAX_RESULT_ORDER           5
 340
 341#define HIFN_D_CMD_RSIZE                (24 * 1)
 342#define HIFN_D_SRC_RSIZE                (80 * 1)
 343#define HIFN_D_DST_RSIZE                (80 * 1)
 344#define HIFN_D_RES_RSIZE                (24 * 1)
 345
 346#define HIFN_D_DST_DALIGN               4
 347
 348#define HIFN_QUEUE_LENGTH               (HIFN_D_CMD_RSIZE - 1)
 349
 350#define AES_MIN_KEY_SIZE                16
 351#define AES_MAX_KEY_SIZE                32
 352
 353#define HIFN_DES_KEY_LENGTH             8
 354#define HIFN_3DES_KEY_LENGTH            24
 355#define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
 356#define HIFN_IV_LENGTH                  8
 357#define HIFN_AES_IV_LENGTH              16
 358#define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
 359
 360#define HIFN_MAC_KEY_LENGTH             64
 361#define HIFN_MD5_LENGTH                 16
 362#define HIFN_SHA1_LENGTH                20
 363#define HIFN_MAC_TRUNC_LENGTH           12
 364
 365#define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
 366#define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
 367#define HIFN_USED_RESULT                12
 368
 369struct hifn_desc {
 370        volatile __le32         l;
 371        volatile __le32         p;
 372};
 373
 374struct hifn_dma {
 375        struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE + 1];
 376        struct hifn_desc        srcr[HIFN_D_SRC_RSIZE + 1];
 377        struct hifn_desc        dstr[HIFN_D_DST_RSIZE + 1];
 378        struct hifn_desc        resr[HIFN_D_RES_RSIZE + 1];
 379
 380        u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
 381        u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
 382
 383        /*
 384         *  Our current positions for insertion and removal from the descriptor
 385         *  rings.
 386         */
 387        volatile int            cmdi, srci, dsti, resi;
 388        volatile int            cmdu, srcu, dstu, resu;
 389        int                     cmdk, srck, dstk, resk;
 390};
 391
 392#define HIFN_FLAG_CMD_BUSY      (1 << 0)
 393#define HIFN_FLAG_SRC_BUSY      (1 << 1)
 394#define HIFN_FLAG_DST_BUSY      (1 << 2)
 395#define HIFN_FLAG_RES_BUSY      (1 << 3)
 396#define HIFN_FLAG_OLD_KEY       (1 << 4)
 397
 398#define HIFN_DEFAULT_ACTIVE_NUM 5
 399
 400struct hifn_device {
 401        char                    name[HIFN_NAMESIZE];
 402
 403        int                     irq;
 404
 405        struct pci_dev          *pdev;
 406        void __iomem            *bar[3];
 407
 408        void                    *desc_virt;
 409        dma_addr_t              desc_dma;
 410
 411        u32                     dmareg;
 412
 413        void                    *sa[HIFN_D_RES_RSIZE];
 414
 415        spinlock_t              lock;
 416
 417        u32                     flags;
 418        int                     active, started;
 419        struct delayed_work     work;
 420        unsigned long           reset;
 421        unsigned long           success;
 422        unsigned long           prev_success;
 423
 424        u8                      snum;
 425
 426        struct tasklet_struct   tasklet;
 427
 428        struct crypto_queue     queue;
 429        struct list_head        alg_list;
 430
 431        unsigned int            pk_clk_freq;
 432
 433#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 434        unsigned int            rng_wait_time;
 435        ktime_t                 rngtime;
 436        struct hwrng            rng;
 437#endif
 438};
 439
 440#define HIFN_D_LENGTH                   0x0000ffff
 441#define HIFN_D_NOINVALID                0x01000000
 442#define HIFN_D_MASKDONEIRQ              0x02000000
 443#define HIFN_D_DESTOVER                 0x04000000
 444#define HIFN_D_OVER                     0x08000000
 445#define HIFN_D_LAST                     0x20000000
 446#define HIFN_D_JUMP                     0x40000000
 447#define HIFN_D_VALID                    0x80000000
 448
 449struct hifn_base_command {
 450        volatile __le16         masks;
 451        volatile __le16         session_num;
 452        volatile __le16         total_source_count;
 453        volatile __le16         total_dest_count;
 454};
 455
 456#define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
 457#define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
 458#define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
 459#define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
 460#define HIFN_BASE_CMD_DECODE            0x2000
 461#define HIFN_BASE_CMD_SRCLEN_M          0xc000
 462#define HIFN_BASE_CMD_SRCLEN_S          14
 463#define HIFN_BASE_CMD_DSTLEN_M          0x3000
 464#define HIFN_BASE_CMD_DSTLEN_S          12
 465#define HIFN_BASE_CMD_LENMASK_HI        0x30000
 466#define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
 467
 468/*
 469 * Structure to help build up the command data structure.
 470 */
 471struct hifn_crypt_command {
 472        volatile __le16         masks;
 473        volatile __le16         header_skip;
 474        volatile __le16         source_count;
 475        volatile __le16         reserved;
 476};
 477
 478#define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
 479#define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
 480#define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
 481#define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
 482#define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
 483#define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
 484#define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
 485#define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
 486#define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
 487#define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
 488#define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
 489#define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
 490#define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
 491#define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
 492#define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
 493#define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
 494#define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
 495#define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
 496#define HIFN_CRYPT_CMD_SRCLEN_S         14
 497
 498/*
 499 * Structure to help build up the command data structure.
 500 */
 501struct hifn_mac_command {
 502        volatile __le16 masks;
 503        volatile __le16 header_skip;
 504        volatile __le16 source_count;
 505        volatile __le16 reserved;
 506};
 507
 508#define HIFN_MAC_CMD_ALG_MASK           0x0001
 509#define HIFN_MAC_CMD_ALG_SHA1           0x0000
 510#define HIFN_MAC_CMD_ALG_MD5            0x0001
 511#define HIFN_MAC_CMD_MODE_MASK          0x000c
 512#define HIFN_MAC_CMD_MODE_HMAC          0x0000
 513#define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
 514#define HIFN_MAC_CMD_MODE_HASH          0x0008
 515#define HIFN_MAC_CMD_MODE_FULL          0x0004
 516#define HIFN_MAC_CMD_TRUNC              0x0010
 517#define HIFN_MAC_CMD_RESULT             0x0020
 518#define HIFN_MAC_CMD_APPEND             0x0040
 519#define HIFN_MAC_CMD_SRCLEN_M           0xc000
 520#define HIFN_MAC_CMD_SRCLEN_S           14
 521
 522/*
 523 * MAC POS IPsec initiates authentication after encryption on encodes
 524 * and before decryption on decodes.
 525 */
 526#define HIFN_MAC_CMD_POS_IPSEC          0x0200
 527#define HIFN_MAC_CMD_NEW_KEY            0x0800
 528
 529struct hifn_comp_command {
 530        volatile __le16         masks;
 531        volatile __le16         header_skip;
 532        volatile __le16         source_count;
 533        volatile __le16         reserved;
 534};
 535
 536#define HIFN_COMP_CMD_SRCLEN_M          0xc000
 537#define HIFN_COMP_CMD_SRCLEN_S          14
 538#define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
 539#define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
 540#define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
 541#define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
 542#define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
 543#define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
 544#define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
 545#define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
 546
 547struct hifn_base_result {
 548        volatile __le16         flags;
 549        volatile __le16         session;
 550        volatile __le16         src_cnt;                /* 15:0 of source count */
 551        volatile __le16         dst_cnt;                /* 15:0 of dest count */
 552};
 553
 554#define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
 555#define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
 556#define HIFN_BASE_RES_SRCLEN_S          14
 557#define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
 558#define HIFN_BASE_RES_DSTLEN_S          12
 559
 560struct hifn_comp_result {
 561        volatile __le16         flags;
 562        volatile __le16         crc;
 563};
 564
 565#define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
 566#define HIFN_COMP_RES_LCB_S             8
 567#define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
 568#define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
 569#define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
 570
 571struct hifn_mac_result {
 572        volatile __le16         flags;
 573        volatile __le16         reserved;
 574        /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
 575};
 576
 577#define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
 578#define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
 579
 580struct hifn_crypt_result {
 581        volatile __le16         flags;
 582        volatile __le16         reserved;
 583};
 584
 585#define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
 586
 587#ifndef HIFN_POLL_FREQUENCY
 588#define HIFN_POLL_FREQUENCY     0x1
 589#endif
 590
 591#ifndef HIFN_POLL_SCALAR
 592#define HIFN_POLL_SCALAR        0x0
 593#endif
 594
 595#define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
 596#define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
 597
 598struct hifn_crypto_alg {
 599        struct list_head        entry;
 600        struct skcipher_alg     alg;
 601        struct hifn_device      *dev;
 602};
 603
 604#define ASYNC_SCATTERLIST_CACHE 16
 605
 606#define ASYNC_FLAGS_MISALIGNED  (1 << 0)
 607
 608struct hifn_cipher_walk {
 609        struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
 610        u32                     flags;
 611        int                     num;
 612};
 613
 614struct hifn_context {
 615        u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH];
 616        struct hifn_device      *dev;
 617        unsigned int            keysize;
 618};
 619
 620struct hifn_request_context {
 621        u8                      *iv;
 622        unsigned int            ivsize;
 623        u8                      op, type, mode, unused;
 624        struct hifn_cipher_walk walk;
 625};
 626
 627#define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
 628
 629static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
 630{
 631        return readl(dev->bar[0] + reg);
 632}
 633
 634static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
 635{
 636        return readl(dev->bar[1] + reg);
 637}
 638
 639static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
 640{
 641        writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
 642}
 643
 644static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
 645{
 646        writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
 647}
 648
 649static void hifn_wait_puc(struct hifn_device *dev)
 650{
 651        int i;
 652        u32 ret;
 653
 654        for (i = 10000; i > 0; --i) {
 655                ret = hifn_read_0(dev, HIFN_0_PUCTRL);
 656                if (!(ret & HIFN_PUCTRL_RESET))
 657                        break;
 658
 659                udelay(1);
 660        }
 661
 662        if (!i)
 663                dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
 664}
 665
 666static void hifn_reset_puc(struct hifn_device *dev)
 667{
 668        hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 669        hifn_wait_puc(dev);
 670}
 671
 672static void hifn_stop_device(struct hifn_device *dev)
 673{
 674        hifn_write_1(dev, HIFN_1_DMA_CSR,
 675                HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 676                HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
 677        hifn_write_0(dev, HIFN_0_PUIER, 0);
 678        hifn_write_1(dev, HIFN_1_DMA_IER, 0);
 679}
 680
 681static void hifn_reset_dma(struct hifn_device *dev, int full)
 682{
 683        hifn_stop_device(dev);
 684
 685        /*
 686         * Setting poll frequency and others to 0.
 687         */
 688        hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 689                        HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 690        mdelay(1);
 691
 692        /*
 693         * Reset DMA.
 694         */
 695        if (full) {
 696                hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
 697                mdelay(1);
 698        } else {
 699                hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
 700                                HIFN_DMACNFG_MSTRESET);
 701                hifn_reset_puc(dev);
 702        }
 703
 704        hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 705                        HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 706
 707        hifn_reset_puc(dev);
 708}
 709
 710static u32 hifn_next_signature(u32 a, u_int cnt)
 711{
 712        int i;
 713        u32 v;
 714
 715        for (i = 0; i < cnt; i++) {
 716                /* get the parity */
 717                v = a & 0x80080125;
 718                v ^= v >> 16;
 719                v ^= v >> 8;
 720                v ^= v >> 4;
 721                v ^= v >> 2;
 722                v ^= v >> 1;
 723
 724                a = (v & 1) ^ (a << 1);
 725        }
 726
 727        return a;
 728}
 729
 730static struct pci2id {
 731        u_short         pci_vendor;
 732        u_short         pci_prod;
 733        char            card_id[13];
 734} pci2id[] = {
 735        {
 736                PCI_VENDOR_ID_HIFN,
 737                PCI_DEVICE_ID_HIFN_7955,
 738                { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 739                  0x00, 0x00, 0x00, 0x00, 0x00 }
 740        },
 741        {
 742                PCI_VENDOR_ID_HIFN,
 743                PCI_DEVICE_ID_HIFN_7956,
 744                { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 745                  0x00, 0x00, 0x00, 0x00, 0x00 }
 746        }
 747};
 748
 749#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 750static int hifn_rng_data_present(struct hwrng *rng, int wait)
 751{
 752        struct hifn_device *dev = (struct hifn_device *)rng->priv;
 753        s64 nsec;
 754
 755        nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
 756        nsec -= dev->rng_wait_time;
 757        if (nsec <= 0)
 758                return 1;
 759        if (!wait)
 760                return 0;
 761        ndelay(nsec);
 762        return 1;
 763}
 764
 765static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
 766{
 767        struct hifn_device *dev = (struct hifn_device *)rng->priv;
 768
 769        *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
 770        dev->rngtime = ktime_get();
 771        return 4;
 772}
 773
 774static int hifn_register_rng(struct hifn_device *dev)
 775{
 776        /*
 777         * We must wait at least 256 Pk_clk cycles between two reads of the rng.
 778         */
 779        dev->rng_wait_time      = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
 780                                                   dev->pk_clk_freq) * 256;
 781
 782        dev->rng.name           = dev->name;
 783        dev->rng.data_present   = hifn_rng_data_present,
 784        dev->rng.data_read      = hifn_rng_data_read,
 785        dev->rng.priv           = (unsigned long)dev;
 786
 787        return hwrng_register(&dev->rng);
 788}
 789
 790static void hifn_unregister_rng(struct hifn_device *dev)
 791{
 792        hwrng_unregister(&dev->rng);
 793}
 794#else
 795#define hifn_register_rng(dev)          0
 796#define hifn_unregister_rng(dev)
 797#endif
 798
 799static int hifn_init_pubrng(struct hifn_device *dev)
 800{
 801        int i;
 802
 803        hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
 804                        HIFN_PUBRST_RESET);
 805
 806        for (i = 100; i > 0; --i) {
 807                mdelay(1);
 808
 809                if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
 810                        break;
 811        }
 812
 813        if (!i) {
 814                dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
 815        } else {
 816                hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
 817                dev->dmareg |= HIFN_DMAIER_PUBDONE;
 818                hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
 819
 820                dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
 821        }
 822
 823        /* Enable RNG engine. */
 824
 825        hifn_write_1(dev, HIFN_1_RNG_CONFIG,
 826                        hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
 827        dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
 828
 829#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 830        /* First value must be discarded */
 831        hifn_read_1(dev, HIFN_1_RNG_DATA);
 832        dev->rngtime = ktime_get();
 833#endif
 834        return 0;
 835}
 836
 837static int hifn_enable_crypto(struct hifn_device *dev)
 838{
 839        u32 dmacfg, addr;
 840        char *offtbl = NULL;
 841        int i;
 842
 843        for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
 844                if (pci2id[i].pci_vendor == dev->pdev->vendor &&
 845                                pci2id[i].pci_prod == dev->pdev->device) {
 846                        offtbl = pci2id[i].card_id;
 847                        break;
 848                }
 849        }
 850
 851        if (!offtbl) {
 852                dev_err(&dev->pdev->dev, "Unknown card!\n");
 853                return -ENODEV;
 854        }
 855
 856        dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
 857
 858        hifn_write_1(dev, HIFN_1_DMA_CNFG,
 859                        HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
 860                        HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 861        mdelay(1);
 862        addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
 863        mdelay(1);
 864        hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
 865        mdelay(1);
 866
 867        for (i = 0; i < 12; ++i) {
 868                addr = hifn_next_signature(addr, offtbl[i] + 0x101);
 869                hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
 870
 871                mdelay(1);
 872        }
 873        hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
 874
 875        dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
 876
 877        return 0;
 878}
 879
 880static void hifn_init_dma(struct hifn_device *dev)
 881{
 882        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
 883        u32 dptr = dev->desc_dma;
 884        int i;
 885
 886        for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
 887                dma->cmdr[i].p = __cpu_to_le32(dptr +
 888                                offsetof(struct hifn_dma, command_bufs[i][0]));
 889        for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
 890                dma->resr[i].p = __cpu_to_le32(dptr +
 891                                offsetof(struct hifn_dma, result_bufs[i][0]));
 892
 893        /* Setup LAST descriptors. */
 894        dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
 895                        offsetof(struct hifn_dma, cmdr[0]));
 896        dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
 897                        offsetof(struct hifn_dma, srcr[0]));
 898        dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
 899                        offsetof(struct hifn_dma, dstr[0]));
 900        dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
 901                        offsetof(struct hifn_dma, resr[0]));
 902
 903        dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
 904        dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
 905        dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
 906}
 907
 908/*
 909 * Initialize the PLL. We need to know the frequency of the reference clock
 910 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
 911 * allows us to operate without the risk of overclocking the chip. If it
 912 * actually uses 33MHz, the chip will operate at half the speed, this can be
 913 * overridden by specifying the frequency as module parameter (pci33).
 914 *
 915 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
 916 * stable clock and the PCI clock frequency may vary, so the default is the
 917 * external clock. There is no way to find out its frequency, we default to
 918 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
 919 * has an external crystal populated at 66MHz.
 920 */
 921static void hifn_init_pll(struct hifn_device *dev)
 922{
 923        unsigned int freq, m;
 924        u32 pllcfg;
 925
 926        pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
 927
 928        if (strncmp(hifn_pll_ref, "ext", 3) == 0)
 929                pllcfg |= HIFN_PLL_REF_CLK_PLL;
 930        else
 931                pllcfg |= HIFN_PLL_REF_CLK_HBI;
 932
 933        if (hifn_pll_ref[3] != '\0')
 934                freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
 935        else {
 936                freq = 66;
 937                dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
 938                         freq, hifn_pll_ref);
 939        }
 940
 941        m = HIFN_PLL_FCK_MAX / freq;
 942
 943        pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
 944        if (m <= 8)
 945                pllcfg |= HIFN_PLL_IS_1_8;
 946        else
 947                pllcfg |= HIFN_PLL_IS_9_12;
 948
 949        /* Select clock source and enable clock bypass */
 950        hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 951                     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
 952
 953        /* Let the chip lock to the input clock */
 954        mdelay(10);
 955
 956        /* Disable clock bypass */
 957        hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 958                     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
 959
 960        /* Switch the engines to the PLL */
 961        hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 962                     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
 963
 964        /*
 965         * The Fpk_clk runs at half the total speed. Its frequency is needed to
 966         * calculate the minimum time between two reads of the rng. Since 33MHz
 967         * is actually 33.333... we overestimate the frequency here, resulting
 968         * in slightly larger intervals.
 969         */
 970        dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
 971}
 972
 973static void hifn_init_registers(struct hifn_device *dev)
 974{
 975        u32 dptr = dev->desc_dma;
 976
 977        /* Initialization magic... */
 978        hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 979        hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
 980        hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
 981
 982        /* write all 4 ring address registers */
 983        hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
 984                                offsetof(struct hifn_dma, cmdr[0]));
 985        hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
 986                                offsetof(struct hifn_dma, srcr[0]));
 987        hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
 988                                offsetof(struct hifn_dma, dstr[0]));
 989        hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
 990                                offsetof(struct hifn_dma, resr[0]));
 991
 992        mdelay(2);
 993#if 0
 994        hifn_write_1(dev, HIFN_1_DMA_CSR,
 995            HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 996            HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
 997            HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
 998            HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
 999            HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000            HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001            HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002            HIFN_DMACSR_S_WAIT |
1003            HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004            HIFN_DMACSR_C_WAIT |
1005            HIFN_DMACSR_ENGINE |
1006            HIFN_DMACSR_PUBDONE);
1007#else
1008        hifn_write_1(dev, HIFN_1_DMA_CSR,
1009            HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010            HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011            HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012            HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013            HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014            HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015            HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016            HIFN_DMACSR_S_WAIT |
1017            HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018            HIFN_DMACSR_C_WAIT |
1019            HIFN_DMACSR_ENGINE |
1020            HIFN_DMACSR_PUBDONE);
1021#endif
1022        hifn_read_1(dev, HIFN_1_DMA_CSR);
1023
1024        dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025            HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026            HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027            HIFN_DMAIER_ENGINE;
1028        dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029
1030        hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031        hifn_read_1(dev, HIFN_1_DMA_IER);
1032#if 0
1033        hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034                    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035                    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036                    HIFN_PUCNFG_DRAM);
1037#else
1038        hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039#endif
1040        hifn_init_pll(dev);
1041
1042        hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043        hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044            HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045            ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046            ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047}
1048
1049static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050                unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051{
1052        struct hifn_base_command *base_cmd;
1053        u8 *buf_pos = buf;
1054
1055        base_cmd = (struct hifn_base_command *)buf_pos;
1056        base_cmd->masks = __cpu_to_le16(mask);
1057        base_cmd->total_source_count =
1058                __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059        base_cmd->total_dest_count =
1060                __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061
1062        dlen >>= 16;
1063        slen >>= 16;
1064        base_cmd->session_num = __cpu_to_le16(snum |
1065            ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066            ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067
1068        return sizeof(struct hifn_base_command);
1069}
1070
1071static int hifn_setup_crypto_command(struct hifn_device *dev,
1072                u8 *buf, unsigned dlen, unsigned slen,
1073                u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074{
1075        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1076        struct hifn_crypt_command *cry_cmd;
1077        u8 *buf_pos = buf;
1078        u16 cmd_len;
1079
1080        cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081
1082        cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083        dlen >>= 16;
1084        cry_cmd->masks = __cpu_to_le16(mode |
1085                        ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086                         HIFN_CRYPT_CMD_SRCLEN_M));
1087        cry_cmd->header_skip = 0;
1088        cry_cmd->reserved = 0;
1089
1090        buf_pos += sizeof(struct hifn_crypt_command);
1091
1092        dma->cmdu++;
1093        if (dma->cmdu > 1) {
1094                dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095                hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096        }
1097
1098        if (keylen) {
1099                memcpy(buf_pos, key, keylen);
1100                buf_pos += keylen;
1101        }
1102        if (ivsize) {
1103                memcpy(buf_pos, iv, ivsize);
1104                buf_pos += ivsize;
1105        }
1106
1107        cmd_len = buf_pos - buf;
1108
1109        return cmd_len;
1110}
1111
1112static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113                struct hifn_context *ctx, struct hifn_request_context *rctx,
1114                void *priv, unsigned int nbytes)
1115{
1116        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1117        int cmd_len, sa_idx;
1118        u8 *buf, *buf_pos;
1119        u16 mask;
1120
1121        sa_idx = dma->cmdi;
1122        buf_pos = buf = dma->command_bufs[dma->cmdi];
1123
1124        mask = 0;
1125        switch (rctx->op) {
1126        case ACRYPTO_OP_DECRYPT:
1127                mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128                break;
1129        case ACRYPTO_OP_ENCRYPT:
1130                mask = HIFN_BASE_CMD_CRYPT;
1131                break;
1132        case ACRYPTO_OP_HMAC:
1133                mask = HIFN_BASE_CMD_MAC;
1134                break;
1135        default:
1136                goto err_out;
1137        }
1138
1139        buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140                        nbytes, mask, dev->snum);
1141
1142        if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143                u16 md = 0;
1144
1145                if (ctx->keysize)
1146                        md |= HIFN_CRYPT_CMD_NEW_KEY;
1147                if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148                        md |= HIFN_CRYPT_CMD_NEW_IV;
1149
1150                switch (rctx->mode) {
1151                case ACRYPTO_MODE_ECB:
1152                        md |= HIFN_CRYPT_CMD_MODE_ECB;
1153                        break;
1154                case ACRYPTO_MODE_CBC:
1155                        md |= HIFN_CRYPT_CMD_MODE_CBC;
1156                        break;
1157                case ACRYPTO_MODE_CFB:
1158                        md |= HIFN_CRYPT_CMD_MODE_CFB;
1159                        break;
1160                case ACRYPTO_MODE_OFB:
1161                        md |= HIFN_CRYPT_CMD_MODE_OFB;
1162                        break;
1163                default:
1164                        goto err_out;
1165                }
1166
1167                switch (rctx->type) {
1168                case ACRYPTO_TYPE_AES_128:
1169                        if (ctx->keysize != 16)
1170                                goto err_out;
1171                        md |= HIFN_CRYPT_CMD_KSZ_128 |
1172                                HIFN_CRYPT_CMD_ALG_AES;
1173                        break;
1174                case ACRYPTO_TYPE_AES_192:
1175                        if (ctx->keysize != 24)
1176                                goto err_out;
1177                        md |= HIFN_CRYPT_CMD_KSZ_192 |
1178                                HIFN_CRYPT_CMD_ALG_AES;
1179                        break;
1180                case ACRYPTO_TYPE_AES_256:
1181                        if (ctx->keysize != 32)
1182                                goto err_out;
1183                        md |= HIFN_CRYPT_CMD_KSZ_256 |
1184                                HIFN_CRYPT_CMD_ALG_AES;
1185                        break;
1186                case ACRYPTO_TYPE_3DES:
1187                        if (ctx->keysize != 24)
1188                                goto err_out;
1189                        md |= HIFN_CRYPT_CMD_ALG_3DES;
1190                        break;
1191                case ACRYPTO_TYPE_DES:
1192                        if (ctx->keysize != 8)
1193                                goto err_out;
1194                        md |= HIFN_CRYPT_CMD_ALG_DES;
1195                        break;
1196                default:
1197                        goto err_out;
1198                }
1199
1200                buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201                                nbytes, nbytes, ctx->key, ctx->keysize,
1202                                rctx->iv, rctx->ivsize, md);
1203        }
1204
1205        dev->sa[sa_idx] = priv;
1206        dev->started++;
1207
1208        cmd_len = buf_pos - buf;
1209        dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210                        HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211
1212        if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213                dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214                        HIFN_D_VALID | HIFN_D_LAST |
1215                        HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216                dma->cmdi = 0;
1217        } else {
1218                dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219        }
1220
1221        if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222                hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223                dev->flags |= HIFN_FLAG_CMD_BUSY;
1224        }
1225        return 0;
1226
1227err_out:
1228        return -EINVAL;
1229}
1230
1231static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232                unsigned int offset, unsigned int size, int last)
1233{
1234        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1235        int idx;
1236        dma_addr_t addr;
1237
1238        addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1239
1240        idx = dma->srci;
1241
1242        dma->srcr[idx].p = __cpu_to_le32(addr);
1243        dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1244                        HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1245
1246        if (++idx == HIFN_D_SRC_RSIZE) {
1247                dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1248                                HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1249                                (last ? HIFN_D_LAST : 0));
1250                idx = 0;
1251        }
1252
1253        dma->srci = idx;
1254        dma->srcu++;
1255
1256        if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1257                hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1258                dev->flags |= HIFN_FLAG_SRC_BUSY;
1259        }
1260
1261        return size;
1262}
1263
1264static void hifn_setup_res_desc(struct hifn_device *dev)
1265{
1266        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1267
1268        dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1269                        HIFN_D_VALID | HIFN_D_LAST);
1270        /*
1271         * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1272         *                                      HIFN_D_LAST);
1273         */
1274
1275        if (++dma->resi == HIFN_D_RES_RSIZE) {
1276                dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1277                                HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1278                dma->resi = 0;
1279        }
1280
1281        dma->resu++;
1282
1283        if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1284                hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1285                dev->flags |= HIFN_FLAG_RES_BUSY;
1286        }
1287}
1288
1289static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1290                unsigned offset, unsigned size, int last)
1291{
1292        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1293        int idx;
1294        dma_addr_t addr;
1295
1296        addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1297
1298        idx = dma->dsti;
1299        dma->dstr[idx].p = __cpu_to_le32(addr);
1300        dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1301                        HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1302
1303        if (++idx == HIFN_D_DST_RSIZE) {
1304                dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1305                                HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1306                                (last ? HIFN_D_LAST : 0));
1307                idx = 0;
1308        }
1309        dma->dsti = idx;
1310        dma->dstu++;
1311
1312        if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1313                hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1314                dev->flags |= HIFN_FLAG_DST_BUSY;
1315        }
1316}
1317
1318static int hifn_setup_dma(struct hifn_device *dev,
1319                struct hifn_context *ctx, struct hifn_request_context *rctx,
1320                struct scatterlist *src, struct scatterlist *dst,
1321                unsigned int nbytes, void *priv)
1322{
1323        struct scatterlist *t;
1324        struct page *spage, *dpage;
1325        unsigned int soff, doff;
1326        unsigned int n, len;
1327
1328        n = nbytes;
1329        while (n) {
1330                spage = sg_page(src);
1331                soff = src->offset;
1332                len = min(src->length, n);
1333
1334                hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1335
1336                src++;
1337                n -= len;
1338        }
1339
1340        t = &rctx->walk.cache[0];
1341        n = nbytes;
1342        while (n) {
1343                if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1344                        BUG_ON(!sg_page(t));
1345                        dpage = sg_page(t);
1346                        doff = 0;
1347                        len = t->length;
1348                } else {
1349                        BUG_ON(!sg_page(dst));
1350                        dpage = sg_page(dst);
1351                        doff = dst->offset;
1352                        len = dst->length;
1353                }
1354                len = min(len, n);
1355
1356                hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1357
1358                dst++;
1359                t++;
1360                n -= len;
1361        }
1362
1363        hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1364        hifn_setup_res_desc(dev);
1365        return 0;
1366}
1367
1368static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1369                int num, gfp_t gfp_flags)
1370{
1371        int i;
1372
1373        num = min(ASYNC_SCATTERLIST_CACHE, num);
1374        sg_init_table(w->cache, num);
1375
1376        w->num = 0;
1377        for (i = 0; i < num; ++i) {
1378                struct page *page = alloc_page(gfp_flags);
1379                struct scatterlist *s;
1380
1381                if (!page)
1382                        break;
1383
1384                s = &w->cache[i];
1385
1386                sg_set_page(s, page, PAGE_SIZE, 0);
1387                w->num++;
1388        }
1389
1390        return i;
1391}
1392
1393static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1394{
1395        int i;
1396
1397        for (i = 0; i < w->num; ++i) {
1398                struct scatterlist *s = &w->cache[i];
1399
1400                __free_page(sg_page(s));
1401
1402                s->length = 0;
1403        }
1404
1405        w->num = 0;
1406}
1407
1408static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1409                unsigned int size, unsigned int *nbytesp)
1410{
1411        unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1412        int idx = 0;
1413
1414        if (drest < size || size > nbytes)
1415                return -EINVAL;
1416
1417        while (size) {
1418                copy = min3(drest, size, dst->length);
1419
1420                size -= copy;
1421                drest -= copy;
1422                nbytes -= copy;
1423
1424                pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1425                         __func__, copy, size, drest, nbytes);
1426
1427                dst++;
1428                idx++;
1429        }
1430
1431        *nbytesp = nbytes;
1432        *drestp = drest;
1433
1434        return idx;
1435}
1436
1437static int hifn_cipher_walk(struct skcipher_request *req,
1438                struct hifn_cipher_walk *w)
1439{
1440        struct scatterlist *dst, *t;
1441        unsigned int nbytes = req->cryptlen, offset, copy, diff;
1442        int idx, tidx, err;
1443
1444        tidx = idx = 0;
1445        offset = 0;
1446        while (nbytes) {
1447                if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1448                        return -EINVAL;
1449
1450                dst = &req->dst[idx];
1451
1452                pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1453                         __func__, dst->length, dst->offset, offset, nbytes);
1454
1455                if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1456                    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1457                    offset) {
1458                        unsigned slen = min(dst->length - offset, nbytes);
1459                        unsigned dlen = PAGE_SIZE;
1460
1461                        t = &w->cache[idx];
1462
1463                        err = skcipher_add(&dlen, dst, slen, &nbytes);
1464                        if (err < 0)
1465                                return err;
1466
1467                        idx += err;
1468
1469                        copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1470                        diff = slen & (HIFN_D_DST_DALIGN - 1);
1471
1472                        if (dlen < nbytes) {
1473                                /*
1474                                 * Destination page does not have enough space
1475                                 * to put there additional blocksized chunk,
1476                                 * so we mark that page as containing only
1477                                 * blocksize aligned chunks:
1478                                 *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1479                                 * and increase number of bytes to be processed
1480                                 * in next chunk:
1481                                 *      nbytes += diff;
1482                                 */
1483                                nbytes += diff;
1484
1485                                /*
1486                                 * Temporary of course...
1487                                 * Kick author if you will catch this one.
1488                                 */
1489                                pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1490                                       __func__, dlen, nbytes, slen, offset);
1491                                pr_err("%s: please contact author to fix this "
1492                                       "issue, generally you should not catch "
1493                                       "this path under any condition but who "
1494                                       "knows how did you use crypto code.\n"
1495                                       "Thank you.\n",  __func__);
1496                                BUG();
1497                        } else {
1498                                copy += diff + nbytes;
1499
1500                                dst = &req->dst[idx];
1501
1502                                err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1503                                if (err < 0)
1504                                        return err;
1505
1506                                idx += err;
1507                        }
1508
1509                        t->length = copy;
1510                        t->offset = offset;
1511                } else {
1512                        nbytes -= min(dst->length, nbytes);
1513                        idx++;
1514                }
1515
1516                tidx++;
1517        }
1518
1519        return tidx;
1520}
1521
1522static int hifn_setup_session(struct skcipher_request *req)
1523{
1524        struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1525        struct hifn_request_context *rctx = skcipher_request_ctx(req);
1526        struct hifn_device *dev = ctx->dev;
1527        unsigned long dlen, flags;
1528        unsigned int nbytes = req->cryptlen, idx = 0;
1529        int err = -EINVAL, sg_num;
1530        struct scatterlist *dst;
1531
1532        if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1533                goto err_out_exit;
1534
1535        rctx->walk.flags = 0;
1536
1537        while (nbytes) {
1538                dst = &req->dst[idx];
1539                dlen = min(dst->length, nbytes);
1540
1541                if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1542                    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1543                        rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1544
1545                nbytes -= dlen;
1546                idx++;
1547        }
1548
1549        if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1550                err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1551                if (err < 0)
1552                        return err;
1553        }
1554
1555        sg_num = hifn_cipher_walk(req, &rctx->walk);
1556        if (sg_num < 0) {
1557                err = sg_num;
1558                goto err_out_exit;
1559        }
1560
1561        spin_lock_irqsave(&dev->lock, flags);
1562        if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1563                err = -EAGAIN;
1564                goto err_out;
1565        }
1566
1567        err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1568        if (err)
1569                goto err_out;
1570
1571        dev->snum++;
1572
1573        dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1574        spin_unlock_irqrestore(&dev->lock, flags);
1575
1576        return 0;
1577
1578err_out:
1579        spin_unlock_irqrestore(&dev->lock, flags);
1580err_out_exit:
1581        if (err) {
1582                dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1583                         "type: %u, err: %d.\n",
1584                         rctx->iv, rctx->ivsize,
1585                         ctx->key, ctx->keysize,
1586                         rctx->mode, rctx->op, rctx->type, err);
1587        }
1588
1589        return err;
1590}
1591
1592static int hifn_start_device(struct hifn_device *dev)
1593{
1594        int err;
1595
1596        dev->started = dev->active = 0;
1597        hifn_reset_dma(dev, 1);
1598
1599        err = hifn_enable_crypto(dev);
1600        if (err)
1601                return err;
1602
1603        hifn_reset_puc(dev);
1604
1605        hifn_init_dma(dev);
1606
1607        hifn_init_registers(dev);
1608
1609        hifn_init_pubrng(dev);
1610
1611        return 0;
1612}
1613
1614static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1615                struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1616{
1617        unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1618        void *daddr;
1619        int idx = 0;
1620
1621        if (srest < size || size > nbytes)
1622                return -EINVAL;
1623
1624        while (size) {
1625                copy = min3(srest, dst->length, size);
1626
1627                daddr = kmap_atomic(sg_page(dst));
1628                memcpy(daddr + dst->offset + offset, saddr, copy);
1629                kunmap_atomic(daddr);
1630
1631                nbytes -= copy;
1632                size -= copy;
1633                srest -= copy;
1634                saddr += copy;
1635                offset = 0;
1636
1637                pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1638                         __func__, copy, size, srest, nbytes);
1639
1640                dst++;
1641                idx++;
1642        }
1643
1644        *nbytesp = nbytes;
1645        *srestp = srest;
1646
1647        return idx;
1648}
1649
1650static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1651{
1652        unsigned long flags;
1653
1654        spin_lock_irqsave(&dev->lock, flags);
1655        dev->sa[i] = NULL;
1656        dev->started--;
1657        if (dev->started < 0)
1658                dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1659                         dev->started);
1660        spin_unlock_irqrestore(&dev->lock, flags);
1661        BUG_ON(dev->started < 0);
1662}
1663
1664static void hifn_process_ready(struct skcipher_request *req, int error)
1665{
1666        struct hifn_request_context *rctx = skcipher_request_ctx(req);
1667
1668        if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1669                unsigned int nbytes = req->cryptlen;
1670                int idx = 0, err;
1671                struct scatterlist *dst, *t;
1672                void *saddr;
1673
1674                while (nbytes) {
1675                        t = &rctx->walk.cache[idx];
1676                        dst = &req->dst[idx];
1677
1678                        pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1679                                "sg_page(dst): %p, dst->length: %u, "
1680                                "nbytes: %u.\n",
1681                                __func__, sg_page(t), t->length,
1682                                sg_page(dst), dst->length, nbytes);
1683
1684                        if (!t->length) {
1685                                nbytes -= min(dst->length, nbytes);
1686                                idx++;
1687                                continue;
1688                        }
1689
1690                        saddr = kmap_atomic(sg_page(t));
1691
1692                        err = skcipher_get(saddr, &t->length, t->offset,
1693                                        dst, nbytes, &nbytes);
1694                        if (err < 0) {
1695                                kunmap_atomic(saddr);
1696                                break;
1697                        }
1698
1699                        idx += err;
1700                        kunmap_atomic(saddr);
1701                }
1702
1703                hifn_cipher_walk_exit(&rctx->walk);
1704        }
1705
1706        req->base.complete(&req->base, error);
1707}
1708
1709static void hifn_clear_rings(struct hifn_device *dev, int error)
1710{
1711        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1712        int i, u;
1713
1714        dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1715                        "k: %d.%d.%d.%d.\n",
1716                        dma->cmdi, dma->srci, dma->dsti, dma->resi,
1717                        dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1718                        dma->cmdk, dma->srck, dma->dstk, dma->resk);
1719
1720        i = dma->resk; u = dma->resu;
1721        while (u != 0) {
1722                if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1723                        break;
1724
1725                if (dev->sa[i]) {
1726                        dev->success++;
1727                        dev->reset = 0;
1728                        hifn_process_ready(dev->sa[i], error);
1729                        hifn_complete_sa(dev, i);
1730                }
1731
1732                if (++i == HIFN_D_RES_RSIZE)
1733                        i = 0;
1734                u--;
1735        }
1736        dma->resk = i; dma->resu = u;
1737
1738        i = dma->srck; u = dma->srcu;
1739        while (u != 0) {
1740                if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1741                        break;
1742                if (++i == HIFN_D_SRC_RSIZE)
1743                        i = 0;
1744                u--;
1745        }
1746        dma->srck = i; dma->srcu = u;
1747
1748        i = dma->cmdk; u = dma->cmdu;
1749        while (u != 0) {
1750                if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1751                        break;
1752                if (++i == HIFN_D_CMD_RSIZE)
1753                        i = 0;
1754                u--;
1755        }
1756        dma->cmdk = i; dma->cmdu = u;
1757
1758        i = dma->dstk; u = dma->dstu;
1759        while (u != 0) {
1760                if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1761                        break;
1762                if (++i == HIFN_D_DST_RSIZE)
1763                        i = 0;
1764                u--;
1765        }
1766        dma->dstk = i; dma->dstu = u;
1767
1768        dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1769                        "k: %d.%d.%d.%d.\n",
1770                        dma->cmdi, dma->srci, dma->dsti, dma->resi,
1771                        dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1772                        dma->cmdk, dma->srck, dma->dstk, dma->resk);
1773}
1774
1775static void hifn_work(struct work_struct *work)
1776{
1777        struct delayed_work *dw = to_delayed_work(work);
1778        struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1779        unsigned long flags;
1780        int reset = 0;
1781        u32 r = 0;
1782
1783        spin_lock_irqsave(&dev->lock, flags);
1784        if (dev->active == 0) {
1785                struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1786
1787                if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1788                        dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1789                        r |= HIFN_DMACSR_C_CTRL_DIS;
1790                }
1791                if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1792                        dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1793                        r |= HIFN_DMACSR_S_CTRL_DIS;
1794                }
1795                if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1796                        dev->flags &= ~HIFN_FLAG_DST_BUSY;
1797                        r |= HIFN_DMACSR_D_CTRL_DIS;
1798                }
1799                if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1800                        dev->flags &= ~HIFN_FLAG_RES_BUSY;
1801                        r |= HIFN_DMACSR_R_CTRL_DIS;
1802                }
1803                if (r)
1804                        hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1805        } else
1806                dev->active--;
1807
1808        if ((dev->prev_success == dev->success) && dev->started)
1809                reset = 1;
1810        dev->prev_success = dev->success;
1811        spin_unlock_irqrestore(&dev->lock, flags);
1812
1813        if (reset) {
1814                if (++dev->reset >= 5) {
1815                        int i;
1816                        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1817
1818                        dev_info(&dev->pdev->dev,
1819                                 "r: %08x, active: %d, started: %d, "
1820                                 "success: %lu: qlen: %u/%u, reset: %d.\n",
1821                                 r, dev->active, dev->started,
1822                                 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1823                                 reset);
1824
1825                        dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1826                        for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1827                                pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1828                                if (dev->sa[i]) {
1829                                        hifn_process_ready(dev->sa[i], -ENODEV);
1830                                        hifn_complete_sa(dev, i);
1831                                }
1832                        }
1833                        pr_info("\n");
1834
1835                        hifn_reset_dma(dev, 1);
1836                        hifn_stop_device(dev);
1837                        hifn_start_device(dev);
1838                        dev->reset = 0;
1839                }
1840
1841                tasklet_schedule(&dev->tasklet);
1842        }
1843
1844        schedule_delayed_work(&dev->work, HZ);
1845}
1846
1847static irqreturn_t hifn_interrupt(int irq, void *data)
1848{
1849        struct hifn_device *dev = (struct hifn_device *)data;
1850        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1851        u32 dmacsr, restart;
1852
1853        dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1854
1855        dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1856                        "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1857                dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1858                dma->cmdi, dma->srci, dma->dsti, dma->resi,
1859                dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1860
1861        if ((dmacsr & dev->dmareg) == 0)
1862                return IRQ_NONE;
1863
1864        hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1865
1866        if (dmacsr & HIFN_DMACSR_ENGINE)
1867                hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1868        if (dmacsr & HIFN_DMACSR_PUBDONE)
1869                hifn_write_1(dev, HIFN_1_PUB_STATUS,
1870                        hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1871
1872        restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1873        if (restart) {
1874                u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1875
1876                dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1877                         !!(dmacsr & HIFN_DMACSR_R_OVER),
1878                         !!(dmacsr & HIFN_DMACSR_D_OVER),
1879                        puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1880                if (!!(puisr & HIFN_PUISR_DSTOVER))
1881                        hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1882                hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1883                                        HIFN_DMACSR_D_OVER));
1884        }
1885
1886        restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1887                        HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1888        if (restart) {
1889                dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1890                         !!(dmacsr & HIFN_DMACSR_C_ABORT),
1891                         !!(dmacsr & HIFN_DMACSR_S_ABORT),
1892                         !!(dmacsr & HIFN_DMACSR_D_ABORT),
1893                         !!(dmacsr & HIFN_DMACSR_R_ABORT));
1894                hifn_reset_dma(dev, 1);
1895                hifn_init_dma(dev);
1896                hifn_init_registers(dev);
1897        }
1898
1899        if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1900                dev_dbg(&dev->pdev->dev, "wait on command.\n");
1901                dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1902                hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1903        }
1904
1905        tasklet_schedule(&dev->tasklet);
1906
1907        return IRQ_HANDLED;
1908}
1909
1910static void hifn_flush(struct hifn_device *dev)
1911{
1912        unsigned long flags;
1913        struct crypto_async_request *async_req;
1914        struct skcipher_request *req;
1915        struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1916        int i;
1917
1918        for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1919                struct hifn_desc *d = &dma->resr[i];
1920
1921                if (dev->sa[i]) {
1922                        hifn_process_ready(dev->sa[i],
1923                                (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1924                        hifn_complete_sa(dev, i);
1925                }
1926        }
1927
1928        spin_lock_irqsave(&dev->lock, flags);
1929        while ((async_req = crypto_dequeue_request(&dev->queue))) {
1930                req = skcipher_request_cast(async_req);
1931                spin_unlock_irqrestore(&dev->lock, flags);
1932
1933                hifn_process_ready(req, -ENODEV);
1934
1935                spin_lock_irqsave(&dev->lock, flags);
1936        }
1937        spin_unlock_irqrestore(&dev->lock, flags);
1938}
1939
1940static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1941                unsigned int len)
1942{
1943        struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1944        struct hifn_device *dev = ctx->dev;
1945        int err;
1946
1947        err = verify_skcipher_des_key(cipher, key);
1948        if (err)
1949                return err;
1950
1951        dev->flags &= ~HIFN_FLAG_OLD_KEY;
1952
1953        memcpy(ctx->key, key, len);
1954        ctx->keysize = len;
1955
1956        return 0;
1957}
1958
1959static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1960                            unsigned int len)
1961{
1962        struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1963        struct hifn_device *dev = ctx->dev;
1964        int err;
1965
1966        err = verify_skcipher_des3_key(cipher, key);
1967        if (err)
1968                return err;
1969
1970        dev->flags &= ~HIFN_FLAG_OLD_KEY;
1971
1972        memcpy(ctx->key, key, len);
1973        ctx->keysize = len;
1974
1975        return 0;
1976}
1977
1978static int hifn_handle_req(struct skcipher_request *req)
1979{
1980        struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1981        struct hifn_device *dev = ctx->dev;
1982        int err = -EAGAIN;
1983
1984        if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1985                err = hifn_setup_session(req);
1986
1987        if (err == -EAGAIN) {
1988                unsigned long flags;
1989
1990                spin_lock_irqsave(&dev->lock, flags);
1991                err = crypto_enqueue_request(&dev->queue, &req->base);
1992                spin_unlock_irqrestore(&dev->lock, flags);
1993        }
1994
1995        return err;
1996}
1997
1998static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1999                u8 type, u8 mode)
2000{
2001        struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2002        struct hifn_request_context *rctx = skcipher_request_ctx(req);
2003        unsigned ivsize;
2004
2005        ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2006
2007        if (req->iv && mode != ACRYPTO_MODE_ECB) {
2008                if (type == ACRYPTO_TYPE_AES_128)
2009                        ivsize = HIFN_AES_IV_LENGTH;
2010                else if (type == ACRYPTO_TYPE_DES)
2011                        ivsize = HIFN_DES_KEY_LENGTH;
2012                else if (type == ACRYPTO_TYPE_3DES)
2013                        ivsize = HIFN_3DES_KEY_LENGTH;
2014        }
2015
2016        if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2017                if (ctx->keysize == 24)
2018                        type = ACRYPTO_TYPE_AES_192;
2019                else if (ctx->keysize == 32)
2020                        type = ACRYPTO_TYPE_AES_256;
2021        }
2022
2023        rctx->op = op;
2024        rctx->mode = mode;
2025        rctx->type = type;
2026        rctx->iv = req->iv;
2027        rctx->ivsize = ivsize;
2028
2029        /*
2030         * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031         * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032         * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033         */
2034
2035        return hifn_handle_req(req);
2036}
2037
2038static int hifn_process_queue(struct hifn_device *dev)
2039{
2040        struct crypto_async_request *async_req, *backlog;
2041        struct skcipher_request *req;
2042        unsigned long flags;
2043        int err = 0;
2044
2045        while (dev->started < HIFN_QUEUE_LENGTH) {
2046                spin_lock_irqsave(&dev->lock, flags);
2047                backlog = crypto_get_backlog(&dev->queue);
2048                async_req = crypto_dequeue_request(&dev->queue);
2049                spin_unlock_irqrestore(&dev->lock, flags);
2050
2051                if (!async_req)
2052                        break;
2053
2054                if (backlog)
2055                        backlog->complete(backlog, -EINPROGRESS);
2056
2057                req = skcipher_request_cast(async_req);
2058
2059                err = hifn_handle_req(req);
2060                if (err)
2061                        break;
2062        }
2063
2064        return err;
2065}
2066
2067static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2068                u8 type, u8 mode)
2069{
2070        int err;
2071        struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2072        struct hifn_device *dev = ctx->dev;
2073
2074        err = hifn_setup_crypto_req(req, op, type, mode);
2075        if (err)
2076                return err;
2077
2078        if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2079                hifn_process_queue(dev);
2080
2081        return -EINPROGRESS;
2082}
2083
2084/*
2085 * AES ecryption functions.
2086 */
2087static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2088{
2089        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2090                        ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2091}
2092static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2093{
2094        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2095                        ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2096}
2097static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2098{
2099        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2100                        ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2101}
2102static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2103{
2104        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2105                        ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2106}
2107
2108/*
2109 * AES decryption functions.
2110 */
2111static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2112{
2113        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2114                        ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2115}
2116static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2117{
2118        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2119                        ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2120}
2121static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2122{
2123        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2124                        ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2125}
2126static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2127{
2128        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2129                        ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2130}
2131
2132/*
2133 * DES ecryption functions.
2134 */
2135static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2136{
2137        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2138                        ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2139}
2140static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2141{
2142        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2143                        ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2144}
2145static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2146{
2147        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148                        ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2149}
2150static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2151{
2152        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153                        ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2154}
2155
2156/*
2157 * DES decryption functions.
2158 */
2159static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2160{
2161        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2162                        ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2163}
2164static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2165{
2166        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2167                        ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2168}
2169static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2170{
2171        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2172                        ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2173}
2174static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2175{
2176        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177                        ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2178}
2179
2180/*
2181 * 3DES ecryption functions.
2182 */
2183static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2184{
2185        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2186                        ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2187}
2188static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2189{
2190        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2191                        ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2192}
2193static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2194{
2195        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2196                        ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2197}
2198static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2199{
2200        return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201                        ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2202}
2203
2204/* 3DES decryption functions. */
2205static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2206{
2207        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2208                        ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2209}
2210static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2211{
2212        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2213                        ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2214}
2215static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2216{
2217        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2218                        ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2219}
2220static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2221{
2222        return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223                        ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2224}
2225
2226struct hifn_alg_template {
2227        char name[CRYPTO_MAX_ALG_NAME];
2228        char drv_name[CRYPTO_MAX_ALG_NAME];
2229        unsigned int bsize;
2230        struct skcipher_alg skcipher;
2231};
2232
2233static const struct hifn_alg_template hifn_alg_templates[] = {
2234        /*
2235         * 3DES ECB, CBC, CFB and OFB modes.
2236         */
2237        {
2238                .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2239                .skcipher = {
2240                        .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2241                        .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2242                        .setkey         =       hifn_des3_setkey,
2243                        .encrypt        =       hifn_encrypt_3des_cfb,
2244                        .decrypt        =       hifn_decrypt_3des_cfb,
2245                },
2246        },
2247        {
2248                .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2249                .skcipher = {
2250                        .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2251                        .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2252                        .setkey         =       hifn_des3_setkey,
2253                        .encrypt        =       hifn_encrypt_3des_ofb,
2254                        .decrypt        =       hifn_decrypt_3des_ofb,
2255                },
2256        },
2257        {
2258                .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2259                .skcipher = {
2260                        .ivsize         =       HIFN_IV_LENGTH,
2261                        .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2262                        .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2263                        .setkey         =       hifn_des3_setkey,
2264                        .encrypt        =       hifn_encrypt_3des_cbc,
2265                        .decrypt        =       hifn_decrypt_3des_cbc,
2266                },
2267        },
2268        {
2269                .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2270                .skcipher = {
2271                        .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2272                        .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2273                        .setkey         =       hifn_des3_setkey,
2274                        .encrypt        =       hifn_encrypt_3des_ecb,
2275                        .decrypt        =       hifn_decrypt_3des_ecb,
2276                },
2277        },
2278
2279        /*
2280         * DES ECB, CBC, CFB and OFB modes.
2281         */
2282        {
2283                .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2284                .skcipher = {
2285                        .min_keysize    =       HIFN_DES_KEY_LENGTH,
2286                        .max_keysize    =       HIFN_DES_KEY_LENGTH,
2287                        .setkey         =       hifn_setkey,
2288                        .encrypt        =       hifn_encrypt_des_cfb,
2289                        .decrypt        =       hifn_decrypt_des_cfb,
2290                },
2291        },
2292        {
2293                .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2294                .skcipher = {
2295                        .min_keysize    =       HIFN_DES_KEY_LENGTH,
2296                        .max_keysize    =       HIFN_DES_KEY_LENGTH,
2297                        .setkey         =       hifn_setkey,
2298                        .encrypt        =       hifn_encrypt_des_ofb,
2299                        .decrypt        =       hifn_decrypt_des_ofb,
2300                },
2301        },
2302        {
2303                .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2304                .skcipher = {
2305                        .ivsize         =       HIFN_IV_LENGTH,
2306                        .min_keysize    =       HIFN_DES_KEY_LENGTH,
2307                        .max_keysize    =       HIFN_DES_KEY_LENGTH,
2308                        .setkey         =       hifn_setkey,
2309                        .encrypt        =       hifn_encrypt_des_cbc,
2310                        .decrypt        =       hifn_decrypt_des_cbc,
2311                },
2312        },
2313        {
2314                .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2315                .skcipher = {
2316                        .min_keysize    =       HIFN_DES_KEY_LENGTH,
2317                        .max_keysize    =       HIFN_DES_KEY_LENGTH,
2318                        .setkey         =       hifn_setkey,
2319                        .encrypt        =       hifn_encrypt_des_ecb,
2320                        .decrypt        =       hifn_decrypt_des_ecb,
2321                },
2322        },
2323
2324        /*
2325         * AES ECB, CBC, CFB and OFB modes.
2326         */
2327        {
2328                .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2329                .skcipher = {
2330                        .min_keysize    =       AES_MIN_KEY_SIZE,
2331                        .max_keysize    =       AES_MAX_KEY_SIZE,
2332                        .setkey         =       hifn_setkey,
2333                        .encrypt        =       hifn_encrypt_aes_ecb,
2334                        .decrypt        =       hifn_decrypt_aes_ecb,
2335                },
2336        },
2337        {
2338                .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2339                .skcipher = {
2340                        .ivsize         =       HIFN_AES_IV_LENGTH,
2341                        .min_keysize    =       AES_MIN_KEY_SIZE,
2342                        .max_keysize    =       AES_MAX_KEY_SIZE,
2343                        .setkey         =       hifn_setkey,
2344                        .encrypt        =       hifn_encrypt_aes_cbc,
2345                        .decrypt        =       hifn_decrypt_aes_cbc,
2346                },
2347        },
2348        {
2349                .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2350                .skcipher = {
2351                        .min_keysize    =       AES_MIN_KEY_SIZE,
2352                        .max_keysize    =       AES_MAX_KEY_SIZE,
2353                        .setkey         =       hifn_setkey,
2354                        .encrypt        =       hifn_encrypt_aes_cfb,
2355                        .decrypt        =       hifn_decrypt_aes_cfb,
2356                },
2357        },
2358        {
2359                .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2360                .skcipher = {
2361                        .min_keysize    =       AES_MIN_KEY_SIZE,
2362                        .max_keysize    =       AES_MAX_KEY_SIZE,
2363                        .setkey         =       hifn_setkey,
2364                        .encrypt        =       hifn_encrypt_aes_ofb,
2365                        .decrypt        =       hifn_decrypt_aes_ofb,
2366                },
2367        },
2368};
2369
2370static int hifn_init_tfm(struct crypto_skcipher *tfm)
2371{
2372        struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2373        struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2374        struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2375
2376        ctx->dev = ha->dev;
2377        crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2378
2379        return 0;
2380}
2381
2382static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2383{
2384        struct hifn_crypto_alg *alg;
2385        int err;
2386
2387        alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2388        if (!alg)
2389                return -ENOMEM;
2390
2391        alg->alg = t->skcipher;
2392        alg->alg.init = hifn_init_tfm;
2393
2394        snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2395        snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2396                 t->drv_name, dev->name);
2397
2398        alg->alg.base.cra_priority = 300;
2399        alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2400        alg->alg.base.cra_blocksize = t->bsize;
2401        alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2402        alg->alg.base.cra_alignmask = 0;
2403        alg->alg.base.cra_module = THIS_MODULE;
2404
2405        alg->dev = dev;
2406
2407        list_add_tail(&alg->entry, &dev->alg_list);
2408
2409        err = crypto_register_skcipher(&alg->alg);
2410        if (err) {
2411                list_del(&alg->entry);
2412                kfree(alg);
2413        }
2414
2415        return err;
2416}
2417
2418static void hifn_unregister_alg(struct hifn_device *dev)
2419{
2420        struct hifn_crypto_alg *a, *n;
2421
2422        list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2423                list_del(&a->entry);
2424                crypto_unregister_skcipher(&a->alg);
2425                kfree(a);
2426        }
2427}
2428
2429static int hifn_register_alg(struct hifn_device *dev)
2430{
2431        int i, err;
2432
2433        for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2434                err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2435                if (err)
2436                        goto err_out_exit;
2437        }
2438
2439        return 0;
2440
2441err_out_exit:
2442        hifn_unregister_alg(dev);
2443        return err;
2444}
2445
2446static void hifn_tasklet_callback(unsigned long data)
2447{
2448        struct hifn_device *dev = (struct hifn_device *)data;
2449
2450        /*
2451         * This is ok to call this without lock being held,
2452         * althogh it modifies some parameters used in parallel,
2453         * (like dev->success), but they are used in process
2454         * context or update is atomic (like setting dev->sa[i] to NULL).
2455         */
2456        hifn_clear_rings(dev, 0);
2457
2458        if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2459                hifn_process_queue(dev);
2460}
2461
2462static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2463{
2464        int err, i;
2465        struct hifn_device *dev;
2466        char name[8];
2467
2468        err = pci_enable_device(pdev);
2469        if (err)
2470                return err;
2471        pci_set_master(pdev);
2472
2473        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2474        if (err)
2475                goto err_out_disable_pci_device;
2476
2477        snprintf(name, sizeof(name), "hifn%d",
2478                        atomic_inc_return(&hifn_dev_number) - 1);
2479
2480        err = pci_request_regions(pdev, name);
2481        if (err)
2482                goto err_out_disable_pci_device;
2483
2484        if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2485            pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2486            pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2487                dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2488                err = -ENODEV;
2489                goto err_out_free_regions;
2490        }
2491
2492        dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2493                        GFP_KERNEL);
2494        if (!dev) {
2495                err = -ENOMEM;
2496                goto err_out_free_regions;
2497        }
2498
2499        INIT_LIST_HEAD(&dev->alg_list);
2500
2501        snprintf(dev->name, sizeof(dev->name), "%s", name);
2502        spin_lock_init(&dev->lock);
2503
2504        for (i = 0; i < 3; ++i) {
2505                unsigned long addr, size;
2506
2507                addr = pci_resource_start(pdev, i);
2508                size = pci_resource_len(pdev, i);
2509
2510                dev->bar[i] = ioremap(addr, size);
2511                if (!dev->bar[i]) {
2512                        err = -ENOMEM;
2513                        goto err_out_unmap_bars;
2514                }
2515        }
2516
2517        dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2518                                               &dev->desc_dma);
2519        if (!dev->desc_virt) {
2520                dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2521                err = -ENOMEM;
2522                goto err_out_unmap_bars;
2523        }
2524
2525        dev->pdev = pdev;
2526        dev->irq = pdev->irq;
2527
2528        for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2529                dev->sa[i] = NULL;
2530
2531        pci_set_drvdata(pdev, dev);
2532
2533        tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2534
2535        crypto_init_queue(&dev->queue, 1);
2536
2537        err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2538        if (err) {
2539                dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2540                        dev->irq, err);
2541                dev->irq = 0;
2542                goto err_out_free_desc;
2543        }
2544
2545        err = hifn_start_device(dev);
2546        if (err)
2547                goto err_out_free_irq;
2548
2549        err = hifn_register_rng(dev);
2550        if (err)
2551                goto err_out_stop_device;
2552
2553        err = hifn_register_alg(dev);
2554        if (err)
2555                goto err_out_unregister_rng;
2556
2557        INIT_DELAYED_WORK(&dev->work, hifn_work);
2558        schedule_delayed_work(&dev->work, HZ);
2559
2560        dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2561                "successfully registered as %s.\n",
2562                pci_name(pdev), dev->name);
2563
2564        return 0;
2565
2566err_out_unregister_rng:
2567        hifn_unregister_rng(dev);
2568err_out_stop_device:
2569        hifn_reset_dma(dev, 1);
2570        hifn_stop_device(dev);
2571err_out_free_irq:
2572        free_irq(dev->irq, dev);
2573        tasklet_kill(&dev->tasklet);
2574err_out_free_desc:
2575        pci_free_consistent(pdev, sizeof(struct hifn_dma),
2576                        dev->desc_virt, dev->desc_dma);
2577
2578err_out_unmap_bars:
2579        for (i = 0; i < 3; ++i)
2580                if (dev->bar[i])
2581                        iounmap(dev->bar[i]);
2582        kfree(dev);
2583
2584err_out_free_regions:
2585        pci_release_regions(pdev);
2586
2587err_out_disable_pci_device:
2588        pci_disable_device(pdev);
2589
2590        return err;
2591}
2592
2593static void hifn_remove(struct pci_dev *pdev)
2594{
2595        int i;
2596        struct hifn_device *dev;
2597
2598        dev = pci_get_drvdata(pdev);
2599
2600        if (dev) {
2601                cancel_delayed_work_sync(&dev->work);
2602
2603                hifn_unregister_rng(dev);
2604                hifn_unregister_alg(dev);
2605                hifn_reset_dma(dev, 1);
2606                hifn_stop_device(dev);
2607
2608                free_irq(dev->irq, dev);
2609                tasklet_kill(&dev->tasklet);
2610
2611                hifn_flush(dev);
2612
2613                pci_free_consistent(pdev, sizeof(struct hifn_dma),
2614                                dev->desc_virt, dev->desc_dma);
2615                for (i = 0; i < 3; ++i)
2616                        if (dev->bar[i])
2617                                iounmap(dev->bar[i]);
2618
2619                kfree(dev);
2620        }
2621
2622        pci_release_regions(pdev);
2623        pci_disable_device(pdev);
2624}
2625
2626static struct pci_device_id hifn_pci_tbl[] = {
2627        { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2628        { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2629        { 0 }
2630};
2631MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2632
2633static struct pci_driver hifn_pci_driver = {
2634        .name     = "hifn795x",
2635        .id_table = hifn_pci_tbl,
2636        .probe    = hifn_probe,
2637        .remove   = hifn_remove,
2638};
2639
2640static int __init hifn_init(void)
2641{
2642        unsigned int freq;
2643        int err;
2644
2645        /* HIFN supports only 32-bit addresses */
2646        BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2647
2648        if (strncmp(hifn_pll_ref, "ext", 3) &&
2649            strncmp(hifn_pll_ref, "pci", 3)) {
2650                pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2651                return -EINVAL;
2652        }
2653
2654        /*
2655         * For the 7955/7956 the reference clock frequency must be in the
2656         * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657         * but this chip is currently not supported.
2658         */
2659        if (hifn_pll_ref[3] != '\0') {
2660                freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661                if (freq < 20 || freq > 100) {
2662                        pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663                               "be in the range of 20-100");
2664                        return -EINVAL;
2665                }
2666        }
2667
2668        err = pci_register_driver(&hifn_pci_driver);
2669        if (err < 0) {
2670                pr_err("Failed to register PCI driver for %s device.\n",
2671                       hifn_pci_driver.name);
2672                return -ENODEV;
2673        }
2674
2675        pr_info("Driver for HIFN 795x crypto accelerator chip "
2676                "has been successfully registered.\n");
2677
2678        return 0;
2679}
2680
2681static void __exit hifn_fini(void)
2682{
2683        pci_unregister_driver(&hifn_pci_driver);
2684
2685        pr_info("Driver for HIFN 795x crypto accelerator chip "
2686                "has been successfully unregistered.\n");
2687}
2688
2689module_init(hifn_init);
2690module_exit(hifn_fini);
2691
2692MODULE_LICENSE("GPL");
2693MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2695