linux/drivers/dma/sh/rcar-dmac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver
   4 *
   5 * Copyright (C) 2014-2019 Renesas Electronics Inc.
   6 *
   7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/interrupt.h>
  14#include <linux/list.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_dma.h>
  19#include <linux/of_platform.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24
  25#include "../dmaengine.h"
  26
  27/*
  28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
  29 * @node: entry in the parent's chunks list
  30 * @src_addr: device source address
  31 * @dst_addr: device destination address
  32 * @size: transfer size in bytes
  33 */
  34struct rcar_dmac_xfer_chunk {
  35        struct list_head node;
  36
  37        dma_addr_t src_addr;
  38        dma_addr_t dst_addr;
  39        u32 size;
  40};
  41
  42/*
  43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
  44 * @sar: value of the SAR register (source address)
  45 * @dar: value of the DAR register (destination address)
  46 * @tcr: value of the TCR register (transfer count)
  47 */
  48struct rcar_dmac_hw_desc {
  49        u32 sar;
  50        u32 dar;
  51        u32 tcr;
  52        u32 reserved;
  53} __attribute__((__packed__));
  54
  55/*
  56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
  57 * @async_tx: base DMA asynchronous transaction descriptor
  58 * @direction: direction of the DMA transfer
  59 * @xfer_shift: log2 of the transfer size
  60 * @chcr: value of the channel configuration register for this transfer
  61 * @node: entry in the channel's descriptors lists
  62 * @chunks: list of transfer chunks for this transfer
  63 * @running: the transfer chunk being currently processed
  64 * @nchunks: number of transfer chunks for this transfer
  65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
  66 * @hwdescs.mem: hardware descriptors memory for the transfer
  67 * @hwdescs.dma: device address of the hardware descriptors memory
  68 * @hwdescs.size: size of the hardware descriptors in bytes
  69 * @size: transfer size in bytes
  70 * @cyclic: when set indicates that the DMA transfer is cyclic
  71 */
  72struct rcar_dmac_desc {
  73        struct dma_async_tx_descriptor async_tx;
  74        enum dma_transfer_direction direction;
  75        unsigned int xfer_shift;
  76        u32 chcr;
  77
  78        struct list_head node;
  79        struct list_head chunks;
  80        struct rcar_dmac_xfer_chunk *running;
  81        unsigned int nchunks;
  82
  83        struct {
  84                bool use;
  85                struct rcar_dmac_hw_desc *mem;
  86                dma_addr_t dma;
  87                size_t size;
  88        } hwdescs;
  89
  90        unsigned int size;
  91        bool cyclic;
  92};
  93
  94#define to_rcar_dmac_desc(d)    container_of(d, struct rcar_dmac_desc, async_tx)
  95
  96/*
  97 * struct rcar_dmac_desc_page - One page worth of descriptors
  98 * @node: entry in the channel's pages list
  99 * @descs: array of DMA descriptors
 100 * @chunks: array of transfer chunk descriptors
 101 */
 102struct rcar_dmac_desc_page {
 103        struct list_head node;
 104
 105        union {
 106                struct rcar_dmac_desc descs[0];
 107                struct rcar_dmac_xfer_chunk chunks[0];
 108        };
 109};
 110
 111#define RCAR_DMAC_DESCS_PER_PAGE                                        \
 112        ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /    \
 113        sizeof(struct rcar_dmac_desc))
 114#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE                                  \
 115        ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /   \
 116        sizeof(struct rcar_dmac_xfer_chunk))
 117
 118/*
 119 * struct rcar_dmac_chan_slave - Slave configuration
 120 * @slave_addr: slave memory address
 121 * @xfer_size: size (in bytes) of hardware transfers
 122 */
 123struct rcar_dmac_chan_slave {
 124        phys_addr_t slave_addr;
 125        unsigned int xfer_size;
 126};
 127
 128/*
 129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
 130 * @addr: slave dma address
 131 * @dir: direction of mapping
 132 * @slave: slave configuration that is mapped
 133 */
 134struct rcar_dmac_chan_map {
 135        dma_addr_t addr;
 136        enum dma_data_direction dir;
 137        struct rcar_dmac_chan_slave slave;
 138};
 139
 140/*
 141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
 142 * @chan: base DMA channel object
 143 * @iomem: channel I/O memory base
 144 * @index: index of this channel in the controller
 145 * @irq: channel IRQ
 146 * @src: slave memory address and size on the source side
 147 * @dst: slave memory address and size on the destination side
 148 * @mid_rid: hardware MID/RID for the DMA client using this channel
 149 * @lock: protects the channel CHCR register and the desc members
 150 * @desc.free: list of free descriptors
 151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
 152 * @desc.active: list of active descriptors (activated with issue_pending)
 153 * @desc.done: list of completed descriptors
 154 * @desc.wait: list of descriptors waiting for an ack
 155 * @desc.running: the descriptor being processed (a member of the active list)
 156 * @desc.chunks_free: list of free transfer chunk descriptors
 157 * @desc.pages: list of pages used by allocated descriptors
 158 */
 159struct rcar_dmac_chan {
 160        struct dma_chan chan;
 161        void __iomem *iomem;
 162        unsigned int index;
 163        int irq;
 164
 165        struct rcar_dmac_chan_slave src;
 166        struct rcar_dmac_chan_slave dst;
 167        struct rcar_dmac_chan_map map;
 168        int mid_rid;
 169
 170        spinlock_t lock;
 171
 172        struct {
 173                struct list_head free;
 174                struct list_head pending;
 175                struct list_head active;
 176                struct list_head done;
 177                struct list_head wait;
 178                struct rcar_dmac_desc *running;
 179
 180                struct list_head chunks_free;
 181
 182                struct list_head pages;
 183        } desc;
 184};
 185
 186#define to_rcar_dmac_chan(c)    container_of(c, struct rcar_dmac_chan, chan)
 187
 188/*
 189 * struct rcar_dmac - R-Car Gen2 DMA Controller
 190 * @engine: base DMA engine object
 191 * @dev: the hardware device
 192 * @iomem: remapped I/O memory base
 193 * @n_channels: number of available channels
 194 * @channels: array of DMAC channels
 195 * @channels_mask: bitfield of which DMA channels are managed by this driver
 196 * @modules: bitmask of client modules in use
 197 */
 198struct rcar_dmac {
 199        struct dma_device engine;
 200        struct device *dev;
 201        void __iomem *iomem;
 202        struct device_dma_parameters parms;
 203
 204        unsigned int n_channels;
 205        struct rcar_dmac_chan *channels;
 206        u32 channels_mask;
 207
 208        DECLARE_BITMAP(modules, 256);
 209};
 210
 211#define to_rcar_dmac(d)         container_of(d, struct rcar_dmac, engine)
 212
 213/*
 214 * struct rcar_dmac_of_data - This driver's OF data
 215 * @chan_offset_base: DMAC channels base offset
 216 * @chan_offset_stride: DMAC channels offset stride
 217 */
 218struct rcar_dmac_of_data {
 219        u32 chan_offset_base;
 220        u32 chan_offset_stride;
 221};
 222
 223/* -----------------------------------------------------------------------------
 224 * Registers
 225 */
 226
 227#define RCAR_DMAISTA                    0x0020
 228#define RCAR_DMASEC                     0x0030
 229#define RCAR_DMAOR                      0x0060
 230#define RCAR_DMAOR_PRI_FIXED            (0 << 8)
 231#define RCAR_DMAOR_PRI_ROUND_ROBIN      (3 << 8)
 232#define RCAR_DMAOR_AE                   (1 << 2)
 233#define RCAR_DMAOR_DME                  (1 << 0)
 234#define RCAR_DMACHCLR                   0x0080
 235#define RCAR_DMADPSEC                   0x00a0
 236
 237#define RCAR_DMASAR                     0x0000
 238#define RCAR_DMADAR                     0x0004
 239#define RCAR_DMATCR                     0x0008
 240#define RCAR_DMATCR_MASK                0x00ffffff
 241#define RCAR_DMATSR                     0x0028
 242#define RCAR_DMACHCR                    0x000c
 243#define RCAR_DMACHCR_CAE                (1 << 31)
 244#define RCAR_DMACHCR_CAIE               (1 << 30)
 245#define RCAR_DMACHCR_DPM_DISABLED       (0 << 28)
 246#define RCAR_DMACHCR_DPM_ENABLED        (1 << 28)
 247#define RCAR_DMACHCR_DPM_REPEAT         (2 << 28)
 248#define RCAR_DMACHCR_DPM_INFINITE       (3 << 28)
 249#define RCAR_DMACHCR_RPT_SAR            (1 << 27)
 250#define RCAR_DMACHCR_RPT_DAR            (1 << 26)
 251#define RCAR_DMACHCR_RPT_TCR            (1 << 25)
 252#define RCAR_DMACHCR_DPB                (1 << 22)
 253#define RCAR_DMACHCR_DSE                (1 << 19)
 254#define RCAR_DMACHCR_DSIE               (1 << 18)
 255#define RCAR_DMACHCR_TS_1B              ((0 << 20) | (0 << 3))
 256#define RCAR_DMACHCR_TS_2B              ((0 << 20) | (1 << 3))
 257#define RCAR_DMACHCR_TS_4B              ((0 << 20) | (2 << 3))
 258#define RCAR_DMACHCR_TS_16B             ((0 << 20) | (3 << 3))
 259#define RCAR_DMACHCR_TS_32B             ((1 << 20) | (0 << 3))
 260#define RCAR_DMACHCR_TS_64B             ((1 << 20) | (1 << 3))
 261#define RCAR_DMACHCR_TS_8B              ((1 << 20) | (3 << 3))
 262#define RCAR_DMACHCR_DM_FIXED           (0 << 14)
 263#define RCAR_DMACHCR_DM_INC             (1 << 14)
 264#define RCAR_DMACHCR_DM_DEC             (2 << 14)
 265#define RCAR_DMACHCR_SM_FIXED           (0 << 12)
 266#define RCAR_DMACHCR_SM_INC             (1 << 12)
 267#define RCAR_DMACHCR_SM_DEC             (2 << 12)
 268#define RCAR_DMACHCR_RS_AUTO            (4 << 8)
 269#define RCAR_DMACHCR_RS_DMARS           (8 << 8)
 270#define RCAR_DMACHCR_IE                 (1 << 2)
 271#define RCAR_DMACHCR_TE                 (1 << 1)
 272#define RCAR_DMACHCR_DE                 (1 << 0)
 273#define RCAR_DMATCRB                    0x0018
 274#define RCAR_DMATSRB                    0x0038
 275#define RCAR_DMACHCRB                   0x001c
 276#define RCAR_DMACHCRB_DCNT(n)           ((n) << 24)
 277#define RCAR_DMACHCRB_DPTR_MASK         (0xff << 16)
 278#define RCAR_DMACHCRB_DPTR_SHIFT        16
 279#define RCAR_DMACHCRB_DRST              (1 << 15)
 280#define RCAR_DMACHCRB_DTS               (1 << 8)
 281#define RCAR_DMACHCRB_SLM_NORMAL        (0 << 4)
 282#define RCAR_DMACHCRB_SLM_CLK(n)        ((8 | (n)) << 4)
 283#define RCAR_DMACHCRB_PRI(n)            ((n) << 0)
 284#define RCAR_DMARS                      0x0040
 285#define RCAR_DMABUFCR                   0x0048
 286#define RCAR_DMABUFCR_MBU(n)            ((n) << 16)
 287#define RCAR_DMABUFCR_ULB(n)            ((n) << 0)
 288#define RCAR_DMADPBASE                  0x0050
 289#define RCAR_DMADPBASE_MASK             0xfffffff0
 290#define RCAR_DMADPBASE_SEL              (1 << 0)
 291#define RCAR_DMADPCR                    0x0054
 292#define RCAR_DMADPCR_DIPT(n)            ((n) << 24)
 293#define RCAR_DMAFIXSAR                  0x0010
 294#define RCAR_DMAFIXDAR                  0x0014
 295#define RCAR_DMAFIXDPBASE               0x0060
 296
 297/* Hardcode the MEMCPY transfer size to 4 bytes. */
 298#define RCAR_DMAC_MEMCPY_XFER_SIZE      4
 299
 300/* -----------------------------------------------------------------------------
 301 * Device access
 302 */
 303
 304static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
 305{
 306        if (reg == RCAR_DMAOR)
 307                writew(data, dmac->iomem + reg);
 308        else
 309                writel(data, dmac->iomem + reg);
 310}
 311
 312static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
 313{
 314        if (reg == RCAR_DMAOR)
 315                return readw(dmac->iomem + reg);
 316        else
 317                return readl(dmac->iomem + reg);
 318}
 319
 320static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
 321{
 322        if (reg == RCAR_DMARS)
 323                return readw(chan->iomem + reg);
 324        else
 325                return readl(chan->iomem + reg);
 326}
 327
 328static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
 329{
 330        if (reg == RCAR_DMARS)
 331                writew(data, chan->iomem + reg);
 332        else
 333                writel(data, chan->iomem + reg);
 334}
 335
 336/* -----------------------------------------------------------------------------
 337 * Initialization and configuration
 338 */
 339
 340static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
 341{
 342        u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 343
 344        return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
 345}
 346
 347static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
 348{
 349        struct rcar_dmac_desc *desc = chan->desc.running;
 350        u32 chcr = desc->chcr;
 351
 352        WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
 353
 354        if (chan->mid_rid >= 0)
 355                rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
 356
 357        if (desc->hwdescs.use) {
 358                struct rcar_dmac_xfer_chunk *chunk =
 359                        list_first_entry(&desc->chunks,
 360                                         struct rcar_dmac_xfer_chunk, node);
 361
 362                dev_dbg(chan->chan.device->dev,
 363                        "chan%u: queue desc %p: %u@%pad\n",
 364                        chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
 365
 366#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 367                rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 368                                     chunk->src_addr >> 32);
 369                rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 370                                     chunk->dst_addr >> 32);
 371                rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
 372                                     desc->hwdescs.dma >> 32);
 373#endif
 374                rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
 375                                     (desc->hwdescs.dma & 0xfffffff0) |
 376                                     RCAR_DMADPBASE_SEL);
 377                rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
 378                                     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
 379                                     RCAR_DMACHCRB_DRST);
 380
 381                /*
 382                 * Errata: When descriptor memory is accessed through an IOMMU
 383                 * the DMADAR register isn't initialized automatically from the
 384                 * first descriptor at beginning of transfer by the DMAC like it
 385                 * should. Initialize it manually with the destination address
 386                 * of the first chunk.
 387                 */
 388                rcar_dmac_chan_write(chan, RCAR_DMADAR,
 389                                     chunk->dst_addr & 0xffffffff);
 390
 391                /*
 392                 * Program the descriptor stage interrupt to occur after the end
 393                 * of the first stage.
 394                 */
 395                rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
 396
 397                chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
 398                     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
 399
 400                /*
 401                 * If the descriptor isn't cyclic enable normal descriptor mode
 402                 * and the transfer completion interrupt.
 403                 */
 404                if (!desc->cyclic)
 405                        chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
 406                /*
 407                 * If the descriptor is cyclic and has a callback enable the
 408                 * descriptor stage interrupt in infinite repeat mode.
 409                 */
 410                else if (desc->async_tx.callback)
 411                        chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
 412                /*
 413                 * Otherwise just select infinite repeat mode without any
 414                 * interrupt.
 415                 */
 416                else
 417                        chcr |= RCAR_DMACHCR_DPM_INFINITE;
 418        } else {
 419                struct rcar_dmac_xfer_chunk *chunk = desc->running;
 420
 421                dev_dbg(chan->chan.device->dev,
 422                        "chan%u: queue chunk %p: %u@%pad -> %pad\n",
 423                        chan->index, chunk, chunk->size, &chunk->src_addr,
 424                        &chunk->dst_addr);
 425
 426#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 427                rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 428                                     chunk->src_addr >> 32);
 429                rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 430                                     chunk->dst_addr >> 32);
 431#endif
 432                rcar_dmac_chan_write(chan, RCAR_DMASAR,
 433                                     chunk->src_addr & 0xffffffff);
 434                rcar_dmac_chan_write(chan, RCAR_DMADAR,
 435                                     chunk->dst_addr & 0xffffffff);
 436                rcar_dmac_chan_write(chan, RCAR_DMATCR,
 437                                     chunk->size >> desc->xfer_shift);
 438
 439                chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
 440        }
 441
 442        rcar_dmac_chan_write(chan, RCAR_DMACHCR,
 443                             chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
 444}
 445
 446static int rcar_dmac_init(struct rcar_dmac *dmac)
 447{
 448        u16 dmaor;
 449
 450        /* Clear all channels and enable the DMAC globally. */
 451        rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
 452        rcar_dmac_write(dmac, RCAR_DMAOR,
 453                        RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
 454
 455        dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
 456        if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
 457                dev_warn(dmac->dev, "DMAOR initialization failed.\n");
 458                return -EIO;
 459        }
 460
 461        return 0;
 462}
 463
 464/* -----------------------------------------------------------------------------
 465 * Descriptors submission
 466 */
 467
 468static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
 469{
 470        struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
 471        struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
 472        unsigned long flags;
 473        dma_cookie_t cookie;
 474
 475        spin_lock_irqsave(&chan->lock, flags);
 476
 477        cookie = dma_cookie_assign(tx);
 478
 479        dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
 480                chan->index, tx->cookie, desc);
 481
 482        list_add_tail(&desc->node, &chan->desc.pending);
 483        desc->running = list_first_entry(&desc->chunks,
 484                                         struct rcar_dmac_xfer_chunk, node);
 485
 486        spin_unlock_irqrestore(&chan->lock, flags);
 487
 488        return cookie;
 489}
 490
 491/* -----------------------------------------------------------------------------
 492 * Descriptors allocation and free
 493 */
 494
 495/*
 496 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
 497 * @chan: the DMA channel
 498 * @gfp: allocation flags
 499 */
 500static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 501{
 502        struct rcar_dmac_desc_page *page;
 503        unsigned long flags;
 504        LIST_HEAD(list);
 505        unsigned int i;
 506
 507        page = (void *)get_zeroed_page(gfp);
 508        if (!page)
 509                return -ENOMEM;
 510
 511        for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
 512                struct rcar_dmac_desc *desc = &page->descs[i];
 513
 514                dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
 515                desc->async_tx.tx_submit = rcar_dmac_tx_submit;
 516                INIT_LIST_HEAD(&desc->chunks);
 517
 518                list_add_tail(&desc->node, &list);
 519        }
 520
 521        spin_lock_irqsave(&chan->lock, flags);
 522        list_splice_tail(&list, &chan->desc.free);
 523        list_add_tail(&page->node, &chan->desc.pages);
 524        spin_unlock_irqrestore(&chan->lock, flags);
 525
 526        return 0;
 527}
 528
 529/*
 530 * rcar_dmac_desc_put - Release a DMA transfer descriptor
 531 * @chan: the DMA channel
 532 * @desc: the descriptor
 533 *
 534 * Put the descriptor and its transfer chunk descriptors back in the channel's
 535 * free descriptors lists. The descriptor's chunks list will be reinitialized to
 536 * an empty list as a result.
 537 *
 538 * The descriptor must have been removed from the channel's lists before calling
 539 * this function.
 540 */
 541static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
 542                               struct rcar_dmac_desc *desc)
 543{
 544        unsigned long flags;
 545
 546        spin_lock_irqsave(&chan->lock, flags);
 547        list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
 548        list_add(&desc->node, &chan->desc.free);
 549        spin_unlock_irqrestore(&chan->lock, flags);
 550}
 551
 552static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
 553{
 554        struct rcar_dmac_desc *desc, *_desc;
 555        unsigned long flags;
 556        LIST_HEAD(list);
 557
 558        /*
 559         * We have to temporarily move all descriptors from the wait list to a
 560         * local list as iterating over the wait list, even with
 561         * list_for_each_entry_safe, isn't safe if we release the channel lock
 562         * around the rcar_dmac_desc_put() call.
 563         */
 564        spin_lock_irqsave(&chan->lock, flags);
 565        list_splice_init(&chan->desc.wait, &list);
 566        spin_unlock_irqrestore(&chan->lock, flags);
 567
 568        list_for_each_entry_safe(desc, _desc, &list, node) {
 569                if (async_tx_test_ack(&desc->async_tx)) {
 570                        list_del(&desc->node);
 571                        rcar_dmac_desc_put(chan, desc);
 572                }
 573        }
 574
 575        if (list_empty(&list))
 576                return;
 577
 578        /* Put the remaining descriptors back in the wait list. */
 579        spin_lock_irqsave(&chan->lock, flags);
 580        list_splice(&list, &chan->desc.wait);
 581        spin_unlock_irqrestore(&chan->lock, flags);
 582}
 583
 584/*
 585 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
 586 * @chan: the DMA channel
 587 *
 588 * Locking: This function must be called in a non-atomic context.
 589 *
 590 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
 591 * be allocated.
 592 */
 593static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
 594{
 595        struct rcar_dmac_desc *desc;
 596        unsigned long flags;
 597        int ret;
 598
 599        /* Recycle acked descriptors before attempting allocation. */
 600        rcar_dmac_desc_recycle_acked(chan);
 601
 602        spin_lock_irqsave(&chan->lock, flags);
 603
 604        while (list_empty(&chan->desc.free)) {
 605                /*
 606                 * No free descriptors, allocate a page worth of them and try
 607                 * again, as someone else could race us to get the newly
 608                 * allocated descriptors. If the allocation fails return an
 609                 * error.
 610                 */
 611                spin_unlock_irqrestore(&chan->lock, flags);
 612                ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
 613                if (ret < 0)
 614                        return NULL;
 615                spin_lock_irqsave(&chan->lock, flags);
 616        }
 617
 618        desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
 619        list_del(&desc->node);
 620
 621        spin_unlock_irqrestore(&chan->lock, flags);
 622
 623        return desc;
 624}
 625
 626/*
 627 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
 628 * @chan: the DMA channel
 629 * @gfp: allocation flags
 630 */
 631static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 632{
 633        struct rcar_dmac_desc_page *page;
 634        unsigned long flags;
 635        LIST_HEAD(list);
 636        unsigned int i;
 637
 638        page = (void *)get_zeroed_page(gfp);
 639        if (!page)
 640                return -ENOMEM;
 641
 642        for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
 643                struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
 644
 645                list_add_tail(&chunk->node, &list);
 646        }
 647
 648        spin_lock_irqsave(&chan->lock, flags);
 649        list_splice_tail(&list, &chan->desc.chunks_free);
 650        list_add_tail(&page->node, &chan->desc.pages);
 651        spin_unlock_irqrestore(&chan->lock, flags);
 652
 653        return 0;
 654}
 655
 656/*
 657 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
 658 * @chan: the DMA channel
 659 *
 660 * Locking: This function must be called in a non-atomic context.
 661 *
 662 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
 663 * descriptor can be allocated.
 664 */
 665static struct rcar_dmac_xfer_chunk *
 666rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
 667{
 668        struct rcar_dmac_xfer_chunk *chunk;
 669        unsigned long flags;
 670        int ret;
 671
 672        spin_lock_irqsave(&chan->lock, flags);
 673
 674        while (list_empty(&chan->desc.chunks_free)) {
 675                /*
 676                 * No free descriptors, allocate a page worth of them and try
 677                 * again, as someone else could race us to get the newly
 678                 * allocated descriptors. If the allocation fails return an
 679                 * error.
 680                 */
 681                spin_unlock_irqrestore(&chan->lock, flags);
 682                ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
 683                if (ret < 0)
 684                        return NULL;
 685                spin_lock_irqsave(&chan->lock, flags);
 686        }
 687
 688        chunk = list_first_entry(&chan->desc.chunks_free,
 689                                 struct rcar_dmac_xfer_chunk, node);
 690        list_del(&chunk->node);
 691
 692        spin_unlock_irqrestore(&chan->lock, flags);
 693
 694        return chunk;
 695}
 696
 697static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
 698                                     struct rcar_dmac_desc *desc, size_t size)
 699{
 700        /*
 701         * dma_alloc_coherent() allocates memory in page size increments. To
 702         * avoid reallocating the hardware descriptors when the allocated size
 703         * wouldn't change align the requested size to a multiple of the page
 704         * size.
 705         */
 706        size = PAGE_ALIGN(size);
 707
 708        if (desc->hwdescs.size == size)
 709                return;
 710
 711        if (desc->hwdescs.mem) {
 712                dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
 713                                  desc->hwdescs.mem, desc->hwdescs.dma);
 714                desc->hwdescs.mem = NULL;
 715                desc->hwdescs.size = 0;
 716        }
 717
 718        if (!size)
 719                return;
 720
 721        desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
 722                                               &desc->hwdescs.dma, GFP_NOWAIT);
 723        if (!desc->hwdescs.mem)
 724                return;
 725
 726        desc->hwdescs.size = size;
 727}
 728
 729static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
 730                                 struct rcar_dmac_desc *desc)
 731{
 732        struct rcar_dmac_xfer_chunk *chunk;
 733        struct rcar_dmac_hw_desc *hwdesc;
 734
 735        rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
 736
 737        hwdesc = desc->hwdescs.mem;
 738        if (!hwdesc)
 739                return -ENOMEM;
 740
 741        list_for_each_entry(chunk, &desc->chunks, node) {
 742                hwdesc->sar = chunk->src_addr;
 743                hwdesc->dar = chunk->dst_addr;
 744                hwdesc->tcr = chunk->size >> desc->xfer_shift;
 745                hwdesc++;
 746        }
 747
 748        return 0;
 749}
 750
 751/* -----------------------------------------------------------------------------
 752 * Stop and reset
 753 */
 754static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
 755{
 756        u32 chcr;
 757        unsigned int i;
 758
 759        /*
 760         * Ensure that the setting of the DE bit is actually 0 after
 761         * clearing it.
 762         */
 763        for (i = 0; i < 1024; i++) {
 764                chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 765                if (!(chcr & RCAR_DMACHCR_DE))
 766                        return;
 767                udelay(1);
 768        }
 769
 770        dev_err(chan->chan.device->dev, "CHCR DE check error\n");
 771}
 772
 773static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
 774{
 775        u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 776
 777        /* set DE=0 and flush remaining data */
 778        rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
 779
 780        /* make sure all remaining data was flushed */
 781        rcar_dmac_chcr_de_barrier(chan);
 782}
 783
 784static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
 785{
 786        u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 787
 788        chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
 789                  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
 790                  RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
 791        rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
 792        rcar_dmac_chcr_de_barrier(chan);
 793}
 794
 795static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
 796{
 797        struct rcar_dmac_desc *desc, *_desc;
 798        unsigned long flags;
 799        LIST_HEAD(descs);
 800
 801        spin_lock_irqsave(&chan->lock, flags);
 802
 803        /* Move all non-free descriptors to the local lists. */
 804        list_splice_init(&chan->desc.pending, &descs);
 805        list_splice_init(&chan->desc.active, &descs);
 806        list_splice_init(&chan->desc.done, &descs);
 807        list_splice_init(&chan->desc.wait, &descs);
 808
 809        chan->desc.running = NULL;
 810
 811        spin_unlock_irqrestore(&chan->lock, flags);
 812
 813        list_for_each_entry_safe(desc, _desc, &descs, node) {
 814                list_del(&desc->node);
 815                rcar_dmac_desc_put(chan, desc);
 816        }
 817}
 818
 819static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
 820{
 821        unsigned int i;
 822
 823        /* Stop all channels. */
 824        for (i = 0; i < dmac->n_channels; ++i) {
 825                struct rcar_dmac_chan *chan = &dmac->channels[i];
 826
 827                if (!(dmac->channels_mask & BIT(i)))
 828                        continue;
 829
 830                /* Stop and reinitialize the channel. */
 831                spin_lock_irq(&chan->lock);
 832                rcar_dmac_chan_halt(chan);
 833                spin_unlock_irq(&chan->lock);
 834        }
 835}
 836
 837static int rcar_dmac_chan_pause(struct dma_chan *chan)
 838{
 839        unsigned long flags;
 840        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 841
 842        spin_lock_irqsave(&rchan->lock, flags);
 843        rcar_dmac_clear_chcr_de(rchan);
 844        spin_unlock_irqrestore(&rchan->lock, flags);
 845
 846        return 0;
 847}
 848
 849/* -----------------------------------------------------------------------------
 850 * Descriptors preparation
 851 */
 852
 853static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
 854                                          struct rcar_dmac_desc *desc)
 855{
 856        static const u32 chcr_ts[] = {
 857                RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
 858                RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
 859                RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
 860                RCAR_DMACHCR_TS_64B,
 861        };
 862
 863        unsigned int xfer_size;
 864        u32 chcr;
 865
 866        switch (desc->direction) {
 867        case DMA_DEV_TO_MEM:
 868                chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
 869                     | RCAR_DMACHCR_RS_DMARS;
 870                xfer_size = chan->src.xfer_size;
 871                break;
 872
 873        case DMA_MEM_TO_DEV:
 874                chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
 875                     | RCAR_DMACHCR_RS_DMARS;
 876                xfer_size = chan->dst.xfer_size;
 877                break;
 878
 879        case DMA_MEM_TO_MEM:
 880        default:
 881                chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
 882                     | RCAR_DMACHCR_RS_AUTO;
 883                xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
 884                break;
 885        }
 886
 887        desc->xfer_shift = ilog2(xfer_size);
 888        desc->chcr = chcr | chcr_ts[desc->xfer_shift];
 889}
 890
 891/*
 892 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
 893 *
 894 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
 895 * converted to scatter-gather to guarantee consistent locking and a correct
 896 * list manipulation. For slave DMA direction carries the usual meaning, and,
 897 * logically, the SG list is RAM and the addr variable contains slave address,
 898 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
 899 * and the SG list contains only one element and points at the source buffer.
 900 */
 901static struct dma_async_tx_descriptor *
 902rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
 903                       unsigned int sg_len, dma_addr_t dev_addr,
 904                       enum dma_transfer_direction dir, unsigned long dma_flags,
 905                       bool cyclic)
 906{
 907        struct rcar_dmac_xfer_chunk *chunk;
 908        struct rcar_dmac_desc *desc;
 909        struct scatterlist *sg;
 910        unsigned int nchunks = 0;
 911        unsigned int max_chunk_size;
 912        unsigned int full_size = 0;
 913        bool cross_boundary = false;
 914        unsigned int i;
 915#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 916        u32 high_dev_addr;
 917        u32 high_mem_addr;
 918#endif
 919
 920        desc = rcar_dmac_desc_get(chan);
 921        if (!desc)
 922                return NULL;
 923
 924        desc->async_tx.flags = dma_flags;
 925        desc->async_tx.cookie = -EBUSY;
 926
 927        desc->cyclic = cyclic;
 928        desc->direction = dir;
 929
 930        rcar_dmac_chan_configure_desc(chan, desc);
 931
 932        max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
 933
 934        /*
 935         * Allocate and fill the transfer chunk descriptors. We own the only
 936         * reference to the DMA descriptor, there's no need for locking.
 937         */
 938        for_each_sg(sgl, sg, sg_len, i) {
 939                dma_addr_t mem_addr = sg_dma_address(sg);
 940                unsigned int len = sg_dma_len(sg);
 941
 942                full_size += len;
 943
 944#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 945                if (i == 0) {
 946                        high_dev_addr = dev_addr >> 32;
 947                        high_mem_addr = mem_addr >> 32;
 948                }
 949
 950                if ((dev_addr >> 32 != high_dev_addr) ||
 951                    (mem_addr >> 32 != high_mem_addr))
 952                        cross_boundary = true;
 953#endif
 954                while (len) {
 955                        unsigned int size = min(len, max_chunk_size);
 956
 957#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 958                        /*
 959                         * Prevent individual transfers from crossing 4GB
 960                         * boundaries.
 961                         */
 962                        if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
 963                                size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
 964                                cross_boundary = true;
 965                        }
 966                        if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
 967                                size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
 968                                cross_boundary = true;
 969                        }
 970#endif
 971
 972                        chunk = rcar_dmac_xfer_chunk_get(chan);
 973                        if (!chunk) {
 974                                rcar_dmac_desc_put(chan, desc);
 975                                return NULL;
 976                        }
 977
 978                        if (dir == DMA_DEV_TO_MEM) {
 979                                chunk->src_addr = dev_addr;
 980                                chunk->dst_addr = mem_addr;
 981                        } else {
 982                                chunk->src_addr = mem_addr;
 983                                chunk->dst_addr = dev_addr;
 984                        }
 985
 986                        chunk->size = size;
 987
 988                        dev_dbg(chan->chan.device->dev,
 989                                "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
 990                                chan->index, chunk, desc, i, sg, size, len,
 991                                &chunk->src_addr, &chunk->dst_addr);
 992
 993                        mem_addr += size;
 994                        if (dir == DMA_MEM_TO_MEM)
 995                                dev_addr += size;
 996
 997                        len -= size;
 998
 999                        list_add_tail(&chunk->node, &desc->chunks);
1000                        nchunks++;
1001                }
1002        }
1003
1004        desc->nchunks = nchunks;
1005        desc->size = full_size;
1006
1007        /*
1008         * Use hardware descriptor lists if possible when more than one chunk
1009         * needs to be transferred (otherwise they don't make much sense).
1010         *
1011         * Source/Destination address should be located in same 4GiB region
1012         * in the 40bit address space when it uses Hardware descriptor,
1013         * and cross_boundary is checking it.
1014         */
1015        desc->hwdescs.use = !cross_boundary && nchunks > 1;
1016        if (desc->hwdescs.use) {
1017                if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
1018                        desc->hwdescs.use = false;
1019        }
1020
1021        return &desc->async_tx;
1022}
1023
1024/* -----------------------------------------------------------------------------
1025 * DMA engine operations
1026 */
1027
1028static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
1029{
1030        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1031        int ret;
1032
1033        INIT_LIST_HEAD(&rchan->desc.chunks_free);
1034        INIT_LIST_HEAD(&rchan->desc.pages);
1035
1036        /* Preallocate descriptors. */
1037        ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
1038        if (ret < 0)
1039                return -ENOMEM;
1040
1041        ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
1042        if (ret < 0)
1043                return -ENOMEM;
1044
1045        return pm_runtime_get_sync(chan->device->dev);
1046}
1047
1048static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1049{
1050        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1051        struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1052        struct rcar_dmac_chan_map *map = &rchan->map;
1053        struct rcar_dmac_desc_page *page, *_page;
1054        struct rcar_dmac_desc *desc;
1055        LIST_HEAD(list);
1056
1057        /* Protect against ISR */
1058        spin_lock_irq(&rchan->lock);
1059        rcar_dmac_chan_halt(rchan);
1060        spin_unlock_irq(&rchan->lock);
1061
1062        /*
1063         * Now no new interrupts will occur, but one might already be
1064         * running. Wait for it to finish before freeing resources.
1065         */
1066        synchronize_irq(rchan->irq);
1067
1068        if (rchan->mid_rid >= 0) {
1069                /* The caller is holding dma_list_mutex */
1070                clear_bit(rchan->mid_rid, dmac->modules);
1071                rchan->mid_rid = -EINVAL;
1072        }
1073
1074        list_splice_init(&rchan->desc.free, &list);
1075        list_splice_init(&rchan->desc.pending, &list);
1076        list_splice_init(&rchan->desc.active, &list);
1077        list_splice_init(&rchan->desc.done, &list);
1078        list_splice_init(&rchan->desc.wait, &list);
1079
1080        rchan->desc.running = NULL;
1081
1082        list_for_each_entry(desc, &list, node)
1083                rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1084
1085        list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1086                list_del(&page->node);
1087                free_page((unsigned long)page);
1088        }
1089
1090        /* Remove slave mapping if present. */
1091        if (map->slave.xfer_size) {
1092                dma_unmap_resource(chan->device->dev, map->addr,
1093                                   map->slave.xfer_size, map->dir, 0);
1094                map->slave.xfer_size = 0;
1095        }
1096
1097        pm_runtime_put(chan->device->dev);
1098}
1099
1100static struct dma_async_tx_descriptor *
1101rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1102                          dma_addr_t dma_src, size_t len, unsigned long flags)
1103{
1104        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1105        struct scatterlist sgl;
1106
1107        if (!len)
1108                return NULL;
1109
1110        sg_init_table(&sgl, 1);
1111        sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1112                    offset_in_page(dma_src));
1113        sg_dma_address(&sgl) = dma_src;
1114        sg_dma_len(&sgl) = len;
1115
1116        return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1117                                      DMA_MEM_TO_MEM, flags, false);
1118}
1119
1120static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1121                                    enum dma_transfer_direction dir)
1122{
1123        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1124        struct rcar_dmac_chan_map *map = &rchan->map;
1125        phys_addr_t dev_addr;
1126        size_t dev_size;
1127        enum dma_data_direction dev_dir;
1128
1129        if (dir == DMA_DEV_TO_MEM) {
1130                dev_addr = rchan->src.slave_addr;
1131                dev_size = rchan->src.xfer_size;
1132                dev_dir = DMA_TO_DEVICE;
1133        } else {
1134                dev_addr = rchan->dst.slave_addr;
1135                dev_size = rchan->dst.xfer_size;
1136                dev_dir = DMA_FROM_DEVICE;
1137        }
1138
1139        /* Reuse current map if possible. */
1140        if (dev_addr == map->slave.slave_addr &&
1141            dev_size == map->slave.xfer_size &&
1142            dev_dir == map->dir)
1143                return 0;
1144
1145        /* Remove old mapping if present. */
1146        if (map->slave.xfer_size)
1147                dma_unmap_resource(chan->device->dev, map->addr,
1148                                   map->slave.xfer_size, map->dir, 0);
1149        map->slave.xfer_size = 0;
1150
1151        /* Create new slave address map. */
1152        map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1153                                     dev_dir, 0);
1154
1155        if (dma_mapping_error(chan->device->dev, map->addr)) {
1156                dev_err(chan->device->dev,
1157                        "chan%u: failed to map %zx@%pap", rchan->index,
1158                        dev_size, &dev_addr);
1159                return -EIO;
1160        }
1161
1162        dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1163                rchan->index, dev_size, &dev_addr, &map->addr,
1164                dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1165
1166        map->slave.slave_addr = dev_addr;
1167        map->slave.xfer_size = dev_size;
1168        map->dir = dev_dir;
1169
1170        return 0;
1171}
1172
1173static struct dma_async_tx_descriptor *
1174rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1175                        unsigned int sg_len, enum dma_transfer_direction dir,
1176                        unsigned long flags, void *context)
1177{
1178        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1179
1180        /* Someone calling slave DMA on a generic channel? */
1181        if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1182                dev_warn(chan->device->dev,
1183                         "%s: bad parameter: len=%d, id=%d\n",
1184                         __func__, sg_len, rchan->mid_rid);
1185                return NULL;
1186        }
1187
1188        if (rcar_dmac_map_slave_addr(chan, dir))
1189                return NULL;
1190
1191        return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1192                                      dir, flags, false);
1193}
1194
1195#define RCAR_DMAC_MAX_SG_LEN    32
1196
1197static struct dma_async_tx_descriptor *
1198rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1199                          size_t buf_len, size_t period_len,
1200                          enum dma_transfer_direction dir, unsigned long flags)
1201{
1202        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1203        struct dma_async_tx_descriptor *desc;
1204        struct scatterlist *sgl;
1205        unsigned int sg_len;
1206        unsigned int i;
1207
1208        /* Someone calling slave DMA on a generic channel? */
1209        if (rchan->mid_rid < 0 || buf_len < period_len) {
1210                dev_warn(chan->device->dev,
1211                        "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1212                        __func__, buf_len, period_len, rchan->mid_rid);
1213                return NULL;
1214        }
1215
1216        if (rcar_dmac_map_slave_addr(chan, dir))
1217                return NULL;
1218
1219        sg_len = buf_len / period_len;
1220        if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1221                dev_err(chan->device->dev,
1222                        "chan%u: sg length %d exceeds limit %d",
1223                        rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1224                return NULL;
1225        }
1226
1227        /*
1228         * Allocate the sg list dynamically as it would consume too much stack
1229         * space.
1230         */
1231        sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1232        if (!sgl)
1233                return NULL;
1234
1235        sg_init_table(sgl, sg_len);
1236
1237        for (i = 0; i < sg_len; ++i) {
1238                dma_addr_t src = buf_addr + (period_len * i);
1239
1240                sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1241                            offset_in_page(src));
1242                sg_dma_address(&sgl[i]) = src;
1243                sg_dma_len(&sgl[i]) = period_len;
1244        }
1245
1246        desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1247                                      dir, flags, true);
1248
1249        kfree(sgl);
1250        return desc;
1251}
1252
1253static int rcar_dmac_device_config(struct dma_chan *chan,
1254                                   struct dma_slave_config *cfg)
1255{
1256        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1257
1258        /*
1259         * We could lock this, but you shouldn't be configuring the
1260         * channel, while using it...
1261         */
1262        rchan->src.slave_addr = cfg->src_addr;
1263        rchan->dst.slave_addr = cfg->dst_addr;
1264        rchan->src.xfer_size = cfg->src_addr_width;
1265        rchan->dst.xfer_size = cfg->dst_addr_width;
1266
1267        return 0;
1268}
1269
1270static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1271{
1272        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1273        unsigned long flags;
1274
1275        spin_lock_irqsave(&rchan->lock, flags);
1276        rcar_dmac_chan_halt(rchan);
1277        spin_unlock_irqrestore(&rchan->lock, flags);
1278
1279        /*
1280         * FIXME: No new interrupt can occur now, but the IRQ thread might still
1281         * be running.
1282         */
1283
1284        rcar_dmac_chan_reinit(rchan);
1285
1286        return 0;
1287}
1288
1289static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1290                                               dma_cookie_t cookie)
1291{
1292        struct rcar_dmac_desc *desc = chan->desc.running;
1293        struct rcar_dmac_xfer_chunk *running = NULL;
1294        struct rcar_dmac_xfer_chunk *chunk;
1295        enum dma_status status;
1296        unsigned int residue = 0;
1297        unsigned int dptr = 0;
1298        unsigned int chcrb;
1299        unsigned int tcrb;
1300        unsigned int i;
1301
1302        if (!desc)
1303                return 0;
1304
1305        /*
1306         * If the cookie corresponds to a descriptor that has been completed
1307         * there is no residue. The same check has already been performed by the
1308         * caller but without holding the channel lock, so the descriptor could
1309         * now be complete.
1310         */
1311        status = dma_cookie_status(&chan->chan, cookie, NULL);
1312        if (status == DMA_COMPLETE)
1313                return 0;
1314
1315        /*
1316         * If the cookie doesn't correspond to the currently running transfer
1317         * then the descriptor hasn't been processed yet, and the residue is
1318         * equal to the full descriptor size.
1319         * Also, a client driver is possible to call this function before
1320         * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1321         * will be the next descriptor, and the done list will appear. So, if
1322         * the argument cookie matches the done list's cookie, we can assume
1323         * the residue is zero.
1324         */
1325        if (cookie != desc->async_tx.cookie) {
1326                list_for_each_entry(desc, &chan->desc.done, node) {
1327                        if (cookie == desc->async_tx.cookie)
1328                                return 0;
1329                }
1330                list_for_each_entry(desc, &chan->desc.pending, node) {
1331                        if (cookie == desc->async_tx.cookie)
1332                                return desc->size;
1333                }
1334                list_for_each_entry(desc, &chan->desc.active, node) {
1335                        if (cookie == desc->async_tx.cookie)
1336                                return desc->size;
1337                }
1338
1339                /*
1340                 * No descriptor found for the cookie, there's thus no residue.
1341                 * This shouldn't happen if the calling driver passes a correct
1342                 * cookie value.
1343                 */
1344                WARN(1, "No descriptor for cookie!");
1345                return 0;
1346        }
1347
1348        /*
1349         * We need to read two registers.
1350         * Make sure the control register does not skip to next chunk
1351         * while reading the counter.
1352         * Trying it 3 times should be enough: Initial read, retry, retry
1353         * for the paranoid.
1354         */
1355        for (i = 0; i < 3; i++) {
1356                chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1357                                            RCAR_DMACHCRB_DPTR_MASK;
1358                tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
1359                /* Still the same? */
1360                if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1361                              RCAR_DMACHCRB_DPTR_MASK))
1362                        break;
1363        }
1364        WARN_ONCE(i >= 3, "residue might be not continuous!");
1365
1366        /*
1367         * In descriptor mode the descriptor running pointer is not maintained
1368         * by the interrupt handler, find the running descriptor from the
1369         * descriptor pointer field in the CHCRB register. In non-descriptor
1370         * mode just use the running descriptor pointer.
1371         */
1372        if (desc->hwdescs.use) {
1373                dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
1374                if (dptr == 0)
1375                        dptr = desc->nchunks;
1376                dptr--;
1377                WARN_ON(dptr >= desc->nchunks);
1378        } else {
1379                running = desc->running;
1380        }
1381
1382        /* Compute the size of all chunks still to be transferred. */
1383        list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1384                if (chunk == running || ++dptr == desc->nchunks)
1385                        break;
1386
1387                residue += chunk->size;
1388        }
1389
1390        /* Add the residue for the current chunk. */
1391        residue += tcrb << desc->xfer_shift;
1392
1393        return residue;
1394}
1395
1396static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1397                                           dma_cookie_t cookie,
1398                                           struct dma_tx_state *txstate)
1399{
1400        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1401        enum dma_status status;
1402        unsigned long flags;
1403        unsigned int residue;
1404        bool cyclic;
1405
1406        status = dma_cookie_status(chan, cookie, txstate);
1407        if (status == DMA_COMPLETE || !txstate)
1408                return status;
1409
1410        spin_lock_irqsave(&rchan->lock, flags);
1411        residue = rcar_dmac_chan_get_residue(rchan, cookie);
1412        cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1413        spin_unlock_irqrestore(&rchan->lock, flags);
1414
1415        /* if there's no residue, the cookie is complete */
1416        if (!residue && !cyclic)
1417                return DMA_COMPLETE;
1418
1419        dma_set_residue(txstate, residue);
1420
1421        return status;
1422}
1423
1424static void rcar_dmac_issue_pending(struct dma_chan *chan)
1425{
1426        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1427        unsigned long flags;
1428
1429        spin_lock_irqsave(&rchan->lock, flags);
1430
1431        if (list_empty(&rchan->desc.pending))
1432                goto done;
1433
1434        /* Append the pending list to the active list. */
1435        list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1436
1437        /*
1438         * If no transfer is running pick the first descriptor from the active
1439         * list and start the transfer.
1440         */
1441        if (!rchan->desc.running) {
1442                struct rcar_dmac_desc *desc;
1443
1444                desc = list_first_entry(&rchan->desc.active,
1445                                        struct rcar_dmac_desc, node);
1446                rchan->desc.running = desc;
1447
1448                rcar_dmac_chan_start_xfer(rchan);
1449        }
1450
1451done:
1452        spin_unlock_irqrestore(&rchan->lock, flags);
1453}
1454
1455static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1456{
1457        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1458
1459        synchronize_irq(rchan->irq);
1460}
1461
1462/* -----------------------------------------------------------------------------
1463 * IRQ handling
1464 */
1465
1466static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1467{
1468        struct rcar_dmac_desc *desc = chan->desc.running;
1469        unsigned int stage;
1470
1471        if (WARN_ON(!desc || !desc->cyclic)) {
1472                /*
1473                 * This should never happen, there should always be a running
1474                 * cyclic descriptor when a descriptor stage end interrupt is
1475                 * triggered. Warn and return.
1476                 */
1477                return IRQ_NONE;
1478        }
1479
1480        /* Program the interrupt pointer to the next stage. */
1481        stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1482                 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1483        rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1484
1485        return IRQ_WAKE_THREAD;
1486}
1487
1488static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1489{
1490        struct rcar_dmac_desc *desc = chan->desc.running;
1491        irqreturn_t ret = IRQ_WAKE_THREAD;
1492
1493        if (WARN_ON_ONCE(!desc)) {
1494                /*
1495                 * This should never happen, there should always be a running
1496                 * descriptor when a transfer end interrupt is triggered. Warn
1497                 * and return.
1498                 */
1499                return IRQ_NONE;
1500        }
1501
1502        /*
1503         * The transfer end interrupt isn't generated for each chunk when using
1504         * descriptor mode. Only update the running chunk pointer in
1505         * non-descriptor mode.
1506         */
1507        if (!desc->hwdescs.use) {
1508                /*
1509                 * If we haven't completed the last transfer chunk simply move
1510                 * to the next one. Only wake the IRQ thread if the transfer is
1511                 * cyclic.
1512                 */
1513                if (!list_is_last(&desc->running->node, &desc->chunks)) {
1514                        desc->running = list_next_entry(desc->running, node);
1515                        if (!desc->cyclic)
1516                                ret = IRQ_HANDLED;
1517                        goto done;
1518                }
1519
1520                /*
1521                 * We've completed the last transfer chunk. If the transfer is
1522                 * cyclic, move back to the first one.
1523                 */
1524                if (desc->cyclic) {
1525                        desc->running =
1526                                list_first_entry(&desc->chunks,
1527                                                 struct rcar_dmac_xfer_chunk,
1528                                                 node);
1529                        goto done;
1530                }
1531        }
1532
1533        /* The descriptor is complete, move it to the done list. */
1534        list_move_tail(&desc->node, &chan->desc.done);
1535
1536        /* Queue the next descriptor, if any. */
1537        if (!list_empty(&chan->desc.active))
1538                chan->desc.running = list_first_entry(&chan->desc.active,
1539                                                      struct rcar_dmac_desc,
1540                                                      node);
1541        else
1542                chan->desc.running = NULL;
1543
1544done:
1545        if (chan->desc.running)
1546                rcar_dmac_chan_start_xfer(chan);
1547
1548        return ret;
1549}
1550
1551static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1552{
1553        u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1554        struct rcar_dmac_chan *chan = dev;
1555        irqreturn_t ret = IRQ_NONE;
1556        bool reinit = false;
1557        u32 chcr;
1558
1559        spin_lock(&chan->lock);
1560
1561        chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1562        if (chcr & RCAR_DMACHCR_CAE) {
1563                struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
1564
1565                /*
1566                 * We don't need to call rcar_dmac_chan_halt()
1567                 * because channel is already stopped in error case.
1568                 * We need to clear register and check DE bit as recovery.
1569                 */
1570                rcar_dmac_write(dmac, RCAR_DMACHCLR, 1 << chan->index);
1571                rcar_dmac_chcr_de_barrier(chan);
1572                reinit = true;
1573                goto spin_lock_end;
1574        }
1575
1576        if (chcr & RCAR_DMACHCR_TE)
1577                mask |= RCAR_DMACHCR_DE;
1578        rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1579        if (mask & RCAR_DMACHCR_DE)
1580                rcar_dmac_chcr_de_barrier(chan);
1581
1582        if (chcr & RCAR_DMACHCR_DSE)
1583                ret |= rcar_dmac_isr_desc_stage_end(chan);
1584
1585        if (chcr & RCAR_DMACHCR_TE)
1586                ret |= rcar_dmac_isr_transfer_end(chan);
1587
1588spin_lock_end:
1589        spin_unlock(&chan->lock);
1590
1591        if (reinit) {
1592                dev_err(chan->chan.device->dev, "Channel Address Error\n");
1593
1594                rcar_dmac_chan_reinit(chan);
1595                ret = IRQ_HANDLED;
1596        }
1597
1598        return ret;
1599}
1600
1601static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1602{
1603        struct rcar_dmac_chan *chan = dev;
1604        struct rcar_dmac_desc *desc;
1605        struct dmaengine_desc_callback cb;
1606
1607        spin_lock_irq(&chan->lock);
1608
1609        /* For cyclic transfers notify the user after every chunk. */
1610        if (chan->desc.running && chan->desc.running->cyclic) {
1611                desc = chan->desc.running;
1612                dmaengine_desc_get_callback(&desc->async_tx, &cb);
1613
1614                if (dmaengine_desc_callback_valid(&cb)) {
1615                        spin_unlock_irq(&chan->lock);
1616                        dmaengine_desc_callback_invoke(&cb, NULL);
1617                        spin_lock_irq(&chan->lock);
1618                }
1619        }
1620
1621        /*
1622         * Call the callback function for all descriptors on the done list and
1623         * move them to the ack wait list.
1624         */
1625        while (!list_empty(&chan->desc.done)) {
1626                desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1627                                        node);
1628                dma_cookie_complete(&desc->async_tx);
1629                list_del(&desc->node);
1630
1631                dmaengine_desc_get_callback(&desc->async_tx, &cb);
1632                if (dmaengine_desc_callback_valid(&cb)) {
1633                        spin_unlock_irq(&chan->lock);
1634                        /*
1635                         * We own the only reference to this descriptor, we can
1636                         * safely dereference it without holding the channel
1637                         * lock.
1638                         */
1639                        dmaengine_desc_callback_invoke(&cb, NULL);
1640                        spin_lock_irq(&chan->lock);
1641                }
1642
1643                list_add_tail(&desc->node, &chan->desc.wait);
1644        }
1645
1646        spin_unlock_irq(&chan->lock);
1647
1648        /* Recycle all acked descriptors. */
1649        rcar_dmac_desc_recycle_acked(chan);
1650
1651        return IRQ_HANDLED;
1652}
1653
1654/* -----------------------------------------------------------------------------
1655 * OF xlate and channel filter
1656 */
1657
1658static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1659{
1660        struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1661        struct of_phandle_args *dma_spec = arg;
1662
1663        /*
1664         * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1665         * function knows from which device it wants to allocate a channel from,
1666         * and would be perfectly capable of selecting the channel it wants.
1667         * Forcing it to call dma_request_channel() and iterate through all
1668         * channels from all controllers is just pointless.
1669         */
1670        if (chan->device->device_config != rcar_dmac_device_config)
1671                return false;
1672
1673        return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1674}
1675
1676static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1677                                           struct of_dma *ofdma)
1678{
1679        struct rcar_dmac_chan *rchan;
1680        struct dma_chan *chan;
1681        dma_cap_mask_t mask;
1682
1683        if (dma_spec->args_count != 1)
1684                return NULL;
1685
1686        /* Only slave DMA channels can be allocated via DT */
1687        dma_cap_zero(mask);
1688        dma_cap_set(DMA_SLAVE, mask);
1689
1690        chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
1691                                     ofdma->of_node);
1692        if (!chan)
1693                return NULL;
1694
1695        rchan = to_rcar_dmac_chan(chan);
1696        rchan->mid_rid = dma_spec->args[0];
1697
1698        return chan;
1699}
1700
1701/* -----------------------------------------------------------------------------
1702 * Power management
1703 */
1704
1705#ifdef CONFIG_PM
1706static int rcar_dmac_runtime_suspend(struct device *dev)
1707{
1708        return 0;
1709}
1710
1711static int rcar_dmac_runtime_resume(struct device *dev)
1712{
1713        struct rcar_dmac *dmac = dev_get_drvdata(dev);
1714
1715        return rcar_dmac_init(dmac);
1716}
1717#endif
1718
1719static const struct dev_pm_ops rcar_dmac_pm = {
1720        /*
1721         * TODO for system sleep/resume:
1722         *   - Wait for the current transfer to complete and stop the device,
1723         *   - Resume transfers, if any.
1724         */
1725        SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1726                                      pm_runtime_force_resume)
1727        SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1728                           NULL)
1729};
1730
1731/* -----------------------------------------------------------------------------
1732 * Probe and remove
1733 */
1734
1735static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1736                                struct rcar_dmac_chan *rchan,
1737                                const struct rcar_dmac_of_data *data,
1738                                unsigned int index)
1739{
1740        struct platform_device *pdev = to_platform_device(dmac->dev);
1741        struct dma_chan *chan = &rchan->chan;
1742        char pdev_irqname[5];
1743        char *irqname;
1744        int ret;
1745
1746        rchan->index = index;
1747        rchan->iomem = dmac->iomem + data->chan_offset_base +
1748                       data->chan_offset_stride * index;
1749        rchan->mid_rid = -EINVAL;
1750
1751        spin_lock_init(&rchan->lock);
1752
1753        INIT_LIST_HEAD(&rchan->desc.free);
1754        INIT_LIST_HEAD(&rchan->desc.pending);
1755        INIT_LIST_HEAD(&rchan->desc.active);
1756        INIT_LIST_HEAD(&rchan->desc.done);
1757        INIT_LIST_HEAD(&rchan->desc.wait);
1758
1759        /* Request the channel interrupt. */
1760        sprintf(pdev_irqname, "ch%u", index);
1761        rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1762        if (rchan->irq < 0)
1763                return -ENODEV;
1764
1765        irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1766                                 dev_name(dmac->dev), index);
1767        if (!irqname)
1768                return -ENOMEM;
1769
1770        /*
1771         * Initialize the DMA engine channel and add it to the DMA engine
1772         * channels list.
1773         */
1774        chan->device = &dmac->engine;
1775        dma_cookie_init(chan);
1776
1777        list_add_tail(&chan->device_node, &dmac->engine.channels);
1778
1779        ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1780                                        rcar_dmac_isr_channel,
1781                                        rcar_dmac_isr_channel_thread, 0,
1782                                        irqname, rchan);
1783        if (ret) {
1784                dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1785                        rchan->irq, ret);
1786                return ret;
1787        }
1788
1789        return 0;
1790}
1791
1792#define RCAR_DMAC_MAX_CHANNELS  32
1793
1794static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1795{
1796        struct device_node *np = dev->of_node;
1797        int ret;
1798
1799        ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1800        if (ret < 0) {
1801                dev_err(dev, "unable to read dma-channels property\n");
1802                return ret;
1803        }
1804
1805        /* The hardware and driver don't support more than 32 bits in CHCLR */
1806        if (dmac->n_channels <= 0 ||
1807            dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
1808                dev_err(dev, "invalid number of channels %u\n",
1809                        dmac->n_channels);
1810                return -EINVAL;
1811        }
1812
1813        /*
1814         * If the driver is unable to read dma-channel-mask property,
1815         * the driver assumes that it can use all channels.
1816         */
1817        dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
1818        of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
1819
1820        /* If the property has out-of-channel mask, this driver clears it */
1821        dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
1822
1823        return 0;
1824}
1825
1826static int rcar_dmac_probe(struct platform_device *pdev)
1827{
1828        const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1829                DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1830                DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1831                DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1832        struct dma_device *engine;
1833        struct rcar_dmac *dmac;
1834        const struct rcar_dmac_of_data *data;
1835        unsigned int i;
1836        int ret;
1837
1838        data = of_device_get_match_data(&pdev->dev);
1839        if (!data)
1840                return -EINVAL;
1841
1842        dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1843        if (!dmac)
1844                return -ENOMEM;
1845
1846        dmac->dev = &pdev->dev;
1847        platform_set_drvdata(pdev, dmac);
1848        dmac->dev->dma_parms = &dmac->parms;
1849        dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1850        dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1851
1852        ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1853        if (ret < 0)
1854                return ret;
1855
1856        /*
1857         * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1858         * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1859         * is connected to microTLB 0 on currently supported platforms, so we
1860         * can't use it with the IPMMU. As the IOMMU API operates at the device
1861         * level we can't disable it selectively, so ignore channel 0 for now if
1862         * the device is part of an IOMMU group.
1863         */
1864        if (device_iommu_mapped(&pdev->dev))
1865                dmac->channels_mask &= ~BIT(0);
1866
1867        dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1868                                      sizeof(*dmac->channels), GFP_KERNEL);
1869        if (!dmac->channels)
1870                return -ENOMEM;
1871
1872        /* Request resources. */
1873        dmac->iomem = devm_platform_ioremap_resource(pdev, 0);
1874        if (IS_ERR(dmac->iomem))
1875                return PTR_ERR(dmac->iomem);
1876
1877        /* Enable runtime PM and initialize the device. */
1878        pm_runtime_enable(&pdev->dev);
1879        ret = pm_runtime_get_sync(&pdev->dev);
1880        if (ret < 0) {
1881                dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1882                return ret;
1883        }
1884
1885        ret = rcar_dmac_init(dmac);
1886        pm_runtime_put(&pdev->dev);
1887
1888        if (ret) {
1889                dev_err(&pdev->dev, "failed to reset device\n");
1890                goto error;
1891        }
1892
1893        /* Initialize engine */
1894        engine = &dmac->engine;
1895
1896        dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1897        dma_cap_set(DMA_SLAVE, engine->cap_mask);
1898
1899        engine->dev             = &pdev->dev;
1900        engine->copy_align      = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1901
1902        engine->src_addr_widths = widths;
1903        engine->dst_addr_widths = widths;
1904        engine->directions      = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1905        engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1906
1907        engine->device_alloc_chan_resources     = rcar_dmac_alloc_chan_resources;
1908        engine->device_free_chan_resources      = rcar_dmac_free_chan_resources;
1909        engine->device_prep_dma_memcpy          = rcar_dmac_prep_dma_memcpy;
1910        engine->device_prep_slave_sg            = rcar_dmac_prep_slave_sg;
1911        engine->device_prep_dma_cyclic          = rcar_dmac_prep_dma_cyclic;
1912        engine->device_config                   = rcar_dmac_device_config;
1913        engine->device_pause                    = rcar_dmac_chan_pause;
1914        engine->device_terminate_all            = rcar_dmac_chan_terminate_all;
1915        engine->device_tx_status                = rcar_dmac_tx_status;
1916        engine->device_issue_pending            = rcar_dmac_issue_pending;
1917        engine->device_synchronize              = rcar_dmac_device_synchronize;
1918
1919        INIT_LIST_HEAD(&engine->channels);
1920
1921        for (i = 0; i < dmac->n_channels; ++i) {
1922                if (!(dmac->channels_mask & BIT(i)))
1923                        continue;
1924
1925                ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i], data, i);
1926                if (ret < 0)
1927                        goto error;
1928        }
1929
1930        /* Register the DMAC as a DMA provider for DT. */
1931        ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1932                                         NULL);
1933        if (ret < 0)
1934                goto error;
1935
1936        /*
1937         * Register the DMA engine device.
1938         *
1939         * Default transfer size of 32 bytes requires 32-byte alignment.
1940         */
1941        ret = dma_async_device_register(engine);
1942        if (ret < 0)
1943                goto error;
1944
1945        return 0;
1946
1947error:
1948        of_dma_controller_free(pdev->dev.of_node);
1949        pm_runtime_disable(&pdev->dev);
1950        return ret;
1951}
1952
1953static int rcar_dmac_remove(struct platform_device *pdev)
1954{
1955        struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1956
1957        of_dma_controller_free(pdev->dev.of_node);
1958        dma_async_device_unregister(&dmac->engine);
1959
1960        pm_runtime_disable(&pdev->dev);
1961
1962        return 0;
1963}
1964
1965static void rcar_dmac_shutdown(struct platform_device *pdev)
1966{
1967        struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1968
1969        rcar_dmac_stop_all_chan(dmac);
1970}
1971
1972static const struct rcar_dmac_of_data rcar_dmac_data = {
1973        .chan_offset_base = 0x8000,
1974        .chan_offset_stride = 0x80,
1975};
1976
1977static const struct of_device_id rcar_dmac_of_ids[] = {
1978        {
1979                .compatible = "renesas,rcar-dmac",
1980                .data = &rcar_dmac_data,
1981        },
1982        { /* Sentinel */ }
1983};
1984MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1985
1986static struct platform_driver rcar_dmac_driver = {
1987        .driver         = {
1988                .pm     = &rcar_dmac_pm,
1989                .name   = "rcar-dmac",
1990                .of_match_table = rcar_dmac_of_ids,
1991        },
1992        .probe          = rcar_dmac_probe,
1993        .remove         = rcar_dmac_remove,
1994        .shutdown       = rcar_dmac_shutdown,
1995};
1996
1997module_platform_driver(rcar_dmac_driver);
1998
1999MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2000MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2001MODULE_LICENSE("GPL v2");
2002