linux/drivers/crypto/ux500/hash/hash_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Cryptographic API.
   4 * Support for Nomadik hardware crypto engine.
   5
   6 * Copyright (C) ST-Ericsson SA 2010
   7 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
   8 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
   9 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
  10 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
  11 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
  12 */
  13
  14#define pr_fmt(fmt) "hashX hashX: " fmt
  15
  16#include <linux/clk.h>
  17#include <linux/device.h>
  18#include <linux/err.h>
  19#include <linux/init.h>
  20#include <linux/io.h>
  21#include <linux/klist.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/mod_devicetable.h>
  25#include <linux/platform_device.h>
  26#include <linux/crypto.h>
  27
  28#include <linux/regulator/consumer.h>
  29#include <linux/dmaengine.h>
  30#include <linux/bitops.h>
  31
  32#include <crypto/internal/hash.h>
  33#include <crypto/sha.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36
  37#include <linux/platform_data/crypto-ux500.h>
  38
  39#include "hash_alg.h"
  40
  41static int hash_mode;
  42module_param(hash_mode, int, 0);
  43MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
  44
  45/* HMAC-SHA1, no key */
  46static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
  47        0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
  48        0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
  49        0x70, 0x69, 0x0e, 0x1d
  50};
  51
  52/* HMAC-SHA256, no key */
  53static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
  54        0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
  55        0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
  56        0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
  57        0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
  58};
  59
  60/**
  61 * struct hash_driver_data - data specific to the driver.
  62 *
  63 * @device_list:        A list of registered devices to choose from.
  64 * @device_allocation:  A semaphore initialized with number of devices.
  65 */
  66struct hash_driver_data {
  67        struct klist            device_list;
  68        struct semaphore        device_allocation;
  69};
  70
  71static struct hash_driver_data  driver_data;
  72
  73/* Declaration of functions */
  74/**
  75 * hash_messagepad - Pads a message and write the nblw bits.
  76 * @device_data:        Structure for the hash device.
  77 * @message:            Last word of a message
  78 * @index_bytes:        The number of bytes in the last message
  79 *
  80 * This function manages the final part of the digest calculation, when less
  81 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
  82 *
  83 */
  84static void hash_messagepad(struct hash_device_data *device_data,
  85                            const u32 *message, u8 index_bytes);
  86
  87/**
  88 * release_hash_device - Releases a previously allocated hash device.
  89 * @device_data:        Structure for the hash device.
  90 *
  91 */
  92static void release_hash_device(struct hash_device_data *device_data)
  93{
  94        spin_lock(&device_data->ctx_lock);
  95        device_data->current_ctx->device = NULL;
  96        device_data->current_ctx = NULL;
  97        spin_unlock(&device_data->ctx_lock);
  98
  99        /*
 100         * The down_interruptible part for this semaphore is called in
 101         * cryp_get_device_data.
 102         */
 103        up(&driver_data.device_allocation);
 104}
 105
 106static void hash_dma_setup_channel(struct hash_device_data *device_data,
 107                                   struct device *dev)
 108{
 109        struct hash_platform_data *platform_data = dev->platform_data;
 110        struct dma_slave_config conf = {
 111                .direction = DMA_MEM_TO_DEV,
 112                .dst_addr = device_data->phybase + HASH_DMA_FIFO,
 113                .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
 114                .dst_maxburst = 16,
 115        };
 116
 117        dma_cap_zero(device_data->dma.mask);
 118        dma_cap_set(DMA_SLAVE, device_data->dma.mask);
 119
 120        device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
 121        device_data->dma.chan_mem2hash =
 122                dma_request_channel(device_data->dma.mask,
 123                                    platform_data->dma_filter,
 124                                    device_data->dma.cfg_mem2hash);
 125
 126        dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
 127
 128        init_completion(&device_data->dma.complete);
 129}
 130
 131static void hash_dma_callback(void *data)
 132{
 133        struct hash_ctx *ctx = data;
 134
 135        complete(&ctx->device->dma.complete);
 136}
 137
 138static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
 139                                 int len, enum dma_data_direction direction)
 140{
 141        struct dma_async_tx_descriptor *desc = NULL;
 142        struct dma_chan *channel = NULL;
 143
 144        if (direction != DMA_TO_DEVICE) {
 145                dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
 146                        __func__);
 147                return -EFAULT;
 148        }
 149
 150        sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
 151
 152        channel = ctx->device->dma.chan_mem2hash;
 153        ctx->device->dma.sg = sg;
 154        ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
 155                        ctx->device->dma.sg, ctx->device->dma.nents,
 156                        direction);
 157
 158        if (!ctx->device->dma.sg_len) {
 159                dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
 160                        __func__);
 161                return -EFAULT;
 162        }
 163
 164        dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
 165                __func__);
 166        desc = dmaengine_prep_slave_sg(channel,
 167                        ctx->device->dma.sg, ctx->device->dma.sg_len,
 168                        DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
 169        if (!desc) {
 170                dev_err(ctx->device->dev,
 171                        "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
 172                return -EFAULT;
 173        }
 174
 175        desc->callback = hash_dma_callback;
 176        desc->callback_param = ctx;
 177
 178        dmaengine_submit(desc);
 179        dma_async_issue_pending(channel);
 180
 181        return 0;
 182}
 183
 184static void hash_dma_done(struct hash_ctx *ctx)
 185{
 186        struct dma_chan *chan;
 187
 188        chan = ctx->device->dma.chan_mem2hash;
 189        dmaengine_terminate_all(chan);
 190        dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
 191                     ctx->device->dma.sg_len, DMA_TO_DEVICE);
 192}
 193
 194static int hash_dma_write(struct hash_ctx *ctx,
 195                          struct scatterlist *sg, int len)
 196{
 197        int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
 198        if (error) {
 199                dev_dbg(ctx->device->dev,
 200                        "%s: hash_set_dma_transfer() failed\n", __func__);
 201                return error;
 202        }
 203
 204        return len;
 205}
 206
 207/**
 208 * get_empty_message_digest - Returns a pre-calculated digest for
 209 * the empty message.
 210 * @device_data:        Structure for the hash device.
 211 * @zero_hash:          Buffer to return the empty message digest.
 212 * @zero_hash_size:     Hash size of the empty message digest.
 213 * @zero_digest:        True if zero_digest returned.
 214 */
 215static int get_empty_message_digest(
 216                struct hash_device_data *device_data,
 217                u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
 218{
 219        int ret = 0;
 220        struct hash_ctx *ctx = device_data->current_ctx;
 221        *zero_digest = false;
 222
 223        /**
 224         * Caller responsible for ctx != NULL.
 225         */
 226
 227        if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
 228                if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
 229                        memcpy(zero_hash, &sha1_zero_message_hash[0],
 230                               SHA1_DIGEST_SIZE);
 231                        *zero_hash_size = SHA1_DIGEST_SIZE;
 232                        *zero_digest = true;
 233                } else if (HASH_ALGO_SHA256 ==
 234                                ctx->config.algorithm) {
 235                        memcpy(zero_hash, &sha256_zero_message_hash[0],
 236                               SHA256_DIGEST_SIZE);
 237                        *zero_hash_size = SHA256_DIGEST_SIZE;
 238                        *zero_digest = true;
 239                } else {
 240                        dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
 241                                __func__);
 242                        ret = -EINVAL;
 243                        goto out;
 244                }
 245        } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
 246                if (!ctx->keylen) {
 247                        if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
 248                                memcpy(zero_hash, &zero_message_hmac_sha1[0],
 249                                       SHA1_DIGEST_SIZE);
 250                                *zero_hash_size = SHA1_DIGEST_SIZE;
 251                                *zero_digest = true;
 252                        } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
 253                                memcpy(zero_hash, &zero_message_hmac_sha256[0],
 254                                       SHA256_DIGEST_SIZE);
 255                                *zero_hash_size = SHA256_DIGEST_SIZE;
 256                                *zero_digest = true;
 257                        } else {
 258                                dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
 259                                        __func__);
 260                                ret = -EINVAL;
 261                                goto out;
 262                        }
 263                } else {
 264                        dev_dbg(device_data->dev,
 265                                "%s: Continue hash calculation, since hmac key available\n",
 266                                __func__);
 267                }
 268        }
 269out:
 270
 271        return ret;
 272}
 273
 274/**
 275 * hash_disable_power - Request to disable power and clock.
 276 * @device_data:        Structure for the hash device.
 277 * @save_device_state:  If true, saves the current hw state.
 278 *
 279 * This function request for disabling power (regulator) and clock,
 280 * and could also save current hw state.
 281 */
 282static int hash_disable_power(struct hash_device_data *device_data,
 283                              bool save_device_state)
 284{
 285        int ret = 0;
 286        struct device *dev = device_data->dev;
 287
 288        spin_lock(&device_data->power_state_lock);
 289        if (!device_data->power_state)
 290                goto out;
 291
 292        if (save_device_state) {
 293                hash_save_state(device_data,
 294                                &device_data->state);
 295                device_data->restore_dev_state = true;
 296        }
 297
 298        clk_disable(device_data->clk);
 299        ret = regulator_disable(device_data->regulator);
 300        if (ret)
 301                dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
 302
 303        device_data->power_state = false;
 304
 305out:
 306        spin_unlock(&device_data->power_state_lock);
 307
 308        return ret;
 309}
 310
 311/**
 312 * hash_enable_power - Request to enable power and clock.
 313 * @device_data:                Structure for the hash device.
 314 * @restore_device_state:       If true, restores a previous saved hw state.
 315 *
 316 * This function request for enabling power (regulator) and clock,
 317 * and could also restore a previously saved hw state.
 318 */
 319static int hash_enable_power(struct hash_device_data *device_data,
 320                             bool restore_device_state)
 321{
 322        int ret = 0;
 323        struct device *dev = device_data->dev;
 324
 325        spin_lock(&device_data->power_state_lock);
 326        if (!device_data->power_state) {
 327                ret = regulator_enable(device_data->regulator);
 328                if (ret) {
 329                        dev_err(dev, "%s: regulator_enable() failed!\n",
 330                                __func__);
 331                        goto out;
 332                }
 333                ret = clk_enable(device_data->clk);
 334                if (ret) {
 335                        dev_err(dev, "%s: clk_enable() failed!\n", __func__);
 336                        ret = regulator_disable(
 337                                        device_data->regulator);
 338                        goto out;
 339                }
 340                device_data->power_state = true;
 341        }
 342
 343        if (device_data->restore_dev_state) {
 344                if (restore_device_state) {
 345                        device_data->restore_dev_state = false;
 346                        hash_resume_state(device_data, &device_data->state);
 347                }
 348        }
 349out:
 350        spin_unlock(&device_data->power_state_lock);
 351
 352        return ret;
 353}
 354
 355/**
 356 * hash_get_device_data - Checks for an available hash device and return it.
 357 * @hash_ctx:           Structure for the hash context.
 358 * @device_data:        Structure for the hash device.
 359 *
 360 * This function check for an available hash device and return it to
 361 * the caller.
 362 * Note! Caller need to release the device, calling up().
 363 */
 364static int hash_get_device_data(struct hash_ctx *ctx,
 365                                struct hash_device_data **device_data)
 366{
 367        int                     ret;
 368        struct klist_iter       device_iterator;
 369        struct klist_node       *device_node;
 370        struct hash_device_data *local_device_data = NULL;
 371
 372        /* Wait until a device is available */
 373        ret = down_interruptible(&driver_data.device_allocation);
 374        if (ret)
 375                return ret;  /* Interrupted */
 376
 377        /* Select a device */
 378        klist_iter_init(&driver_data.device_list, &device_iterator);
 379        device_node = klist_next(&device_iterator);
 380        while (device_node) {
 381                local_device_data = container_of(device_node,
 382                                           struct hash_device_data, list_node);
 383                spin_lock(&local_device_data->ctx_lock);
 384                /* current_ctx allocates a device, NULL = unallocated */
 385                if (local_device_data->current_ctx) {
 386                        device_node = klist_next(&device_iterator);
 387                } else {
 388                        local_device_data->current_ctx = ctx;
 389                        ctx->device = local_device_data;
 390                        spin_unlock(&local_device_data->ctx_lock);
 391                        break;
 392                }
 393                spin_unlock(&local_device_data->ctx_lock);
 394        }
 395        klist_iter_exit(&device_iterator);
 396
 397        if (!device_node) {
 398                /**
 399                 * No free device found.
 400                 * Since we allocated a device with down_interruptible, this
 401                 * should not be able to happen.
 402                 * Number of available devices, which are contained in
 403                 * device_allocation, is therefore decremented by not doing
 404                 * an up(device_allocation).
 405                 */
 406                return -EBUSY;
 407        }
 408
 409        *device_data = local_device_data;
 410
 411        return 0;
 412}
 413
 414/**
 415 * hash_hw_write_key - Writes the key to the hardware registries.
 416 *
 417 * @device_data:        Structure for the hash device.
 418 * @key:                Key to be written.
 419 * @keylen:             The lengt of the key.
 420 *
 421 * Note! This function DOES NOT write to the NBLW registry, even though
 422 * specified in the the hw design spec. Either due to incorrect info in the
 423 * spec or due to a bug in the hw.
 424 */
 425static void hash_hw_write_key(struct hash_device_data *device_data,
 426                              const u8 *key, unsigned int keylen)
 427{
 428        u32 word = 0;
 429        int nwords = 1;
 430
 431        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 432
 433        while (keylen >= 4) {
 434                u32 *key_word = (u32 *)key;
 435
 436                HASH_SET_DIN(key_word, nwords);
 437                keylen -= 4;
 438                key += 4;
 439        }
 440
 441        /* Take care of the remaining bytes in the last word */
 442        if (keylen) {
 443                word = 0;
 444                while (keylen) {
 445                        word |= (key[keylen - 1] << (8 * (keylen - 1)));
 446                        keylen--;
 447                }
 448
 449                HASH_SET_DIN(&word, nwords);
 450        }
 451
 452        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 453                cpu_relax();
 454
 455        HASH_SET_DCAL;
 456
 457        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 458                cpu_relax();
 459}
 460
 461/**
 462 * init_hash_hw - Initialise the hash hardware for a new calculation.
 463 * @device_data:        Structure for the hash device.
 464 * @ctx:                The hash context.
 465 *
 466 * This function will enable the bits needed to clear and start a new
 467 * calculation.
 468 */
 469static int init_hash_hw(struct hash_device_data *device_data,
 470                        struct hash_ctx *ctx)
 471{
 472        int ret = 0;
 473
 474        ret = hash_setconfiguration(device_data, &ctx->config);
 475        if (ret) {
 476                dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
 477                        __func__);
 478                return ret;
 479        }
 480
 481        hash_begin(device_data, ctx);
 482
 483        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
 484                hash_hw_write_key(device_data, ctx->key, ctx->keylen);
 485
 486        return ret;
 487}
 488
 489/**
 490 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
 491 *
 492 * @sg:         Scatterlist.
 493 * @size:       Size in bytes.
 494 * @aligned:    True if sg data aligned to work in DMA mode.
 495 *
 496 */
 497static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
 498{
 499        int nents = 0;
 500        bool aligned_data = true;
 501
 502        while (size > 0 && sg) {
 503                nents++;
 504                size -= sg->length;
 505
 506                /* hash_set_dma_transfer will align last nent */
 507                if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
 508                    (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
 509                        aligned_data = false;
 510
 511                sg = sg_next(sg);
 512        }
 513
 514        if (aligned)
 515                *aligned = aligned_data;
 516
 517        if (size != 0)
 518                return -EFAULT;
 519
 520        return nents;
 521}
 522
 523/**
 524 * hash_dma_valid_data - checks for dma valid sg data.
 525 * @sg:         Scatterlist.
 526 * @datasize:   Datasize in bytes.
 527 *
 528 * NOTE! This function checks for dma valid sg data, since dma
 529 * only accept datasizes of even wordsize.
 530 */
 531static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
 532{
 533        bool aligned;
 534
 535        /* Need to include at least one nent, else error */
 536        if (hash_get_nents(sg, datasize, &aligned) < 1)
 537                return false;
 538
 539        return aligned;
 540}
 541
 542/**
 543 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
 544 * @req: The hash request for the job.
 545 *
 546 * Initialize structures.
 547 */
 548static int ux500_hash_init(struct ahash_request *req)
 549{
 550        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 551        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 552        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 553
 554        if (!ctx->key)
 555                ctx->keylen = 0;
 556
 557        memset(&req_ctx->state, 0, sizeof(struct hash_state));
 558        req_ctx->updated = 0;
 559        if (hash_mode == HASH_MODE_DMA) {
 560                if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
 561                        req_ctx->dma_mode = false; /* Don't use DMA */
 562
 563                        pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
 564                                 __func__, HASH_DMA_ALIGN_SIZE);
 565                } else {
 566                        if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
 567                            hash_dma_valid_data(req->src, req->nbytes)) {
 568                                req_ctx->dma_mode = true;
 569                        } else {
 570                                req_ctx->dma_mode = false;
 571                                pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
 572                                         __func__,
 573                                         HASH_DMA_PERFORMANCE_MIN_SIZE);
 574                        }
 575                }
 576        }
 577        return 0;
 578}
 579
 580/**
 581 * hash_processblock - This function processes a single block of 512 bits (64
 582 *                     bytes), word aligned, starting at message.
 583 * @device_data:        Structure for the hash device.
 584 * @message:            Block (512 bits) of message to be written to
 585 *                      the HASH hardware.
 586 *
 587 */
 588static void hash_processblock(struct hash_device_data *device_data,
 589                              const u32 *message, int length)
 590{
 591        int len = length / HASH_BYTES_PER_WORD;
 592        /*
 593         * NBLW bits. Reset the number of bits in last word (NBLW).
 594         */
 595        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 596
 597        /*
 598         * Write message data to the HASH_DIN register.
 599         */
 600        HASH_SET_DIN(message, len);
 601}
 602
 603/**
 604 * hash_messagepad - Pads a message and write the nblw bits.
 605 * @device_data:        Structure for the hash device.
 606 * @message:            Last word of a message.
 607 * @index_bytes:        The number of bytes in the last message.
 608 *
 609 * This function manages the final part of the digest calculation, when less
 610 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
 611 *
 612 */
 613static void hash_messagepad(struct hash_device_data *device_data,
 614                            const u32 *message, u8 index_bytes)
 615{
 616        int nwords = 1;
 617
 618        /*
 619         * Clear hash str register, only clear NBLW
 620         * since DCAL will be reset by hardware.
 621         */
 622        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 623
 624        /* Main loop */
 625        while (index_bytes >= 4) {
 626                HASH_SET_DIN(message, nwords);
 627                index_bytes -= 4;
 628                message++;
 629        }
 630
 631        if (index_bytes)
 632                HASH_SET_DIN(message, nwords);
 633
 634        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 635                cpu_relax();
 636
 637        /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
 638        HASH_SET_NBLW(index_bytes * 8);
 639        dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
 640                __func__, readl_relaxed(&device_data->base->din),
 641                readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
 642        HASH_SET_DCAL;
 643        dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
 644                __func__, readl_relaxed(&device_data->base->din),
 645                readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
 646
 647        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 648                cpu_relax();
 649}
 650
 651/**
 652 * hash_incrementlength - Increments the length of the current message.
 653 * @ctx: Hash context
 654 * @incr: Length of message processed already
 655 *
 656 * Overflow cannot occur, because conditions for overflow are checked in
 657 * hash_hw_update.
 658 */
 659static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
 660{
 661        ctx->state.length.low_word += incr;
 662
 663        /* Check for wrap-around */
 664        if (ctx->state.length.low_word < incr)
 665                ctx->state.length.high_word++;
 666}
 667
 668/**
 669 * hash_setconfiguration - Sets the required configuration for the hash
 670 *                         hardware.
 671 * @device_data:        Structure for the hash device.
 672 * @config:             Pointer to a configuration structure.
 673 */
 674int hash_setconfiguration(struct hash_device_data *device_data,
 675                          struct hash_config *config)
 676{
 677        int ret = 0;
 678
 679        if (config->algorithm != HASH_ALGO_SHA1 &&
 680            config->algorithm != HASH_ALGO_SHA256)
 681                return -EPERM;
 682
 683        /*
 684         * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
 685         * to be written to HASH_DIN is considered as 32 bits.
 686         */
 687        HASH_SET_DATA_FORMAT(config->data_format);
 688
 689        /*
 690         * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
 691         */
 692        switch (config->algorithm) {
 693        case HASH_ALGO_SHA1:
 694                HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
 695                break;
 696
 697        case HASH_ALGO_SHA256:
 698                HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
 699                break;
 700
 701        default:
 702                dev_err(device_data->dev, "%s: Incorrect algorithm\n",
 703                        __func__);
 704                return -EPERM;
 705        }
 706
 707        /*
 708         * MODE bit. This bit selects between HASH or HMAC mode for the
 709         * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
 710         */
 711        if (HASH_OPER_MODE_HASH == config->oper_mode)
 712                HASH_CLEAR_BITS(&device_data->base->cr,
 713                                HASH_CR_MODE_MASK);
 714        else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
 715                HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
 716                if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
 717                        /* Truncate key to blocksize */
 718                        dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
 719                        HASH_SET_BITS(&device_data->base->cr,
 720                                      HASH_CR_LKEY_MASK);
 721                } else {
 722                        dev_dbg(device_data->dev, "%s: LKEY cleared\n",
 723                                __func__);
 724                        HASH_CLEAR_BITS(&device_data->base->cr,
 725                                        HASH_CR_LKEY_MASK);
 726                }
 727        } else {        /* Wrong hash mode */
 728                ret = -EPERM;
 729                dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
 730                        __func__);
 731        }
 732        return ret;
 733}
 734
 735/**
 736 * hash_begin - This routine resets some globals and initializes the hash
 737 *              hardware.
 738 * @device_data:        Structure for the hash device.
 739 * @ctx:                Hash context.
 740 */
 741void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
 742{
 743        /* HW and SW initializations */
 744        /* Note: there is no need to initialize buffer and digest members */
 745
 746        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 747                cpu_relax();
 748
 749        /*
 750         * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
 751         * prepare the initialize the HASH accelerator to compute the message
 752         * digest of a new message.
 753         */
 754        HASH_INITIALIZE;
 755
 756        /*
 757         * NBLW bits. Reset the number of bits in last word (NBLW).
 758         */
 759        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 760}
 761
 762static int hash_process_data(struct hash_device_data *device_data,
 763                             struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
 764                             int msg_length, u8 *data_buffer, u8 *buffer,
 765                             u8 *index)
 766{
 767        int ret = 0;
 768        u32 count;
 769
 770        do {
 771                if ((*index + msg_length) < HASH_BLOCK_SIZE) {
 772                        for (count = 0; count < msg_length; count++) {
 773                                buffer[*index + count] =
 774                                        *(data_buffer + count);
 775                        }
 776                        *index += msg_length;
 777                        msg_length = 0;
 778                } else {
 779                        if (req_ctx->updated) {
 780                                ret = hash_resume_state(device_data,
 781                                                &device_data->state);
 782                                memmove(req_ctx->state.buffer,
 783                                        device_data->state.buffer,
 784                                        HASH_BLOCK_SIZE);
 785                                if (ret) {
 786                                        dev_err(device_data->dev,
 787                                                "%s: hash_resume_state() failed!\n",
 788                                                __func__);
 789                                        goto out;
 790                                }
 791                        } else {
 792                                ret = init_hash_hw(device_data, ctx);
 793                                if (ret) {
 794                                        dev_err(device_data->dev,
 795                                                "%s: init_hash_hw() failed!\n",
 796                                                __func__);
 797                                        goto out;
 798                                }
 799                                req_ctx->updated = 1;
 800                        }
 801                        /*
 802                         * If 'data_buffer' is four byte aligned and
 803                         * local buffer does not have any data, we can
 804                         * write data directly from 'data_buffer' to
 805                         * HW peripheral, otherwise we first copy data
 806                         * to a local buffer
 807                         */
 808                        if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
 809                            (0 == *index))
 810                                hash_processblock(device_data,
 811                                                  (const u32 *)data_buffer,
 812                                                  HASH_BLOCK_SIZE);
 813                        else {
 814                                for (count = 0;
 815                                     count < (u32)(HASH_BLOCK_SIZE - *index);
 816                                     count++) {
 817                                        buffer[*index + count] =
 818                                                *(data_buffer + count);
 819                                }
 820                                hash_processblock(device_data,
 821                                                  (const u32 *)buffer,
 822                                                  HASH_BLOCK_SIZE);
 823                        }
 824                        hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
 825                        data_buffer += (HASH_BLOCK_SIZE - *index);
 826
 827                        msg_length -= (HASH_BLOCK_SIZE - *index);
 828                        *index = 0;
 829
 830                        ret = hash_save_state(device_data,
 831                                        &device_data->state);
 832
 833                        memmove(device_data->state.buffer,
 834                                req_ctx->state.buffer,
 835                                HASH_BLOCK_SIZE);
 836                        if (ret) {
 837                                dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
 838                                        __func__);
 839                                goto out;
 840                        }
 841                }
 842        } while (msg_length != 0);
 843out:
 844
 845        return ret;
 846}
 847
 848/**
 849 * hash_dma_final - The hash dma final function for SHA1/SHA256.
 850 * @req:        The hash request for the job.
 851 */
 852static int hash_dma_final(struct ahash_request *req)
 853{
 854        int ret = 0;
 855        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 856        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 857        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 858        struct hash_device_data *device_data;
 859        u8 digest[SHA256_DIGEST_SIZE];
 860        int bytes_written = 0;
 861
 862        ret = hash_get_device_data(ctx, &device_data);
 863        if (ret)
 864                return ret;
 865
 866        dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
 867                (unsigned long)ctx);
 868
 869        if (req_ctx->updated) {
 870                ret = hash_resume_state(device_data, &device_data->state);
 871
 872                if (ret) {
 873                        dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
 874                                __func__);
 875                        goto out;
 876                }
 877        }
 878
 879        if (!req_ctx->updated) {
 880                ret = hash_setconfiguration(device_data, &ctx->config);
 881                if (ret) {
 882                        dev_err(device_data->dev,
 883                                "%s: hash_setconfiguration() failed!\n",
 884                                __func__);
 885                        goto out;
 886                }
 887
 888                /* Enable DMA input */
 889                if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
 890                        HASH_CLEAR_BITS(&device_data->base->cr,
 891                                        HASH_CR_DMAE_MASK);
 892                } else {
 893                        HASH_SET_BITS(&device_data->base->cr,
 894                                      HASH_CR_DMAE_MASK);
 895                        HASH_SET_BITS(&device_data->base->cr,
 896                                      HASH_CR_PRIVN_MASK);
 897                }
 898
 899                HASH_INITIALIZE;
 900
 901                if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
 902                        hash_hw_write_key(device_data, ctx->key, ctx->keylen);
 903
 904                /* Number of bits in last word = (nbytes * 8) % 32 */
 905                HASH_SET_NBLW((req->nbytes * 8) % 32);
 906                req_ctx->updated = 1;
 907        }
 908
 909        /* Store the nents in the dma struct. */
 910        ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
 911        if (!ctx->device->dma.nents) {
 912                dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
 913                        __func__);
 914                ret = ctx->device->dma.nents;
 915                goto out;
 916        }
 917
 918        bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
 919        if (bytes_written != req->nbytes) {
 920                dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
 921                        __func__);
 922                ret = bytes_written;
 923                goto out;
 924        }
 925
 926        wait_for_completion(&ctx->device->dma.complete);
 927        hash_dma_done(ctx);
 928
 929        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 930                cpu_relax();
 931
 932        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
 933                unsigned int keylen = ctx->keylen;
 934                u8 *key = ctx->key;
 935
 936                dev_dbg(device_data->dev, "%s: keylen: %d\n",
 937                        __func__, ctx->keylen);
 938                hash_hw_write_key(device_data, key, keylen);
 939        }
 940
 941        hash_get_digest(device_data, digest, ctx->config.algorithm);
 942        memcpy(req->result, digest, ctx->digestsize);
 943
 944out:
 945        release_hash_device(device_data);
 946
 947        /**
 948         * Allocated in setkey, and only used in HMAC.
 949         */
 950        kfree(ctx->key);
 951
 952        return ret;
 953}
 954
 955/**
 956 * hash_hw_final - The final hash calculation function
 957 * @req:        The hash request for the job.
 958 */
 959static int hash_hw_final(struct ahash_request *req)
 960{
 961        int ret = 0;
 962        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 963        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 964        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 965        struct hash_device_data *device_data;
 966        u8 digest[SHA256_DIGEST_SIZE];
 967
 968        ret = hash_get_device_data(ctx, &device_data);
 969        if (ret)
 970                return ret;
 971
 972        dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
 973                (unsigned long)ctx);
 974
 975        if (req_ctx->updated) {
 976                ret = hash_resume_state(device_data, &device_data->state);
 977
 978                if (ret) {
 979                        dev_err(device_data->dev,
 980                                "%s: hash_resume_state() failed!\n", __func__);
 981                        goto out;
 982                }
 983        } else if (req->nbytes == 0 && ctx->keylen == 0) {
 984                u8 zero_hash[SHA256_DIGEST_SIZE];
 985                u32 zero_hash_size = 0;
 986                bool zero_digest = false;
 987                /**
 988                 * Use a pre-calculated empty message digest
 989                 * (workaround since hw return zeroes, hw bug!?)
 990                 */
 991                ret = get_empty_message_digest(device_data, &zero_hash[0],
 992                                &zero_hash_size, &zero_digest);
 993                if (!ret && likely(zero_hash_size == ctx->digestsize) &&
 994                    zero_digest) {
 995                        memcpy(req->result, &zero_hash[0], ctx->digestsize);
 996                        goto out;
 997                } else if (!ret && !zero_digest) {
 998                        dev_dbg(device_data->dev,
 999                                "%s: HMAC zero msg with key, continue...\n",
1000                                __func__);
1001                } else {
1002                        dev_err(device_data->dev,
1003                                "%s: ret=%d, or wrong digest size? %s\n",
1004                                __func__, ret,
1005                                zero_hash_size == ctx->digestsize ?
1006                                "true" : "false");
1007                        /* Return error */
1008                        goto out;
1009                }
1010        } else if (req->nbytes == 0 && ctx->keylen > 0) {
1011                dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1012                        __func__);
1013                goto out;
1014        }
1015
1016        if (!req_ctx->updated) {
1017                ret = init_hash_hw(device_data, ctx);
1018                if (ret) {
1019                        dev_err(device_data->dev,
1020                                "%s: init_hash_hw() failed!\n", __func__);
1021                        goto out;
1022                }
1023        }
1024
1025        if (req_ctx->state.index) {
1026                hash_messagepad(device_data, req_ctx->state.buffer,
1027                                req_ctx->state.index);
1028        } else {
1029                HASH_SET_DCAL;
1030                while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1031                        cpu_relax();
1032        }
1033
1034        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1035                unsigned int keylen = ctx->keylen;
1036                u8 *key = ctx->key;
1037
1038                dev_dbg(device_data->dev, "%s: keylen: %d\n",
1039                        __func__, ctx->keylen);
1040                hash_hw_write_key(device_data, key, keylen);
1041        }
1042
1043        hash_get_digest(device_data, digest, ctx->config.algorithm);
1044        memcpy(req->result, digest, ctx->digestsize);
1045
1046out:
1047        release_hash_device(device_data);
1048
1049        /**
1050         * Allocated in setkey, and only used in HMAC.
1051         */
1052        kfree(ctx->key);
1053
1054        return ret;
1055}
1056
1057/**
1058 * hash_hw_update - Updates current HASH computation hashing another part of
1059 *                  the message.
1060 * @req:        Byte array containing the message to be hashed (caller
1061 *              allocated).
1062 */
1063int hash_hw_update(struct ahash_request *req)
1064{
1065        int ret = 0;
1066        u8 index = 0;
1067        u8 *buffer;
1068        struct hash_device_data *device_data;
1069        u8 *data_buffer;
1070        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1071        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1072        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1073        struct crypto_hash_walk walk;
1074        int msg_length = crypto_hash_walk_first(req, &walk);
1075
1076        /* Empty message ("") is correct indata */
1077        if (msg_length == 0)
1078                return ret;
1079
1080        index = req_ctx->state.index;
1081        buffer = (u8 *)req_ctx->state.buffer;
1082
1083        /* Check if ctx->state.length + msg_length
1084           overflows */
1085        if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1086            HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1087                pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1088                return -EPERM;
1089        }
1090
1091        ret = hash_get_device_data(ctx, &device_data);
1092        if (ret)
1093                return ret;
1094
1095        /* Main loop */
1096        while (0 != msg_length) {
1097                data_buffer = walk.data;
1098                ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1099                                data_buffer, buffer, &index);
1100
1101                if (ret) {
1102                        dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1103                                __func__);
1104                        goto out;
1105                }
1106
1107                msg_length = crypto_hash_walk_done(&walk, 0);
1108        }
1109
1110        req_ctx->state.index = index;
1111        dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1112                __func__, req_ctx->state.index, req_ctx->state.bit_index);
1113
1114out:
1115        release_hash_device(device_data);
1116
1117        return ret;
1118}
1119
1120/**
1121 * hash_resume_state - Function that resumes the state of an calculation.
1122 * @device_data:        Pointer to the device structure.
1123 * @device_state:       The state to be restored in the hash hardware
1124 */
1125int hash_resume_state(struct hash_device_data *device_data,
1126                      const struct hash_state *device_state)
1127{
1128        u32 temp_cr;
1129        s32 count;
1130        int hash_mode = HASH_OPER_MODE_HASH;
1131
1132        if (NULL == device_state) {
1133                dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1134                        __func__);
1135                return -EPERM;
1136        }
1137
1138        /* Check correctness of index and length members */
1139        if (device_state->index > HASH_BLOCK_SIZE ||
1140            (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1141                dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1142                        __func__);
1143                return -EPERM;
1144        }
1145
1146        /*
1147         * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1148         * prepare the initialize the HASH accelerator to compute the message
1149         * digest of a new message.
1150         */
1151        HASH_INITIALIZE;
1152
1153        temp_cr = device_state->temp_cr;
1154        writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1155
1156        if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1157                hash_mode = HASH_OPER_MODE_HMAC;
1158        else
1159                hash_mode = HASH_OPER_MODE_HASH;
1160
1161        for (count = 0; count < HASH_CSR_COUNT; count++) {
1162                if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1163                        break;
1164
1165                writel_relaxed(device_state->csr[count],
1166                               &device_data->base->csrx[count]);
1167        }
1168
1169        writel_relaxed(device_state->csfull, &device_data->base->csfull);
1170        writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1171
1172        writel_relaxed(device_state->str_reg, &device_data->base->str);
1173        writel_relaxed(temp_cr, &device_data->base->cr);
1174
1175        return 0;
1176}
1177
1178/**
1179 * hash_save_state - Function that saves the state of hardware.
1180 * @device_data:        Pointer to the device structure.
1181 * @device_state:       The strucure where the hardware state should be saved.
1182 */
1183int hash_save_state(struct hash_device_data *device_data,
1184                    struct hash_state *device_state)
1185{
1186        u32 temp_cr;
1187        u32 count;
1188        int hash_mode = HASH_OPER_MODE_HASH;
1189
1190        if (NULL == device_state) {
1191                dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1192                        __func__);
1193                return -ENOTSUPP;
1194        }
1195
1196        /* Write dummy value to force digest intermediate calculation. This
1197         * actually makes sure that there isn't any ongoing calculation in the
1198         * hardware.
1199         */
1200        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1201                cpu_relax();
1202
1203        temp_cr = readl_relaxed(&device_data->base->cr);
1204
1205        device_state->str_reg = readl_relaxed(&device_data->base->str);
1206
1207        device_state->din_reg = readl_relaxed(&device_data->base->din);
1208
1209        if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1210                hash_mode = HASH_OPER_MODE_HMAC;
1211        else
1212                hash_mode = HASH_OPER_MODE_HASH;
1213
1214        for (count = 0; count < HASH_CSR_COUNT; count++) {
1215                if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1216                        break;
1217
1218                device_state->csr[count] =
1219                        readl_relaxed(&device_data->base->csrx[count]);
1220        }
1221
1222        device_state->csfull = readl_relaxed(&device_data->base->csfull);
1223        device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1224
1225        device_state->temp_cr = temp_cr;
1226
1227        return 0;
1228}
1229
1230/**
1231 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1232 * @device_data:
1233 *
1234 */
1235int hash_check_hw(struct hash_device_data *device_data)
1236{
1237        /* Checking Peripheral Ids  */
1238        if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1239            HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1240            HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1241            HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1242            HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1243            HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1244            HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1245            HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1246                return 0;
1247        }
1248
1249        dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1250        return -ENOTSUPP;
1251}
1252
1253/**
1254 * hash_get_digest - Gets the digest.
1255 * @device_data:        Pointer to the device structure.
1256 * @digest:             User allocated byte array for the calculated digest.
1257 * @algorithm:          The algorithm in use.
1258 */
1259void hash_get_digest(struct hash_device_data *device_data,
1260                     u8 *digest, int algorithm)
1261{
1262        u32 temp_hx_val, count;
1263        int loop_ctr;
1264
1265        if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1266                dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1267                        __func__, algorithm);
1268                return;
1269        }
1270
1271        if (algorithm == HASH_ALGO_SHA1)
1272                loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1273        else
1274                loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1275
1276        dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1277                __func__, (unsigned long)digest);
1278
1279        /* Copy result into digest array */
1280        for (count = 0; count < loop_ctr; count++) {
1281                temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1282                digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1283                digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1284                digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1285                digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1286        }
1287}
1288
1289/**
1290 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1291 * @req: The hash request for the job.
1292 */
1293static int ahash_update(struct ahash_request *req)
1294{
1295        int ret = 0;
1296        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1297
1298        if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1299                ret = hash_hw_update(req);
1300        /* Skip update for DMA, all data will be passed to DMA in final */
1301
1302        if (ret) {
1303                pr_err("%s: hash_hw_update() failed!\n", __func__);
1304        }
1305
1306        return ret;
1307}
1308
1309/**
1310 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1311 * @req:        The hash request for the job.
1312 */
1313static int ahash_final(struct ahash_request *req)
1314{
1315        int ret = 0;
1316        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1317
1318        pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1319
1320        if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1321                ret = hash_dma_final(req);
1322        else
1323                ret = hash_hw_final(req);
1324
1325        if (ret) {
1326                pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1327        }
1328
1329        return ret;
1330}
1331
1332static int hash_setkey(struct crypto_ahash *tfm,
1333                       const u8 *key, unsigned int keylen, int alg)
1334{
1335        int ret = 0;
1336        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1337
1338        /**
1339         * Freed in final.
1340         */
1341        ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1342        if (!ctx->key) {
1343                pr_err("%s: Failed to allocate ctx->key for %d\n",
1344                       __func__, alg);
1345                return -ENOMEM;
1346        }
1347        ctx->keylen = keylen;
1348
1349        return ret;
1350}
1351
1352static int ahash_sha1_init(struct ahash_request *req)
1353{
1354        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1355        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1356
1357        ctx->config.data_format = HASH_DATA_8_BITS;
1358        ctx->config.algorithm = HASH_ALGO_SHA1;
1359        ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1360        ctx->digestsize = SHA1_DIGEST_SIZE;
1361
1362        return ux500_hash_init(req);
1363}
1364
1365static int ahash_sha256_init(struct ahash_request *req)
1366{
1367        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1368        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1369
1370        ctx->config.data_format = HASH_DATA_8_BITS;
1371        ctx->config.algorithm = HASH_ALGO_SHA256;
1372        ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1373        ctx->digestsize = SHA256_DIGEST_SIZE;
1374
1375        return ux500_hash_init(req);
1376}
1377
1378static int ahash_sha1_digest(struct ahash_request *req)
1379{
1380        int ret2, ret1;
1381
1382        ret1 = ahash_sha1_init(req);
1383        if (ret1)
1384                goto out;
1385
1386        ret1 = ahash_update(req);
1387        ret2 = ahash_final(req);
1388
1389out:
1390        return ret1 ? ret1 : ret2;
1391}
1392
1393static int ahash_sha256_digest(struct ahash_request *req)
1394{
1395        int ret2, ret1;
1396
1397        ret1 = ahash_sha256_init(req);
1398        if (ret1)
1399                goto out;
1400
1401        ret1 = ahash_update(req);
1402        ret2 = ahash_final(req);
1403
1404out:
1405        return ret1 ? ret1 : ret2;
1406}
1407
1408static int ahash_noimport(struct ahash_request *req, const void *in)
1409{
1410        return -ENOSYS;
1411}
1412
1413static int ahash_noexport(struct ahash_request *req, void *out)
1414{
1415        return -ENOSYS;
1416}
1417
1418static int hmac_sha1_init(struct ahash_request *req)
1419{
1420        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1421        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1422
1423        ctx->config.data_format = HASH_DATA_8_BITS;
1424        ctx->config.algorithm   = HASH_ALGO_SHA1;
1425        ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1426        ctx->digestsize         = SHA1_DIGEST_SIZE;
1427
1428        return ux500_hash_init(req);
1429}
1430
1431static int hmac_sha256_init(struct ahash_request *req)
1432{
1433        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1434        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1435
1436        ctx->config.data_format = HASH_DATA_8_BITS;
1437        ctx->config.algorithm   = HASH_ALGO_SHA256;
1438        ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1439        ctx->digestsize         = SHA256_DIGEST_SIZE;
1440
1441        return ux500_hash_init(req);
1442}
1443
1444static int hmac_sha1_digest(struct ahash_request *req)
1445{
1446        int ret2, ret1;
1447
1448        ret1 = hmac_sha1_init(req);
1449        if (ret1)
1450                goto out;
1451
1452        ret1 = ahash_update(req);
1453        ret2 = ahash_final(req);
1454
1455out:
1456        return ret1 ? ret1 : ret2;
1457}
1458
1459static int hmac_sha256_digest(struct ahash_request *req)
1460{
1461        int ret2, ret1;
1462
1463        ret1 = hmac_sha256_init(req);
1464        if (ret1)
1465                goto out;
1466
1467        ret1 = ahash_update(req);
1468        ret2 = ahash_final(req);
1469
1470out:
1471        return ret1 ? ret1 : ret2;
1472}
1473
1474static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1475                            const u8 *key, unsigned int keylen)
1476{
1477        return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1478}
1479
1480static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1481                              const u8 *key, unsigned int keylen)
1482{
1483        return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1484}
1485
1486struct hash_algo_template {
1487        struct hash_config conf;
1488        struct ahash_alg hash;
1489};
1490
1491static int hash_cra_init(struct crypto_tfm *tfm)
1492{
1493        struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1494        struct crypto_alg *alg = tfm->__crt_alg;
1495        struct hash_algo_template *hash_alg;
1496
1497        hash_alg = container_of(__crypto_ahash_alg(alg),
1498                        struct hash_algo_template,
1499                        hash);
1500
1501        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1502                                 sizeof(struct hash_req_ctx));
1503
1504        ctx->config.data_format = HASH_DATA_8_BITS;
1505        ctx->config.algorithm = hash_alg->conf.algorithm;
1506        ctx->config.oper_mode = hash_alg->conf.oper_mode;
1507
1508        ctx->digestsize = hash_alg->hash.halg.digestsize;
1509
1510        return 0;
1511}
1512
1513static struct hash_algo_template hash_algs[] = {
1514        {
1515                .conf.algorithm = HASH_ALGO_SHA1,
1516                .conf.oper_mode = HASH_OPER_MODE_HASH,
1517                .hash = {
1518                        .init = ux500_hash_init,
1519                        .update = ahash_update,
1520                        .final = ahash_final,
1521                        .digest = ahash_sha1_digest,
1522                        .export = ahash_noexport,
1523                        .import = ahash_noimport,
1524                        .halg.digestsize = SHA1_DIGEST_SIZE,
1525                        .halg.statesize = sizeof(struct hash_ctx),
1526                        .halg.base = {
1527                                .cra_name = "sha1",
1528                                .cra_driver_name = "sha1-ux500",
1529                                .cra_flags = CRYPTO_ALG_ASYNC,
1530                                .cra_blocksize = SHA1_BLOCK_SIZE,
1531                                .cra_ctxsize = sizeof(struct hash_ctx),
1532                                .cra_init = hash_cra_init,
1533                                .cra_module = THIS_MODULE,
1534                        }
1535                }
1536        },
1537        {
1538                .conf.algorithm = HASH_ALGO_SHA256,
1539                .conf.oper_mode = HASH_OPER_MODE_HASH,
1540                .hash = {
1541                        .init = ux500_hash_init,
1542                        .update = ahash_update,
1543                        .final = ahash_final,
1544                        .digest = ahash_sha256_digest,
1545                        .export = ahash_noexport,
1546                        .import = ahash_noimport,
1547                        .halg.digestsize = SHA256_DIGEST_SIZE,
1548                        .halg.statesize = sizeof(struct hash_ctx),
1549                        .halg.base = {
1550                                .cra_name = "sha256",
1551                                .cra_driver_name = "sha256-ux500",
1552                                .cra_flags = CRYPTO_ALG_ASYNC,
1553                                .cra_blocksize = SHA256_BLOCK_SIZE,
1554                                .cra_ctxsize = sizeof(struct hash_ctx),
1555                                .cra_init = hash_cra_init,
1556                                .cra_module = THIS_MODULE,
1557                        }
1558                }
1559        },
1560        {
1561                .conf.algorithm = HASH_ALGO_SHA1,
1562                .conf.oper_mode = HASH_OPER_MODE_HMAC,
1563                        .hash = {
1564                        .init = ux500_hash_init,
1565                        .update = ahash_update,
1566                        .final = ahash_final,
1567                        .digest = hmac_sha1_digest,
1568                        .setkey = hmac_sha1_setkey,
1569                        .export = ahash_noexport,
1570                        .import = ahash_noimport,
1571                        .halg.digestsize = SHA1_DIGEST_SIZE,
1572                        .halg.statesize = sizeof(struct hash_ctx),
1573                        .halg.base = {
1574                                .cra_name = "hmac(sha1)",
1575                                .cra_driver_name = "hmac-sha1-ux500",
1576                                .cra_flags = CRYPTO_ALG_ASYNC,
1577                                .cra_blocksize = SHA1_BLOCK_SIZE,
1578                                .cra_ctxsize = sizeof(struct hash_ctx),
1579                                .cra_init = hash_cra_init,
1580                                .cra_module = THIS_MODULE,
1581                        }
1582                }
1583        },
1584        {
1585                .conf.algorithm = HASH_ALGO_SHA256,
1586                .conf.oper_mode = HASH_OPER_MODE_HMAC,
1587                .hash = {
1588                        .init = ux500_hash_init,
1589                        .update = ahash_update,
1590                        .final = ahash_final,
1591                        .digest = hmac_sha256_digest,
1592                        .setkey = hmac_sha256_setkey,
1593                        .export = ahash_noexport,
1594                        .import = ahash_noimport,
1595                        .halg.digestsize = SHA256_DIGEST_SIZE,
1596                        .halg.statesize = sizeof(struct hash_ctx),
1597                        .halg.base = {
1598                                .cra_name = "hmac(sha256)",
1599                                .cra_driver_name = "hmac-sha256-ux500",
1600                                .cra_flags = CRYPTO_ALG_ASYNC,
1601                                .cra_blocksize = SHA256_BLOCK_SIZE,
1602                                .cra_ctxsize = sizeof(struct hash_ctx),
1603                                .cra_init = hash_cra_init,
1604                                .cra_module = THIS_MODULE,
1605                        }
1606                }
1607        }
1608};
1609
1610/**
1611 * hash_algs_register_all -
1612 */
1613static int ahash_algs_register_all(struct hash_device_data *device_data)
1614{
1615        int ret;
1616        int i;
1617        int count;
1618
1619        for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1620                ret = crypto_register_ahash(&hash_algs[i].hash);
1621                if (ret) {
1622                        count = i;
1623                        dev_err(device_data->dev, "%s: alg registration failed\n",
1624                                hash_algs[i].hash.halg.base.cra_driver_name);
1625                        goto unreg;
1626                }
1627        }
1628        return 0;
1629unreg:
1630        for (i = 0; i < count; i++)
1631                crypto_unregister_ahash(&hash_algs[i].hash);
1632        return ret;
1633}
1634
1635/**
1636 * hash_algs_unregister_all -
1637 */
1638static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1639{
1640        int i;
1641
1642        for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1643                crypto_unregister_ahash(&hash_algs[i].hash);
1644}
1645
1646/**
1647 * ux500_hash_probe - Function that probes the hash hardware.
1648 * @pdev: The platform device.
1649 */
1650static int ux500_hash_probe(struct platform_device *pdev)
1651{
1652        int                     ret = 0;
1653        struct resource         *res = NULL;
1654        struct hash_device_data *device_data;
1655        struct device           *dev = &pdev->dev;
1656
1657        device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1658        if (!device_data) {
1659                ret = -ENOMEM;
1660                goto out;
1661        }
1662
1663        device_data->dev = dev;
1664        device_data->current_ctx = NULL;
1665
1666        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1667        if (!res) {
1668                dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1669                ret = -ENODEV;
1670                goto out;
1671        }
1672
1673        device_data->phybase = res->start;
1674        device_data->base = devm_ioremap_resource(dev, res);
1675        if (IS_ERR(device_data->base)) {
1676                dev_err(dev, "%s: ioremap() failed!\n", __func__);
1677                ret = PTR_ERR(device_data->base);
1678                goto out;
1679        }
1680        spin_lock_init(&device_data->ctx_lock);
1681        spin_lock_init(&device_data->power_state_lock);
1682
1683        /* Enable power for HASH1 hardware block */
1684        device_data->regulator = regulator_get(dev, "v-ape");
1685        if (IS_ERR(device_data->regulator)) {
1686                dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1687                ret = PTR_ERR(device_data->regulator);
1688                device_data->regulator = NULL;
1689                goto out;
1690        }
1691
1692        /* Enable the clock for HASH1 hardware block */
1693        device_data->clk = devm_clk_get(dev, NULL);
1694        if (IS_ERR(device_data->clk)) {
1695                dev_err(dev, "%s: clk_get() failed!\n", __func__);
1696                ret = PTR_ERR(device_data->clk);
1697                goto out_regulator;
1698        }
1699
1700        ret = clk_prepare(device_data->clk);
1701        if (ret) {
1702                dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1703                goto out_regulator;
1704        }
1705
1706        /* Enable device power (and clock) */
1707        ret = hash_enable_power(device_data, false);
1708        if (ret) {
1709                dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1710                goto out_clk_unprepare;
1711        }
1712
1713        ret = hash_check_hw(device_data);
1714        if (ret) {
1715                dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1716                goto out_power;
1717        }
1718
1719        if (hash_mode == HASH_MODE_DMA)
1720                hash_dma_setup_channel(device_data, dev);
1721
1722        platform_set_drvdata(pdev, device_data);
1723
1724        /* Put the new device into the device list... */
1725        klist_add_tail(&device_data->list_node, &driver_data.device_list);
1726        /* ... and signal that a new device is available. */
1727        up(&driver_data.device_allocation);
1728
1729        ret = ahash_algs_register_all(device_data);
1730        if (ret) {
1731                dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1732                        __func__);
1733                goto out_power;
1734        }
1735
1736        dev_info(dev, "successfully registered\n");
1737        return 0;
1738
1739out_power:
1740        hash_disable_power(device_data, false);
1741
1742out_clk_unprepare:
1743        clk_unprepare(device_data->clk);
1744
1745out_regulator:
1746        regulator_put(device_data->regulator);
1747
1748out:
1749        return ret;
1750}
1751
1752/**
1753 * ux500_hash_remove - Function that removes the hash device from the platform.
1754 * @pdev: The platform device.
1755 */
1756static int ux500_hash_remove(struct platform_device *pdev)
1757{
1758        struct hash_device_data *device_data;
1759        struct device           *dev = &pdev->dev;
1760
1761        device_data = platform_get_drvdata(pdev);
1762        if (!device_data) {
1763                dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1764                return -ENOMEM;
1765        }
1766
1767        /* Try to decrease the number of available devices. */
1768        if (down_trylock(&driver_data.device_allocation))
1769                return -EBUSY;
1770
1771        /* Check that the device is free */
1772        spin_lock(&device_data->ctx_lock);
1773        /* current_ctx allocates a device, NULL = unallocated */
1774        if (device_data->current_ctx) {
1775                /* The device is busy */
1776                spin_unlock(&device_data->ctx_lock);
1777                /* Return the device to the pool. */
1778                up(&driver_data.device_allocation);
1779                return -EBUSY;
1780        }
1781
1782        spin_unlock(&device_data->ctx_lock);
1783
1784        /* Remove the device from the list */
1785        if (klist_node_attached(&device_data->list_node))
1786                klist_remove(&device_data->list_node);
1787
1788        /* If this was the last device, remove the services */
1789        if (list_empty(&driver_data.device_list.k_list))
1790                ahash_algs_unregister_all(device_data);
1791
1792        if (hash_disable_power(device_data, false))
1793                dev_err(dev, "%s: hash_disable_power() failed\n",
1794                        __func__);
1795
1796        clk_unprepare(device_data->clk);
1797        regulator_put(device_data->regulator);
1798
1799        return 0;
1800}
1801
1802/**
1803 * ux500_hash_shutdown - Function that shutdown the hash device.
1804 * @pdev: The platform device
1805 */
1806static void ux500_hash_shutdown(struct platform_device *pdev)
1807{
1808        struct hash_device_data *device_data;
1809
1810        device_data = platform_get_drvdata(pdev);
1811        if (!device_data) {
1812                dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1813                        __func__);
1814                return;
1815        }
1816
1817        /* Check that the device is free */
1818        spin_lock(&device_data->ctx_lock);
1819        /* current_ctx allocates a device, NULL = unallocated */
1820        if (!device_data->current_ctx) {
1821                if (down_trylock(&driver_data.device_allocation))
1822                        dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1823                                __func__);
1824                /**
1825                 * (Allocate the device)
1826                 * Need to set this to non-null (dummy) value,
1827                 * to avoid usage if context switching.
1828                 */
1829                device_data->current_ctx++;
1830        }
1831        spin_unlock(&device_data->ctx_lock);
1832
1833        /* Remove the device from the list */
1834        if (klist_node_attached(&device_data->list_node))
1835                klist_remove(&device_data->list_node);
1836
1837        /* If this was the last device, remove the services */
1838        if (list_empty(&driver_data.device_list.k_list))
1839                ahash_algs_unregister_all(device_data);
1840
1841        if (hash_disable_power(device_data, false))
1842                dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1843                        __func__);
1844}
1845
1846#ifdef CONFIG_PM_SLEEP
1847/**
1848 * ux500_hash_suspend - Function that suspends the hash device.
1849 * @dev:        Device to suspend.
1850 */
1851static int ux500_hash_suspend(struct device *dev)
1852{
1853        int ret;
1854        struct hash_device_data *device_data;
1855        struct hash_ctx *temp_ctx = NULL;
1856
1857        device_data = dev_get_drvdata(dev);
1858        if (!device_data) {
1859                dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1860                return -ENOMEM;
1861        }
1862
1863        spin_lock(&device_data->ctx_lock);
1864        if (!device_data->current_ctx)
1865                device_data->current_ctx++;
1866        spin_unlock(&device_data->ctx_lock);
1867
1868        if (device_data->current_ctx == ++temp_ctx) {
1869                if (down_interruptible(&driver_data.device_allocation))
1870                        dev_dbg(dev, "%s: down_interruptible() failed\n",
1871                                __func__);
1872                ret = hash_disable_power(device_data, false);
1873
1874        } else {
1875                ret = hash_disable_power(device_data, true);
1876        }
1877
1878        if (ret)
1879                dev_err(dev, "%s: hash_disable_power()\n", __func__);
1880
1881        return ret;
1882}
1883
1884/**
1885 * ux500_hash_resume - Function that resume the hash device.
1886 * @dev:        Device to resume.
1887 */
1888static int ux500_hash_resume(struct device *dev)
1889{
1890        int ret = 0;
1891        struct hash_device_data *device_data;
1892        struct hash_ctx *temp_ctx = NULL;
1893
1894        device_data = dev_get_drvdata(dev);
1895        if (!device_data) {
1896                dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1897                return -ENOMEM;
1898        }
1899
1900        spin_lock(&device_data->ctx_lock);
1901        if (device_data->current_ctx == ++temp_ctx)
1902                device_data->current_ctx = NULL;
1903        spin_unlock(&device_data->ctx_lock);
1904
1905        if (!device_data->current_ctx)
1906                up(&driver_data.device_allocation);
1907        else
1908                ret = hash_enable_power(device_data, true);
1909
1910        if (ret)
1911                dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1912
1913        return ret;
1914}
1915#endif
1916
1917static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1918
1919static const struct of_device_id ux500_hash_match[] = {
1920        { .compatible = "stericsson,ux500-hash" },
1921        { },
1922};
1923MODULE_DEVICE_TABLE(of, ux500_hash_match);
1924
1925static struct platform_driver hash_driver = {
1926        .probe  = ux500_hash_probe,
1927        .remove = ux500_hash_remove,
1928        .shutdown = ux500_hash_shutdown,
1929        .driver = {
1930                .name  = "hash1",
1931                .of_match_table = ux500_hash_match,
1932                .pm    = &ux500_hash_pm,
1933        }
1934};
1935
1936/**
1937 * ux500_hash_mod_init - The kernel module init function.
1938 */
1939static int __init ux500_hash_mod_init(void)
1940{
1941        klist_init(&driver_data.device_list, NULL, NULL);
1942        /* Initialize the semaphore to 0 devices (locked state) */
1943        sema_init(&driver_data.device_allocation, 0);
1944
1945        return platform_driver_register(&hash_driver);
1946}
1947
1948/**
1949 * ux500_hash_mod_fini - The kernel module exit function.
1950 */
1951static void __exit ux500_hash_mod_fini(void)
1952{
1953        platform_driver_unregister(&hash_driver);
1954}
1955
1956module_init(ux500_hash_mod_init);
1957module_exit(ux500_hash_mod_fini);
1958
1959MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1960MODULE_LICENSE("GPL");
1961
1962MODULE_ALIAS_CRYPTO("sha1-all");
1963MODULE_ALIAS_CRYPTO("sha256-all");
1964MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1965MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1966