linux/drivers/dma/imx-sdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// drivers/dma/imx-sdma.c
   4//
   5// This file contains a driver for the Freescale Smart DMA engine
   6//
   7// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
   8//
   9// Based on code from Freescale:
  10//
  11// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  12
  13#include <linux/init.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/bitops.h>
  18#include <linux/mm.h>
  19#include <linux/interrupt.h>
  20#include <linux/clk.h>
  21#include <linux/delay.h>
  22#include <linux/sched.h>
  23#include <linux/semaphore.h>
  24#include <linux/spinlock.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firmware.h>
  28#include <linux/slab.h>
  29#include <linux/platform_device.h>
  30#include <linux/dmaengine.h>
  31#include <linux/of.h>
  32#include <linux/of_address.h>
  33#include <linux/of_device.h>
  34#include <linux/of_dma.h>
  35#include <linux/workqueue.h>
  36
  37#include <asm/irq.h>
  38#include <linux/platform_data/dma-imx-sdma.h>
  39#include <linux/platform_data/dma-imx.h>
  40#include <linux/regmap.h>
  41#include <linux/mfd/syscon.h>
  42#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
  43
  44#include "dmaengine.h"
  45#include "virt-dma.h"
  46
  47/* SDMA registers */
  48#define SDMA_H_C0PTR            0x000
  49#define SDMA_H_INTR             0x004
  50#define SDMA_H_STATSTOP         0x008
  51#define SDMA_H_START            0x00c
  52#define SDMA_H_EVTOVR           0x010
  53#define SDMA_H_DSPOVR           0x014
  54#define SDMA_H_HOSTOVR          0x018
  55#define SDMA_H_EVTPEND          0x01c
  56#define SDMA_H_DSPENBL          0x020
  57#define SDMA_H_RESET            0x024
  58#define SDMA_H_EVTERR           0x028
  59#define SDMA_H_INTRMSK          0x02c
  60#define SDMA_H_PSW              0x030
  61#define SDMA_H_EVTERRDBG        0x034
  62#define SDMA_H_CONFIG           0x038
  63#define SDMA_ONCE_ENB           0x040
  64#define SDMA_ONCE_DATA          0x044
  65#define SDMA_ONCE_INSTR         0x048
  66#define SDMA_ONCE_STAT          0x04c
  67#define SDMA_ONCE_CMD           0x050
  68#define SDMA_EVT_MIRROR         0x054
  69#define SDMA_ILLINSTADDR        0x058
  70#define SDMA_CHN0ADDR           0x05c
  71#define SDMA_ONCE_RTB           0x060
  72#define SDMA_XTRIG_CONF1        0x070
  73#define SDMA_XTRIG_CONF2        0x074
  74#define SDMA_CHNENBL0_IMX35     0x200
  75#define SDMA_CHNENBL0_IMX31     0x080
  76#define SDMA_CHNPRI_0           0x100
  77
  78/*
  79 * Buffer descriptor status values.
  80 */
  81#define BD_DONE  0x01
  82#define BD_WRAP  0x02
  83#define BD_CONT  0x04
  84#define BD_INTR  0x08
  85#define BD_RROR  0x10
  86#define BD_LAST  0x20
  87#define BD_EXTD  0x80
  88
  89/*
  90 * Data Node descriptor status values.
  91 */
  92#define DND_END_OF_FRAME  0x80
  93#define DND_END_OF_XFER   0x40
  94#define DND_DONE          0x20
  95#define DND_UNUSED        0x01
  96
  97/*
  98 * IPCV2 descriptor status values.
  99 */
 100#define BD_IPCV2_END_OF_FRAME  0x40
 101
 102#define IPCV2_MAX_NODES        50
 103/*
 104 * Error bit set in the CCB status field by the SDMA,
 105 * in setbd routine, in case of a transfer error
 106 */
 107#define DATA_ERROR  0x10000000
 108
 109/*
 110 * Buffer descriptor commands.
 111 */
 112#define C0_ADDR             0x01
 113#define C0_LOAD             0x02
 114#define C0_DUMP             0x03
 115#define C0_SETCTX           0x07
 116#define C0_GETCTX           0x03
 117#define C0_SETDM            0x01
 118#define C0_SETPM            0x04
 119#define C0_GETDM            0x02
 120#define C0_GETPM            0x08
 121/*
 122 * Change endianness indicator in the BD command field
 123 */
 124#define CHANGE_ENDIANNESS   0x80
 125
 126/*
 127 *  p_2_p watermark_level description
 128 *      Bits            Name                    Description
 129 *      0-7             Lower WML               Lower watermark level
 130 *      8               PS                      1: Pad Swallowing
 131 *                                              0: No Pad Swallowing
 132 *      9               PA                      1: Pad Adding
 133 *                                              0: No Pad Adding
 134 *      10              SPDIF                   If this bit is set both source
 135 *                                              and destination are on SPBA
 136 *      11              Source Bit(SP)          1: Source on SPBA
 137 *                                              0: Source on AIPS
 138 *      12              Destination Bit(DP)     1: Destination on SPBA
 139 *                                              0: Destination on AIPS
 140 *      13-15           ---------               MUST BE 0
 141 *      16-23           Higher WML              HWML
 142 *      24-27           N                       Total number of samples after
 143 *                                              which Pad adding/Swallowing
 144 *                                              must be done. It must be odd.
 145 *      28              Lower WML Event(LWE)    SDMA events reg to check for
 146 *                                              LWML event mask
 147 *                                              0: LWE in EVENTS register
 148 *                                              1: LWE in EVENTS2 register
 149 *      29              Higher WML Event(HWE)   SDMA events reg to check for
 150 *                                              HWML event mask
 151 *                                              0: HWE in EVENTS register
 152 *                                              1: HWE in EVENTS2 register
 153 *      30              ---------               MUST BE 0
 154 *      31              CONT                    1: Amount of samples to be
 155 *                                              transferred is unknown and
 156 *                                              script will keep on
 157 *                                              transferring samples as long as
 158 *                                              both events are detected and
 159 *                                              script must be manually stopped
 160 *                                              by the application
 161 *                                              0: The amount of samples to be
 162 *                                              transferred is equal to the
 163 *                                              count field of mode word
 164 */
 165#define SDMA_WATERMARK_LEVEL_LWML       0xFF
 166#define SDMA_WATERMARK_LEVEL_PS         BIT(8)
 167#define SDMA_WATERMARK_LEVEL_PA         BIT(9)
 168#define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
 169#define SDMA_WATERMARK_LEVEL_SP         BIT(11)
 170#define SDMA_WATERMARK_LEVEL_DP         BIT(12)
 171#define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
 172#define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
 173#define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
 174#define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
 175
 176#define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 177                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 178                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 179
 180#define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
 181                                 BIT(DMA_MEM_TO_DEV) | \
 182                                 BIT(DMA_DEV_TO_DEV))
 183
 184/*
 185 * Mode/Count of data node descriptors - IPCv2
 186 */
 187struct sdma_mode_count {
 188#define SDMA_BD_MAX_CNT 0xffff
 189        u32 count   : 16; /* size of the buffer pointed by this BD */
 190        u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
 191        u32 command :  8; /* command mostly used for channel 0 */
 192};
 193
 194/*
 195 * Buffer descriptor
 196 */
 197struct sdma_buffer_descriptor {
 198        struct sdma_mode_count  mode;
 199        u32 buffer_addr;        /* address of the buffer described */
 200        u32 ext_buffer_addr;    /* extended buffer address */
 201} __attribute__ ((packed));
 202
 203/**
 204 * struct sdma_channel_control - Channel control Block
 205 *
 206 * @current_bd_ptr:     current buffer descriptor processed
 207 * @base_bd_ptr:        first element of buffer descriptor array
 208 * @unused:             padding. The SDMA engine expects an array of 128 byte
 209 *                      control blocks
 210 */
 211struct sdma_channel_control {
 212        u32 current_bd_ptr;
 213        u32 base_bd_ptr;
 214        u32 unused[2];
 215} __attribute__ ((packed));
 216
 217/**
 218 * struct sdma_state_registers - SDMA context for a channel
 219 *
 220 * @pc:         program counter
 221 * @unused1:    unused
 222 * @t:          test bit: status of arithmetic & test instruction
 223 * @rpc:        return program counter
 224 * @unused0:    unused
 225 * @sf:         source fault while loading data
 226 * @spc:        loop start program counter
 227 * @unused2:    unused
 228 * @df:         destination fault while storing data
 229 * @epc:        loop end program counter
 230 * @lm:         loop mode
 231 */
 232struct sdma_state_registers {
 233        u32 pc     :14;
 234        u32 unused1: 1;
 235        u32 t      : 1;
 236        u32 rpc    :14;
 237        u32 unused0: 1;
 238        u32 sf     : 1;
 239        u32 spc    :14;
 240        u32 unused2: 1;
 241        u32 df     : 1;
 242        u32 epc    :14;
 243        u32 lm     : 2;
 244} __attribute__ ((packed));
 245
 246/**
 247 * struct sdma_context_data - sdma context specific to a channel
 248 *
 249 * @channel_state:      channel state bits
 250 * @gReg:               general registers
 251 * @mda:                burst dma destination address register
 252 * @msa:                burst dma source address register
 253 * @ms:                 burst dma status register
 254 * @md:                 burst dma data register
 255 * @pda:                peripheral dma destination address register
 256 * @psa:                peripheral dma source address register
 257 * @ps:                 peripheral dma status register
 258 * @pd:                 peripheral dma data register
 259 * @ca:                 CRC polynomial register
 260 * @cs:                 CRC accumulator register
 261 * @dda:                dedicated core destination address register
 262 * @dsa:                dedicated core source address register
 263 * @ds:                 dedicated core status register
 264 * @dd:                 dedicated core data register
 265 * @scratch0:           1st word of dedicated ram for context switch
 266 * @scratch1:           2nd word of dedicated ram for context switch
 267 * @scratch2:           3rd word of dedicated ram for context switch
 268 * @scratch3:           4th word of dedicated ram for context switch
 269 * @scratch4:           5th word of dedicated ram for context switch
 270 * @scratch5:           6th word of dedicated ram for context switch
 271 * @scratch6:           7th word of dedicated ram for context switch
 272 * @scratch7:           8th word of dedicated ram for context switch
 273 */
 274struct sdma_context_data {
 275        struct sdma_state_registers  channel_state;
 276        u32  gReg[8];
 277        u32  mda;
 278        u32  msa;
 279        u32  ms;
 280        u32  md;
 281        u32  pda;
 282        u32  psa;
 283        u32  ps;
 284        u32  pd;
 285        u32  ca;
 286        u32  cs;
 287        u32  dda;
 288        u32  dsa;
 289        u32  ds;
 290        u32  dd;
 291        u32  scratch0;
 292        u32  scratch1;
 293        u32  scratch2;
 294        u32  scratch3;
 295        u32  scratch4;
 296        u32  scratch5;
 297        u32  scratch6;
 298        u32  scratch7;
 299} __attribute__ ((packed));
 300
 301
 302struct sdma_engine;
 303
 304/**
 305 * struct sdma_desc - descriptor structor for one transfer
 306 * @vd:                 descriptor for virt dma
 307 * @num_bd:             number of descriptors currently handling
 308 * @bd_phys:            physical address of bd
 309 * @buf_tail:           ID of the buffer that was processed
 310 * @buf_ptail:          ID of the previous buffer that was processed
 311 * @period_len:         period length, used in cyclic.
 312 * @chn_real_count:     the real count updated from bd->mode.count
 313 * @chn_count:          the transfer count set
 314 * @sdmac:              sdma_channel pointer
 315 * @bd:                 pointer of allocate bd
 316 */
 317struct sdma_desc {
 318        struct virt_dma_desc    vd;
 319        unsigned int            num_bd;
 320        dma_addr_t              bd_phys;
 321        unsigned int            buf_tail;
 322        unsigned int            buf_ptail;
 323        unsigned int            period_len;
 324        unsigned int            chn_real_count;
 325        unsigned int            chn_count;
 326        struct sdma_channel     *sdmac;
 327        struct sdma_buffer_descriptor *bd;
 328};
 329
 330/**
 331 * struct sdma_channel - housekeeping for a SDMA channel
 332 *
 333 * @vc:                 virt_dma base structure
 334 * @desc:               sdma description including vd and other special member
 335 * @sdma:               pointer to the SDMA engine for this channel
 336 * @channel:            the channel number, matches dmaengine chan_id + 1
 337 * @direction:          transfer type. Needed for setting SDMA script
 338 * @slave_config:       Slave configuration
 339 * @peripheral_type:    Peripheral type. Needed for setting SDMA script
 340 * @event_id0:          aka dma request line
 341 * @event_id1:          for channels that use 2 events
 342 * @word_size:          peripheral access size
 343 * @pc_from_device:     script address for those device_2_memory
 344 * @pc_to_device:       script address for those memory_2_device
 345 * @device_to_device:   script address for those device_2_device
 346 * @pc_to_pc:           script address for those memory_2_memory
 347 * @flags:              loop mode or not
 348 * @per_address:        peripheral source or destination address in common case
 349 *                      destination address in p_2_p case
 350 * @per_address2:       peripheral source address in p_2_p case
 351 * @event_mask:         event mask used in p_2_p script
 352 * @watermark_level:    value for gReg[7], some script will extend it from
 353 *                      basic watermark such as p_2_p
 354 * @shp_addr:           value for gReg[6]
 355 * @per_addr:           value for gReg[2]
 356 * @status:             status of dma channel
 357 * @context_loaded:     ensure context is only loaded once
 358 * @data:               specific sdma interface structure
 359 * @bd_pool:            dma_pool for bd
 360 * @terminate_worker:   used to call back into terminate work function
 361 */
 362struct sdma_channel {
 363        struct virt_dma_chan            vc;
 364        struct sdma_desc                *desc;
 365        struct sdma_engine              *sdma;
 366        unsigned int                    channel;
 367        enum dma_transfer_direction             direction;
 368        struct dma_slave_config         slave_config;
 369        enum sdma_peripheral_type       peripheral_type;
 370        unsigned int                    event_id0;
 371        unsigned int                    event_id1;
 372        enum dma_slave_buswidth         word_size;
 373        unsigned int                    pc_from_device, pc_to_device;
 374        unsigned int                    device_to_device;
 375        unsigned int                    pc_to_pc;
 376        unsigned long                   flags;
 377        dma_addr_t                      per_address, per_address2;
 378        unsigned long                   event_mask[2];
 379        unsigned long                   watermark_level;
 380        u32                             shp_addr, per_addr;
 381        enum dma_status                 status;
 382        bool                            context_loaded;
 383        struct imx_dma_data             data;
 384        struct work_struct              terminate_worker;
 385};
 386
 387#define IMX_DMA_SG_LOOP         BIT(0)
 388
 389#define MAX_DMA_CHANNELS 32
 390#define MXC_SDMA_DEFAULT_PRIORITY 1
 391#define MXC_SDMA_MIN_PRIORITY 1
 392#define MXC_SDMA_MAX_PRIORITY 7
 393
 394#define SDMA_FIRMWARE_MAGIC 0x414d4453
 395
 396/**
 397 * struct sdma_firmware_header - Layout of the firmware image
 398 *
 399 * @magic:              "SDMA"
 400 * @version_major:      increased whenever layout of struct
 401 *                      sdma_script_start_addrs changes.
 402 * @version_minor:      firmware minor version (for binary compatible changes)
 403 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
 404 * @num_script_addrs:   Number of script addresses in this image
 405 * @ram_code_start:     offset of SDMA ram image in this firmware image
 406 * @ram_code_size:      size of SDMA ram image
 407 * @script_addrs:       Stores the start address of the SDMA scripts
 408 *                      (in SDMA memory space)
 409 */
 410struct sdma_firmware_header {
 411        u32     magic;
 412        u32     version_major;
 413        u32     version_minor;
 414        u32     script_addrs_start;
 415        u32     num_script_addrs;
 416        u32     ram_code_start;
 417        u32     ram_code_size;
 418};
 419
 420struct sdma_driver_data {
 421        int chnenbl0;
 422        int num_events;
 423        struct sdma_script_start_addrs  *script_addrs;
 424        bool check_ratio;
 425};
 426
 427struct sdma_engine {
 428        struct device                   *dev;
 429        struct device_dma_parameters    dma_parms;
 430        struct sdma_channel             channel[MAX_DMA_CHANNELS];
 431        struct sdma_channel_control     *channel_control;
 432        void __iomem                    *regs;
 433        struct sdma_context_data        *context;
 434        dma_addr_t                      context_phys;
 435        struct dma_device               dma_device;
 436        struct clk                      *clk_ipg;
 437        struct clk                      *clk_ahb;
 438        spinlock_t                      channel_0_lock;
 439        u32                             script_number;
 440        struct sdma_script_start_addrs  *script_addrs;
 441        const struct sdma_driver_data   *drvdata;
 442        u32                             spba_start_addr;
 443        u32                             spba_end_addr;
 444        unsigned int                    irq;
 445        dma_addr_t                      bd0_phys;
 446        struct sdma_buffer_descriptor   *bd0;
 447        /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
 448        bool                            clk_ratio;
 449};
 450
 451static int sdma_config_write(struct dma_chan *chan,
 452                       struct dma_slave_config *dmaengine_cfg,
 453                       enum dma_transfer_direction direction);
 454
 455static struct sdma_driver_data sdma_imx31 = {
 456        .chnenbl0 = SDMA_CHNENBL0_IMX31,
 457        .num_events = 32,
 458};
 459
 460static struct sdma_script_start_addrs sdma_script_imx25 = {
 461        .ap_2_ap_addr = 729,
 462        .uart_2_mcu_addr = 904,
 463        .per_2_app_addr = 1255,
 464        .mcu_2_app_addr = 834,
 465        .uartsh_2_mcu_addr = 1120,
 466        .per_2_shp_addr = 1329,
 467        .mcu_2_shp_addr = 1048,
 468        .ata_2_mcu_addr = 1560,
 469        .mcu_2_ata_addr = 1479,
 470        .app_2_per_addr = 1189,
 471        .app_2_mcu_addr = 770,
 472        .shp_2_per_addr = 1407,
 473        .shp_2_mcu_addr = 979,
 474};
 475
 476static struct sdma_driver_data sdma_imx25 = {
 477        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 478        .num_events = 48,
 479        .script_addrs = &sdma_script_imx25,
 480};
 481
 482static struct sdma_driver_data sdma_imx35 = {
 483        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 484        .num_events = 48,
 485};
 486
 487static struct sdma_script_start_addrs sdma_script_imx51 = {
 488        .ap_2_ap_addr = 642,
 489        .uart_2_mcu_addr = 817,
 490        .mcu_2_app_addr = 747,
 491        .mcu_2_shp_addr = 961,
 492        .ata_2_mcu_addr = 1473,
 493        .mcu_2_ata_addr = 1392,
 494        .app_2_per_addr = 1033,
 495        .app_2_mcu_addr = 683,
 496        .shp_2_per_addr = 1251,
 497        .shp_2_mcu_addr = 892,
 498};
 499
 500static struct sdma_driver_data sdma_imx51 = {
 501        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 502        .num_events = 48,
 503        .script_addrs = &sdma_script_imx51,
 504};
 505
 506static struct sdma_script_start_addrs sdma_script_imx53 = {
 507        .ap_2_ap_addr = 642,
 508        .app_2_mcu_addr = 683,
 509        .mcu_2_app_addr = 747,
 510        .uart_2_mcu_addr = 817,
 511        .shp_2_mcu_addr = 891,
 512        .mcu_2_shp_addr = 960,
 513        .uartsh_2_mcu_addr = 1032,
 514        .spdif_2_mcu_addr = 1100,
 515        .mcu_2_spdif_addr = 1134,
 516        .firi_2_mcu_addr = 1193,
 517        .mcu_2_firi_addr = 1290,
 518};
 519
 520static struct sdma_driver_data sdma_imx53 = {
 521        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 522        .num_events = 48,
 523        .script_addrs = &sdma_script_imx53,
 524};
 525
 526static struct sdma_script_start_addrs sdma_script_imx6q = {
 527        .ap_2_ap_addr = 642,
 528        .uart_2_mcu_addr = 817,
 529        .mcu_2_app_addr = 747,
 530        .per_2_per_addr = 6331,
 531        .uartsh_2_mcu_addr = 1032,
 532        .mcu_2_shp_addr = 960,
 533        .app_2_mcu_addr = 683,
 534        .shp_2_mcu_addr = 891,
 535        .spdif_2_mcu_addr = 1100,
 536        .mcu_2_spdif_addr = 1134,
 537};
 538
 539static struct sdma_driver_data sdma_imx6q = {
 540        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 541        .num_events = 48,
 542        .script_addrs = &sdma_script_imx6q,
 543};
 544
 545static struct sdma_script_start_addrs sdma_script_imx7d = {
 546        .ap_2_ap_addr = 644,
 547        .uart_2_mcu_addr = 819,
 548        .mcu_2_app_addr = 749,
 549        .uartsh_2_mcu_addr = 1034,
 550        .mcu_2_shp_addr = 962,
 551        .app_2_mcu_addr = 685,
 552        .shp_2_mcu_addr = 893,
 553        .spdif_2_mcu_addr = 1102,
 554        .mcu_2_spdif_addr = 1136,
 555};
 556
 557static struct sdma_driver_data sdma_imx7d = {
 558        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 559        .num_events = 48,
 560        .script_addrs = &sdma_script_imx7d,
 561};
 562
 563static struct sdma_driver_data sdma_imx8mq = {
 564        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 565        .num_events = 48,
 566        .script_addrs = &sdma_script_imx7d,
 567        .check_ratio = 1,
 568};
 569
 570static const struct platform_device_id sdma_devtypes[] = {
 571        {
 572                .name = "imx25-sdma",
 573                .driver_data = (unsigned long)&sdma_imx25,
 574        }, {
 575                .name = "imx31-sdma",
 576                .driver_data = (unsigned long)&sdma_imx31,
 577        }, {
 578                .name = "imx35-sdma",
 579                .driver_data = (unsigned long)&sdma_imx35,
 580        }, {
 581                .name = "imx51-sdma",
 582                .driver_data = (unsigned long)&sdma_imx51,
 583        }, {
 584                .name = "imx53-sdma",
 585                .driver_data = (unsigned long)&sdma_imx53,
 586        }, {
 587                .name = "imx6q-sdma",
 588                .driver_data = (unsigned long)&sdma_imx6q,
 589        }, {
 590                .name = "imx7d-sdma",
 591                .driver_data = (unsigned long)&sdma_imx7d,
 592        }, {
 593                .name = "imx8mq-sdma",
 594                .driver_data = (unsigned long)&sdma_imx8mq,
 595        }, {
 596                /* sentinel */
 597        }
 598};
 599MODULE_DEVICE_TABLE(platform, sdma_devtypes);
 600
 601static const struct of_device_id sdma_dt_ids[] = {
 602        { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
 603        { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
 604        { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
 605        { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
 606        { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
 607        { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
 608        { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
 609        { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
 610        { /* sentinel */ }
 611};
 612MODULE_DEVICE_TABLE(of, sdma_dt_ids);
 613
 614#define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
 615#define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
 616#define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
 617#define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
 618
 619static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
 620{
 621        u32 chnenbl0 = sdma->drvdata->chnenbl0;
 622        return chnenbl0 + event * 4;
 623}
 624
 625static int sdma_config_ownership(struct sdma_channel *sdmac,
 626                bool event_override, bool mcu_override, bool dsp_override)
 627{
 628        struct sdma_engine *sdma = sdmac->sdma;
 629        int channel = sdmac->channel;
 630        unsigned long evt, mcu, dsp;
 631
 632        if (event_override && mcu_override && dsp_override)
 633                return -EINVAL;
 634
 635        evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
 636        mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
 637        dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
 638
 639        if (dsp_override)
 640                __clear_bit(channel, &dsp);
 641        else
 642                __set_bit(channel, &dsp);
 643
 644        if (event_override)
 645                __clear_bit(channel, &evt);
 646        else
 647                __set_bit(channel, &evt);
 648
 649        if (mcu_override)
 650                __clear_bit(channel, &mcu);
 651        else
 652                __set_bit(channel, &mcu);
 653
 654        writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
 655        writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
 656        writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
 657
 658        return 0;
 659}
 660
 661static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
 662{
 663        writel(BIT(channel), sdma->regs + SDMA_H_START);
 664}
 665
 666/*
 667 * sdma_run_channel0 - run a channel and wait till it's done
 668 */
 669static int sdma_run_channel0(struct sdma_engine *sdma)
 670{
 671        int ret;
 672        u32 reg;
 673
 674        sdma_enable_channel(sdma, 0);
 675
 676        ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
 677                                                reg, !(reg & 1), 1, 500);
 678        if (ret)
 679                dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
 680
 681        /* Set bits of CONFIG register with dynamic context switching */
 682        reg = readl(sdma->regs + SDMA_H_CONFIG);
 683        if ((reg & SDMA_H_CONFIG_CSM) == 0) {
 684                reg |= SDMA_H_CONFIG_CSM;
 685                writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
 686        }
 687
 688        return ret;
 689}
 690
 691static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
 692                u32 address)
 693{
 694        struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 695        void *buf_virt;
 696        dma_addr_t buf_phys;
 697        int ret;
 698        unsigned long flags;
 699
 700        buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
 701        if (!buf_virt) {
 702                return -ENOMEM;
 703        }
 704
 705        spin_lock_irqsave(&sdma->channel_0_lock, flags);
 706
 707        bd0->mode.command = C0_SETPM;
 708        bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
 709        bd0->mode.count = size / 2;
 710        bd0->buffer_addr = buf_phys;
 711        bd0->ext_buffer_addr = address;
 712
 713        memcpy(buf_virt, buf, size);
 714
 715        ret = sdma_run_channel0(sdma);
 716
 717        spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
 718
 719        dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
 720
 721        return ret;
 722}
 723
 724static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
 725{
 726        struct sdma_engine *sdma = sdmac->sdma;
 727        int channel = sdmac->channel;
 728        unsigned long val;
 729        u32 chnenbl = chnenbl_ofs(sdma, event);
 730
 731        val = readl_relaxed(sdma->regs + chnenbl);
 732        __set_bit(channel, &val);
 733        writel_relaxed(val, sdma->regs + chnenbl);
 734}
 735
 736static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
 737{
 738        struct sdma_engine *sdma = sdmac->sdma;
 739        int channel = sdmac->channel;
 740        u32 chnenbl = chnenbl_ofs(sdma, event);
 741        unsigned long val;
 742
 743        val = readl_relaxed(sdma->regs + chnenbl);
 744        __clear_bit(channel, &val);
 745        writel_relaxed(val, sdma->regs + chnenbl);
 746}
 747
 748static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
 749{
 750        return container_of(t, struct sdma_desc, vd.tx);
 751}
 752
 753static void sdma_start_desc(struct sdma_channel *sdmac)
 754{
 755        struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
 756        struct sdma_desc *desc;
 757        struct sdma_engine *sdma = sdmac->sdma;
 758        int channel = sdmac->channel;
 759
 760        if (!vd) {
 761                sdmac->desc = NULL;
 762                return;
 763        }
 764        sdmac->desc = desc = to_sdma_desc(&vd->tx);
 765
 766        list_del(&vd->node);
 767
 768        sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
 769        sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
 770        sdma_enable_channel(sdma, sdmac->channel);
 771}
 772
 773static void sdma_update_channel_loop(struct sdma_channel *sdmac)
 774{
 775        struct sdma_buffer_descriptor *bd;
 776        int error = 0;
 777        enum dma_status old_status = sdmac->status;
 778
 779        /*
 780         * loop mode. Iterate over descriptors, re-setup them and
 781         * call callback function.
 782         */
 783        while (sdmac->desc) {
 784                struct sdma_desc *desc = sdmac->desc;
 785
 786                bd = &desc->bd[desc->buf_tail];
 787
 788                if (bd->mode.status & BD_DONE)
 789                        break;
 790
 791                if (bd->mode.status & BD_RROR) {
 792                        bd->mode.status &= ~BD_RROR;
 793                        sdmac->status = DMA_ERROR;
 794                        error = -EIO;
 795                }
 796
 797               /*
 798                * We use bd->mode.count to calculate the residue, since contains
 799                * the number of bytes present in the current buffer descriptor.
 800                */
 801
 802                desc->chn_real_count = bd->mode.count;
 803                bd->mode.status |= BD_DONE;
 804                bd->mode.count = desc->period_len;
 805                desc->buf_ptail = desc->buf_tail;
 806                desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
 807
 808                /*
 809                 * The callback is called from the interrupt context in order
 810                 * to reduce latency and to avoid the risk of altering the
 811                 * SDMA transaction status by the time the client tasklet is
 812                 * executed.
 813                 */
 814                spin_unlock(&sdmac->vc.lock);
 815                dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
 816                spin_lock(&sdmac->vc.lock);
 817
 818                if (error)
 819                        sdmac->status = old_status;
 820        }
 821}
 822
 823static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
 824{
 825        struct sdma_channel *sdmac = (struct sdma_channel *) data;
 826        struct sdma_buffer_descriptor *bd;
 827        int i, error = 0;
 828
 829        sdmac->desc->chn_real_count = 0;
 830        /*
 831         * non loop mode. Iterate over all descriptors, collect
 832         * errors and call callback function
 833         */
 834        for (i = 0; i < sdmac->desc->num_bd; i++) {
 835                bd = &sdmac->desc->bd[i];
 836
 837                 if (bd->mode.status & (BD_DONE | BD_RROR))
 838                        error = -EIO;
 839                 sdmac->desc->chn_real_count += bd->mode.count;
 840        }
 841
 842        if (error)
 843                sdmac->status = DMA_ERROR;
 844        else
 845                sdmac->status = DMA_COMPLETE;
 846}
 847
 848static irqreturn_t sdma_int_handler(int irq, void *dev_id)
 849{
 850        struct sdma_engine *sdma = dev_id;
 851        unsigned long stat;
 852
 853        stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
 854        writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
 855        /* channel 0 is special and not handled here, see run_channel0() */
 856        stat &= ~1;
 857
 858        while (stat) {
 859                int channel = fls(stat) - 1;
 860                struct sdma_channel *sdmac = &sdma->channel[channel];
 861                struct sdma_desc *desc;
 862
 863                spin_lock(&sdmac->vc.lock);
 864                desc = sdmac->desc;
 865                if (desc) {
 866                        if (sdmac->flags & IMX_DMA_SG_LOOP) {
 867                                sdma_update_channel_loop(sdmac);
 868                        } else {
 869                                mxc_sdma_handle_channel_normal(sdmac);
 870                                vchan_cookie_complete(&desc->vd);
 871                                sdma_start_desc(sdmac);
 872                        }
 873                }
 874
 875                spin_unlock(&sdmac->vc.lock);
 876                __clear_bit(channel, &stat);
 877        }
 878
 879        return IRQ_HANDLED;
 880}
 881
 882/*
 883 * sets the pc of SDMA script according to the peripheral type
 884 */
 885static void sdma_get_pc(struct sdma_channel *sdmac,
 886                enum sdma_peripheral_type peripheral_type)
 887{
 888        struct sdma_engine *sdma = sdmac->sdma;
 889        int per_2_emi = 0, emi_2_per = 0;
 890        /*
 891         * These are needed once we start to support transfers between
 892         * two peripherals or memory-to-memory transfers
 893         */
 894        int per_2_per = 0, emi_2_emi = 0;
 895
 896        sdmac->pc_from_device = 0;
 897        sdmac->pc_to_device = 0;
 898        sdmac->device_to_device = 0;
 899        sdmac->pc_to_pc = 0;
 900
 901        switch (peripheral_type) {
 902        case IMX_DMATYPE_MEMORY:
 903                emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
 904                break;
 905        case IMX_DMATYPE_DSP:
 906                emi_2_per = sdma->script_addrs->bp_2_ap_addr;
 907                per_2_emi = sdma->script_addrs->ap_2_bp_addr;
 908                break;
 909        case IMX_DMATYPE_FIRI:
 910                per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
 911                emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
 912                break;
 913        case IMX_DMATYPE_UART:
 914                per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
 915                emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 916                break;
 917        case IMX_DMATYPE_UART_SP:
 918                per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
 919                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 920                break;
 921        case IMX_DMATYPE_ATA:
 922                per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
 923                emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
 924                break;
 925        case IMX_DMATYPE_CSPI:
 926        case IMX_DMATYPE_EXT:
 927        case IMX_DMATYPE_SSI:
 928        case IMX_DMATYPE_SAI:
 929                per_2_emi = sdma->script_addrs->app_2_mcu_addr;
 930                emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 931                break;
 932        case IMX_DMATYPE_SSI_DUAL:
 933                per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
 934                emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
 935                break;
 936        case IMX_DMATYPE_SSI_SP:
 937        case IMX_DMATYPE_MMC:
 938        case IMX_DMATYPE_SDHC:
 939        case IMX_DMATYPE_CSPI_SP:
 940        case IMX_DMATYPE_ESAI:
 941        case IMX_DMATYPE_MSHC_SP:
 942                per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 943                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 944                break;
 945        case IMX_DMATYPE_ASRC:
 946                per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
 947                emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
 948                per_2_per = sdma->script_addrs->per_2_per_addr;
 949                break;
 950        case IMX_DMATYPE_ASRC_SP:
 951                per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 952                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 953                per_2_per = sdma->script_addrs->per_2_per_addr;
 954                break;
 955        case IMX_DMATYPE_MSHC:
 956                per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
 957                emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
 958                break;
 959        case IMX_DMATYPE_CCM:
 960                per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
 961                break;
 962        case IMX_DMATYPE_SPDIF:
 963                per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
 964                emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
 965                break;
 966        case IMX_DMATYPE_IPU_MEMORY:
 967                emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
 968                break;
 969        default:
 970                break;
 971        }
 972
 973        sdmac->pc_from_device = per_2_emi;
 974        sdmac->pc_to_device = emi_2_per;
 975        sdmac->device_to_device = per_2_per;
 976        sdmac->pc_to_pc = emi_2_emi;
 977}
 978
 979static int sdma_load_context(struct sdma_channel *sdmac)
 980{
 981        struct sdma_engine *sdma = sdmac->sdma;
 982        int channel = sdmac->channel;
 983        int load_address;
 984        struct sdma_context_data *context = sdma->context;
 985        struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 986        int ret;
 987        unsigned long flags;
 988
 989        if (sdmac->context_loaded)
 990                return 0;
 991
 992        if (sdmac->direction == DMA_DEV_TO_MEM)
 993                load_address = sdmac->pc_from_device;
 994        else if (sdmac->direction == DMA_DEV_TO_DEV)
 995                load_address = sdmac->device_to_device;
 996        else if (sdmac->direction == DMA_MEM_TO_MEM)
 997                load_address = sdmac->pc_to_pc;
 998        else
 999                load_address = sdmac->pc_to_device;
1000
1001        if (load_address < 0)
1002                return load_address;
1003
1004        dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1005        dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1006        dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1007        dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1008        dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1009        dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1010
1011        spin_lock_irqsave(&sdma->channel_0_lock, flags);
1012
1013        memset(context, 0, sizeof(*context));
1014        context->channel_state.pc = load_address;
1015
1016        /* Send by context the event mask,base address for peripheral
1017         * and watermark level
1018         */
1019        context->gReg[0] = sdmac->event_mask[1];
1020        context->gReg[1] = sdmac->event_mask[0];
1021        context->gReg[2] = sdmac->per_addr;
1022        context->gReg[6] = sdmac->shp_addr;
1023        context->gReg[7] = sdmac->watermark_level;
1024
1025        bd0->mode.command = C0_SETDM;
1026        bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1027        bd0->mode.count = sizeof(*context) / 4;
1028        bd0->buffer_addr = sdma->context_phys;
1029        bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1030        ret = sdma_run_channel0(sdma);
1031
1032        spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1033
1034        sdmac->context_loaded = true;
1035
1036        return ret;
1037}
1038
1039static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1040{
1041        return container_of(chan, struct sdma_channel, vc.chan);
1042}
1043
1044static int sdma_disable_channel(struct dma_chan *chan)
1045{
1046        struct sdma_channel *sdmac = to_sdma_chan(chan);
1047        struct sdma_engine *sdma = sdmac->sdma;
1048        int channel = sdmac->channel;
1049
1050        writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1051        sdmac->status = DMA_ERROR;
1052
1053        return 0;
1054}
1055static void sdma_channel_terminate_work(struct work_struct *work)
1056{
1057        struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1058                                                  terminate_worker);
1059        unsigned long flags;
1060        LIST_HEAD(head);
1061
1062        /*
1063         * According to NXP R&D team a delay of one BD SDMA cost time
1064         * (maximum is 1ms) should be added after disable of the channel
1065         * bit, to ensure SDMA core has really been stopped after SDMA
1066         * clients call .device_terminate_all.
1067         */
1068        usleep_range(1000, 2000);
1069
1070        spin_lock_irqsave(&sdmac->vc.lock, flags);
1071        vchan_get_all_descriptors(&sdmac->vc, &head);
1072        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1073        vchan_dma_desc_free_list(&sdmac->vc, &head);
1074        sdmac->context_loaded = false;
1075}
1076
1077static int sdma_terminate_all(struct dma_chan *chan)
1078{
1079        struct sdma_channel *sdmac = to_sdma_chan(chan);
1080        unsigned long flags;
1081
1082        spin_lock_irqsave(&sdmac->vc.lock, flags);
1083
1084        sdma_disable_channel(chan);
1085
1086        if (sdmac->desc) {
1087                vchan_terminate_vdesc(&sdmac->desc->vd);
1088                sdmac->desc = NULL;
1089                schedule_work(&sdmac->terminate_worker);
1090        }
1091
1092        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1093
1094        return 0;
1095}
1096
1097static void sdma_channel_synchronize(struct dma_chan *chan)
1098{
1099        struct sdma_channel *sdmac = to_sdma_chan(chan);
1100
1101        vchan_synchronize(&sdmac->vc);
1102
1103        flush_work(&sdmac->terminate_worker);
1104}
1105
1106static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1107{
1108        struct sdma_engine *sdma = sdmac->sdma;
1109
1110        int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1111        int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1112
1113        set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1114        set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1115
1116        if (sdmac->event_id0 > 31)
1117                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1118
1119        if (sdmac->event_id1 > 31)
1120                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1121
1122        /*
1123         * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1124         * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1125         * r0(event_mask[1]) and r1(event_mask[0]).
1126         */
1127        if (lwml > hwml) {
1128                sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1129                                                SDMA_WATERMARK_LEVEL_HWML);
1130                sdmac->watermark_level |= hwml;
1131                sdmac->watermark_level |= lwml << 16;
1132                swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1133        }
1134
1135        if (sdmac->per_address2 >= sdma->spba_start_addr &&
1136                        sdmac->per_address2 <= sdma->spba_end_addr)
1137                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1138
1139        if (sdmac->per_address >= sdma->spba_start_addr &&
1140                        sdmac->per_address <= sdma->spba_end_addr)
1141                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1142
1143        sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1144}
1145
1146static int sdma_config_channel(struct dma_chan *chan)
1147{
1148        struct sdma_channel *sdmac = to_sdma_chan(chan);
1149        int ret;
1150
1151        sdma_disable_channel(chan);
1152
1153        sdmac->event_mask[0] = 0;
1154        sdmac->event_mask[1] = 0;
1155        sdmac->shp_addr = 0;
1156        sdmac->per_addr = 0;
1157
1158        switch (sdmac->peripheral_type) {
1159        case IMX_DMATYPE_DSP:
1160                sdma_config_ownership(sdmac, false, true, true);
1161                break;
1162        case IMX_DMATYPE_MEMORY:
1163                sdma_config_ownership(sdmac, false, true, false);
1164                break;
1165        default:
1166                sdma_config_ownership(sdmac, true, true, false);
1167                break;
1168        }
1169
1170        sdma_get_pc(sdmac, sdmac->peripheral_type);
1171
1172        if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1173                        (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1174                /* Handle multiple event channels differently */
1175                if (sdmac->event_id1) {
1176                        if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1177                            sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1178                                sdma_set_watermarklevel_for_p2p(sdmac);
1179                } else
1180                        __set_bit(sdmac->event_id0, sdmac->event_mask);
1181
1182                /* Address */
1183                sdmac->shp_addr = sdmac->per_address;
1184                sdmac->per_addr = sdmac->per_address2;
1185        } else {
1186                sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1187        }
1188
1189        ret = sdma_load_context(sdmac);
1190
1191        return ret;
1192}
1193
1194static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1195                unsigned int priority)
1196{
1197        struct sdma_engine *sdma = sdmac->sdma;
1198        int channel = sdmac->channel;
1199
1200        if (priority < MXC_SDMA_MIN_PRIORITY
1201            || priority > MXC_SDMA_MAX_PRIORITY) {
1202                return -EINVAL;
1203        }
1204
1205        writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1206
1207        return 0;
1208}
1209
1210static int sdma_request_channel0(struct sdma_engine *sdma)
1211{
1212        int ret = -EBUSY;
1213
1214        sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1215                                        GFP_NOWAIT);
1216        if (!sdma->bd0) {
1217                ret = -ENOMEM;
1218                goto out;
1219        }
1220
1221        sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1222        sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1223
1224        sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1225        return 0;
1226out:
1227
1228        return ret;
1229}
1230
1231
1232static int sdma_alloc_bd(struct sdma_desc *desc)
1233{
1234        u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1235        int ret = 0;
1236
1237        desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1238                                       &desc->bd_phys, GFP_NOWAIT);
1239        if (!desc->bd) {
1240                ret = -ENOMEM;
1241                goto out;
1242        }
1243out:
1244        return ret;
1245}
1246
1247static void sdma_free_bd(struct sdma_desc *desc)
1248{
1249        u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1250
1251        dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1252                          desc->bd_phys);
1253}
1254
1255static void sdma_desc_free(struct virt_dma_desc *vd)
1256{
1257        struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1258
1259        sdma_free_bd(desc);
1260        kfree(desc);
1261}
1262
1263static int sdma_alloc_chan_resources(struct dma_chan *chan)
1264{
1265        struct sdma_channel *sdmac = to_sdma_chan(chan);
1266        struct imx_dma_data *data = chan->private;
1267        struct imx_dma_data mem_data;
1268        int prio, ret;
1269
1270        /*
1271         * MEMCPY may never setup chan->private by filter function such as
1272         * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1273         * Please note in any other slave case, you have to setup chan->private
1274         * with 'struct imx_dma_data' in your own filter function if you want to
1275         * request dma channel by dma_request_channel() rather than
1276         * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1277         * to warn you to correct your filter function.
1278         */
1279        if (!data) {
1280                dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1281                mem_data.priority = 2;
1282                mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1283                mem_data.dma_request = 0;
1284                mem_data.dma_request2 = 0;
1285                data = &mem_data;
1286
1287                sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1288        }
1289
1290        switch (data->priority) {
1291        case DMA_PRIO_HIGH:
1292                prio = 3;
1293                break;
1294        case DMA_PRIO_MEDIUM:
1295                prio = 2;
1296                break;
1297        case DMA_PRIO_LOW:
1298        default:
1299                prio = 1;
1300                break;
1301        }
1302
1303        sdmac->peripheral_type = data->peripheral_type;
1304        sdmac->event_id0 = data->dma_request;
1305        sdmac->event_id1 = data->dma_request2;
1306
1307        ret = clk_enable(sdmac->sdma->clk_ipg);
1308        if (ret)
1309                return ret;
1310        ret = clk_enable(sdmac->sdma->clk_ahb);
1311        if (ret)
1312                goto disable_clk_ipg;
1313
1314        ret = sdma_set_channel_priority(sdmac, prio);
1315        if (ret)
1316                goto disable_clk_ahb;
1317
1318        return 0;
1319
1320disable_clk_ahb:
1321        clk_disable(sdmac->sdma->clk_ahb);
1322disable_clk_ipg:
1323        clk_disable(sdmac->sdma->clk_ipg);
1324        return ret;
1325}
1326
1327static void sdma_free_chan_resources(struct dma_chan *chan)
1328{
1329        struct sdma_channel *sdmac = to_sdma_chan(chan);
1330        struct sdma_engine *sdma = sdmac->sdma;
1331
1332        sdma_terminate_all(chan);
1333
1334        sdma_channel_synchronize(chan);
1335
1336        sdma_event_disable(sdmac, sdmac->event_id0);
1337        if (sdmac->event_id1)
1338                sdma_event_disable(sdmac, sdmac->event_id1);
1339
1340        sdmac->event_id0 = 0;
1341        sdmac->event_id1 = 0;
1342        sdmac->context_loaded = false;
1343
1344        sdma_set_channel_priority(sdmac, 0);
1345
1346        clk_disable(sdma->clk_ipg);
1347        clk_disable(sdma->clk_ahb);
1348}
1349
1350static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1351                                enum dma_transfer_direction direction, u32 bds)
1352{
1353        struct sdma_desc *desc;
1354
1355        desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1356        if (!desc)
1357                goto err_out;
1358
1359        sdmac->status = DMA_IN_PROGRESS;
1360        sdmac->direction = direction;
1361        sdmac->flags = 0;
1362
1363        desc->chn_count = 0;
1364        desc->chn_real_count = 0;
1365        desc->buf_tail = 0;
1366        desc->buf_ptail = 0;
1367        desc->sdmac = sdmac;
1368        desc->num_bd = bds;
1369
1370        if (sdma_alloc_bd(desc))
1371                goto err_desc_out;
1372
1373        /* No slave_config called in MEMCPY case, so do here */
1374        if (direction == DMA_MEM_TO_MEM)
1375                sdma_config_ownership(sdmac, false, true, false);
1376
1377        if (sdma_load_context(sdmac))
1378                goto err_desc_out;
1379
1380        return desc;
1381
1382err_desc_out:
1383        kfree(desc);
1384err_out:
1385        return NULL;
1386}
1387
1388static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1389                struct dma_chan *chan, dma_addr_t dma_dst,
1390                dma_addr_t dma_src, size_t len, unsigned long flags)
1391{
1392        struct sdma_channel *sdmac = to_sdma_chan(chan);
1393        struct sdma_engine *sdma = sdmac->sdma;
1394        int channel = sdmac->channel;
1395        size_t count;
1396        int i = 0, param;
1397        struct sdma_buffer_descriptor *bd;
1398        struct sdma_desc *desc;
1399
1400        if (!chan || !len)
1401                return NULL;
1402
1403        dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1404                &dma_src, &dma_dst, len, channel);
1405
1406        desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1407                                        len / SDMA_BD_MAX_CNT + 1);
1408        if (!desc)
1409                return NULL;
1410
1411        do {
1412                count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1413                bd = &desc->bd[i];
1414                bd->buffer_addr = dma_src;
1415                bd->ext_buffer_addr = dma_dst;
1416                bd->mode.count = count;
1417                desc->chn_count += count;
1418                bd->mode.command = 0;
1419
1420                dma_src += count;
1421                dma_dst += count;
1422                len -= count;
1423                i++;
1424
1425                param = BD_DONE | BD_EXTD | BD_CONT;
1426                /* last bd */
1427                if (!len) {
1428                        param |= BD_INTR;
1429                        param |= BD_LAST;
1430                        param &= ~BD_CONT;
1431                }
1432
1433                dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1434                                i, count, bd->buffer_addr,
1435                                param & BD_WRAP ? "wrap" : "",
1436                                param & BD_INTR ? " intr" : "");
1437
1438                bd->mode.status = param;
1439        } while (len);
1440
1441        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1442}
1443
1444static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1445                struct dma_chan *chan, struct scatterlist *sgl,
1446                unsigned int sg_len, enum dma_transfer_direction direction,
1447                unsigned long flags, void *context)
1448{
1449        struct sdma_channel *sdmac = to_sdma_chan(chan);
1450        struct sdma_engine *sdma = sdmac->sdma;
1451        int i, count;
1452        int channel = sdmac->channel;
1453        struct scatterlist *sg;
1454        struct sdma_desc *desc;
1455
1456        sdma_config_write(chan, &sdmac->slave_config, direction);
1457
1458        desc = sdma_transfer_init(sdmac, direction, sg_len);
1459        if (!desc)
1460                goto err_out;
1461
1462        dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1463                        sg_len, channel);
1464
1465        for_each_sg(sgl, sg, sg_len, i) {
1466                struct sdma_buffer_descriptor *bd = &desc->bd[i];
1467                int param;
1468
1469                bd->buffer_addr = sg->dma_address;
1470
1471                count = sg_dma_len(sg);
1472
1473                if (count > SDMA_BD_MAX_CNT) {
1474                        dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1475                                        channel, count, SDMA_BD_MAX_CNT);
1476                        goto err_bd_out;
1477                }
1478
1479                bd->mode.count = count;
1480                desc->chn_count += count;
1481
1482                if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1483                        goto err_bd_out;
1484
1485                switch (sdmac->word_size) {
1486                case DMA_SLAVE_BUSWIDTH_4_BYTES:
1487                        bd->mode.command = 0;
1488                        if (count & 3 || sg->dma_address & 3)
1489                                goto err_bd_out;
1490                        break;
1491                case DMA_SLAVE_BUSWIDTH_2_BYTES:
1492                        bd->mode.command = 2;
1493                        if (count & 1 || sg->dma_address & 1)
1494                                goto err_bd_out;
1495                        break;
1496                case DMA_SLAVE_BUSWIDTH_1_BYTE:
1497                        bd->mode.command = 1;
1498                        break;
1499                default:
1500                        goto err_bd_out;
1501                }
1502
1503                param = BD_DONE | BD_EXTD | BD_CONT;
1504
1505                if (i + 1 == sg_len) {
1506                        param |= BD_INTR;
1507                        param |= BD_LAST;
1508                        param &= ~BD_CONT;
1509                }
1510
1511                dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1512                                i, count, (u64)sg->dma_address,
1513                                param & BD_WRAP ? "wrap" : "",
1514                                param & BD_INTR ? " intr" : "");
1515
1516                bd->mode.status = param;
1517        }
1518
1519        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1520err_bd_out:
1521        sdma_free_bd(desc);
1522        kfree(desc);
1523err_out:
1524        sdmac->status = DMA_ERROR;
1525        return NULL;
1526}
1527
1528static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1529                struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1530                size_t period_len, enum dma_transfer_direction direction,
1531                unsigned long flags)
1532{
1533        struct sdma_channel *sdmac = to_sdma_chan(chan);
1534        struct sdma_engine *sdma = sdmac->sdma;
1535        int num_periods = buf_len / period_len;
1536        int channel = sdmac->channel;
1537        int i = 0, buf = 0;
1538        struct sdma_desc *desc;
1539
1540        dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1541
1542        sdma_config_write(chan, &sdmac->slave_config, direction);
1543
1544        desc = sdma_transfer_init(sdmac, direction, num_periods);
1545        if (!desc)
1546                goto err_out;
1547
1548        desc->period_len = period_len;
1549
1550        sdmac->flags |= IMX_DMA_SG_LOOP;
1551
1552        if (period_len > SDMA_BD_MAX_CNT) {
1553                dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1554                                channel, period_len, SDMA_BD_MAX_CNT);
1555                goto err_bd_out;
1556        }
1557
1558        while (buf < buf_len) {
1559                struct sdma_buffer_descriptor *bd = &desc->bd[i];
1560                int param;
1561
1562                bd->buffer_addr = dma_addr;
1563
1564                bd->mode.count = period_len;
1565
1566                if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1567                        goto err_bd_out;
1568                if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1569                        bd->mode.command = 0;
1570                else
1571                        bd->mode.command = sdmac->word_size;
1572
1573                param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1574                if (i + 1 == num_periods)
1575                        param |= BD_WRAP;
1576
1577                dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1578                                i, period_len, (u64)dma_addr,
1579                                param & BD_WRAP ? "wrap" : "",
1580                                param & BD_INTR ? " intr" : "");
1581
1582                bd->mode.status = param;
1583
1584                dma_addr += period_len;
1585                buf += period_len;
1586
1587                i++;
1588        }
1589
1590        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1591err_bd_out:
1592        sdma_free_bd(desc);
1593        kfree(desc);
1594err_out:
1595        sdmac->status = DMA_ERROR;
1596        return NULL;
1597}
1598
1599static int sdma_config_write(struct dma_chan *chan,
1600                       struct dma_slave_config *dmaengine_cfg,
1601                       enum dma_transfer_direction direction)
1602{
1603        struct sdma_channel *sdmac = to_sdma_chan(chan);
1604
1605        if (direction == DMA_DEV_TO_MEM) {
1606                sdmac->per_address = dmaengine_cfg->src_addr;
1607                sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1608                        dmaengine_cfg->src_addr_width;
1609                sdmac->word_size = dmaengine_cfg->src_addr_width;
1610        } else if (direction == DMA_DEV_TO_DEV) {
1611                sdmac->per_address2 = dmaengine_cfg->src_addr;
1612                sdmac->per_address = dmaengine_cfg->dst_addr;
1613                sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1614                        SDMA_WATERMARK_LEVEL_LWML;
1615                sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1616                        SDMA_WATERMARK_LEVEL_HWML;
1617                sdmac->word_size = dmaengine_cfg->dst_addr_width;
1618        } else {
1619                sdmac->per_address = dmaengine_cfg->dst_addr;
1620                sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1621                        dmaengine_cfg->dst_addr_width;
1622                sdmac->word_size = dmaengine_cfg->dst_addr_width;
1623        }
1624        sdmac->direction = direction;
1625        return sdma_config_channel(chan);
1626}
1627
1628static int sdma_config(struct dma_chan *chan,
1629                       struct dma_slave_config *dmaengine_cfg)
1630{
1631        struct sdma_channel *sdmac = to_sdma_chan(chan);
1632
1633        memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1634
1635        /* Set ENBLn earlier to make sure dma request triggered after that */
1636        if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1637                return -EINVAL;
1638        sdma_event_enable(sdmac, sdmac->event_id0);
1639
1640        if (sdmac->event_id1) {
1641                if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1642                        return -EINVAL;
1643                sdma_event_enable(sdmac, sdmac->event_id1);
1644        }
1645
1646        return 0;
1647}
1648
1649static enum dma_status sdma_tx_status(struct dma_chan *chan,
1650                                      dma_cookie_t cookie,
1651                                      struct dma_tx_state *txstate)
1652{
1653        struct sdma_channel *sdmac = to_sdma_chan(chan);
1654        struct sdma_desc *desc = NULL;
1655        u32 residue;
1656        struct virt_dma_desc *vd;
1657        enum dma_status ret;
1658        unsigned long flags;
1659
1660        ret = dma_cookie_status(chan, cookie, txstate);
1661        if (ret == DMA_COMPLETE || !txstate)
1662                return ret;
1663
1664        spin_lock_irqsave(&sdmac->vc.lock, flags);
1665
1666        vd = vchan_find_desc(&sdmac->vc, cookie);
1667        if (vd)
1668                desc = to_sdma_desc(&vd->tx);
1669        else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1670                desc = sdmac->desc;
1671
1672        if (desc) {
1673                if (sdmac->flags & IMX_DMA_SG_LOOP)
1674                        residue = (desc->num_bd - desc->buf_ptail) *
1675                                desc->period_len - desc->chn_real_count;
1676                else
1677                        residue = desc->chn_count - desc->chn_real_count;
1678        } else {
1679                residue = 0;
1680        }
1681
1682        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1683
1684        dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1685                         residue);
1686
1687        return sdmac->status;
1688}
1689
1690static void sdma_issue_pending(struct dma_chan *chan)
1691{
1692        struct sdma_channel *sdmac = to_sdma_chan(chan);
1693        unsigned long flags;
1694
1695        spin_lock_irqsave(&sdmac->vc.lock, flags);
1696        if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1697                sdma_start_desc(sdmac);
1698        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1699}
1700
1701#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1702#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1703#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1704#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1705
1706static void sdma_add_scripts(struct sdma_engine *sdma,
1707                const struct sdma_script_start_addrs *addr)
1708{
1709        s32 *addr_arr = (u32 *)addr;
1710        s32 *saddr_arr = (u32 *)sdma->script_addrs;
1711        int i;
1712
1713        /* use the default firmware in ROM if missing external firmware */
1714        if (!sdma->script_number)
1715                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1716
1717        if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1718                                  / sizeof(s32)) {
1719                dev_err(sdma->dev,
1720                        "SDMA script number %d not match with firmware.\n",
1721                        sdma->script_number);
1722                return;
1723        }
1724
1725        for (i = 0; i < sdma->script_number; i++)
1726                if (addr_arr[i] > 0)
1727                        saddr_arr[i] = addr_arr[i];
1728}
1729
1730static void sdma_load_firmware(const struct firmware *fw, void *context)
1731{
1732        struct sdma_engine *sdma = context;
1733        const struct sdma_firmware_header *header;
1734        const struct sdma_script_start_addrs *addr;
1735        unsigned short *ram_code;
1736
1737        if (!fw) {
1738                dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1739                /* In this case we just use the ROM firmware. */
1740                return;
1741        }
1742
1743        if (fw->size < sizeof(*header))
1744                goto err_firmware;
1745
1746        header = (struct sdma_firmware_header *)fw->data;
1747
1748        if (header->magic != SDMA_FIRMWARE_MAGIC)
1749                goto err_firmware;
1750        if (header->ram_code_start + header->ram_code_size > fw->size)
1751                goto err_firmware;
1752        switch (header->version_major) {
1753        case 1:
1754                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1755                break;
1756        case 2:
1757                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1758                break;
1759        case 3:
1760                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1761                break;
1762        case 4:
1763                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1764                break;
1765        default:
1766                dev_err(sdma->dev, "unknown firmware version\n");
1767                goto err_firmware;
1768        }
1769
1770        addr = (void *)header + header->script_addrs_start;
1771        ram_code = (void *)header + header->ram_code_start;
1772
1773        clk_enable(sdma->clk_ipg);
1774        clk_enable(sdma->clk_ahb);
1775        /* download the RAM image for SDMA */
1776        sdma_load_script(sdma, ram_code,
1777                        header->ram_code_size,
1778                        addr->ram_code_start_addr);
1779        clk_disable(sdma->clk_ipg);
1780        clk_disable(sdma->clk_ahb);
1781
1782        sdma_add_scripts(sdma, addr);
1783
1784        dev_info(sdma->dev, "loaded firmware %d.%d\n",
1785                        header->version_major,
1786                        header->version_minor);
1787
1788err_firmware:
1789        release_firmware(fw);
1790}
1791
1792#define EVENT_REMAP_CELLS 3
1793
1794static int sdma_event_remap(struct sdma_engine *sdma)
1795{
1796        struct device_node *np = sdma->dev->of_node;
1797        struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1798        struct property *event_remap;
1799        struct regmap *gpr;
1800        char propname[] = "fsl,sdma-event-remap";
1801        u32 reg, val, shift, num_map, i;
1802        int ret = 0;
1803
1804        if (IS_ERR(np) || IS_ERR(gpr_np))
1805                goto out;
1806
1807        event_remap = of_find_property(np, propname, NULL);
1808        num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1809        if (!num_map) {
1810                dev_dbg(sdma->dev, "no event needs to be remapped\n");
1811                goto out;
1812        } else if (num_map % EVENT_REMAP_CELLS) {
1813                dev_err(sdma->dev, "the property %s must modulo %d\n",
1814                                propname, EVENT_REMAP_CELLS);
1815                ret = -EINVAL;
1816                goto out;
1817        }
1818
1819        gpr = syscon_node_to_regmap(gpr_np);
1820        if (IS_ERR(gpr)) {
1821                dev_err(sdma->dev, "failed to get gpr regmap\n");
1822                ret = PTR_ERR(gpr);
1823                goto out;
1824        }
1825
1826        for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1827                ret = of_property_read_u32_index(np, propname, i, &reg);
1828                if (ret) {
1829                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1830                                        propname, i);
1831                        goto out;
1832                }
1833
1834                ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1835                if (ret) {
1836                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1837                                        propname, i + 1);
1838                        goto out;
1839                }
1840
1841                ret = of_property_read_u32_index(np, propname, i + 2, &val);
1842                if (ret) {
1843                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1844                                        propname, i + 2);
1845                        goto out;
1846                }
1847
1848                regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1849        }
1850
1851out:
1852        if (!IS_ERR(gpr_np))
1853                of_node_put(gpr_np);
1854
1855        return ret;
1856}
1857
1858static int sdma_get_firmware(struct sdma_engine *sdma,
1859                const char *fw_name)
1860{
1861        int ret;
1862
1863        ret = request_firmware_nowait(THIS_MODULE,
1864                        FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1865                        GFP_KERNEL, sdma, sdma_load_firmware);
1866
1867        return ret;
1868}
1869
1870static int sdma_init(struct sdma_engine *sdma)
1871{
1872        int i, ret;
1873        dma_addr_t ccb_phys;
1874
1875        ret = clk_enable(sdma->clk_ipg);
1876        if (ret)
1877                return ret;
1878        ret = clk_enable(sdma->clk_ahb);
1879        if (ret)
1880                goto disable_clk_ipg;
1881
1882        if (sdma->drvdata->check_ratio &&
1883            (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1884                sdma->clk_ratio = 1;
1885
1886        /* Be sure SDMA has not started yet */
1887        writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1888
1889        sdma->channel_control = dma_alloc_coherent(sdma->dev,
1890                        MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1891                        sizeof(struct sdma_context_data),
1892                        &ccb_phys, GFP_KERNEL);
1893
1894        if (!sdma->channel_control) {
1895                ret = -ENOMEM;
1896                goto err_dma_alloc;
1897        }
1898
1899        sdma->context = (void *)sdma->channel_control +
1900                MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1901        sdma->context_phys = ccb_phys +
1902                MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1903
1904        /* disable all channels */
1905        for (i = 0; i < sdma->drvdata->num_events; i++)
1906                writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1907
1908        /* All channels have priority 0 */
1909        for (i = 0; i < MAX_DMA_CHANNELS; i++)
1910                writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1911
1912        ret = sdma_request_channel0(sdma);
1913        if (ret)
1914                goto err_dma_alloc;
1915
1916        sdma_config_ownership(&sdma->channel[0], false, true, false);
1917
1918        /* Set Command Channel (Channel Zero) */
1919        writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1920
1921        /* Set bits of CONFIG register but with static context switching */
1922        if (sdma->clk_ratio)
1923                writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1924        else
1925                writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1926
1927        writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1928
1929        /* Initializes channel's priorities */
1930        sdma_set_channel_priority(&sdma->channel[0], 7);
1931
1932        clk_disable(sdma->clk_ipg);
1933        clk_disable(sdma->clk_ahb);
1934
1935        return 0;
1936
1937err_dma_alloc:
1938        clk_disable(sdma->clk_ahb);
1939disable_clk_ipg:
1940        clk_disable(sdma->clk_ipg);
1941        dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1942        return ret;
1943}
1944
1945static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1946{
1947        struct sdma_channel *sdmac = to_sdma_chan(chan);
1948        struct imx_dma_data *data = fn_param;
1949
1950        if (!imx_dma_is_general_purpose(chan))
1951                return false;
1952
1953        sdmac->data = *data;
1954        chan->private = &sdmac->data;
1955
1956        return true;
1957}
1958
1959static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1960                                   struct of_dma *ofdma)
1961{
1962        struct sdma_engine *sdma = ofdma->of_dma_data;
1963        dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1964        struct imx_dma_data data;
1965
1966        if (dma_spec->args_count != 3)
1967                return NULL;
1968
1969        data.dma_request = dma_spec->args[0];
1970        data.peripheral_type = dma_spec->args[1];
1971        data.priority = dma_spec->args[2];
1972        /*
1973         * init dma_request2 to zero, which is not used by the dts.
1974         * For P2P, dma_request2 is init from dma_request_channel(),
1975         * chan->private will point to the imx_dma_data, and in
1976         * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1977         * be set to sdmac->event_id1.
1978         */
1979        data.dma_request2 = 0;
1980
1981        return __dma_request_channel(&mask, sdma_filter_fn, &data,
1982                                     ofdma->of_node);
1983}
1984
1985static int sdma_probe(struct platform_device *pdev)
1986{
1987        const struct of_device_id *of_id =
1988                        of_match_device(sdma_dt_ids, &pdev->dev);
1989        struct device_node *np = pdev->dev.of_node;
1990        struct device_node *spba_bus;
1991        const char *fw_name;
1992        int ret;
1993        int irq;
1994        struct resource *iores;
1995        struct resource spba_res;
1996        struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1997        int i;
1998        struct sdma_engine *sdma;
1999        s32 *saddr_arr;
2000        const struct sdma_driver_data *drvdata = NULL;
2001
2002        if (of_id)
2003                drvdata = of_id->data;
2004        else if (pdev->id_entry)
2005                drvdata = (void *)pdev->id_entry->driver_data;
2006
2007        if (!drvdata) {
2008                dev_err(&pdev->dev, "unable to find driver data\n");
2009                return -EINVAL;
2010        }
2011
2012        ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2013        if (ret)
2014                return ret;
2015
2016        sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2017        if (!sdma)
2018                return -ENOMEM;
2019
2020        spin_lock_init(&sdma->channel_0_lock);
2021
2022        sdma->dev = &pdev->dev;
2023        sdma->drvdata = drvdata;
2024
2025        irq = platform_get_irq(pdev, 0);
2026        if (irq < 0)
2027                return irq;
2028
2029        iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2030        sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2031        if (IS_ERR(sdma->regs))
2032                return PTR_ERR(sdma->regs);
2033
2034        sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2035        if (IS_ERR(sdma->clk_ipg))
2036                return PTR_ERR(sdma->clk_ipg);
2037
2038        sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2039        if (IS_ERR(sdma->clk_ahb))
2040                return PTR_ERR(sdma->clk_ahb);
2041
2042        ret = clk_prepare(sdma->clk_ipg);
2043        if (ret)
2044                return ret;
2045
2046        ret = clk_prepare(sdma->clk_ahb);
2047        if (ret)
2048                goto err_clk;
2049
2050        ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2051                               sdma);
2052        if (ret)
2053                goto err_irq;
2054
2055        sdma->irq = irq;
2056
2057        sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2058        if (!sdma->script_addrs) {
2059                ret = -ENOMEM;
2060                goto err_irq;
2061        }
2062
2063        /* initially no scripts available */
2064        saddr_arr = (s32 *)sdma->script_addrs;
2065        for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2066                saddr_arr[i] = -EINVAL;
2067
2068        dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2069        dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2070        dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2071
2072        INIT_LIST_HEAD(&sdma->dma_device.channels);
2073        /* Initialize channel parameters */
2074        for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2075                struct sdma_channel *sdmac = &sdma->channel[i];
2076
2077                sdmac->sdma = sdma;
2078
2079                sdmac->channel = i;
2080                sdmac->vc.desc_free = sdma_desc_free;
2081                INIT_WORK(&sdmac->terminate_worker,
2082                                sdma_channel_terminate_work);
2083                /*
2084                 * Add the channel to the DMAC list. Do not add channel 0 though
2085                 * because we need it internally in the SDMA driver. This also means
2086                 * that channel 0 in dmaengine counting matches sdma channel 1.
2087                 */
2088                if (i)
2089                        vchan_init(&sdmac->vc, &sdma->dma_device);
2090        }
2091
2092        ret = sdma_init(sdma);
2093        if (ret)
2094                goto err_init;
2095
2096        ret = sdma_event_remap(sdma);
2097        if (ret)
2098                goto err_init;
2099
2100        if (sdma->drvdata->script_addrs)
2101                sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2102        if (pdata && pdata->script_addrs)
2103                sdma_add_scripts(sdma, pdata->script_addrs);
2104
2105        sdma->dma_device.dev = &pdev->dev;
2106
2107        sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2108        sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2109        sdma->dma_device.device_tx_status = sdma_tx_status;
2110        sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2111        sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2112        sdma->dma_device.device_config = sdma_config;
2113        sdma->dma_device.device_terminate_all = sdma_terminate_all;
2114        sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2115        sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2116        sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2117        sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2118        sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2119        sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2120        sdma->dma_device.device_issue_pending = sdma_issue_pending;
2121        sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2122        sdma->dma_device.copy_align = 2;
2123        dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2124
2125        platform_set_drvdata(pdev, sdma);
2126
2127        ret = dma_async_device_register(&sdma->dma_device);
2128        if (ret) {
2129                dev_err(&pdev->dev, "unable to register\n");
2130                goto err_init;
2131        }
2132
2133        if (np) {
2134                ret = of_dma_controller_register(np, sdma_xlate, sdma);
2135                if (ret) {
2136                        dev_err(&pdev->dev, "failed to register controller\n");
2137                        goto err_register;
2138                }
2139
2140                spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2141                ret = of_address_to_resource(spba_bus, 0, &spba_res);
2142                if (!ret) {
2143                        sdma->spba_start_addr = spba_res.start;
2144                        sdma->spba_end_addr = spba_res.end;
2145                }
2146                of_node_put(spba_bus);
2147        }
2148
2149        /*
2150         * Kick off firmware loading as the very last step:
2151         * attempt to load firmware only if we're not on the error path, because
2152         * the firmware callback requires a fully functional and allocated sdma
2153         * instance.
2154         */
2155        if (pdata) {
2156                ret = sdma_get_firmware(sdma, pdata->fw_name);
2157                if (ret)
2158                        dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2159        } else {
2160                /*
2161                 * Because that device tree does not encode ROM script address,
2162                 * the RAM script in firmware is mandatory for device tree
2163                 * probe, otherwise it fails.
2164                 */
2165                ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2166                                              &fw_name);
2167                if (ret) {
2168                        dev_warn(&pdev->dev, "failed to get firmware name\n");
2169                } else {
2170                        ret = sdma_get_firmware(sdma, fw_name);
2171                        if (ret)
2172                                dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2173                }
2174        }
2175
2176        return 0;
2177
2178err_register:
2179        dma_async_device_unregister(&sdma->dma_device);
2180err_init:
2181        kfree(sdma->script_addrs);
2182err_irq:
2183        clk_unprepare(sdma->clk_ahb);
2184err_clk:
2185        clk_unprepare(sdma->clk_ipg);
2186        return ret;
2187}
2188
2189static int sdma_remove(struct platform_device *pdev)
2190{
2191        struct sdma_engine *sdma = platform_get_drvdata(pdev);
2192        int i;
2193
2194        devm_free_irq(&pdev->dev, sdma->irq, sdma);
2195        dma_async_device_unregister(&sdma->dma_device);
2196        kfree(sdma->script_addrs);
2197        clk_unprepare(sdma->clk_ahb);
2198        clk_unprepare(sdma->clk_ipg);
2199        /* Kill the tasklet */
2200        for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2201                struct sdma_channel *sdmac = &sdma->channel[i];
2202
2203                tasklet_kill(&sdmac->vc.task);
2204                sdma_free_chan_resources(&sdmac->vc.chan);
2205        }
2206
2207        platform_set_drvdata(pdev, NULL);
2208        return 0;
2209}
2210
2211static struct platform_driver sdma_driver = {
2212        .driver         = {
2213                .name   = "imx-sdma",
2214                .of_match_table = sdma_dt_ids,
2215        },
2216        .id_table       = sdma_devtypes,
2217        .remove         = sdma_remove,
2218        .probe          = sdma_probe,
2219};
2220
2221module_platform_driver(sdma_driver);
2222
2223MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2224MODULE_DESCRIPTION("i.MX SDMA driver");
2225#if IS_ENABLED(CONFIG_SOC_IMX6Q)
2226MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2227#endif
2228#if IS_ENABLED(CONFIG_SOC_IMX7D)
2229MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2230#endif
2231MODULE_LICENSE("GPL");
2232