linux/drivers/dma/ste_dma40.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Ericsson AB 2007-2008
   4 * Copyright (C) ST-Ericsson SA 2008-2010
   5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY 100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE          BIT(31)
  59#define D40_ALLOC_PHY           BIT(30)
  60#define D40_ALLOC_LOG_FREE      0
  61
  62#define D40_MEMCPY_MAX_CHANS    8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0  51
  66#define DB8500_DMA_MEMCPY_EV_1  56
  67#define DB8500_DMA_MEMCPY_EV_2  57
  68#define DB8500_DMA_MEMCPY_EV_3  58
  69#define DB8500_DMA_MEMCPY_EV_4  59
  70#define DB8500_DMA_MEMCPY_EV_5  60
  71
  72static int dma40_memcpy_channels[] = {
  73        DB8500_DMA_MEMCPY_EV_0,
  74        DB8500_DMA_MEMCPY_EV_1,
  75        DB8500_DMA_MEMCPY_EV_2,
  76        DB8500_DMA_MEMCPY_EV_3,
  77        DB8500_DMA_MEMCPY_EV_4,
  78        DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83        .mode = STEDMA40_MODE_PHYSICAL,
  84        .dir = DMA_MEM_TO_MEM,
  85
  86        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87        .src_info.psize = STEDMA40_PSIZE_PHY_1,
  88        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91        .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97        .mode = STEDMA40_MODE_LOGICAL,
  98        .dir = DMA_MEM_TO_MEM,
  99
 100        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101        .src_info.psize = STEDMA40_PSIZE_LOG_1,
 102        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105        .dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118        D40_DMA_STOP            = 0,
 119        D40_DMA_RUN             = 1,
 120        D40_DMA_SUSPEND_REQ     = 2,
 121        D40_DMA_SUSPENDED       = 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134        D40_DEACTIVATE_EVENTLINE        = 0,
 135        D40_ACTIVATE_EVENTLINE          = 1,
 136        D40_SUSPEND_REQ_EVENTLINE       = 2,
 137        D40_ROUND_EVENTLINE             = 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static __maybe_unused u32 d40_backup_regs[] = {
 146        D40_DREG_LCPA,
 147        D40_DREG_LCLA,
 148        D40_DREG_PRMSE,
 149        D40_DREG_PRMSO,
 150        D40_DREG_PRMOE,
 151        D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169        D40_DREG_PSEG1,
 170        D40_DREG_PSEG2,
 171        D40_DREG_PSEG3,
 172        D40_DREG_PSEG4,
 173        D40_DREG_PCEG1,
 174        D40_DREG_PCEG2,
 175        D40_DREG_PCEG3,
 176        D40_DREG_PCEG4,
 177        D40_DREG_RSEG1,
 178        D40_DREG_RSEG2,
 179        D40_DREG_RSEG3,
 180        D40_DREG_RSEG4,
 181        D40_DREG_RCEG1,
 182        D40_DREG_RCEG2,
 183        D40_DREG_RCEG3,
 184        D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190        D40_DREG_CPSEG1,
 191        D40_DREG_CPSEG2,
 192        D40_DREG_CPSEG3,
 193        D40_DREG_CPSEG4,
 194        D40_DREG_CPSEG5,
 195        D40_DREG_CPCEG1,
 196        D40_DREG_CPCEG2,
 197        D40_DREG_CPCEG3,
 198        D40_DREG_CPCEG4,
 199        D40_DREG_CPCEG5,
 200        D40_DREG_CRSEG1,
 201        D40_DREG_CRSEG2,
 202        D40_DREG_CRSEG3,
 203        D40_DREG_CRSEG4,
 204        D40_DREG_CRSEG5,
 205        D40_DREG_CRCEG1,
 206        D40_DREG_CRCEG2,
 207        D40_DREG_CRCEG3,
 208        D40_DREG_CRCEG4,
 209        D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static __maybe_unused u32 d40_backup_regs_chan[] = {
 215        D40_CHAN_REG_SSCFG,
 216        D40_CHAN_REG_SSELT,
 217        D40_CHAN_REG_SSPTR,
 218        D40_CHAN_REG_SSLNK,
 219        D40_CHAN_REG_SDCFG,
 220        D40_CHAN_REG_SDELT,
 221        D40_CHAN_REG_SDPTR,
 222        D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226                             BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238        u32 src;
 239        u32 clr;
 240        bool is_error;
 241        int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246        {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247        {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248        {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249        {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250        {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251        {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252        {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253        {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254        {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255        {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259        {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260        {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261        {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262        {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263        {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264        {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265        {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266        {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267        {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268        {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269        {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270        {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280        unsigned int reg;
 281        unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285        /* Clock every part of the DMA block from start */
 286        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288        /* Interrupts on all logical channels */
 289        { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290        { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291        { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292        { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293        { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294        { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295        { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296        { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297        { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298        { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299        { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300        { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303        /* Clock every part of the DMA block from start */
 304        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306        /* Interrupts on all logical channels */
 307        { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308        { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309        { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310        { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311        { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312        { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313        { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314        { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315        { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316        { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317        { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318        { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319        { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320        { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321        { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336        void    *base;
 337        int      size;
 338        dma_addr_t      dma_addr;
 339        /* Space for dst and src, plus an extra for padding */
 340        u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363        /* LLI physical */
 364        struct d40_phy_lli_bidir         lli_phy;
 365        /* LLI logical */
 366        struct d40_log_lli_bidir         lli_log;
 367
 368        struct d40_lli_pool              lli_pool;
 369        int                              lli_len;
 370        int                              lli_current;
 371        int                              lcla_alloc;
 372
 373        struct dma_async_tx_descriptor   txd;
 374        struct list_head                 node;
 375
 376        bool                             is_in_client_list;
 377        bool                             cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @dma_addr: DMA address, if mapped
 385 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 386 * This pointer is only there for clean-up on error.
 387 * @pages: The number of pages needed for all physical channels.
 388 * Only used later for clean-up on error
 389 * @lock: Lock to protect the content in this struct.
 390 * @alloc_map: big map over which LCLA entry is own by which job.
 391 */
 392struct d40_lcla_pool {
 393        void            *base;
 394        dma_addr_t      dma_addr;
 395        void            *base_unaligned;
 396        int              pages;
 397        spinlock_t       lock;
 398        struct d40_desc **alloc_map;
 399};
 400
 401/**
 402 * struct d40_phy_res - struct for handling eventlines mapped to physical
 403 * channels.
 404 *
 405 * @lock: A lock protection this entity.
 406 * @reserved: True if used by secure world or otherwise.
 407 * @num: The physical channel number of this entity.
 408 * @allocated_src: Bit mapped to show which src event line's are mapped to
 409 * this physical channel. Can also be free or physically allocated.
 410 * @allocated_dst: Same as for src but is dst.
 411 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 412 * event line number.
 413 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 414 */
 415struct d40_phy_res {
 416        spinlock_t lock;
 417        bool       reserved;
 418        int        num;
 419        u32        allocated_src;
 420        u32        allocated_dst;
 421        bool       use_soft_lli;
 422};
 423
 424struct d40_base;
 425
 426/**
 427 * struct d40_chan - Struct that describes a channel.
 428 *
 429 * @lock: A spinlock to protect this struct.
 430 * @log_num: The logical number, if any of this channel.
 431 * @pending_tx: The number of pending transfers. Used between interrupt handler
 432 * and tasklet.
 433 * @busy: Set to true when transfer is ongoing on this channel.
 434 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 435 * point is NULL, then the channel is not allocated.
 436 * @chan: DMA engine handle.
 437 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 438 * transfer and call client callback.
 439 * @client: Cliented owned descriptor list.
 440 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 441 * @active: Active descriptor.
 442 * @done: Completed jobs
 443 * @queue: Queued jobs.
 444 * @prepare_queue: Prepared jobs.
 445 * @dma_cfg: The client configuration of this dma channel.
 446 * @slave_config: DMA slave configuration.
 447 * @configured: whether the dma_cfg configuration is valid
 448 * @base: Pointer to the device instance struct.
 449 * @src_def_cfg: Default cfg register setting for src.
 450 * @dst_def_cfg: Default cfg register setting for dst.
 451 * @log_def: Default logical channel settings.
 452 * @lcpa: Pointer to dst and src lcpa settings.
 453 * @runtime_addr: runtime configured address.
 454 * @runtime_direction: runtime configured direction.
 455 *
 456 * This struct can either "be" a logical or a physical channel.
 457 */
 458struct d40_chan {
 459        spinlock_t                       lock;
 460        int                              log_num;
 461        int                              pending_tx;
 462        bool                             busy;
 463        struct d40_phy_res              *phy_chan;
 464        struct dma_chan                  chan;
 465        struct tasklet_struct            tasklet;
 466        struct list_head                 client;
 467        struct list_head                 pending_queue;
 468        struct list_head                 active;
 469        struct list_head                 done;
 470        struct list_head                 queue;
 471        struct list_head                 prepare_queue;
 472        struct stedma40_chan_cfg         dma_cfg;
 473        struct dma_slave_config          slave_config;
 474        bool                             configured;
 475        struct d40_base                 *base;
 476        /* Default register configurations */
 477        u32                              src_def_cfg;
 478        u32                              dst_def_cfg;
 479        struct d40_def_lcsp              log_def;
 480        struct d40_log_lli_full         *lcpa;
 481        /* Runtime reconfiguration */
 482        dma_addr_t                      runtime_addr;
 483        enum dma_transfer_direction     runtime_direction;
 484};
 485
 486/**
 487 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 488 * controller
 489 *
 490 * @backup: the pointer to the registers address array for backup
 491 * @backup_size: the size of the registers address array for backup
 492 * @realtime_en: the realtime enable register
 493 * @realtime_clear: the realtime clear register
 494 * @high_prio_en: the high priority enable register
 495 * @high_prio_clear: the high priority clear register
 496 * @interrupt_en: the interrupt enable register
 497 * @interrupt_clear: the interrupt clear register
 498 * @il: the pointer to struct d40_interrupt_lookup
 499 * @il_size: the size of d40_interrupt_lookup array
 500 * @init_reg: the pointer to the struct d40_reg_val
 501 * @init_reg_size: the size of d40_reg_val array
 502 */
 503struct d40_gen_dmac {
 504        u32                             *backup;
 505        u32                              backup_size;
 506        u32                              realtime_en;
 507        u32                              realtime_clear;
 508        u32                              high_prio_en;
 509        u32                              high_prio_clear;
 510        u32                              interrupt_en;
 511        u32                              interrupt_clear;
 512        struct d40_interrupt_lookup     *il;
 513        u32                              il_size;
 514        struct d40_reg_val              *init_reg;
 515        u32                              init_reg_size;
 516};
 517
 518/**
 519 * struct d40_base - The big global struct, one for each probe'd instance.
 520 *
 521 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 522 * @execmd_lock: Lock for execute command usage since several channels share
 523 * the same physical register.
 524 * @dev: The device structure.
 525 * @virtbase: The virtual base address of the DMA's register.
 526 * @rev: silicon revision detected.
 527 * @clk: Pointer to the DMA clock structure.
 528 * @phy_start: Physical memory start of the DMA registers.
 529 * @phy_size: Size of the DMA register map.
 530 * @irq: The IRQ number.
 531 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 532 * transfers).
 533 * @num_phy_chans: The number of physical channels. Read from HW. This
 534 * is the number of available channels for this driver, not counting "Secure
 535 * mode" allocated physical channels.
 536 * @num_log_chans: The number of logical channels. Calculated from
 537 * num_phy_chans.
 538 * @dma_parms: DMA parameters for the channel
 539 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 540 * @dma_slave: dma_device channels that can do only do slave transfers.
 541 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 542 * @phy_chans: Room for all possible physical channels in system.
 543 * @log_chans: Room for all possible logical channels in system.
 544 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 545 * to log_chans entries.
 546 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 547 * to phy_chans entries.
 548 * @plat_data: Pointer to provided platform_data which is the driver
 549 * configuration.
 550 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 551 * @phy_res: Vector containing all physical channels.
 552 * @lcla_pool: lcla pool settings and data.
 553 * @lcpa_base: The virtual mapped address of LCPA.
 554 * @phy_lcpa: The physical address of the LCPA.
 555 * @lcpa_size: The size of the LCPA area.
 556 * @desc_slab: cache for descriptors.
 557 * @reg_val_backup: Here the values of some hardware registers are stored
 558 * before the DMA is powered off. They are restored when the power is back on.
 559 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 560 * later
 561 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 562 * @regs_interrupt: Scratch space for registers during interrupt.
 563 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 564 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 565 * DMA controller
 566 */
 567struct d40_base {
 568        spinlock_t                       interrupt_lock;
 569        spinlock_t                       execmd_lock;
 570        struct device                    *dev;
 571        void __iomem                     *virtbase;
 572        u8                                rev:4;
 573        struct clk                       *clk;
 574        phys_addr_t                       phy_start;
 575        resource_size_t                   phy_size;
 576        int                               irq;
 577        int                               num_memcpy_chans;
 578        int                               num_phy_chans;
 579        int                               num_log_chans;
 580        struct device_dma_parameters      dma_parms;
 581        struct dma_device                 dma_both;
 582        struct dma_device                 dma_slave;
 583        struct dma_device                 dma_memcpy;
 584        struct d40_chan                  *phy_chans;
 585        struct d40_chan                  *log_chans;
 586        struct d40_chan                 **lookup_log_chans;
 587        struct d40_chan                 **lookup_phy_chans;
 588        struct stedma40_platform_data    *plat_data;
 589        struct regulator                 *lcpa_regulator;
 590        /* Physical half channels */
 591        struct d40_phy_res               *phy_res;
 592        struct d40_lcla_pool              lcla_pool;
 593        void                             *lcpa_base;
 594        dma_addr_t                        phy_lcpa;
 595        resource_size_t                   lcpa_size;
 596        struct kmem_cache                *desc_slab;
 597        u32                               reg_val_backup[BACKUP_REGS_SZ];
 598        u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 599        u32                              *reg_val_backup_chan;
 600        u32                              *regs_interrupt;
 601        u16                               gcc_pwr_off_mask;
 602        struct d40_gen_dmac               gen_dmac;
 603};
 604
 605static struct device *chan2dev(struct d40_chan *d40c)
 606{
 607        return &d40c->chan.dev->device;
 608}
 609
 610static bool chan_is_physical(struct d40_chan *chan)
 611{
 612        return chan->log_num == D40_PHY_CHAN;
 613}
 614
 615static bool chan_is_logical(struct d40_chan *chan)
 616{
 617        return !chan_is_physical(chan);
 618}
 619
 620static void __iomem *chan_base(struct d40_chan *chan)
 621{
 622        return chan->base->virtbase + D40_DREG_PCBASE +
 623               chan->phy_chan->num * D40_DREG_PCDELTA;
 624}
 625
 626#define d40_err(dev, format, arg...)            \
 627        dev_err(dev, "[%s] " format, __func__, ## arg)
 628
 629#define chan_err(d40c, format, arg...)          \
 630        d40_err(chan2dev(d40c), format, ## arg)
 631
 632static int d40_set_runtime_config_write(struct dma_chan *chan,
 633                                  struct dma_slave_config *config,
 634                                  enum dma_transfer_direction direction);
 635
 636static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 637                              int lli_len)
 638{
 639        bool is_log = chan_is_logical(d40c);
 640        u32 align;
 641        void *base;
 642
 643        if (is_log)
 644                align = sizeof(struct d40_log_lli);
 645        else
 646                align = sizeof(struct d40_phy_lli);
 647
 648        if (lli_len == 1) {
 649                base = d40d->lli_pool.pre_alloc_lli;
 650                d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 651                d40d->lli_pool.base = NULL;
 652        } else {
 653                d40d->lli_pool.size = lli_len * 2 * align;
 654
 655                base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 656                d40d->lli_pool.base = base;
 657
 658                if (d40d->lli_pool.base == NULL)
 659                        return -ENOMEM;
 660        }
 661
 662        if (is_log) {
 663                d40d->lli_log.src = PTR_ALIGN(base, align);
 664                d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 665
 666                d40d->lli_pool.dma_addr = 0;
 667        } else {
 668                d40d->lli_phy.src = PTR_ALIGN(base, align);
 669                d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 670
 671                d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 672                                                         d40d->lli_phy.src,
 673                                                         d40d->lli_pool.size,
 674                                                         DMA_TO_DEVICE);
 675
 676                if (dma_mapping_error(d40c->base->dev,
 677                                      d40d->lli_pool.dma_addr)) {
 678                        kfree(d40d->lli_pool.base);
 679                        d40d->lli_pool.base = NULL;
 680                        d40d->lli_pool.dma_addr = 0;
 681                        return -ENOMEM;
 682                }
 683        }
 684
 685        return 0;
 686}
 687
 688static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 689{
 690        if (d40d->lli_pool.dma_addr)
 691                dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 692                                 d40d->lli_pool.size, DMA_TO_DEVICE);
 693
 694        kfree(d40d->lli_pool.base);
 695        d40d->lli_pool.base = NULL;
 696        d40d->lli_pool.size = 0;
 697        d40d->lli_log.src = NULL;
 698        d40d->lli_log.dst = NULL;
 699        d40d->lli_phy.src = NULL;
 700        d40d->lli_phy.dst = NULL;
 701}
 702
 703static int d40_lcla_alloc_one(struct d40_chan *d40c,
 704                              struct d40_desc *d40d)
 705{
 706        unsigned long flags;
 707        int i;
 708        int ret = -EINVAL;
 709
 710        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 711
 712        /*
 713         * Allocate both src and dst at the same time, therefore the half
 714         * start on 1 since 0 can't be used since zero is used as end marker.
 715         */
 716        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 717                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 718
 719                if (!d40c->base->lcla_pool.alloc_map[idx]) {
 720                        d40c->base->lcla_pool.alloc_map[idx] = d40d;
 721                        d40d->lcla_alloc++;
 722                        ret = i;
 723                        break;
 724                }
 725        }
 726
 727        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 728
 729        return ret;
 730}
 731
 732static int d40_lcla_free_all(struct d40_chan *d40c,
 733                             struct d40_desc *d40d)
 734{
 735        unsigned long flags;
 736        int i;
 737        int ret = -EINVAL;
 738
 739        if (chan_is_physical(d40c))
 740                return 0;
 741
 742        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 743
 744        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 745                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 746
 747                if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 748                        d40c->base->lcla_pool.alloc_map[idx] = NULL;
 749                        d40d->lcla_alloc--;
 750                        if (d40d->lcla_alloc == 0) {
 751                                ret = 0;
 752                                break;
 753                        }
 754                }
 755        }
 756
 757        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 758
 759        return ret;
 760
 761}
 762
 763static void d40_desc_remove(struct d40_desc *d40d)
 764{
 765        list_del(&d40d->node);
 766}
 767
 768static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 769{
 770        struct d40_desc *desc = NULL;
 771
 772        if (!list_empty(&d40c->client)) {
 773                struct d40_desc *d;
 774                struct d40_desc *_d;
 775
 776                list_for_each_entry_safe(d, _d, &d40c->client, node) {
 777                        if (async_tx_test_ack(&d->txd)) {
 778                                d40_desc_remove(d);
 779                                desc = d;
 780                                memset(desc, 0, sizeof(*desc));
 781                                break;
 782                        }
 783                }
 784        }
 785
 786        if (!desc)
 787                desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 788
 789        if (desc)
 790                INIT_LIST_HEAD(&desc->node);
 791
 792        return desc;
 793}
 794
 795static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 796{
 797
 798        d40_pool_lli_free(d40c, d40d);
 799        d40_lcla_free_all(d40c, d40d);
 800        kmem_cache_free(d40c->base->desc_slab, d40d);
 801}
 802
 803static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 804{
 805        list_add_tail(&desc->node, &d40c->active);
 806}
 807
 808static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 809{
 810        struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 811        struct d40_phy_lli *lli_src = desc->lli_phy.src;
 812        void __iomem *base = chan_base(chan);
 813
 814        writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 815        writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 816        writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 817        writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 818
 819        writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 820        writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 821        writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 822        writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 823}
 824
 825static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 826{
 827        list_add_tail(&desc->node, &d40c->done);
 828}
 829
 830static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 831{
 832        struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 833        struct d40_log_lli_bidir *lli = &desc->lli_log;
 834        int lli_current = desc->lli_current;
 835        int lli_len = desc->lli_len;
 836        bool cyclic = desc->cyclic;
 837        int curr_lcla = -EINVAL;
 838        int first_lcla = 0;
 839        bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 840        bool linkback;
 841
 842        /*
 843         * We may have partially running cyclic transfers, in case we did't get
 844         * enough LCLA entries.
 845         */
 846        linkback = cyclic && lli_current == 0;
 847
 848        /*
 849         * For linkback, we need one LCLA even with only one link, because we
 850         * can't link back to the one in LCPA space
 851         */
 852        if (linkback || (lli_len - lli_current > 1)) {
 853                /*
 854                 * If the channel is expected to use only soft_lli don't
 855                 * allocate a lcla. This is to avoid a HW issue that exists
 856                 * in some controller during a peripheral to memory transfer
 857                 * that uses linked lists.
 858                 */
 859                if (!(chan->phy_chan->use_soft_lli &&
 860                        chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 861                        curr_lcla = d40_lcla_alloc_one(chan, desc);
 862
 863                first_lcla = curr_lcla;
 864        }
 865
 866        /*
 867         * For linkback, we normally load the LCPA in the loop since we need to
 868         * link it to the second LCLA and not the first.  However, if we
 869         * couldn't even get a first LCLA, then we have to run in LCPA and
 870         * reload manually.
 871         */
 872        if (!linkback || curr_lcla == -EINVAL) {
 873                unsigned int flags = 0;
 874
 875                if (curr_lcla == -EINVAL)
 876                        flags |= LLI_TERM_INT;
 877
 878                d40_log_lli_lcpa_write(chan->lcpa,
 879                                       &lli->dst[lli_current],
 880                                       &lli->src[lli_current],
 881                                       curr_lcla,
 882                                       flags);
 883                lli_current++;
 884        }
 885
 886        if (curr_lcla < 0)
 887                goto set_current;
 888
 889        for (; lli_current < lli_len; lli_current++) {
 890                unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 891                                           8 * curr_lcla * 2;
 892                struct d40_log_lli *lcla = pool->base + lcla_offset;
 893                unsigned int flags = 0;
 894                int next_lcla;
 895
 896                if (lli_current + 1 < lli_len)
 897                        next_lcla = d40_lcla_alloc_one(chan, desc);
 898                else
 899                        next_lcla = linkback ? first_lcla : -EINVAL;
 900
 901                if (cyclic || next_lcla == -EINVAL)
 902                        flags |= LLI_TERM_INT;
 903
 904                if (linkback && curr_lcla == first_lcla) {
 905                        /* First link goes in both LCPA and LCLA */
 906                        d40_log_lli_lcpa_write(chan->lcpa,
 907                                               &lli->dst[lli_current],
 908                                               &lli->src[lli_current],
 909                                               next_lcla, flags);
 910                }
 911
 912                /*
 913                 * One unused LCLA in the cyclic case if the very first
 914                 * next_lcla fails...
 915                 */
 916                d40_log_lli_lcla_write(lcla,
 917                                       &lli->dst[lli_current],
 918                                       &lli->src[lli_current],
 919                                       next_lcla, flags);
 920
 921                /*
 922                 * Cache maintenance is not needed if lcla is
 923                 * mapped in esram
 924                 */
 925                if (!use_esram_lcla) {
 926                        dma_sync_single_range_for_device(chan->base->dev,
 927                                                pool->dma_addr, lcla_offset,
 928                                                2 * sizeof(struct d40_log_lli),
 929                                                DMA_TO_DEVICE);
 930                }
 931                curr_lcla = next_lcla;
 932
 933                if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 934                        lli_current++;
 935                        break;
 936                }
 937        }
 938 set_current:
 939        desc->lli_current = lli_current;
 940}
 941
 942static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 943{
 944        if (chan_is_physical(d40c)) {
 945                d40_phy_lli_load(d40c, d40d);
 946                d40d->lli_current = d40d->lli_len;
 947        } else
 948                d40_log_lli_to_lcxa(d40c, d40d);
 949}
 950
 951static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 952{
 953        return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 954}
 955
 956/* remove desc from current queue and add it to the pending_queue */
 957static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 958{
 959        d40_desc_remove(desc);
 960        desc->is_in_client_list = false;
 961        list_add_tail(&desc->node, &d40c->pending_queue);
 962}
 963
 964static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 965{
 966        return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 967                                        node);
 968}
 969
 970static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 971{
 972        return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 973}
 974
 975static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 976{
 977        return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 978}
 979
 980static int d40_psize_2_burst_size(bool is_log, int psize)
 981{
 982        if (is_log) {
 983                if (psize == STEDMA40_PSIZE_LOG_1)
 984                        return 1;
 985        } else {
 986                if (psize == STEDMA40_PSIZE_PHY_1)
 987                        return 1;
 988        }
 989
 990        return 2 << psize;
 991}
 992
 993/*
 994 * The dma only supports transmitting packages up to
 995 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 996 *
 997 * Calculate the total number of dma elements required to send the entire sg list.
 998 */
 999static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1000{
1001        int dmalen;
1002        u32 max_w = max(data_width1, data_width2);
1003        u32 min_w = min(data_width1, data_width2);
1004        u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1005
1006        if (seg_max > STEDMA40_MAX_SEG_SIZE)
1007                seg_max -= max_w;
1008
1009        if (!IS_ALIGNED(size, max_w))
1010                return -EINVAL;
1011
1012        if (size <= seg_max)
1013                dmalen = 1;
1014        else {
1015                dmalen = size / seg_max;
1016                if (dmalen * seg_max < size)
1017                        dmalen++;
1018        }
1019        return dmalen;
1020}
1021
1022static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1023                           u32 data_width1, u32 data_width2)
1024{
1025        struct scatterlist *sg;
1026        int i;
1027        int len = 0;
1028        int ret;
1029
1030        for_each_sg(sgl, sg, sg_len, i) {
1031                ret = d40_size_2_dmalen(sg_dma_len(sg),
1032                                        data_width1, data_width2);
1033                if (ret < 0)
1034                        return ret;
1035                len += ret;
1036        }
1037        return len;
1038}
1039
1040static int __d40_execute_command_phy(struct d40_chan *d40c,
1041                                     enum d40_command command)
1042{
1043        u32 status;
1044        int i;
1045        void __iomem *active_reg;
1046        int ret = 0;
1047        unsigned long flags;
1048        u32 wmask;
1049
1050        if (command == D40_DMA_STOP) {
1051                ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1052                if (ret)
1053                        return ret;
1054        }
1055
1056        spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1057
1058        if (d40c->phy_chan->num % 2 == 0)
1059                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1060        else
1061                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1062
1063        if (command == D40_DMA_SUSPEND_REQ) {
1064                status = (readl(active_reg) &
1065                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1066                        D40_CHAN_POS(d40c->phy_chan->num);
1067
1068                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1069                        goto unlock;
1070        }
1071
1072        wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1073        writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1074               active_reg);
1075
1076        if (command == D40_DMA_SUSPEND_REQ) {
1077
1078                for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1079                        status = (readl(active_reg) &
1080                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1081                                D40_CHAN_POS(d40c->phy_chan->num);
1082
1083                        cpu_relax();
1084                        /*
1085                         * Reduce the number of bus accesses while
1086                         * waiting for the DMA to suspend.
1087                         */
1088                        udelay(3);
1089
1090                        if (status == D40_DMA_STOP ||
1091                            status == D40_DMA_SUSPENDED)
1092                                break;
1093                }
1094
1095                if (i == D40_SUSPEND_MAX_IT) {
1096                        chan_err(d40c,
1097                                "unable to suspend the chl %d (log: %d) status %x\n",
1098                                d40c->phy_chan->num, d40c->log_num,
1099                                status);
1100                        dump_stack();
1101                        ret = -EBUSY;
1102                }
1103
1104        }
1105 unlock:
1106        spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1107        return ret;
1108}
1109
1110static void d40_term_all(struct d40_chan *d40c)
1111{
1112        struct d40_desc *d40d;
1113        struct d40_desc *_d;
1114
1115        /* Release completed descriptors */
1116        while ((d40d = d40_first_done(d40c))) {
1117                d40_desc_remove(d40d);
1118                d40_desc_free(d40c, d40d);
1119        }
1120
1121        /* Release active descriptors */
1122        while ((d40d = d40_first_active_get(d40c))) {
1123                d40_desc_remove(d40d);
1124                d40_desc_free(d40c, d40d);
1125        }
1126
1127        /* Release queued descriptors waiting for transfer */
1128        while ((d40d = d40_first_queued(d40c))) {
1129                d40_desc_remove(d40d);
1130                d40_desc_free(d40c, d40d);
1131        }
1132
1133        /* Release pending descriptors */
1134        while ((d40d = d40_first_pending(d40c))) {
1135                d40_desc_remove(d40d);
1136                d40_desc_free(d40c, d40d);
1137        }
1138
1139        /* Release client owned descriptors */
1140        if (!list_empty(&d40c->client))
1141                list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1142                        d40_desc_remove(d40d);
1143                        d40_desc_free(d40c, d40d);
1144                }
1145
1146        /* Release descriptors in prepare queue */
1147        if (!list_empty(&d40c->prepare_queue))
1148                list_for_each_entry_safe(d40d, _d,
1149                                         &d40c->prepare_queue, node) {
1150                        d40_desc_remove(d40d);
1151                        d40_desc_free(d40c, d40d);
1152                }
1153
1154        d40c->pending_tx = 0;
1155}
1156
1157static void __d40_config_set_event(struct d40_chan *d40c,
1158                                   enum d40_events event_type, u32 event,
1159                                   int reg)
1160{
1161        void __iomem *addr = chan_base(d40c) + reg;
1162        int tries;
1163        u32 status;
1164
1165        switch (event_type) {
1166
1167        case D40_DEACTIVATE_EVENTLINE:
1168
1169                writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1170                       | ~D40_EVENTLINE_MASK(event), addr);
1171                break;
1172
1173        case D40_SUSPEND_REQ_EVENTLINE:
1174                status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1175                          D40_EVENTLINE_POS(event);
1176
1177                if (status == D40_DEACTIVATE_EVENTLINE ||
1178                    status == D40_SUSPEND_REQ_EVENTLINE)
1179                        break;
1180
1181                writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1182                       | ~D40_EVENTLINE_MASK(event), addr);
1183
1184                for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1185
1186                        status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1187                                  D40_EVENTLINE_POS(event);
1188
1189                        cpu_relax();
1190                        /*
1191                         * Reduce the number of bus accesses while
1192                         * waiting for the DMA to suspend.
1193                         */
1194                        udelay(3);
1195
1196                        if (status == D40_DEACTIVATE_EVENTLINE)
1197                                break;
1198                }
1199
1200                if (tries == D40_SUSPEND_MAX_IT) {
1201                        chan_err(d40c,
1202                                "unable to stop the event_line chl %d (log: %d)"
1203                                "status %x\n", d40c->phy_chan->num,
1204                                 d40c->log_num, status);
1205                }
1206                break;
1207
1208        case D40_ACTIVATE_EVENTLINE:
1209        /*
1210         * The hardware sometimes doesn't register the enable when src and dst
1211         * event lines are active on the same logical channel.  Retry to ensure
1212         * it does.  Usually only one retry is sufficient.
1213         */
1214                tries = 100;
1215                while (--tries) {
1216                        writel((D40_ACTIVATE_EVENTLINE <<
1217                                D40_EVENTLINE_POS(event)) |
1218                                ~D40_EVENTLINE_MASK(event), addr);
1219
1220                        if (readl(addr) & D40_EVENTLINE_MASK(event))
1221                                break;
1222                }
1223
1224                if (tries != 99)
1225                        dev_dbg(chan2dev(d40c),
1226                                "[%s] workaround enable S%cLNK (%d tries)\n",
1227                                __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1228                                100 - tries);
1229
1230                WARN_ON(!tries);
1231                break;
1232
1233        case D40_ROUND_EVENTLINE:
1234                BUG();
1235                break;
1236
1237        }
1238}
1239
1240static void d40_config_set_event(struct d40_chan *d40c,
1241                                 enum d40_events event_type)
1242{
1243        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1244
1245        /* Enable event line connected to device (or memcpy) */
1246        if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1247            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1248                __d40_config_set_event(d40c, event_type, event,
1249                                       D40_CHAN_REG_SSLNK);
1250
1251        if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1252                __d40_config_set_event(d40c, event_type, event,
1253                                       D40_CHAN_REG_SDLNK);
1254}
1255
1256static u32 d40_chan_has_events(struct d40_chan *d40c)
1257{
1258        void __iomem *chanbase = chan_base(d40c);
1259        u32 val;
1260
1261        val = readl(chanbase + D40_CHAN_REG_SSLNK);
1262        val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1263
1264        return val;
1265}
1266
1267static int
1268__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1269{
1270        unsigned long flags;
1271        int ret = 0;
1272        u32 active_status;
1273        void __iomem *active_reg;
1274
1275        if (d40c->phy_chan->num % 2 == 0)
1276                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1277        else
1278                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1279
1280
1281        spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1282
1283        switch (command) {
1284        case D40_DMA_STOP:
1285        case D40_DMA_SUSPEND_REQ:
1286
1287                active_status = (readl(active_reg) &
1288                                 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1289                                 D40_CHAN_POS(d40c->phy_chan->num);
1290
1291                if (active_status == D40_DMA_RUN)
1292                        d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1293                else
1294                        d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1295
1296                if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1297                        ret = __d40_execute_command_phy(d40c, command);
1298
1299                break;
1300
1301        case D40_DMA_RUN:
1302
1303                d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1304                ret = __d40_execute_command_phy(d40c, command);
1305                break;
1306
1307        case D40_DMA_SUSPENDED:
1308                BUG();
1309                break;
1310        }
1311
1312        spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1313        return ret;
1314}
1315
1316static int d40_channel_execute_command(struct d40_chan *d40c,
1317                                       enum d40_command command)
1318{
1319        if (chan_is_logical(d40c))
1320                return __d40_execute_command_log(d40c, command);
1321        else
1322                return __d40_execute_command_phy(d40c, command);
1323}
1324
1325static u32 d40_get_prmo(struct d40_chan *d40c)
1326{
1327        static const unsigned int phy_map[] = {
1328                [STEDMA40_PCHAN_BASIC_MODE]
1329                        = D40_DREG_PRMO_PCHAN_BASIC,
1330                [STEDMA40_PCHAN_MODULO_MODE]
1331                        = D40_DREG_PRMO_PCHAN_MODULO,
1332                [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1333                        = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1334        };
1335        static const unsigned int log_map[] = {
1336                [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1337                        = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1338                [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1339                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1340                [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1341                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1342        };
1343
1344        if (chan_is_physical(d40c))
1345                return phy_map[d40c->dma_cfg.mode_opt];
1346        else
1347                return log_map[d40c->dma_cfg.mode_opt];
1348}
1349
1350static void d40_config_write(struct d40_chan *d40c)
1351{
1352        u32 addr_base;
1353        u32 var;
1354
1355        /* Odd addresses are even addresses + 4 */
1356        addr_base = (d40c->phy_chan->num % 2) * 4;
1357        /* Setup channel mode to logical or physical */
1358        var = ((u32)(chan_is_logical(d40c)) + 1) <<
1359                D40_CHAN_POS(d40c->phy_chan->num);
1360        writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1361
1362        /* Setup operational mode option register */
1363        var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1364
1365        writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1366
1367        if (chan_is_logical(d40c)) {
1368                int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1369                           & D40_SREG_ELEM_LOG_LIDX_MASK;
1370                void __iomem *chanbase = chan_base(d40c);
1371
1372                /* Set default config for CFG reg */
1373                writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1374                writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1375
1376                /* Set LIDX for lcla */
1377                writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1378                writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1379
1380                /* Clear LNK which will be used by d40_chan_has_events() */
1381                writel(0, chanbase + D40_CHAN_REG_SSLNK);
1382                writel(0, chanbase + D40_CHAN_REG_SDLNK);
1383        }
1384}
1385
1386static u32 d40_residue(struct d40_chan *d40c)
1387{
1388        u32 num_elt;
1389
1390        if (chan_is_logical(d40c))
1391                num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1392                        >> D40_MEM_LCSP2_ECNT_POS;
1393        else {
1394                u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1395                num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1396                          >> D40_SREG_ELEM_PHY_ECNT_POS;
1397        }
1398
1399        return num_elt * d40c->dma_cfg.dst_info.data_width;
1400}
1401
1402static bool d40_tx_is_linked(struct d40_chan *d40c)
1403{
1404        bool is_link;
1405
1406        if (chan_is_logical(d40c))
1407                is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1408        else
1409                is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1410                          & D40_SREG_LNK_PHYS_LNK_MASK;
1411
1412        return is_link;
1413}
1414
1415static int d40_pause(struct dma_chan *chan)
1416{
1417        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1418        int res = 0;
1419        unsigned long flags;
1420
1421        if (d40c->phy_chan == NULL) {
1422                chan_err(d40c, "Channel is not allocated!\n");
1423                return -EINVAL;
1424        }
1425
1426        if (!d40c->busy)
1427                return 0;
1428
1429        spin_lock_irqsave(&d40c->lock, flags);
1430        pm_runtime_get_sync(d40c->base->dev);
1431
1432        res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1433
1434        pm_runtime_mark_last_busy(d40c->base->dev);
1435        pm_runtime_put_autosuspend(d40c->base->dev);
1436        spin_unlock_irqrestore(&d40c->lock, flags);
1437        return res;
1438}
1439
1440static int d40_resume(struct dma_chan *chan)
1441{
1442        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1443        int res = 0;
1444        unsigned long flags;
1445
1446        if (d40c->phy_chan == NULL) {
1447                chan_err(d40c, "Channel is not allocated!\n");
1448                return -EINVAL;
1449        }
1450
1451        if (!d40c->busy)
1452                return 0;
1453
1454        spin_lock_irqsave(&d40c->lock, flags);
1455        pm_runtime_get_sync(d40c->base->dev);
1456
1457        /* If bytes left to transfer or linked tx resume job */
1458        if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1459                res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1460
1461        pm_runtime_mark_last_busy(d40c->base->dev);
1462        pm_runtime_put_autosuspend(d40c->base->dev);
1463        spin_unlock_irqrestore(&d40c->lock, flags);
1464        return res;
1465}
1466
1467static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1468{
1469        struct d40_chan *d40c = container_of(tx->chan,
1470                                             struct d40_chan,
1471                                             chan);
1472        struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1473        unsigned long flags;
1474        dma_cookie_t cookie;
1475
1476        spin_lock_irqsave(&d40c->lock, flags);
1477        cookie = dma_cookie_assign(tx);
1478        d40_desc_queue(d40c, d40d);
1479        spin_unlock_irqrestore(&d40c->lock, flags);
1480
1481        return cookie;
1482}
1483
1484static int d40_start(struct d40_chan *d40c)
1485{
1486        return d40_channel_execute_command(d40c, D40_DMA_RUN);
1487}
1488
1489static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1490{
1491        struct d40_desc *d40d;
1492        int err;
1493
1494        /* Start queued jobs, if any */
1495        d40d = d40_first_queued(d40c);
1496
1497        if (d40d != NULL) {
1498                if (!d40c->busy) {
1499                        d40c->busy = true;
1500                        pm_runtime_get_sync(d40c->base->dev);
1501                }
1502
1503                /* Remove from queue */
1504                d40_desc_remove(d40d);
1505
1506                /* Add to active queue */
1507                d40_desc_submit(d40c, d40d);
1508
1509                /* Initiate DMA job */
1510                d40_desc_load(d40c, d40d);
1511
1512                /* Start dma job */
1513                err = d40_start(d40c);
1514
1515                if (err)
1516                        return NULL;
1517        }
1518
1519        return d40d;
1520}
1521
1522/* called from interrupt context */
1523static void dma_tc_handle(struct d40_chan *d40c)
1524{
1525        struct d40_desc *d40d;
1526
1527        /* Get first active entry from list */
1528        d40d = d40_first_active_get(d40c);
1529
1530        if (d40d == NULL)
1531                return;
1532
1533        if (d40d->cyclic) {
1534                /*
1535                 * If this was a paritially loaded list, we need to reloaded
1536                 * it, and only when the list is completed.  We need to check
1537                 * for done because the interrupt will hit for every link, and
1538                 * not just the last one.
1539                 */
1540                if (d40d->lli_current < d40d->lli_len
1541                    && !d40_tx_is_linked(d40c)
1542                    && !d40_residue(d40c)) {
1543                        d40_lcla_free_all(d40c, d40d);
1544                        d40_desc_load(d40c, d40d);
1545                        (void) d40_start(d40c);
1546
1547                        if (d40d->lli_current == d40d->lli_len)
1548                                d40d->lli_current = 0;
1549                }
1550        } else {
1551                d40_lcla_free_all(d40c, d40d);
1552
1553                if (d40d->lli_current < d40d->lli_len) {
1554                        d40_desc_load(d40c, d40d);
1555                        /* Start dma job */
1556                        (void) d40_start(d40c);
1557                        return;
1558                }
1559
1560                if (d40_queue_start(d40c) == NULL) {
1561                        d40c->busy = false;
1562
1563                        pm_runtime_mark_last_busy(d40c->base->dev);
1564                        pm_runtime_put_autosuspend(d40c->base->dev);
1565                }
1566
1567                d40_desc_remove(d40d);
1568                d40_desc_done(d40c, d40d);
1569        }
1570
1571        d40c->pending_tx++;
1572        tasklet_schedule(&d40c->tasklet);
1573
1574}
1575
1576static void dma_tasklet(unsigned long data)
1577{
1578        struct d40_chan *d40c = (struct d40_chan *) data;
1579        struct d40_desc *d40d;
1580        unsigned long flags;
1581        bool callback_active;
1582        struct dmaengine_desc_callback cb;
1583
1584        spin_lock_irqsave(&d40c->lock, flags);
1585
1586        /* Get first entry from the done list */
1587        d40d = d40_first_done(d40c);
1588        if (d40d == NULL) {
1589                /* Check if we have reached here for cyclic job */
1590                d40d = d40_first_active_get(d40c);
1591                if (d40d == NULL || !d40d->cyclic)
1592                        goto check_pending_tx;
1593        }
1594
1595        if (!d40d->cyclic)
1596                dma_cookie_complete(&d40d->txd);
1597
1598        /*
1599         * If terminating a channel pending_tx is set to zero.
1600         * This prevents any finished active jobs to return to the client.
1601         */
1602        if (d40c->pending_tx == 0) {
1603                spin_unlock_irqrestore(&d40c->lock, flags);
1604                return;
1605        }
1606
1607        /* Callback to client */
1608        callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1609        dmaengine_desc_get_callback(&d40d->txd, &cb);
1610
1611        if (!d40d->cyclic) {
1612                if (async_tx_test_ack(&d40d->txd)) {
1613                        d40_desc_remove(d40d);
1614                        d40_desc_free(d40c, d40d);
1615                } else if (!d40d->is_in_client_list) {
1616                        d40_desc_remove(d40d);
1617                        d40_lcla_free_all(d40c, d40d);
1618                        list_add_tail(&d40d->node, &d40c->client);
1619                        d40d->is_in_client_list = true;
1620                }
1621        }
1622
1623        d40c->pending_tx--;
1624
1625        if (d40c->pending_tx)
1626                tasklet_schedule(&d40c->tasklet);
1627
1628        spin_unlock_irqrestore(&d40c->lock, flags);
1629
1630        if (callback_active)
1631                dmaengine_desc_callback_invoke(&cb, NULL);
1632
1633        return;
1634 check_pending_tx:
1635        /* Rescue manouver if receiving double interrupts */
1636        if (d40c->pending_tx > 0)
1637                d40c->pending_tx--;
1638        spin_unlock_irqrestore(&d40c->lock, flags);
1639}
1640
1641static irqreturn_t d40_handle_interrupt(int irq, void *data)
1642{
1643        int i;
1644        u32 idx;
1645        u32 row;
1646        long chan = -1;
1647        struct d40_chan *d40c;
1648        unsigned long flags;
1649        struct d40_base *base = data;
1650        u32 *regs = base->regs_interrupt;
1651        struct d40_interrupt_lookup *il = base->gen_dmac.il;
1652        u32 il_size = base->gen_dmac.il_size;
1653
1654        spin_lock_irqsave(&base->interrupt_lock, flags);
1655
1656        /* Read interrupt status of both logical and physical channels */
1657        for (i = 0; i < il_size; i++)
1658                regs[i] = readl(base->virtbase + il[i].src);
1659
1660        for (;;) {
1661
1662                chan = find_next_bit((unsigned long *)regs,
1663                                     BITS_PER_LONG * il_size, chan + 1);
1664
1665                /* No more set bits found? */
1666                if (chan == BITS_PER_LONG * il_size)
1667                        break;
1668
1669                row = chan / BITS_PER_LONG;
1670                idx = chan & (BITS_PER_LONG - 1);
1671
1672                if (il[row].offset == D40_PHY_CHAN)
1673                        d40c = base->lookup_phy_chans[idx];
1674                else
1675                        d40c = base->lookup_log_chans[il[row].offset + idx];
1676
1677                if (!d40c) {
1678                        /*
1679                         * No error because this can happen if something else
1680                         * in the system is using the channel.
1681                         */
1682                        continue;
1683                }
1684
1685                /* ACK interrupt */
1686                writel(BIT(idx), base->virtbase + il[row].clr);
1687
1688                spin_lock(&d40c->lock);
1689
1690                if (!il[row].is_error)
1691                        dma_tc_handle(d40c);
1692                else
1693                        d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1694                                chan, il[row].offset, idx);
1695
1696                spin_unlock(&d40c->lock);
1697        }
1698
1699        spin_unlock_irqrestore(&base->interrupt_lock, flags);
1700
1701        return IRQ_HANDLED;
1702}
1703
1704static int d40_validate_conf(struct d40_chan *d40c,
1705                             struct stedma40_chan_cfg *conf)
1706{
1707        int res = 0;
1708        bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1709
1710        if (!conf->dir) {
1711                chan_err(d40c, "Invalid direction.\n");
1712                res = -EINVAL;
1713        }
1714
1715        if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1716            (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1717            (conf->dev_type < 0)) {
1718                chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1719                res = -EINVAL;
1720        }
1721
1722        if (conf->dir == DMA_DEV_TO_DEV) {
1723                /*
1724                 * DMAC HW supports it. Will be added to this driver,
1725                 * in case any dma client requires it.
1726                 */
1727                chan_err(d40c, "periph to periph not supported\n");
1728                res = -EINVAL;
1729        }
1730
1731        if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1732            conf->src_info.data_width !=
1733            d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1734            conf->dst_info.data_width) {
1735                /*
1736                 * The DMAC hardware only supports
1737                 * src (burst x width) == dst (burst x width)
1738                 */
1739
1740                chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1741                res = -EINVAL;
1742        }
1743
1744        return res;
1745}
1746
1747static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1748                               bool is_src, int log_event_line, bool is_log,
1749                               bool *first_user)
1750{
1751        unsigned long flags;
1752        spin_lock_irqsave(&phy->lock, flags);
1753
1754        *first_user = ((phy->allocated_src | phy->allocated_dst)
1755                        == D40_ALLOC_FREE);
1756
1757        if (!is_log) {
1758                /* Physical interrupts are masked per physical full channel */
1759                if (phy->allocated_src == D40_ALLOC_FREE &&
1760                    phy->allocated_dst == D40_ALLOC_FREE) {
1761                        phy->allocated_dst = D40_ALLOC_PHY;
1762                        phy->allocated_src = D40_ALLOC_PHY;
1763                        goto found_unlock;
1764                } else
1765                        goto not_found_unlock;
1766        }
1767
1768        /* Logical channel */
1769        if (is_src) {
1770                if (phy->allocated_src == D40_ALLOC_PHY)
1771                        goto not_found_unlock;
1772
1773                if (phy->allocated_src == D40_ALLOC_FREE)
1774                        phy->allocated_src = D40_ALLOC_LOG_FREE;
1775
1776                if (!(phy->allocated_src & BIT(log_event_line))) {
1777                        phy->allocated_src |= BIT(log_event_line);
1778                        goto found_unlock;
1779                } else
1780                        goto not_found_unlock;
1781        } else {
1782                if (phy->allocated_dst == D40_ALLOC_PHY)
1783                        goto not_found_unlock;
1784
1785                if (phy->allocated_dst == D40_ALLOC_FREE)
1786                        phy->allocated_dst = D40_ALLOC_LOG_FREE;
1787
1788                if (!(phy->allocated_dst & BIT(log_event_line))) {
1789                        phy->allocated_dst |= BIT(log_event_line);
1790                        goto found_unlock;
1791                }
1792        }
1793 not_found_unlock:
1794        spin_unlock_irqrestore(&phy->lock, flags);
1795        return false;
1796 found_unlock:
1797        spin_unlock_irqrestore(&phy->lock, flags);
1798        return true;
1799}
1800
1801static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1802                               int log_event_line)
1803{
1804        unsigned long flags;
1805        bool is_free = false;
1806
1807        spin_lock_irqsave(&phy->lock, flags);
1808        if (!log_event_line) {
1809                phy->allocated_dst = D40_ALLOC_FREE;
1810                phy->allocated_src = D40_ALLOC_FREE;
1811                is_free = true;
1812                goto unlock;
1813        }
1814
1815        /* Logical channel */
1816        if (is_src) {
1817                phy->allocated_src &= ~BIT(log_event_line);
1818                if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1819                        phy->allocated_src = D40_ALLOC_FREE;
1820        } else {
1821                phy->allocated_dst &= ~BIT(log_event_line);
1822                if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1823                        phy->allocated_dst = D40_ALLOC_FREE;
1824        }
1825
1826        is_free = ((phy->allocated_src | phy->allocated_dst) ==
1827                   D40_ALLOC_FREE);
1828 unlock:
1829        spin_unlock_irqrestore(&phy->lock, flags);
1830
1831        return is_free;
1832}
1833
1834static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1835{
1836        int dev_type = d40c->dma_cfg.dev_type;
1837        int event_group;
1838        int event_line;
1839        struct d40_phy_res *phys;
1840        int i;
1841        int j;
1842        int log_num;
1843        int num_phy_chans;
1844        bool is_src;
1845        bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1846
1847        phys = d40c->base->phy_res;
1848        num_phy_chans = d40c->base->num_phy_chans;
1849
1850        if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1851                log_num = 2 * dev_type;
1852                is_src = true;
1853        } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1854                   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1855                /* dst event lines are used for logical memcpy */
1856                log_num = 2 * dev_type + 1;
1857                is_src = false;
1858        } else
1859                return -EINVAL;
1860
1861        event_group = D40_TYPE_TO_GROUP(dev_type);
1862        event_line = D40_TYPE_TO_EVENT(dev_type);
1863
1864        if (!is_log) {
1865                if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1866                        /* Find physical half channel */
1867                        if (d40c->dma_cfg.use_fixed_channel) {
1868                                i = d40c->dma_cfg.phy_channel;
1869                                if (d40_alloc_mask_set(&phys[i], is_src,
1870                                                       0, is_log,
1871                                                       first_phy_user))
1872                                        goto found_phy;
1873                        } else {
1874                                for (i = 0; i < num_phy_chans; i++) {
1875                                        if (d40_alloc_mask_set(&phys[i], is_src,
1876                                                       0, is_log,
1877                                                       first_phy_user))
1878                                                goto found_phy;
1879                                }
1880                        }
1881                } else
1882                        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1883                                int phy_num = j  + event_group * 2;
1884                                for (i = phy_num; i < phy_num + 2; i++) {
1885                                        if (d40_alloc_mask_set(&phys[i],
1886                                                               is_src,
1887                                                               0,
1888                                                               is_log,
1889                                                               first_phy_user))
1890                                                goto found_phy;
1891                                }
1892                        }
1893                return -EINVAL;
1894found_phy:
1895                d40c->phy_chan = &phys[i];
1896                d40c->log_num = D40_PHY_CHAN;
1897                goto out;
1898        }
1899        if (dev_type == -1)
1900                return -EINVAL;
1901
1902        /* Find logical channel */
1903        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1904                int phy_num = j + event_group * 2;
1905
1906                if (d40c->dma_cfg.use_fixed_channel) {
1907                        i = d40c->dma_cfg.phy_channel;
1908
1909                        if ((i != phy_num) && (i != phy_num + 1)) {
1910                                dev_err(chan2dev(d40c),
1911                                        "invalid fixed phy channel %d\n", i);
1912                                return -EINVAL;
1913                        }
1914
1915                        if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1916                                               is_log, first_phy_user))
1917                                goto found_log;
1918
1919                        dev_err(chan2dev(d40c),
1920                                "could not allocate fixed phy channel %d\n", i);
1921                        return -EINVAL;
1922                }
1923
1924                /*
1925                 * Spread logical channels across all available physical rather
1926                 * than pack every logical channel at the first available phy
1927                 * channels.
1928                 */
1929                if (is_src) {
1930                        for (i = phy_num; i < phy_num + 2; i++) {
1931                                if (d40_alloc_mask_set(&phys[i], is_src,
1932                                                       event_line, is_log,
1933                                                       first_phy_user))
1934                                        goto found_log;
1935                        }
1936                } else {
1937                        for (i = phy_num + 1; i >= phy_num; i--) {
1938                                if (d40_alloc_mask_set(&phys[i], is_src,
1939                                                       event_line, is_log,
1940                                                       first_phy_user))
1941                                        goto found_log;
1942                        }
1943                }
1944        }
1945        return -EINVAL;
1946
1947found_log:
1948        d40c->phy_chan = &phys[i];
1949        d40c->log_num = log_num;
1950out:
1951
1952        if (is_log)
1953                d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1954        else
1955                d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1956
1957        return 0;
1958
1959}
1960
1961static int d40_config_memcpy(struct d40_chan *d40c)
1962{
1963        dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1964
1965        if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1966                d40c->dma_cfg = dma40_memcpy_conf_log;
1967                d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1968
1969                d40_log_cfg(&d40c->dma_cfg,
1970                            &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1971
1972        } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1973                   dma_has_cap(DMA_SLAVE, cap)) {
1974                d40c->dma_cfg = dma40_memcpy_conf_phy;
1975
1976                /* Generate interrrupt at end of transfer or relink. */
1977                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1978
1979                /* Generate interrupt on error. */
1980                d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1981                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1982
1983        } else {
1984                chan_err(d40c, "No memcpy\n");
1985                return -EINVAL;
1986        }
1987
1988        return 0;
1989}
1990
1991static int d40_free_dma(struct d40_chan *d40c)
1992{
1993
1994        int res = 0;
1995        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1996        struct d40_phy_res *phy = d40c->phy_chan;
1997        bool is_src;
1998
1999        /* Terminate all queued and active transfers */
2000        d40_term_all(d40c);
2001
2002        if (phy == NULL) {
2003                chan_err(d40c, "phy == null\n");
2004                return -EINVAL;
2005        }
2006
2007        if (phy->allocated_src == D40_ALLOC_FREE &&
2008            phy->allocated_dst == D40_ALLOC_FREE) {
2009                chan_err(d40c, "channel already free\n");
2010                return -EINVAL;
2011        }
2012
2013        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2014            d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2015                is_src = false;
2016        else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2017                is_src = true;
2018        else {
2019                chan_err(d40c, "Unknown direction\n");
2020                return -EINVAL;
2021        }
2022
2023        pm_runtime_get_sync(d40c->base->dev);
2024        res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2025        if (res) {
2026                chan_err(d40c, "stop failed\n");
2027                goto mark_last_busy;
2028        }
2029
2030        d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2031
2032        if (chan_is_logical(d40c))
2033                d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2034        else
2035                d40c->base->lookup_phy_chans[phy->num] = NULL;
2036
2037        if (d40c->busy) {
2038                pm_runtime_mark_last_busy(d40c->base->dev);
2039                pm_runtime_put_autosuspend(d40c->base->dev);
2040        }
2041
2042        d40c->busy = false;
2043        d40c->phy_chan = NULL;
2044        d40c->configured = false;
2045 mark_last_busy:
2046        pm_runtime_mark_last_busy(d40c->base->dev);
2047        pm_runtime_put_autosuspend(d40c->base->dev);
2048        return res;
2049}
2050
2051static bool d40_is_paused(struct d40_chan *d40c)
2052{
2053        void __iomem *chanbase = chan_base(d40c);
2054        bool is_paused = false;
2055        unsigned long flags;
2056        void __iomem *active_reg;
2057        u32 status;
2058        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2059
2060        spin_lock_irqsave(&d40c->lock, flags);
2061
2062        if (chan_is_physical(d40c)) {
2063                if (d40c->phy_chan->num % 2 == 0)
2064                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2065                else
2066                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2067
2068                status = (readl(active_reg) &
2069                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2070                        D40_CHAN_POS(d40c->phy_chan->num);
2071                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2072                        is_paused = true;
2073                goto unlock;
2074        }
2075
2076        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2077            d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2078                status = readl(chanbase + D40_CHAN_REG_SDLNK);
2079        } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2080                status = readl(chanbase + D40_CHAN_REG_SSLNK);
2081        } else {
2082                chan_err(d40c, "Unknown direction\n");
2083                goto unlock;
2084        }
2085
2086        status = (status & D40_EVENTLINE_MASK(event)) >>
2087                D40_EVENTLINE_POS(event);
2088
2089        if (status != D40_DMA_RUN)
2090                is_paused = true;
2091 unlock:
2092        spin_unlock_irqrestore(&d40c->lock, flags);
2093        return is_paused;
2094
2095}
2096
2097static u32 stedma40_residue(struct dma_chan *chan)
2098{
2099        struct d40_chan *d40c =
2100                container_of(chan, struct d40_chan, chan);
2101        u32 bytes_left;
2102        unsigned long flags;
2103
2104        spin_lock_irqsave(&d40c->lock, flags);
2105        bytes_left = d40_residue(d40c);
2106        spin_unlock_irqrestore(&d40c->lock, flags);
2107
2108        return bytes_left;
2109}
2110
2111static int
2112d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2113                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2114                unsigned int sg_len, dma_addr_t src_dev_addr,
2115                dma_addr_t dst_dev_addr)
2116{
2117        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2118        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2119        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2120        int ret;
2121
2122        ret = d40_log_sg_to_lli(sg_src, sg_len,
2123                                src_dev_addr,
2124                                desc->lli_log.src,
2125                                chan->log_def.lcsp1,
2126                                src_info->data_width,
2127                                dst_info->data_width);
2128
2129        ret = d40_log_sg_to_lli(sg_dst, sg_len,
2130                                dst_dev_addr,
2131                                desc->lli_log.dst,
2132                                chan->log_def.lcsp3,
2133                                dst_info->data_width,
2134                                src_info->data_width);
2135
2136        return ret < 0 ? ret : 0;
2137}
2138
2139static int
2140d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2141                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2142                unsigned int sg_len, dma_addr_t src_dev_addr,
2143                dma_addr_t dst_dev_addr)
2144{
2145        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2146        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2147        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2148        unsigned long flags = 0;
2149        int ret;
2150
2151        if (desc->cyclic)
2152                flags |= LLI_CYCLIC | LLI_TERM_INT;
2153
2154        ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2155                                desc->lli_phy.src,
2156                                virt_to_phys(desc->lli_phy.src),
2157                                chan->src_def_cfg,
2158                                src_info, dst_info, flags);
2159
2160        ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2161                                desc->lli_phy.dst,
2162                                virt_to_phys(desc->lli_phy.dst),
2163                                chan->dst_def_cfg,
2164                                dst_info, src_info, flags);
2165
2166        dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2167                                   desc->lli_pool.size, DMA_TO_DEVICE);
2168
2169        return ret < 0 ? ret : 0;
2170}
2171
2172static struct d40_desc *
2173d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2174              unsigned int sg_len, unsigned long dma_flags)
2175{
2176        struct stedma40_chan_cfg *cfg;
2177        struct d40_desc *desc;
2178        int ret;
2179
2180        desc = d40_desc_get(chan);
2181        if (!desc)
2182                return NULL;
2183
2184        cfg = &chan->dma_cfg;
2185        desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2186                                        cfg->dst_info.data_width);
2187        if (desc->lli_len < 0) {
2188                chan_err(chan, "Unaligned size\n");
2189                goto free_desc;
2190        }
2191
2192        ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2193        if (ret < 0) {
2194                chan_err(chan, "Could not allocate lli\n");
2195                goto free_desc;
2196        }
2197
2198        desc->lli_current = 0;
2199        desc->txd.flags = dma_flags;
2200        desc->txd.tx_submit = d40_tx_submit;
2201
2202        dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2203
2204        return desc;
2205 free_desc:
2206        d40_desc_free(chan, desc);
2207        return NULL;
2208}
2209
2210static struct dma_async_tx_descriptor *
2211d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2212            struct scatterlist *sg_dst, unsigned int sg_len,
2213            enum dma_transfer_direction direction, unsigned long dma_flags)
2214{
2215        struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2216        dma_addr_t src_dev_addr;
2217        dma_addr_t dst_dev_addr;
2218        struct d40_desc *desc;
2219        unsigned long flags;
2220        int ret;
2221
2222        if (!chan->phy_chan) {
2223                chan_err(chan, "Cannot prepare unallocated channel\n");
2224                return NULL;
2225        }
2226
2227        d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2228
2229        spin_lock_irqsave(&chan->lock, flags);
2230
2231        desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2232        if (desc == NULL)
2233                goto unlock;
2234
2235        if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2236                desc->cyclic = true;
2237
2238        src_dev_addr = 0;
2239        dst_dev_addr = 0;
2240        if (direction == DMA_DEV_TO_MEM)
2241                src_dev_addr = chan->runtime_addr;
2242        else if (direction == DMA_MEM_TO_DEV)
2243                dst_dev_addr = chan->runtime_addr;
2244
2245        if (chan_is_logical(chan))
2246                ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2247                                      sg_len, src_dev_addr, dst_dev_addr);
2248        else
2249                ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2250                                      sg_len, src_dev_addr, dst_dev_addr);
2251
2252        if (ret) {
2253                chan_err(chan, "Failed to prepare %s sg job: %d\n",
2254                         chan_is_logical(chan) ? "log" : "phy", ret);
2255                goto free_desc;
2256        }
2257
2258        /*
2259         * add descriptor to the prepare queue in order to be able
2260         * to free them later in terminate_all
2261         */
2262        list_add_tail(&desc->node, &chan->prepare_queue);
2263
2264        spin_unlock_irqrestore(&chan->lock, flags);
2265
2266        return &desc->txd;
2267 free_desc:
2268        d40_desc_free(chan, desc);
2269 unlock:
2270        spin_unlock_irqrestore(&chan->lock, flags);
2271        return NULL;
2272}
2273
2274bool stedma40_filter(struct dma_chan *chan, void *data)
2275{
2276        struct stedma40_chan_cfg *info = data;
2277        struct d40_chan *d40c =
2278                container_of(chan, struct d40_chan, chan);
2279        int err;
2280
2281        if (data) {
2282                err = d40_validate_conf(d40c, info);
2283                if (!err)
2284                        d40c->dma_cfg = *info;
2285        } else
2286                err = d40_config_memcpy(d40c);
2287
2288        if (!err)
2289                d40c->configured = true;
2290
2291        return err == 0;
2292}
2293EXPORT_SYMBOL(stedma40_filter);
2294
2295static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2296{
2297        bool realtime = d40c->dma_cfg.realtime;
2298        bool highprio = d40c->dma_cfg.high_priority;
2299        u32 rtreg;
2300        u32 event = D40_TYPE_TO_EVENT(dev_type);
2301        u32 group = D40_TYPE_TO_GROUP(dev_type);
2302        u32 bit = BIT(event);
2303        u32 prioreg;
2304        struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2305
2306        rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2307        /*
2308         * Due to a hardware bug, in some cases a logical channel triggered by
2309         * a high priority destination event line can generate extra packet
2310         * transactions.
2311         *
2312         * The workaround is to not set the high priority level for the
2313         * destination event lines that trigger logical channels.
2314         */
2315        if (!src && chan_is_logical(d40c))
2316                highprio = false;
2317
2318        prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2319
2320        /* Destination event lines are stored in the upper halfword */
2321        if (!src)
2322                bit <<= 16;
2323
2324        writel(bit, d40c->base->virtbase + prioreg + group * 4);
2325        writel(bit, d40c->base->virtbase + rtreg + group * 4);
2326}
2327
2328static void d40_set_prio_realtime(struct d40_chan *d40c)
2329{
2330        if (d40c->base->rev < 3)
2331                return;
2332
2333        if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2334            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2335                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2336
2337        if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2338            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2339                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2340}
2341
2342#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2343#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2344#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2345#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2346#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2347
2348static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2349                                  struct of_dma *ofdma)
2350{
2351        struct stedma40_chan_cfg cfg;
2352        dma_cap_mask_t cap;
2353        u32 flags;
2354
2355        memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2356
2357        dma_cap_zero(cap);
2358        dma_cap_set(DMA_SLAVE, cap);
2359
2360        cfg.dev_type = dma_spec->args[0];
2361        flags = dma_spec->args[2];
2362
2363        switch (D40_DT_FLAGS_MODE(flags)) {
2364        case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2365        case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2366        }
2367
2368        switch (D40_DT_FLAGS_DIR(flags)) {
2369        case 0:
2370                cfg.dir = DMA_MEM_TO_DEV;
2371                cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2372                break;
2373        case 1:
2374                cfg.dir = DMA_DEV_TO_MEM;
2375                cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2376                break;
2377        }
2378
2379        if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2380                cfg.phy_channel = dma_spec->args[1];
2381                cfg.use_fixed_channel = true;
2382        }
2383
2384        if (D40_DT_FLAGS_HIGH_PRIO(flags))
2385                cfg.high_priority = true;
2386
2387        return dma_request_channel(cap, stedma40_filter, &cfg);
2388}
2389
2390/* DMA ENGINE functions */
2391static int d40_alloc_chan_resources(struct dma_chan *chan)
2392{
2393        int err;
2394        unsigned long flags;
2395        struct d40_chan *d40c =
2396                container_of(chan, struct d40_chan, chan);
2397        bool is_free_phy;
2398        spin_lock_irqsave(&d40c->lock, flags);
2399
2400        dma_cookie_init(chan);
2401
2402        /* If no dma configuration is set use default configuration (memcpy) */
2403        if (!d40c->configured) {
2404                err = d40_config_memcpy(d40c);
2405                if (err) {
2406                        chan_err(d40c, "Failed to configure memcpy channel\n");
2407                        goto mark_last_busy;
2408                }
2409        }
2410
2411        err = d40_allocate_channel(d40c, &is_free_phy);
2412        if (err) {
2413                chan_err(d40c, "Failed to allocate channel\n");
2414                d40c->configured = false;
2415                goto mark_last_busy;
2416        }
2417
2418        pm_runtime_get_sync(d40c->base->dev);
2419
2420        d40_set_prio_realtime(d40c);
2421
2422        if (chan_is_logical(d40c)) {
2423                if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2424                        d40c->lcpa = d40c->base->lcpa_base +
2425                                d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2426                else
2427                        d40c->lcpa = d40c->base->lcpa_base +
2428                                d40c->dma_cfg.dev_type *
2429                                D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2430
2431                /* Unmask the Global Interrupt Mask. */
2432                d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2433                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2434        }
2435
2436        dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2437                 chan_is_logical(d40c) ? "logical" : "physical",
2438                 d40c->phy_chan->num,
2439                 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2440
2441
2442        /*
2443         * Only write channel configuration to the DMA if the physical
2444         * resource is free. In case of multiple logical channels
2445         * on the same physical resource, only the first write is necessary.
2446         */
2447        if (is_free_phy)
2448                d40_config_write(d40c);
2449 mark_last_busy:
2450        pm_runtime_mark_last_busy(d40c->base->dev);
2451        pm_runtime_put_autosuspend(d40c->base->dev);
2452        spin_unlock_irqrestore(&d40c->lock, flags);
2453        return err;
2454}
2455
2456static void d40_free_chan_resources(struct dma_chan *chan)
2457{
2458        struct d40_chan *d40c =
2459                container_of(chan, struct d40_chan, chan);
2460        int err;
2461        unsigned long flags;
2462
2463        if (d40c->phy_chan == NULL) {
2464                chan_err(d40c, "Cannot free unallocated channel\n");
2465                return;
2466        }
2467
2468        spin_lock_irqsave(&d40c->lock, flags);
2469
2470        err = d40_free_dma(d40c);
2471
2472        if (err)
2473                chan_err(d40c, "Failed to free channel\n");
2474        spin_unlock_irqrestore(&d40c->lock, flags);
2475}
2476
2477static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2478                                                       dma_addr_t dst,
2479                                                       dma_addr_t src,
2480                                                       size_t size,
2481                                                       unsigned long dma_flags)
2482{
2483        struct scatterlist dst_sg;
2484        struct scatterlist src_sg;
2485
2486        sg_init_table(&dst_sg, 1);
2487        sg_init_table(&src_sg, 1);
2488
2489        sg_dma_address(&dst_sg) = dst;
2490        sg_dma_address(&src_sg) = src;
2491
2492        sg_dma_len(&dst_sg) = size;
2493        sg_dma_len(&src_sg) = size;
2494
2495        return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2496                           DMA_MEM_TO_MEM, dma_flags);
2497}
2498
2499static struct dma_async_tx_descriptor *
2500d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2501                  unsigned int sg_len, enum dma_transfer_direction direction,
2502                  unsigned long dma_flags, void *context)
2503{
2504        if (!is_slave_direction(direction))
2505                return NULL;
2506
2507        return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2508}
2509
2510static struct dma_async_tx_descriptor *
2511dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2512                     size_t buf_len, size_t period_len,
2513                     enum dma_transfer_direction direction, unsigned long flags)
2514{
2515        unsigned int periods = buf_len / period_len;
2516        struct dma_async_tx_descriptor *txd;
2517        struct scatterlist *sg;
2518        int i;
2519
2520        sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2521        if (!sg)
2522                return NULL;
2523
2524        for (i = 0; i < periods; i++) {
2525                sg_dma_address(&sg[i]) = dma_addr;
2526                sg_dma_len(&sg[i]) = period_len;
2527                dma_addr += period_len;
2528        }
2529
2530        sg_chain(sg, periods + 1, sg);
2531
2532        txd = d40_prep_sg(chan, sg, sg, periods, direction,
2533                          DMA_PREP_INTERRUPT);
2534
2535        kfree(sg);
2536
2537        return txd;
2538}
2539
2540static enum dma_status d40_tx_status(struct dma_chan *chan,
2541                                     dma_cookie_t cookie,
2542                                     struct dma_tx_state *txstate)
2543{
2544        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2545        enum dma_status ret;
2546
2547        if (d40c->phy_chan == NULL) {
2548                chan_err(d40c, "Cannot read status of unallocated channel\n");
2549                return -EINVAL;
2550        }
2551
2552        ret = dma_cookie_status(chan, cookie, txstate);
2553        if (ret != DMA_COMPLETE && txstate)
2554                dma_set_residue(txstate, stedma40_residue(chan));
2555
2556        if (d40_is_paused(d40c))
2557                ret = DMA_PAUSED;
2558
2559        return ret;
2560}
2561
2562static void d40_issue_pending(struct dma_chan *chan)
2563{
2564        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2565        unsigned long flags;
2566
2567        if (d40c->phy_chan == NULL) {
2568                chan_err(d40c, "Channel is not allocated!\n");
2569                return;
2570        }
2571
2572        spin_lock_irqsave(&d40c->lock, flags);
2573
2574        list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2575
2576        /* Busy means that queued jobs are already being processed */
2577        if (!d40c->busy)
2578                (void) d40_queue_start(d40c);
2579
2580        spin_unlock_irqrestore(&d40c->lock, flags);
2581}
2582
2583static int d40_terminate_all(struct dma_chan *chan)
2584{
2585        unsigned long flags;
2586        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2587        int ret;
2588
2589        if (d40c->phy_chan == NULL) {
2590                chan_err(d40c, "Channel is not allocated!\n");
2591                return -EINVAL;
2592        }
2593
2594        spin_lock_irqsave(&d40c->lock, flags);
2595
2596        pm_runtime_get_sync(d40c->base->dev);
2597        ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2598        if (ret)
2599                chan_err(d40c, "Failed to stop channel\n");
2600
2601        d40_term_all(d40c);
2602        pm_runtime_mark_last_busy(d40c->base->dev);
2603        pm_runtime_put_autosuspend(d40c->base->dev);
2604        if (d40c->busy) {
2605                pm_runtime_mark_last_busy(d40c->base->dev);
2606                pm_runtime_put_autosuspend(d40c->base->dev);
2607        }
2608        d40c->busy = false;
2609
2610        spin_unlock_irqrestore(&d40c->lock, flags);
2611        return 0;
2612}
2613
2614static int
2615dma40_config_to_halfchannel(struct d40_chan *d40c,
2616                            struct stedma40_half_channel_info *info,
2617                            u32 maxburst)
2618{
2619        int psize;
2620
2621        if (chan_is_logical(d40c)) {
2622                if (maxburst >= 16)
2623                        psize = STEDMA40_PSIZE_LOG_16;
2624                else if (maxburst >= 8)
2625                        psize = STEDMA40_PSIZE_LOG_8;
2626                else if (maxburst >= 4)
2627                        psize = STEDMA40_PSIZE_LOG_4;
2628                else
2629                        psize = STEDMA40_PSIZE_LOG_1;
2630        } else {
2631                if (maxburst >= 16)
2632                        psize = STEDMA40_PSIZE_PHY_16;
2633                else if (maxburst >= 8)
2634                        psize = STEDMA40_PSIZE_PHY_8;
2635                else if (maxburst >= 4)
2636                        psize = STEDMA40_PSIZE_PHY_4;
2637                else
2638                        psize = STEDMA40_PSIZE_PHY_1;
2639        }
2640
2641        info->psize = psize;
2642        info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2643
2644        return 0;
2645}
2646
2647static int d40_set_runtime_config(struct dma_chan *chan,
2648                                  struct dma_slave_config *config)
2649{
2650        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2651
2652        memcpy(&d40c->slave_config, config, sizeof(*config));
2653
2654        return 0;
2655}
2656
2657/* Runtime reconfiguration extension */
2658static int d40_set_runtime_config_write(struct dma_chan *chan,
2659                                  struct dma_slave_config *config,
2660                                  enum dma_transfer_direction direction)
2661{
2662        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2663        struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2664        enum dma_slave_buswidth src_addr_width, dst_addr_width;
2665        dma_addr_t config_addr;
2666        u32 src_maxburst, dst_maxburst;
2667        int ret;
2668
2669        if (d40c->phy_chan == NULL) {
2670                chan_err(d40c, "Channel is not allocated!\n");
2671                return -EINVAL;
2672        }
2673
2674        src_addr_width = config->src_addr_width;
2675        src_maxburst = config->src_maxburst;
2676        dst_addr_width = config->dst_addr_width;
2677        dst_maxburst = config->dst_maxburst;
2678
2679        if (direction == DMA_DEV_TO_MEM) {
2680                config_addr = config->src_addr;
2681
2682                if (cfg->dir != DMA_DEV_TO_MEM)
2683                        dev_dbg(d40c->base->dev,
2684                                "channel was not configured for peripheral "
2685                                "to memory transfer (%d) overriding\n",
2686                                cfg->dir);
2687                cfg->dir = DMA_DEV_TO_MEM;
2688
2689                /* Configure the memory side */
2690                if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2691                        dst_addr_width = src_addr_width;
2692                if (dst_maxburst == 0)
2693                        dst_maxburst = src_maxburst;
2694
2695        } else if (direction == DMA_MEM_TO_DEV) {
2696                config_addr = config->dst_addr;
2697
2698                if (cfg->dir != DMA_MEM_TO_DEV)
2699                        dev_dbg(d40c->base->dev,
2700                                "channel was not configured for memory "
2701                                "to peripheral transfer (%d) overriding\n",
2702                                cfg->dir);
2703                cfg->dir = DMA_MEM_TO_DEV;
2704
2705                /* Configure the memory side */
2706                if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2707                        src_addr_width = dst_addr_width;
2708                if (src_maxburst == 0)
2709                        src_maxburst = dst_maxburst;
2710        } else {
2711                dev_err(d40c->base->dev,
2712                        "unrecognized channel direction %d\n",
2713                        direction);
2714                return -EINVAL;
2715        }
2716
2717        if (config_addr <= 0) {
2718                dev_err(d40c->base->dev, "no address supplied\n");
2719                return -EINVAL;
2720        }
2721
2722        if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2723                dev_err(d40c->base->dev,
2724                        "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2725                        src_maxburst,
2726                        src_addr_width,
2727                        dst_maxburst,
2728                        dst_addr_width);
2729                return -EINVAL;
2730        }
2731
2732        if (src_maxburst > 16) {
2733                src_maxburst = 16;
2734                dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2735        } else if (dst_maxburst > 16) {
2736                dst_maxburst = 16;
2737                src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2738        }
2739
2740        /* Only valid widths are; 1, 2, 4 and 8. */
2741        if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742            src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2743            dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2744            dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2745            !is_power_of_2(src_addr_width) ||
2746            !is_power_of_2(dst_addr_width))
2747                return -EINVAL;
2748
2749        cfg->src_info.data_width = src_addr_width;
2750        cfg->dst_info.data_width = dst_addr_width;
2751
2752        ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2753                                          src_maxburst);
2754        if (ret)
2755                return ret;
2756
2757        ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2758                                          dst_maxburst);
2759        if (ret)
2760                return ret;
2761
2762        /* Fill in register values */
2763        if (chan_is_logical(d40c))
2764                d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2765        else
2766                d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2767
2768        /* These settings will take precedence later */
2769        d40c->runtime_addr = config_addr;
2770        d40c->runtime_direction = direction;
2771        dev_dbg(d40c->base->dev,
2772                "configured channel %s for %s, data width %d/%d, "
2773                "maxburst %d/%d elements, LE, no flow control\n",
2774                dma_chan_name(chan),
2775                (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2776                src_addr_width, dst_addr_width,
2777                src_maxburst, dst_maxburst);
2778
2779        return 0;
2780}
2781
2782/* Initialization functions */
2783
2784static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2785                                 struct d40_chan *chans, int offset,
2786                                 int num_chans)
2787{
2788        int i = 0;
2789        struct d40_chan *d40c;
2790
2791        INIT_LIST_HEAD(&dma->channels);
2792
2793        for (i = offset; i < offset + num_chans; i++) {
2794                d40c = &chans[i];
2795                d40c->base = base;
2796                d40c->chan.device = dma;
2797
2798                spin_lock_init(&d40c->lock);
2799
2800                d40c->log_num = D40_PHY_CHAN;
2801
2802                INIT_LIST_HEAD(&d40c->done);
2803                INIT_LIST_HEAD(&d40c->active);
2804                INIT_LIST_HEAD(&d40c->queue);
2805                INIT_LIST_HEAD(&d40c->pending_queue);
2806                INIT_LIST_HEAD(&d40c->client);
2807                INIT_LIST_HEAD(&d40c->prepare_queue);
2808
2809                tasklet_init(&d40c->tasklet, dma_tasklet,
2810                             (unsigned long) d40c);
2811
2812                list_add_tail(&d40c->chan.device_node,
2813                              &dma->channels);
2814        }
2815}
2816
2817static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2818{
2819        if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2820                dev->device_prep_slave_sg = d40_prep_slave_sg;
2821                dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2822        }
2823
2824        if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2825                dev->device_prep_dma_memcpy = d40_prep_memcpy;
2826                dev->directions = BIT(DMA_MEM_TO_MEM);
2827                /*
2828                 * This controller can only access address at even
2829                 * 32bit boundaries, i.e. 2^2
2830                 */
2831                dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2832        }
2833
2834        if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2835                dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2836
2837        dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2838        dev->device_free_chan_resources = d40_free_chan_resources;
2839        dev->device_issue_pending = d40_issue_pending;
2840        dev->device_tx_status = d40_tx_status;
2841        dev->device_config = d40_set_runtime_config;
2842        dev->device_pause = d40_pause;
2843        dev->device_resume = d40_resume;
2844        dev->device_terminate_all = d40_terminate_all;
2845        dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2846        dev->dev = base->dev;
2847}
2848
2849static int __init d40_dmaengine_init(struct d40_base *base,
2850                                     int num_reserved_chans)
2851{
2852        int err ;
2853
2854        d40_chan_init(base, &base->dma_slave, base->log_chans,
2855                      0, base->num_log_chans);
2856
2857        dma_cap_zero(base->dma_slave.cap_mask);
2858        dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2859        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2860
2861        d40_ops_init(base, &base->dma_slave);
2862
2863        err = dmaenginem_async_device_register(&base->dma_slave);
2864
2865        if (err) {
2866                d40_err(base->dev, "Failed to register slave channels\n");
2867                goto exit;
2868        }
2869
2870        d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2871                      base->num_log_chans, base->num_memcpy_chans);
2872
2873        dma_cap_zero(base->dma_memcpy.cap_mask);
2874        dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2875
2876        d40_ops_init(base, &base->dma_memcpy);
2877
2878        err = dmaenginem_async_device_register(&base->dma_memcpy);
2879
2880        if (err) {
2881                d40_err(base->dev,
2882                        "Failed to register memcpy only channels\n");
2883                goto exit;
2884        }
2885
2886        d40_chan_init(base, &base->dma_both, base->phy_chans,
2887                      0, num_reserved_chans);
2888
2889        dma_cap_zero(base->dma_both.cap_mask);
2890        dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2891        dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2892        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2893
2894        d40_ops_init(base, &base->dma_both);
2895        err = dmaenginem_async_device_register(&base->dma_both);
2896
2897        if (err) {
2898                d40_err(base->dev,
2899                        "Failed to register logical and physical capable channels\n");
2900                goto exit;
2901        }
2902        return 0;
2903 exit:
2904        return err;
2905}
2906
2907/* Suspend resume functionality */
2908#ifdef CONFIG_PM_SLEEP
2909static int dma40_suspend(struct device *dev)
2910{
2911        struct d40_base *base = dev_get_drvdata(dev);
2912        int ret;
2913
2914        ret = pm_runtime_force_suspend(dev);
2915        if (ret)
2916                return ret;
2917
2918        if (base->lcpa_regulator)
2919                ret = regulator_disable(base->lcpa_regulator);
2920        return ret;
2921}
2922
2923static int dma40_resume(struct device *dev)
2924{
2925        struct d40_base *base = dev_get_drvdata(dev);
2926        int ret = 0;
2927
2928        if (base->lcpa_regulator) {
2929                ret = regulator_enable(base->lcpa_regulator);
2930                if (ret)
2931                        return ret;
2932        }
2933
2934        return pm_runtime_force_resume(dev);
2935}
2936#endif
2937
2938#ifdef CONFIG_PM
2939static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2940                         u32 *regaddr, int num, bool save)
2941{
2942        int i;
2943
2944        for (i = 0; i < num; i++) {
2945                void __iomem *addr = baseaddr + regaddr[i];
2946
2947                if (save)
2948                        backup[i] = readl_relaxed(addr);
2949                else
2950                        writel_relaxed(backup[i], addr);
2951        }
2952}
2953
2954static void d40_save_restore_registers(struct d40_base *base, bool save)
2955{
2956        int i;
2957
2958        /* Save/Restore channel specific registers */
2959        for (i = 0; i < base->num_phy_chans; i++) {
2960                void __iomem *addr;
2961                int idx;
2962
2963                if (base->phy_res[i].reserved)
2964                        continue;
2965
2966                addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2967                idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2968
2969                dma40_backup(addr, &base->reg_val_backup_chan[idx],
2970                             d40_backup_regs_chan,
2971                             ARRAY_SIZE(d40_backup_regs_chan),
2972                             save);
2973        }
2974
2975        /* Save/Restore global registers */
2976        dma40_backup(base->virtbase, base->reg_val_backup,
2977                     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2978                     save);
2979
2980        /* Save/Restore registers only existing on dma40 v3 and later */
2981        if (base->gen_dmac.backup)
2982                dma40_backup(base->virtbase, base->reg_val_backup_v4,
2983                             base->gen_dmac.backup,
2984                        base->gen_dmac.backup_size,
2985                        save);
2986}
2987
2988static int dma40_runtime_suspend(struct device *dev)
2989{
2990        struct d40_base *base = dev_get_drvdata(dev);
2991
2992        d40_save_restore_registers(base, true);
2993
2994        /* Don't disable/enable clocks for v1 due to HW bugs */
2995        if (base->rev != 1)
2996                writel_relaxed(base->gcc_pwr_off_mask,
2997                               base->virtbase + D40_DREG_GCC);
2998
2999        return 0;
3000}
3001
3002static int dma40_runtime_resume(struct device *dev)
3003{
3004        struct d40_base *base = dev_get_drvdata(dev);
3005
3006        d40_save_restore_registers(base, false);
3007
3008        writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3009                       base->virtbase + D40_DREG_GCC);
3010        return 0;
3011}
3012#endif
3013
3014static const struct dev_pm_ops dma40_pm_ops = {
3015        SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3016        SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3017                                dma40_runtime_resume,
3018                                NULL)
3019};
3020
3021/* Initialization functions. */
3022
3023static int __init d40_phy_res_init(struct d40_base *base)
3024{
3025        int i;
3026        int num_phy_chans_avail = 0;
3027        u32 val[2];
3028        int odd_even_bit = -2;
3029        int gcc = D40_DREG_GCC_ENA;
3030
3031        val[0] = readl(base->virtbase + D40_DREG_PRSME);
3032        val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3033
3034        for (i = 0; i < base->num_phy_chans; i++) {
3035                base->phy_res[i].num = i;
3036                odd_even_bit += 2 * ((i % 2) == 0);
3037                if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3038                        /* Mark security only channels as occupied */
3039                        base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3040                        base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3041                        base->phy_res[i].reserved = true;
3042                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3043                                                       D40_DREG_GCC_SRC);
3044                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3045                                                       D40_DREG_GCC_DST);
3046
3047
3048                } else {
3049                        base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3050                        base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3051                        base->phy_res[i].reserved = false;
3052                        num_phy_chans_avail++;
3053                }
3054                spin_lock_init(&base->phy_res[i].lock);
3055        }
3056
3057        /* Mark disabled channels as occupied */
3058        for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3059                int chan = base->plat_data->disabled_channels[i];
3060
3061                base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3062                base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3063                base->phy_res[chan].reserved = true;
3064                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3065                                               D40_DREG_GCC_SRC);
3066                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3067                                               D40_DREG_GCC_DST);
3068                num_phy_chans_avail--;
3069        }
3070
3071        /* Mark soft_lli channels */
3072        for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3073                int chan = base->plat_data->soft_lli_chans[i];
3074
3075                base->phy_res[chan].use_soft_lli = true;
3076        }
3077
3078        dev_info(base->dev, "%d of %d physical DMA channels available\n",
3079                 num_phy_chans_avail, base->num_phy_chans);
3080
3081        /* Verify settings extended vs standard */
3082        val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3083
3084        for (i = 0; i < base->num_phy_chans; i++) {
3085
3086                if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3087                    (val[0] & 0x3) != 1)
3088                        dev_info(base->dev,
3089                                 "[%s] INFO: channel %d is misconfigured (%d)\n",
3090                                 __func__, i, val[0] & 0x3);
3091
3092                val[0] = val[0] >> 2;
3093        }
3094
3095        /*
3096         * To keep things simple, Enable all clocks initially.
3097         * The clocks will get managed later post channel allocation.
3098         * The clocks for the event lines on which reserved channels exists
3099         * are not managed here.
3100         */
3101        writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3102        base->gcc_pwr_off_mask = gcc;
3103
3104        return num_phy_chans_avail;
3105}
3106
3107static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3108{
3109        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3110        struct clk *clk;
3111        void __iomem *virtbase;
3112        struct resource *res;
3113        struct d40_base *base;
3114        int num_log_chans;
3115        int num_phy_chans;
3116        int num_memcpy_chans;
3117        int clk_ret = -EINVAL;
3118        int i;
3119        u32 pid;
3120        u32 cid;
3121        u8 rev;
3122
3123        clk = clk_get(&pdev->dev, NULL);
3124        if (IS_ERR(clk)) {
3125                d40_err(&pdev->dev, "No matching clock found\n");
3126                goto check_prepare_enabled;
3127        }
3128
3129        clk_ret = clk_prepare_enable(clk);
3130        if (clk_ret) {
3131                d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3132                goto disable_unprepare;
3133        }
3134
3135        /* Get IO for DMAC base address */
3136        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3137        if (!res)
3138                goto disable_unprepare;
3139
3140        if (request_mem_region(res->start, resource_size(res),
3141                               D40_NAME " I/O base") == NULL)
3142                goto release_region;
3143
3144        virtbase = ioremap(res->start, resource_size(res));
3145        if (!virtbase)
3146                goto release_region;
3147
3148        /* This is just a regular AMBA PrimeCell ID actually */
3149        for (pid = 0, i = 0; i < 4; i++)
3150                pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3151                        & 255) << (i * 8);
3152        for (cid = 0, i = 0; i < 4; i++)
3153                cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3154                        & 255) << (i * 8);
3155
3156        if (cid != AMBA_CID) {
3157                d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3158                goto unmap_io;
3159        }
3160        if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3161                d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3162                        AMBA_MANF_BITS(pid),
3163                        AMBA_VENDOR_ST);
3164                goto unmap_io;
3165        }
3166        /*
3167         * HW revision:
3168         * DB8500ed has revision 0
3169         * ? has revision 1
3170         * DB8500v1 has revision 2
3171         * DB8500v2 has revision 3
3172         * AP9540v1 has revision 4
3173         * DB8540v1 has revision 4
3174         */
3175        rev = AMBA_REV_BITS(pid);
3176        if (rev < 2) {
3177                d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3178                goto unmap_io;
3179        }
3180
3181        /* The number of physical channels on this HW */
3182        if (plat_data->num_of_phy_chans)
3183                num_phy_chans = plat_data->num_of_phy_chans;
3184        else
3185                num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3186
3187        /* The number of channels used for memcpy */
3188        if (plat_data->num_of_memcpy_chans)
3189                num_memcpy_chans = plat_data->num_of_memcpy_chans;
3190        else
3191                num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3192
3193        num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3194
3195        dev_info(&pdev->dev,
3196                 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3197                 rev, &res->start, num_phy_chans, num_log_chans);
3198
3199        base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3200                       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3201                       sizeof(struct d40_chan), GFP_KERNEL);
3202
3203        if (base == NULL)
3204                goto unmap_io;
3205
3206        base->rev = rev;
3207        base->clk = clk;
3208        base->num_memcpy_chans = num_memcpy_chans;
3209        base->num_phy_chans = num_phy_chans;
3210        base->num_log_chans = num_log_chans;
3211        base->phy_start = res->start;
3212        base->phy_size = resource_size(res);
3213        base->virtbase = virtbase;
3214        base->plat_data = plat_data;
3215        base->dev = &pdev->dev;
3216        base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3217        base->log_chans = &base->phy_chans[num_phy_chans];
3218
3219        if (base->plat_data->num_of_phy_chans == 14) {
3220                base->gen_dmac.backup = d40_backup_regs_v4b;
3221                base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3222                base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3223                base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3224                base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3225                base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3226                base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3227                base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3228                base->gen_dmac.il = il_v4b;
3229                base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3230                base->gen_dmac.init_reg = dma_init_reg_v4b;
3231                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3232        } else {
3233                if (base->rev >= 3) {
3234                        base->gen_dmac.backup = d40_backup_regs_v4a;
3235                        base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3236                }
3237                base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3238                base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3239                base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3240                base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3241                base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3242                base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3243                base->gen_dmac.il = il_v4a;
3244                base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3245                base->gen_dmac.init_reg = dma_init_reg_v4a;
3246                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3247        }
3248
3249        base->phy_res = kcalloc(num_phy_chans,
3250                                sizeof(*base->phy_res),
3251                                GFP_KERNEL);
3252        if (!base->phy_res)
3253                goto free_base;
3254
3255        base->lookup_phy_chans = kcalloc(num_phy_chans,
3256                                         sizeof(*base->lookup_phy_chans),
3257                                         GFP_KERNEL);
3258        if (!base->lookup_phy_chans)
3259                goto free_phy_res;
3260
3261        base->lookup_log_chans = kcalloc(num_log_chans,
3262                                         sizeof(*base->lookup_log_chans),
3263                                         GFP_KERNEL);
3264        if (!base->lookup_log_chans)
3265                goto free_phy_chans;
3266
3267        base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3268                                                  sizeof(d40_backup_regs_chan),
3269                                                  GFP_KERNEL);
3270        if (!base->reg_val_backup_chan)
3271                goto free_log_chans;
3272
3273        base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3274                                            * D40_LCLA_LINK_PER_EVENT_GRP,
3275                                            sizeof(*base->lcla_pool.alloc_map),
3276                                            GFP_KERNEL);
3277        if (!base->lcla_pool.alloc_map)
3278                goto free_backup_chan;
3279
3280        base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3281                                             sizeof(*base->regs_interrupt),
3282                                             GFP_KERNEL);
3283        if (!base->regs_interrupt)
3284                goto free_map;
3285
3286        base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3287                                            0, SLAB_HWCACHE_ALIGN,
3288                                            NULL);
3289        if (base->desc_slab == NULL)
3290                goto free_regs;
3291
3292
3293        return base;
3294 free_regs:
3295        kfree(base->regs_interrupt);
3296 free_map:
3297        kfree(base->lcla_pool.alloc_map);
3298 free_backup_chan:
3299        kfree(base->reg_val_backup_chan);
3300 free_log_chans:
3301        kfree(base->lookup_log_chans);
3302 free_phy_chans:
3303        kfree(base->lookup_phy_chans);
3304 free_phy_res:
3305        kfree(base->phy_res);
3306 free_base:
3307        kfree(base);
3308 unmap_io:
3309        iounmap(virtbase);
3310 release_region:
3311        release_mem_region(res->start, resource_size(res));
3312 check_prepare_enabled:
3313        if (!clk_ret)
3314 disable_unprepare:
3315                clk_disable_unprepare(clk);
3316        if (!IS_ERR(clk))
3317                clk_put(clk);
3318        return NULL;
3319}
3320
3321static void __init d40_hw_init(struct d40_base *base)
3322{
3323
3324        int i;
3325        u32 prmseo[2] = {0, 0};
3326        u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3327        u32 pcmis = 0;
3328        u32 pcicr = 0;
3329        struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3330        u32 reg_size = base->gen_dmac.init_reg_size;
3331
3332        for (i = 0; i < reg_size; i++)
3333                writel(dma_init_reg[i].val,
3334                       base->virtbase + dma_init_reg[i].reg);
3335
3336        /* Configure all our dma channels to default settings */
3337        for (i = 0; i < base->num_phy_chans; i++) {
3338
3339                activeo[i % 2] = activeo[i % 2] << 2;
3340
3341                if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3342                    == D40_ALLOC_PHY) {
3343                        activeo[i % 2] |= 3;
3344                        continue;
3345                }
3346
3347                /* Enable interrupt # */
3348                pcmis = (pcmis << 1) | 1;
3349
3350                /* Clear interrupt # */
3351                pcicr = (pcicr << 1) | 1;
3352
3353                /* Set channel to physical mode */
3354                prmseo[i % 2] = prmseo[i % 2] << 2;
3355                prmseo[i % 2] |= 1;
3356
3357        }
3358
3359        writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3360        writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3361        writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3362        writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3363
3364        /* Write which interrupt to enable */
3365        writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3366
3367        /* Write which interrupt to clear */
3368        writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3369
3370        /* These are __initdata and cannot be accessed after init */
3371        base->gen_dmac.init_reg = NULL;
3372        base->gen_dmac.init_reg_size = 0;
3373}
3374
3375static int __init d40_lcla_allocate(struct d40_base *base)
3376{
3377        struct d40_lcla_pool *pool = &base->lcla_pool;
3378        unsigned long *page_list;
3379        int i, j;
3380        int ret;
3381
3382        /*
3383         * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3384         * To full fill this hardware requirement without wasting 256 kb
3385         * we allocate pages until we get an aligned one.
3386         */
3387        page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3388                                  sizeof(*page_list),
3389                                  GFP_KERNEL);
3390        if (!page_list)
3391                return -ENOMEM;
3392
3393        /* Calculating how many pages that are required */
3394        base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3395
3396        for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3397                page_list[i] = __get_free_pages(GFP_KERNEL,
3398                                                base->lcla_pool.pages);
3399                if (!page_list[i]) {
3400
3401                        d40_err(base->dev, "Failed to allocate %d pages.\n",
3402                                base->lcla_pool.pages);
3403                        ret = -ENOMEM;
3404
3405                        for (j = 0; j < i; j++)
3406                                free_pages(page_list[j], base->lcla_pool.pages);
3407                        goto free_page_list;
3408                }
3409
3410                if ((virt_to_phys((void *)page_list[i]) &
3411                     (LCLA_ALIGNMENT - 1)) == 0)
3412                        break;
3413        }
3414
3415        for (j = 0; j < i; j++)
3416                free_pages(page_list[j], base->lcla_pool.pages);
3417
3418        if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3419                base->lcla_pool.base = (void *)page_list[i];
3420        } else {
3421                /*
3422                 * After many attempts and no succees with finding the correct
3423                 * alignment, try with allocating a big buffer.
3424                 */
3425                dev_warn(base->dev,
3426                         "[%s] Failed to get %d pages @ 18 bit align.\n",
3427                         __func__, base->lcla_pool.pages);
3428                base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3429                                                         base->num_phy_chans +
3430                                                         LCLA_ALIGNMENT,
3431                                                         GFP_KERNEL);
3432                if (!base->lcla_pool.base_unaligned) {
3433                        ret = -ENOMEM;
3434                        goto free_page_list;
3435                }
3436
3437                base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3438                                                 LCLA_ALIGNMENT);
3439        }
3440
3441        pool->dma_addr = dma_map_single(base->dev, pool->base,
3442                                        SZ_1K * base->num_phy_chans,
3443                                        DMA_TO_DEVICE);
3444        if (dma_mapping_error(base->dev, pool->dma_addr)) {
3445                pool->dma_addr = 0;
3446                ret = -ENOMEM;
3447                goto free_page_list;
3448        }
3449
3450        writel(virt_to_phys(base->lcla_pool.base),
3451               base->virtbase + D40_DREG_LCLA);
3452        ret = 0;
3453 free_page_list:
3454        kfree(page_list);
3455        return ret;
3456}
3457
3458static int __init d40_of_probe(struct platform_device *pdev,
3459                               struct device_node *np)
3460{
3461        struct stedma40_platform_data *pdata;
3462        int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3463        const __be32 *list;
3464
3465        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3466        if (!pdata)
3467                return -ENOMEM;
3468
3469        /* If absent this value will be obtained from h/w. */
3470        of_property_read_u32(np, "dma-channels", &num_phy);
3471        if (num_phy > 0)
3472                pdata->num_of_phy_chans = num_phy;
3473
3474        list = of_get_property(np, "memcpy-channels", &num_memcpy);
3475        num_memcpy /= sizeof(*list);
3476
3477        if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3478                d40_err(&pdev->dev,
3479                        "Invalid number of memcpy channels specified (%d)\n",
3480                        num_memcpy);
3481                return -EINVAL;
3482        }
3483        pdata->num_of_memcpy_chans = num_memcpy;
3484
3485        of_property_read_u32_array(np, "memcpy-channels",
3486                                   dma40_memcpy_channels,
3487                                   num_memcpy);
3488
3489        list = of_get_property(np, "disabled-channels", &num_disabled);
3490        num_disabled /= sizeof(*list);
3491
3492        if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3493                d40_err(&pdev->dev,
3494                        "Invalid number of disabled channels specified (%d)\n",
3495                        num_disabled);
3496                return -EINVAL;
3497        }
3498
3499        of_property_read_u32_array(np, "disabled-channels",
3500                                   pdata->disabled_channels,
3501                                   num_disabled);
3502        pdata->disabled_channels[num_disabled] = -1;
3503
3504        pdev->dev.platform_data = pdata;
3505
3506        return 0;
3507}
3508
3509static int __init d40_probe(struct platform_device *pdev)
3510{
3511        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3512        struct device_node *np = pdev->dev.of_node;
3513        int ret = -ENOENT;
3514        struct d40_base *base;
3515        struct resource *res;
3516        int num_reserved_chans;
3517        u32 val;
3518
3519        if (!plat_data) {
3520                if (np) {
3521                        if (d40_of_probe(pdev, np)) {
3522                                ret = -ENOMEM;
3523                                goto report_failure;
3524                        }
3525                } else {
3526                        d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3527                        goto report_failure;
3528                }
3529        }
3530
3531        base = d40_hw_detect_init(pdev);
3532        if (!base)
3533                goto report_failure;
3534
3535        num_reserved_chans = d40_phy_res_init(base);
3536
3537        platform_set_drvdata(pdev, base);
3538
3539        spin_lock_init(&base->interrupt_lock);
3540        spin_lock_init(&base->execmd_lock);
3541
3542        /* Get IO for logical channel parameter address */
3543        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3544        if (!res) {
3545                ret = -ENOENT;
3546                d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3547                goto destroy_cache;
3548        }
3549        base->lcpa_size = resource_size(res);
3550        base->phy_lcpa = res->start;
3551
3552        if (request_mem_region(res->start, resource_size(res),
3553                               D40_NAME " I/O lcpa") == NULL) {
3554                ret = -EBUSY;
3555                d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3556                goto destroy_cache;
3557        }
3558
3559        /* We make use of ESRAM memory for this. */
3560        val = readl(base->virtbase + D40_DREG_LCPA);
3561        if (res->start != val && val != 0) {
3562                dev_warn(&pdev->dev,
3563                         "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3564                         __func__, val, &res->start);
3565        } else
3566                writel(res->start, base->virtbase + D40_DREG_LCPA);
3567
3568        base->lcpa_base = ioremap(res->start, resource_size(res));
3569        if (!base->lcpa_base) {
3570                ret = -ENOMEM;
3571                d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3572                goto destroy_cache;
3573        }
3574        /* If lcla has to be located in ESRAM we don't need to allocate */
3575        if (base->plat_data->use_esram_lcla) {
3576                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3577                                                        "lcla_esram");
3578                if (!res) {
3579                        ret = -ENOENT;
3580                        d40_err(&pdev->dev,
3581                                "No \"lcla_esram\" memory resource\n");
3582                        goto destroy_cache;
3583                }
3584                base->lcla_pool.base = ioremap(res->start,
3585                                                resource_size(res));
3586                if (!base->lcla_pool.base) {
3587                        ret = -ENOMEM;
3588                        d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3589                        goto destroy_cache;
3590                }
3591                writel(res->start, base->virtbase + D40_DREG_LCLA);
3592
3593        } else {
3594                ret = d40_lcla_allocate(base);
3595                if (ret) {
3596                        d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3597                        goto destroy_cache;
3598                }
3599        }
3600
3601        spin_lock_init(&base->lcla_pool.lock);
3602
3603        base->irq = platform_get_irq(pdev, 0);
3604
3605        ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3606        if (ret) {
3607                d40_err(&pdev->dev, "No IRQ defined\n");
3608                goto destroy_cache;
3609        }
3610
3611        if (base->plat_data->use_esram_lcla) {
3612
3613                base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3614                if (IS_ERR(base->lcpa_regulator)) {
3615                        d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3616                        ret = PTR_ERR(base->lcpa_regulator);
3617                        base->lcpa_regulator = NULL;
3618                        goto destroy_cache;
3619                }
3620
3621                ret = regulator_enable(base->lcpa_regulator);
3622                if (ret) {
3623                        d40_err(&pdev->dev,
3624                                "Failed to enable lcpa_regulator\n");
3625                        regulator_put(base->lcpa_regulator);
3626                        base->lcpa_regulator = NULL;
3627                        goto destroy_cache;
3628                }
3629        }
3630
3631        writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3632
3633        pm_runtime_irq_safe(base->dev);
3634        pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3635        pm_runtime_use_autosuspend(base->dev);
3636        pm_runtime_mark_last_busy(base->dev);
3637        pm_runtime_set_active(base->dev);
3638        pm_runtime_enable(base->dev);
3639
3640        ret = d40_dmaengine_init(base, num_reserved_chans);
3641        if (ret)
3642                goto destroy_cache;
3643
3644        base->dev->dma_parms = &base->dma_parms;
3645        ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3646        if (ret) {
3647                d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3648                goto destroy_cache;
3649        }
3650
3651        d40_hw_init(base);
3652
3653        if (np) {
3654                ret = of_dma_controller_register(np, d40_xlate, NULL);
3655                if (ret)
3656                        dev_err(&pdev->dev,
3657                                "could not register of_dma_controller\n");
3658        }
3659
3660        dev_info(base->dev, "initialized\n");
3661        return 0;
3662 destroy_cache:
3663        kmem_cache_destroy(base->desc_slab);
3664        if (base->virtbase)
3665                iounmap(base->virtbase);
3666
3667        if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3668                iounmap(base->lcla_pool.base);
3669                base->lcla_pool.base = NULL;
3670        }
3671
3672        if (base->lcla_pool.dma_addr)
3673                dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3674                                 SZ_1K * base->num_phy_chans,
3675                                 DMA_TO_DEVICE);
3676
3677        if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3678                free_pages((unsigned long)base->lcla_pool.base,
3679                           base->lcla_pool.pages);
3680
3681        kfree(base->lcla_pool.base_unaligned);
3682
3683        if (base->phy_lcpa)
3684                release_mem_region(base->phy_lcpa,
3685                                   base->lcpa_size);
3686        if (base->phy_start)
3687                release_mem_region(base->phy_start,
3688                                   base->phy_size);
3689        if (base->clk) {
3690                clk_disable_unprepare(base->clk);
3691                clk_put(base->clk);
3692        }
3693
3694        if (base->lcpa_regulator) {
3695                regulator_disable(base->lcpa_regulator);
3696                regulator_put(base->lcpa_regulator);
3697        }
3698
3699        kfree(base->lcla_pool.alloc_map);
3700        kfree(base->lookup_log_chans);
3701        kfree(base->lookup_phy_chans);
3702        kfree(base->phy_res);
3703        kfree(base);
3704 report_failure:
3705        d40_err(&pdev->dev, "probe failed\n");
3706        return ret;
3707}
3708
3709static const struct of_device_id d40_match[] = {
3710        { .compatible = "stericsson,dma40", },
3711        {}
3712};
3713
3714static struct platform_driver d40_driver = {
3715        .driver = {
3716                .name  = D40_NAME,
3717                .pm = &dma40_pm_ops,
3718                .of_match_table = d40_match,
3719        },
3720};
3721
3722static int __init stedma40_init(void)
3723{
3724        return platform_driver_probe(&d40_driver, d40_probe);
3725}
3726subsys_initcall(stedma40_init);
3727