linux/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_optc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012-15 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: AMD
  23 *
  24 */
  25
  26
  27#include "reg_helper.h"
  28#include "dcn10_optc.h"
  29#include "dc.h"
  30
  31#define REG(reg)\
  32        optc1->tg_regs->reg
  33
  34#define CTX \
  35        optc1->base.ctx
  36
  37#undef FN
  38#define FN(reg_name, field_name) \
  39        optc1->tg_shift->field_name, optc1->tg_mask->field_name
  40
  41#define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
  42
  43/**
  44* apply_front_porch_workaround  TODO FPGA still need?
  45*
  46* This is a workaround for a bug that has existed since R5xx and has not been
  47* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
  48*/
  49static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
  50{
  51        if (timing->flags.INTERLACE == 1) {
  52                if (timing->v_front_porch < 2)
  53                        timing->v_front_porch = 2;
  54        } else {
  55                if (timing->v_front_porch < 1)
  56                        timing->v_front_porch = 1;
  57        }
  58}
  59
  60void optc1_program_global_sync(
  61                struct timing_generator *optc,
  62                int vready_offset,
  63                int vstartup_start,
  64                int vupdate_offset,
  65                int vupdate_width)
  66{
  67        struct optc *optc1 = DCN10TG_FROM_TG(optc);
  68
  69        optc1->vready_offset = vready_offset;
  70        optc1->vstartup_start = vstartup_start;
  71        optc1->vupdate_offset = vupdate_offset;
  72        optc1->vupdate_width = vupdate_width;
  73
  74        if (optc1->vstartup_start == 0) {
  75                BREAK_TO_DEBUGGER();
  76                return;
  77        }
  78
  79        REG_SET(OTG_VSTARTUP_PARAM, 0,
  80                VSTARTUP_START, optc1->vstartup_start);
  81
  82        REG_SET_2(OTG_VUPDATE_PARAM, 0,
  83                        VUPDATE_OFFSET, optc1->vupdate_offset,
  84                        VUPDATE_WIDTH, optc1->vupdate_width);
  85
  86        REG_SET(OTG_VREADY_PARAM, 0,
  87                        VREADY_OFFSET, optc1->vready_offset);
  88}
  89
  90static void optc1_disable_stereo(struct timing_generator *optc)
  91{
  92        struct optc *optc1 = DCN10TG_FROM_TG(optc);
  93
  94        REG_SET(OTG_STEREO_CONTROL, 0,
  95                OTG_STEREO_EN, 0);
  96
  97        REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
  98                OTG_3D_STRUCTURE_EN, 0,
  99                OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
 100}
 101
 102void optc1_setup_vertical_interrupt0(
 103                struct timing_generator *optc,
 104                uint32_t start_line,
 105                uint32_t end_line)
 106{
 107        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 108
 109        REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
 110                        OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
 111                        OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
 112}
 113
 114void optc1_setup_vertical_interrupt1(
 115                struct timing_generator *optc,
 116                uint32_t start_line)
 117{
 118        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 119
 120        REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
 121                                OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
 122}
 123
 124void optc1_setup_vertical_interrupt2(
 125                struct timing_generator *optc,
 126                uint32_t start_line)
 127{
 128        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 129
 130        REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
 131                        OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
 132}
 133
 134/**
 135 * program_timing_generator   used by mode timing set
 136 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
 137 * Including SYNC. Call BIOS command table to program Timings.
 138 */
 139void optc1_program_timing(
 140        struct timing_generator *optc,
 141        const struct dc_crtc_timing *dc_crtc_timing,
 142        int vready_offset,
 143        int vstartup_start,
 144        int vupdate_offset,
 145        int vupdate_width,
 146        const enum signal_type signal,
 147        bool use_vbios)
 148{
 149        struct dc_crtc_timing patched_crtc_timing;
 150        uint32_t asic_blank_end;
 151        uint32_t asic_blank_start;
 152        uint32_t v_total;
 153        uint32_t v_sync_end;
 154        uint32_t h_sync_polarity, v_sync_polarity;
 155        uint32_t start_point = 0;
 156        uint32_t field_num = 0;
 157        enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
 158
 159        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 160
 161        optc1->signal = signal;
 162        optc1->vready_offset = vready_offset;
 163        optc1->vstartup_start = vstartup_start;
 164        optc1->vupdate_offset = vupdate_offset;
 165        optc1->vupdate_width = vupdate_width;
 166        patched_crtc_timing = *dc_crtc_timing;
 167        apply_front_porch_workaround(&patched_crtc_timing);
 168
 169        /* Load horizontal timing */
 170
 171        /* CRTC_H_TOTAL = vesa.h_total - 1 */
 172        REG_SET(OTG_H_TOTAL, 0,
 173                        OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
 174
 175        /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
 176        REG_UPDATE_2(OTG_H_SYNC_A,
 177                        OTG_H_SYNC_A_START, 0,
 178                        OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
 179
 180        /* blank_start = line end - front porch */
 181        asic_blank_start = patched_crtc_timing.h_total -
 182                        patched_crtc_timing.h_front_porch;
 183
 184        /* blank_end = blank_start - active */
 185        asic_blank_end = asic_blank_start -
 186                        patched_crtc_timing.h_border_right -
 187                        patched_crtc_timing.h_addressable -
 188                        patched_crtc_timing.h_border_left;
 189
 190        REG_UPDATE_2(OTG_H_BLANK_START_END,
 191                        OTG_H_BLANK_START, asic_blank_start,
 192                        OTG_H_BLANK_END, asic_blank_end);
 193
 194        /* h_sync polarity */
 195        h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
 196                        0 : 1;
 197
 198        REG_UPDATE(OTG_H_SYNC_A_CNTL,
 199                        OTG_H_SYNC_A_POL, h_sync_polarity);
 200
 201        v_total = patched_crtc_timing.v_total - 1;
 202
 203        REG_SET(OTG_V_TOTAL, 0,
 204                        OTG_V_TOTAL, v_total);
 205
 206        /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
 207         * OTG_V_TOTAL_MIN are equal to V_TOTAL.
 208         */
 209        REG_SET(OTG_V_TOTAL_MAX, 0,
 210                OTG_V_TOTAL_MAX, v_total);
 211        REG_SET(OTG_V_TOTAL_MIN, 0,
 212                OTG_V_TOTAL_MIN, v_total);
 213
 214        /* v_sync_start = 0, v_sync_end = v_sync_width */
 215        v_sync_end = patched_crtc_timing.v_sync_width;
 216
 217        REG_UPDATE_2(OTG_V_SYNC_A,
 218                        OTG_V_SYNC_A_START, 0,
 219                        OTG_V_SYNC_A_END, v_sync_end);
 220
 221        /* blank_start = frame end - front porch */
 222        asic_blank_start = patched_crtc_timing.v_total -
 223                        patched_crtc_timing.v_front_porch;
 224
 225        /* blank_end = blank_start - active */
 226        asic_blank_end = asic_blank_start -
 227                        patched_crtc_timing.v_border_bottom -
 228                        patched_crtc_timing.v_addressable -
 229                        patched_crtc_timing.v_border_top;
 230
 231        REG_UPDATE_2(OTG_V_BLANK_START_END,
 232                        OTG_V_BLANK_START, asic_blank_start,
 233                        OTG_V_BLANK_END, asic_blank_end);
 234
 235        /* v_sync polarity */
 236        v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
 237                        0 : 1;
 238
 239        REG_UPDATE(OTG_V_SYNC_A_CNTL,
 240                OTG_V_SYNC_A_POL, v_sync_polarity);
 241
 242        if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
 243                        optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
 244                        optc1->signal == SIGNAL_TYPE_EDP) {
 245                start_point = 1;
 246                if (patched_crtc_timing.flags.INTERLACE == 1)
 247                        field_num = 1;
 248        }
 249
 250        /* Interlace */
 251        if (REG(OTG_INTERLACE_CONTROL)) {
 252                if (patched_crtc_timing.flags.INTERLACE == 1)
 253                        REG_UPDATE(OTG_INTERLACE_CONTROL,
 254                                        OTG_INTERLACE_ENABLE, 1);
 255                else
 256                        REG_UPDATE(OTG_INTERLACE_CONTROL,
 257                                        OTG_INTERLACE_ENABLE, 0);
 258        }
 259
 260        /* VTG enable set to 0 first VInit */
 261        REG_UPDATE(CONTROL,
 262                        VTG0_ENABLE, 0);
 263
 264        /* original code is using VTG offset to address OTG reg, seems wrong */
 265        REG_UPDATE_2(OTG_CONTROL,
 266                        OTG_START_POINT_CNTL, start_point,
 267                        OTG_FIELD_NUMBER_CNTL, field_num);
 268
 269        optc->funcs->program_global_sync(optc,
 270                        vready_offset,
 271                        vstartup_start,
 272                        vupdate_offset,
 273                        vupdate_width);
 274
 275        optc->funcs->set_vtg_params(optc, dc_crtc_timing);
 276
 277        /* TODO
 278         * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
 279         * program_horz_count_by_2
 280         * for DVI 30bpp mode, 0 otherwise
 281         * program_horz_count_by_2(optc, &patched_crtc_timing);
 282         */
 283
 284        /* Enable stereo - only when we need to pack 3D frame. Other types
 285         * of stereo handled in explicit call
 286         */
 287
 288        if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
 289                h_div = H_TIMING_DIV_BY2;
 290
 291#if defined(CONFIG_DRM_AMD_DC_DCN3_0)
 292        if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
 293                if (optc1->opp_count == 4)
 294                        h_div = H_TIMING_DIV_BY4;
 295
 296                REG_UPDATE(OTG_H_TIMING_CNTL,
 297                OTG_H_TIMING_DIV_MODE, h_div);
 298        } else
 299#endif
 300        {
 301                REG_UPDATE(OTG_H_TIMING_CNTL,
 302                OTG_H_TIMING_DIV_BY2, h_div);
 303        }
 304}
 305
 306void optc1_set_vtg_params(struct timing_generator *optc,
 307                const struct dc_crtc_timing *dc_crtc_timing)
 308{
 309        struct dc_crtc_timing patched_crtc_timing;
 310        uint32_t asic_blank_end;
 311        uint32_t v_init;
 312        uint32_t v_fp2 = 0;
 313        int32_t vertical_line_start;
 314
 315        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 316
 317        patched_crtc_timing = *dc_crtc_timing;
 318        apply_front_porch_workaround(&patched_crtc_timing);
 319
 320        /* VCOUNT_INIT is the start of blank */
 321        v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
 322
 323        /* end of blank = v_init - active */
 324        asic_blank_end = v_init -
 325                        patched_crtc_timing.v_border_bottom -
 326                        patched_crtc_timing.v_addressable -
 327                        patched_crtc_timing.v_border_top;
 328
 329        /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
 330        vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
 331        if (vertical_line_start < 0)
 332                v_fp2 = -vertical_line_start;
 333
 334        /* Interlace */
 335        if (REG(OTG_INTERLACE_CONTROL)) {
 336                if (patched_crtc_timing.flags.INTERLACE == 1) {
 337                        v_init = v_init / 2;
 338                        if ((optc1->vstartup_start/2)*2 > asic_blank_end)
 339                                v_fp2 = v_fp2 / 2;
 340                }
 341        }
 342
 343        REG_UPDATE_2(CONTROL,
 344                        VTG0_FP2, v_fp2,
 345                        VTG0_VCOUNT_INIT, v_init);
 346}
 347
 348void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
 349{
 350        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 351
 352        uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
 353
 354        REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
 355                        OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
 356}
 357
 358/**
 359 * optc1_set_timing_double_buffer() - DRR double buffering control
 360 *
 361 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
 362 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
 363 *
 364 * Options: any time,  start of frame, dp start of frame (range timing)
 365 */
 366void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
 367{
 368        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 369        uint32_t mode = enable ? 2 : 0;
 370
 371        REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
 372                   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
 373}
 374
 375/**
 376 * unblank_crtc
 377 * Call ASIC Control Object to UnBlank CRTC.
 378 */
 379static void optc1_unblank_crtc(struct timing_generator *optc)
 380{
 381        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 382
 383        REG_UPDATE_2(OTG_BLANK_CONTROL,
 384                        OTG_BLANK_DATA_EN, 0,
 385                        OTG_BLANK_DE_MODE, 0);
 386
 387        /* W/A for automated testing
 388         * Automated testing will fail underflow test as there
 389         * sporadic underflows which occur during the optc blank
 390         * sequence.  As a w/a, clear underflow on unblank.
 391         * This prevents the failure, but will not mask actual
 392         * underflow that affect real use cases.
 393         */
 394        optc1_clear_optc_underflow(optc);
 395}
 396
 397/**
 398 * blank_crtc
 399 * Call ASIC Control Object to Blank CRTC.
 400 */
 401
 402static void optc1_blank_crtc(struct timing_generator *optc)
 403{
 404        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 405
 406        REG_UPDATE_2(OTG_BLANK_CONTROL,
 407                        OTG_BLANK_DATA_EN, 1,
 408                        OTG_BLANK_DE_MODE, 0);
 409
 410        optc1_set_blank_data_double_buffer(optc, false);
 411}
 412
 413void optc1_set_blank(struct timing_generator *optc,
 414                bool enable_blanking)
 415{
 416        if (enable_blanking)
 417                optc1_blank_crtc(optc);
 418        else
 419                optc1_unblank_crtc(optc);
 420}
 421
 422bool optc1_is_blanked(struct timing_generator *optc)
 423{
 424        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 425        uint32_t blank_en;
 426        uint32_t blank_state;
 427
 428        REG_GET_2(OTG_BLANK_CONTROL,
 429                        OTG_BLANK_DATA_EN, &blank_en,
 430                        OTG_CURRENT_BLANK_STATE, &blank_state);
 431
 432        return blank_en && blank_state;
 433}
 434
 435void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
 436{
 437        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 438
 439        if (enable) {
 440                REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
 441                                OPTC_INPUT_CLK_EN, 1,
 442                                OPTC_INPUT_CLK_GATE_DIS, 1);
 443
 444                REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
 445                                OPTC_INPUT_CLK_ON, 1,
 446                                1, 1000);
 447
 448                /* Enable clock */
 449                REG_UPDATE_2(OTG_CLOCK_CONTROL,
 450                                OTG_CLOCK_EN, 1,
 451                                OTG_CLOCK_GATE_DIS, 1);
 452                REG_WAIT(OTG_CLOCK_CONTROL,
 453                                OTG_CLOCK_ON, 1,
 454                                1, 1000);
 455        } else  {
 456                REG_UPDATE_2(OTG_CLOCK_CONTROL,
 457                                OTG_CLOCK_GATE_DIS, 0,
 458                                OTG_CLOCK_EN, 0);
 459
 460                REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
 461                                OPTC_INPUT_CLK_GATE_DIS, 0,
 462                                OPTC_INPUT_CLK_EN, 0);
 463        }
 464}
 465
 466/**
 467 * Enable CRTC
 468 * Enable CRTC - call ASIC Control Object to enable Timing generator.
 469 */
 470static bool optc1_enable_crtc(struct timing_generator *optc)
 471{
 472        /* TODO FPGA wait for answer
 473         * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
 474         * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
 475         */
 476        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 477
 478        /* opp instance for OTG. For DCN1.0, ODM is remoed.
 479         * OPP and OPTC should 1:1 mapping
 480         */
 481        REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
 482                        OPTC_SRC_SEL, optc->inst);
 483
 484        /* VTG enable first is for HW workaround */
 485        REG_UPDATE(CONTROL,
 486                        VTG0_ENABLE, 1);
 487
 488        REG_SEQ_START();
 489
 490        /* Enable CRTC */
 491        REG_UPDATE_2(OTG_CONTROL,
 492                        OTG_DISABLE_POINT_CNTL, 3,
 493                        OTG_MASTER_EN, 1);
 494
 495        REG_SEQ_SUBMIT();
 496        REG_SEQ_WAIT_DONE();
 497
 498        return true;
 499}
 500
 501/* disable_crtc - call ASIC Control Object to disable Timing generator. */
 502bool optc1_disable_crtc(struct timing_generator *optc)
 503{
 504        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 505
 506        /* disable otg request until end of the first line
 507         * in the vertical blank region
 508         */
 509        REG_UPDATE_2(OTG_CONTROL,
 510                        OTG_DISABLE_POINT_CNTL, 3,
 511                        OTG_MASTER_EN, 0);
 512
 513        REG_UPDATE(CONTROL,
 514                        VTG0_ENABLE, 0);
 515
 516        /* CRTC disabled, so disable  clock. */
 517        REG_WAIT(OTG_CLOCK_CONTROL,
 518                        OTG_BUSY, 0,
 519                        1, 100000);
 520
 521        return true;
 522}
 523
 524
 525void optc1_program_blank_color(
 526                struct timing_generator *optc,
 527                const struct tg_color *black_color)
 528{
 529        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 530
 531        REG_SET_3(OTG_BLACK_COLOR, 0,
 532                        OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
 533                        OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
 534                        OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
 535}
 536
 537bool optc1_validate_timing(
 538        struct timing_generator *optc,
 539        const struct dc_crtc_timing *timing)
 540{
 541        uint32_t v_blank;
 542        uint32_t h_blank;
 543        uint32_t min_v_blank;
 544        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 545
 546        ASSERT(timing != NULL);
 547
 548        v_blank = (timing->v_total - timing->v_addressable -
 549                                        timing->v_border_top - timing->v_border_bottom);
 550
 551        h_blank = (timing->h_total - timing->h_addressable -
 552                timing->h_border_right -
 553                timing->h_border_left);
 554
 555        if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
 556                timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
 557                timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
 558                timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
 559                timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
 560                timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
 561                return false;
 562
 563        /* Temporarily blocking interlacing mode until it's supported */
 564        if (timing->flags.INTERLACE == 1)
 565                return false;
 566
 567        /* Check maximum number of pixels supported by Timing Generator
 568         * (Currently will never fail, in order to fail needs display which
 569         * needs more than 8192 horizontal and
 570         * more than 8192 vertical total pixels)
 571         */
 572        if (timing->h_total > optc1->max_h_total ||
 573                timing->v_total > optc1->max_v_total)
 574                return false;
 575
 576
 577        if (h_blank < optc1->min_h_blank)
 578                return false;
 579
 580        if (timing->h_sync_width  < optc1->min_h_sync_width ||
 581                 timing->v_sync_width  < optc1->min_v_sync_width)
 582                return false;
 583
 584        min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
 585
 586        if (v_blank < min_v_blank)
 587                return false;
 588
 589        return true;
 590
 591}
 592
 593/*
 594 * get_vblank_counter
 595 *
 596 * @brief
 597 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
 598 * holds the counter of frames.
 599 *
 600 * @param
 601 * struct timing_generator *optc - [in] timing generator which controls the
 602 * desired CRTC
 603 *
 604 * @return
 605 * Counter of frames, which should equal to number of vblanks.
 606 */
 607uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
 608{
 609        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 610        uint32_t frame_count;
 611
 612        REG_GET(OTG_STATUS_FRAME_COUNT,
 613                OTG_FRAME_COUNT, &frame_count);
 614
 615        return frame_count;
 616}
 617
 618void optc1_lock(struct timing_generator *optc)
 619{
 620        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 621        uint32_t regval = 0;
 622
 623        regval = REG_READ(OTG_CONTROL);
 624
 625        /* otg is not running, do not need to be locked */
 626        if ((regval & 0x1) == 0x0)
 627                return;
 628
 629        REG_SET(OTG_GLOBAL_CONTROL0, 0,
 630                        OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
 631        REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
 632                        OTG_MASTER_UPDATE_LOCK, 1);
 633
 634        /* Should be fast, status does not update on maximus */
 635        if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
 636
 637                REG_WAIT(OTG_MASTER_UPDATE_LOCK,
 638                                UPDATE_LOCK_STATUS, 1,
 639                                1, 10);
 640        }
 641}
 642
 643void optc1_unlock(struct timing_generator *optc)
 644{
 645        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 646
 647        REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
 648                        OTG_MASTER_UPDATE_LOCK, 0);
 649}
 650
 651void optc1_get_position(struct timing_generator *optc,
 652                struct crtc_position *position)
 653{
 654        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 655
 656        REG_GET_2(OTG_STATUS_POSITION,
 657                        OTG_HORZ_COUNT, &position->horizontal_count,
 658                        OTG_VERT_COUNT, &position->vertical_count);
 659
 660        REG_GET(OTG_NOM_VERT_POSITION,
 661                        OTG_VERT_COUNT_NOM, &position->nominal_vcount);
 662}
 663
 664bool optc1_is_counter_moving(struct timing_generator *optc)
 665{
 666        struct crtc_position position1, position2;
 667
 668        optc->funcs->get_position(optc, &position1);
 669        optc->funcs->get_position(optc, &position2);
 670
 671        if (position1.horizontal_count == position2.horizontal_count &&
 672                position1.vertical_count == position2.vertical_count)
 673                return false;
 674        else
 675                return true;
 676}
 677
 678bool optc1_did_triggered_reset_occur(
 679        struct timing_generator *optc)
 680{
 681        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 682        uint32_t occurred_force, occurred_vsync;
 683
 684        REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
 685                OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
 686
 687        REG_GET(OTG_VERT_SYNC_CONTROL,
 688                OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
 689
 690        return occurred_vsync != 0 || occurred_force != 0;
 691}
 692
 693void optc1_disable_reset_trigger(struct timing_generator *optc)
 694{
 695        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 696
 697        REG_WRITE(OTG_TRIGA_CNTL, 0);
 698
 699        REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 700                OTG_FORCE_COUNT_NOW_CLEAR, 1);
 701
 702        REG_SET(OTG_VERT_SYNC_CONTROL, 0,
 703                OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
 704}
 705
 706void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
 707{
 708        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 709        uint32_t falling_edge;
 710
 711        REG_GET(OTG_V_SYNC_A_CNTL,
 712                        OTG_V_SYNC_A_POL, &falling_edge);
 713
 714        if (falling_edge)
 715                REG_SET_3(OTG_TRIGA_CNTL, 0,
 716                                /* vsync signal from selected OTG pipe based
 717                                 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 718                                 */
 719                                OTG_TRIGA_SOURCE_SELECT, 20,
 720                                OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 721                                /* always detect falling edge */
 722                                OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
 723        else
 724                REG_SET_3(OTG_TRIGA_CNTL, 0,
 725                                /* vsync signal from selected OTG pipe based
 726                                 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 727                                 */
 728                                OTG_TRIGA_SOURCE_SELECT, 20,
 729                                OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 730                                /* always detect rising edge */
 731                                OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
 732
 733        REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 734                        /* force H count to H_TOTAL and V count to V_TOTAL in
 735                         * progressive mode and V_TOTAL-1 in interlaced mode
 736                         */
 737                        OTG_FORCE_COUNT_NOW_MODE, 2);
 738}
 739
 740void optc1_enable_crtc_reset(
 741                struct timing_generator *optc,
 742                int source_tg_inst,
 743                struct crtc_trigger_info *crtc_tp)
 744{
 745        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 746        uint32_t falling_edge = 0;
 747        uint32_t rising_edge = 0;
 748
 749        switch (crtc_tp->event) {
 750
 751        case CRTC_EVENT_VSYNC_RISING:
 752                rising_edge = 1;
 753                break;
 754
 755        case CRTC_EVENT_VSYNC_FALLING:
 756                falling_edge = 1;
 757                break;
 758        }
 759
 760        REG_SET_4(OTG_TRIGA_CNTL, 0,
 761                 /* vsync signal from selected OTG pipe based
 762                  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 763                  */
 764                  OTG_TRIGA_SOURCE_SELECT, 20,
 765                  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 766                  /* always detect falling edge */
 767                  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
 768                  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
 769
 770        switch (crtc_tp->delay) {
 771        case TRIGGER_DELAY_NEXT_LINE:
 772                REG_SET(OTG_VERT_SYNC_CONTROL, 0,
 773                                OTG_AUTO_FORCE_VSYNC_MODE, 1);
 774                break;
 775        case TRIGGER_DELAY_NEXT_PIXEL:
 776                REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 777                        /* force H count to H_TOTAL and V count to V_TOTAL in
 778                         * progressive mode and V_TOTAL-1 in interlaced mode
 779                         */
 780                        OTG_FORCE_COUNT_NOW_MODE, 2);
 781                break;
 782        }
 783}
 784
 785void optc1_wait_for_state(struct timing_generator *optc,
 786                enum crtc_state state)
 787{
 788        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 789
 790        switch (state) {
 791        case CRTC_STATE_VBLANK:
 792                REG_WAIT(OTG_STATUS,
 793                                OTG_V_BLANK, 1,
 794                                1, 100000); /* 1 vupdate at 10hz */
 795                break;
 796
 797        case CRTC_STATE_VACTIVE:
 798                REG_WAIT(OTG_STATUS,
 799                                OTG_V_ACTIVE_DISP, 1,
 800                                1, 100000); /* 1 vupdate at 10hz */
 801                break;
 802
 803        default:
 804                break;
 805        }
 806}
 807
 808void optc1_set_early_control(
 809        struct timing_generator *optc,
 810        uint32_t early_cntl)
 811{
 812        /* asic design change, do not need this control
 813         * empty for share caller logic
 814         */
 815}
 816
 817
 818void optc1_set_static_screen_control(
 819        struct timing_generator *optc,
 820        uint32_t event_triggers,
 821        uint32_t num_frames)
 822{
 823        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 824
 825        // By register spec, it only takes 8 bit value
 826        if (num_frames > 0xFF)
 827                num_frames = 0xFF;
 828
 829        /* Bit 8 is no longer applicable in RV for PSR case,
 830         * set bit 8 to 0 if given
 831         */
 832        if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
 833                        != 0)
 834                event_triggers = event_triggers &
 835                ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
 836
 837        REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
 838                        OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
 839                        OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
 840}
 841
 842void optc1_setup_manual_trigger(struct timing_generator *optc)
 843{
 844        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 845
 846        REG_SET(OTG_GLOBAL_CONTROL2, 0,
 847                        MANUAL_FLOW_CONTROL_SEL, optc->inst);
 848
 849        REG_SET_8(OTG_TRIGA_CNTL, 0,
 850                        OTG_TRIGA_SOURCE_SELECT, 22,
 851                        OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
 852                        OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
 853                        OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
 854                        OTG_TRIGA_POLARITY_SELECT, 0,
 855                        OTG_TRIGA_FREQUENCY_SELECT, 0,
 856                        OTG_TRIGA_DELAY, 0,
 857                        OTG_TRIGA_CLEAR, 1);
 858}
 859
 860void optc1_program_manual_trigger(struct timing_generator *optc)
 861{
 862        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 863
 864        REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
 865                        MANUAL_FLOW_CONTROL, 1);
 866
 867        REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
 868                        MANUAL_FLOW_CONTROL, 0);
 869}
 870
 871
 872/**
 873 *****************************************************************************
 874 *  Function: set_drr
 875 *
 876 *  @brief
 877 *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
 878 *
 879 *****************************************************************************
 880 */
 881void optc1_set_drr(
 882        struct timing_generator *optc,
 883        const struct drr_params *params)
 884{
 885        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 886
 887        if (params != NULL &&
 888                params->vertical_total_max > 0 &&
 889                params->vertical_total_min > 0) {
 890
 891                if (params->vertical_total_mid != 0) {
 892
 893                        REG_SET(OTG_V_TOTAL_MID, 0,
 894                                OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
 895
 896                        REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
 897                                        OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
 898                                        OTG_VTOTAL_MID_FRAME_NUM,
 899                                        (uint8_t)params->vertical_total_mid_frame_num);
 900
 901                }
 902
 903                REG_SET(OTG_V_TOTAL_MAX, 0,
 904                        OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
 905
 906                REG_SET(OTG_V_TOTAL_MIN, 0,
 907                        OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
 908
 909                REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
 910                                OTG_V_TOTAL_MIN_SEL, 1,
 911                                OTG_V_TOTAL_MAX_SEL, 1,
 912                                OTG_FORCE_LOCK_ON_EVENT, 0,
 913                                OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
 914                                OTG_SET_V_TOTAL_MIN_MASK, 0);
 915
 916                // Setup manual flow control for EOF via TRIG_A
 917                optc->funcs->setup_manual_trigger(optc);
 918
 919        } else {
 920                REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
 921                                OTG_SET_V_TOTAL_MIN_MASK, 0,
 922                                OTG_V_TOTAL_MIN_SEL, 0,
 923                                OTG_V_TOTAL_MAX_SEL, 0,
 924                                OTG_FORCE_LOCK_ON_EVENT, 0);
 925
 926                REG_SET(OTG_V_TOTAL_MIN, 0,
 927                        OTG_V_TOTAL_MIN, 0);
 928
 929                REG_SET(OTG_V_TOTAL_MAX, 0,
 930                        OTG_V_TOTAL_MAX, 0);
 931        }
 932}
 933
 934static void optc1_set_test_pattern(
 935        struct timing_generator *optc,
 936        /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
 937         * because this is not DP-specific (which is probably somewhere in DP
 938         * encoder) */
 939        enum controller_dp_test_pattern test_pattern,
 940        enum dc_color_depth color_depth)
 941{
 942        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 943        enum test_pattern_color_format bit_depth;
 944        enum test_pattern_dyn_range dyn_range;
 945        enum test_pattern_mode mode;
 946        uint32_t pattern_mask;
 947        uint32_t pattern_data;
 948        /* color ramp generator mixes 16-bits color */
 949        uint32_t src_bpc = 16;
 950        /* requested bpc */
 951        uint32_t dst_bpc;
 952        uint32_t index;
 953        /* RGB values of the color bars.
 954         * Produce two RGB colors: RGB0 - white (all Fs)
 955         * and RGB1 - black (all 0s)
 956         * (three RGB components for two colors)
 957         */
 958        uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
 959                                                0x0000, 0x0000};
 960        /* dest color (converted to the specified color format) */
 961        uint16_t dst_color[6];
 962        uint32_t inc_base;
 963
 964        /* translate to bit depth */
 965        switch (color_depth) {
 966        case COLOR_DEPTH_666:
 967                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
 968        break;
 969        case COLOR_DEPTH_888:
 970                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
 971        break;
 972        case COLOR_DEPTH_101010:
 973                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
 974        break;
 975        case COLOR_DEPTH_121212:
 976                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
 977        break;
 978        default:
 979                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
 980        break;
 981        }
 982
 983        switch (test_pattern) {
 984        case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
 985        case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
 986        {
 987                dyn_range = (test_pattern ==
 988                                CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
 989                                TEST_PATTERN_DYN_RANGE_CEA :
 990                                TEST_PATTERN_DYN_RANGE_VESA);
 991                mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
 992
 993                REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
 994                                OTG_TEST_PATTERN_VRES, 6,
 995                                OTG_TEST_PATTERN_HRES, 6);
 996
 997                REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
 998                                OTG_TEST_PATTERN_EN, 1,
 999                                OTG_TEST_PATTERN_MODE, mode,
1000                                OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1001                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1002        }
1003        break;
1004
1005        case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1006        case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1007        {
1008                mode = (test_pattern ==
1009                        CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1010                        TEST_PATTERN_MODE_VERTICALBARS :
1011                        TEST_PATTERN_MODE_HORIZONTALBARS);
1012
1013                switch (bit_depth) {
1014                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1015                        dst_bpc = 6;
1016                break;
1017                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1018                        dst_bpc = 8;
1019                break;
1020                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1021                        dst_bpc = 10;
1022                break;
1023                default:
1024                        dst_bpc = 8;
1025                break;
1026                }
1027
1028                /* adjust color to the required colorFormat */
1029                for (index = 0; index < 6; index++) {
1030                        /* dst = 2^dstBpc * src / 2^srcBpc = src >>
1031                         * (srcBpc - dstBpc);
1032                         */
1033                        dst_color[index] =
1034                                src_color[index] >> (src_bpc - dst_bpc);
1035                /* CRTC_TEST_PATTERN_DATA has 16 bits,
1036                 * lowest 6 are hardwired to ZERO
1037                 * color bits should be left aligned aligned to MSB
1038                 * XXXXXXXXXX000000 for 10 bit,
1039                 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1040                 */
1041                        dst_color[index] <<= (16 - dst_bpc);
1042                }
1043
1044                REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1045
1046                /* We have to write the mask before data, similar to pipeline.
1047                 * For example, for 8 bpc, if we want RGB0 to be magenta,
1048                 * and RGB1 to be cyan,
1049                 * we need to make 7 writes:
1050                 * MASK   DATA
1051                 * 000001 00000000 00000000                     set mask to R0
1052                 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1053                 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1054                 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1055                 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1056                 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1057                 * 100000 11111111 00000000     B1 255, 0xFF00
1058                 *
1059                 * we will make a loop of 6 in which we prepare the mask,
1060                 * then write, then prepare the color for next write.
1061                 * first iteration will write mask only,
1062                 * but each next iteration color prepared in
1063                 * previous iteration will be written within new mask,
1064                 * the last component will written separately,
1065                 * mask is not changing between 6th and 7th write
1066                 * and color will be prepared by last iteration
1067                 */
1068
1069                /* write color, color values mask in CRTC_TEST_PATTERN_MASK
1070                 * is B1, G1, R1, B0, G0, R0
1071                 */
1072                pattern_data = 0;
1073                for (index = 0; index < 6; index++) {
1074                        /* prepare color mask, first write PATTERN_DATA
1075                         * will have all zeros
1076                         */
1077                        pattern_mask = (1 << index);
1078
1079                        /* write color component */
1080                        REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1081                                        OTG_TEST_PATTERN_MASK, pattern_mask,
1082                                        OTG_TEST_PATTERN_DATA, pattern_data);
1083
1084                        /* prepare next color component,
1085                         * will be written in the next iteration
1086                         */
1087                        pattern_data = dst_color[index];
1088                }
1089                /* write last color component,
1090                 * it's been already prepared in the loop
1091                 */
1092                REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1093                                OTG_TEST_PATTERN_MASK, pattern_mask,
1094                                OTG_TEST_PATTERN_DATA, pattern_data);
1095
1096                /* enable test pattern */
1097                REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1098                                OTG_TEST_PATTERN_EN, 1,
1099                                OTG_TEST_PATTERN_MODE, mode,
1100                                OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1101                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1102        }
1103        break;
1104
1105        case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1106        {
1107                mode = (bit_depth ==
1108                        TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1109                        TEST_PATTERN_MODE_DUALRAMP_RGB :
1110                        TEST_PATTERN_MODE_SINGLERAMP_RGB);
1111
1112                switch (bit_depth) {
1113                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1114                        dst_bpc = 6;
1115                break;
1116                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1117                        dst_bpc = 8;
1118                break;
1119                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1120                        dst_bpc = 10;
1121                break;
1122                default:
1123                        dst_bpc = 8;
1124                break;
1125                }
1126
1127                /* increment for the first ramp for one color gradation
1128                 * 1 gradation for 6-bit color is 2^10
1129                 * gradations in 16-bit color
1130                 */
1131                inc_base = (src_bpc - dst_bpc);
1132
1133                switch (bit_depth) {
1134                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1135                {
1136                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1137                                        OTG_TEST_PATTERN_INC0, inc_base,
1138                                        OTG_TEST_PATTERN_INC1, 0,
1139                                        OTG_TEST_PATTERN_HRES, 6,
1140                                        OTG_TEST_PATTERN_VRES, 6,
1141                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1142                }
1143                break;
1144                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1145                {
1146                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1147                                        OTG_TEST_PATTERN_INC0, inc_base,
1148                                        OTG_TEST_PATTERN_INC1, 0,
1149                                        OTG_TEST_PATTERN_HRES, 8,
1150                                        OTG_TEST_PATTERN_VRES, 6,
1151                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1152                }
1153                break;
1154                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1155                {
1156                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1157                                        OTG_TEST_PATTERN_INC0, inc_base,
1158                                        OTG_TEST_PATTERN_INC1, inc_base + 2,
1159                                        OTG_TEST_PATTERN_HRES, 8,
1160                                        OTG_TEST_PATTERN_VRES, 5,
1161                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1162                }
1163                break;
1164                default:
1165                break;
1166                }
1167
1168                REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1169
1170                /* enable test pattern */
1171                REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1172
1173                REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1174                                OTG_TEST_PATTERN_EN, 1,
1175                                OTG_TEST_PATTERN_MODE, mode,
1176                                OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1177                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1178        }
1179        break;
1180        case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1181        {
1182                REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1183                REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1184                REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1185        }
1186        break;
1187        default:
1188                break;
1189
1190        }
1191}
1192
1193void optc1_get_crtc_scanoutpos(
1194        struct timing_generator *optc,
1195        uint32_t *v_blank_start,
1196        uint32_t *v_blank_end,
1197        uint32_t *h_position,
1198        uint32_t *v_position)
1199{
1200        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1201        struct crtc_position position;
1202
1203        REG_GET_2(OTG_V_BLANK_START_END,
1204                        OTG_V_BLANK_START, v_blank_start,
1205                        OTG_V_BLANK_END, v_blank_end);
1206
1207        optc1_get_position(optc, &position);
1208
1209        *h_position = position.horizontal_count;
1210        *v_position = position.vertical_count;
1211}
1212
1213static void optc1_enable_stereo(struct timing_generator *optc,
1214        const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1215{
1216        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1217
1218        if (flags) {
1219                uint32_t stereo_en;
1220                stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1221
1222                if (flags->PROGRAM_STEREO)
1223                        REG_UPDATE_3(OTG_STEREO_CONTROL,
1224                                OTG_STEREO_EN, stereo_en,
1225                                OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1226                                OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1227
1228                if (flags->PROGRAM_POLARITY)
1229                        REG_UPDATE(OTG_STEREO_CONTROL,
1230                                OTG_STEREO_EYE_FLAG_POLARITY,
1231                                flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1232
1233                if (flags->DISABLE_STEREO_DP_SYNC)
1234                        REG_UPDATE(OTG_STEREO_CONTROL,
1235                                OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1236
1237                if (flags->PROGRAM_STEREO)
1238                        REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1239                                OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1240                                OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1241
1242        }
1243}
1244
1245void optc1_program_stereo(struct timing_generator *optc,
1246        const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1247{
1248        if (flags->PROGRAM_STEREO)
1249                optc1_enable_stereo(optc, timing, flags);
1250        else
1251                optc1_disable_stereo(optc);
1252}
1253
1254
1255bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1256{
1257        bool ret = false;
1258        uint32_t left_eye = 0;
1259        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1260
1261        REG_GET(OTG_STEREO_STATUS,
1262                OTG_STEREO_CURRENT_EYE, &left_eye);
1263        if (left_eye == 1)
1264                ret = true;
1265        else
1266                ret = false;
1267
1268        return ret;
1269}
1270
1271bool optc1_get_hw_timing(struct timing_generator *tg,
1272                struct dc_crtc_timing *hw_crtc_timing)
1273{
1274        struct dcn_otg_state s = {0};
1275
1276        if (tg == NULL || hw_crtc_timing == NULL)
1277                return false;
1278
1279        optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1280
1281        hw_crtc_timing->h_total = s.h_total + 1;
1282        hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1283        hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1284        hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1285
1286        hw_crtc_timing->v_total = s.v_total + 1;
1287        hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1288        hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1289        hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1290
1291        return true;
1292}
1293
1294
1295void optc1_read_otg_state(struct optc *optc1,
1296                struct dcn_otg_state *s)
1297{
1298        REG_GET(OTG_CONTROL,
1299                        OTG_MASTER_EN, &s->otg_enabled);
1300
1301        REG_GET_2(OTG_V_BLANK_START_END,
1302                        OTG_V_BLANK_START, &s->v_blank_start,
1303                        OTG_V_BLANK_END, &s->v_blank_end);
1304
1305        REG_GET(OTG_V_SYNC_A_CNTL,
1306                        OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1307
1308        REG_GET(OTG_V_TOTAL,
1309                        OTG_V_TOTAL, &s->v_total);
1310
1311        REG_GET(OTG_V_TOTAL_MAX,
1312                        OTG_V_TOTAL_MAX, &s->v_total_max);
1313
1314        REG_GET(OTG_V_TOTAL_MIN,
1315                        OTG_V_TOTAL_MIN, &s->v_total_min);
1316
1317        REG_GET(OTG_V_TOTAL_CONTROL,
1318                        OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1319
1320        REG_GET(OTG_V_TOTAL_CONTROL,
1321                        OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1322
1323        REG_GET_2(OTG_V_SYNC_A,
1324                        OTG_V_SYNC_A_START, &s->v_sync_a_start,
1325                        OTG_V_SYNC_A_END, &s->v_sync_a_end);
1326
1327        REG_GET_2(OTG_H_BLANK_START_END,
1328                        OTG_H_BLANK_START, &s->h_blank_start,
1329                        OTG_H_BLANK_END, &s->h_blank_end);
1330
1331        REG_GET_2(OTG_H_SYNC_A,
1332                        OTG_H_SYNC_A_START, &s->h_sync_a_start,
1333                        OTG_H_SYNC_A_END, &s->h_sync_a_end);
1334
1335        REG_GET(OTG_H_SYNC_A_CNTL,
1336                        OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1337
1338        REG_GET(OTG_H_TOTAL,
1339                        OTG_H_TOTAL, &s->h_total);
1340
1341        REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1342                        OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1343}
1344
1345bool optc1_get_otg_active_size(struct timing_generator *optc,
1346                uint32_t *otg_active_width,
1347                uint32_t *otg_active_height)
1348{
1349        uint32_t otg_enabled;
1350        uint32_t v_blank_start;
1351        uint32_t v_blank_end;
1352        uint32_t h_blank_start;
1353        uint32_t h_blank_end;
1354        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1355
1356
1357        REG_GET(OTG_CONTROL,
1358                        OTG_MASTER_EN, &otg_enabled);
1359
1360        if (otg_enabled == 0)
1361                return false;
1362
1363        REG_GET_2(OTG_V_BLANK_START_END,
1364                        OTG_V_BLANK_START, &v_blank_start,
1365                        OTG_V_BLANK_END, &v_blank_end);
1366
1367        REG_GET_2(OTG_H_BLANK_START_END,
1368                        OTG_H_BLANK_START, &h_blank_start,
1369                        OTG_H_BLANK_END, &h_blank_end);
1370
1371        *otg_active_width = v_blank_start - v_blank_end;
1372        *otg_active_height = h_blank_start - h_blank_end;
1373        return true;
1374}
1375
1376void optc1_clear_optc_underflow(struct timing_generator *optc)
1377{
1378        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1379
1380        REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1381}
1382
1383void optc1_tg_init(struct timing_generator *optc)
1384{
1385        optc1_set_blank_data_double_buffer(optc, true);
1386        optc1_set_timing_double_buffer(optc, true);
1387        optc1_clear_optc_underflow(optc);
1388}
1389
1390bool optc1_is_tg_enabled(struct timing_generator *optc)
1391{
1392        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1393        uint32_t otg_enabled = 0;
1394
1395        REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1396
1397        return (otg_enabled != 0);
1398
1399}
1400
1401bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1402{
1403        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1404        uint32_t underflow_occurred = 0;
1405
1406        REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1407                        OPTC_UNDERFLOW_OCCURRED_STATUS,
1408                        &underflow_occurred);
1409
1410        return (underflow_occurred == 1);
1411}
1412
1413bool optc1_configure_crc(struct timing_generator *optc,
1414                          const struct crc_params *params)
1415{
1416        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1417
1418        /* Cannot configure crc on a CRTC that is disabled */
1419        if (!optc1_is_tg_enabled(optc))
1420                return false;
1421
1422        REG_WRITE(OTG_CRC_CNTL, 0);
1423
1424        if (!params->enable)
1425                return true;
1426
1427        /* Program frame boundaries */
1428        /* Window A x axis start and end. */
1429        REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1430                        OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1431                        OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1432
1433        /* Window A y axis start and end. */
1434        REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1435                        OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1436                        OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1437
1438        /* Window B x axis start and end. */
1439        REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1440                        OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1441                        OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1442
1443        /* Window B y axis start and end. */
1444        REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1445                        OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1446                        OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1447
1448        /* Set crc mode and selection, and enable. Only using CRC0*/
1449        REG_UPDATE_3(OTG_CRC_CNTL,
1450                        OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1451                        OTG_CRC0_SELECT, params->selection,
1452                        OTG_CRC_EN, 1);
1453
1454        return true;
1455}
1456
1457bool optc1_get_crc(struct timing_generator *optc,
1458                    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1459{
1460        uint32_t field = 0;
1461        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1462
1463        REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1464
1465        /* Early return if CRC is not enabled for this CRTC */
1466        if (!field)
1467                return false;
1468
1469        REG_GET_2(OTG_CRC0_DATA_RG,
1470                        CRC0_R_CR, r_cr,
1471                        CRC0_G_Y, g_y);
1472
1473        REG_GET(OTG_CRC0_DATA_B,
1474                        CRC0_B_CB, b_cb);
1475
1476        return true;
1477}
1478
1479static const struct timing_generator_funcs dcn10_tg_funcs = {
1480                .validate_timing = optc1_validate_timing,
1481                .program_timing = optc1_program_timing,
1482                .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1483                .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1484                .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1485                .program_global_sync = optc1_program_global_sync,
1486                .enable_crtc = optc1_enable_crtc,
1487                .disable_crtc = optc1_disable_crtc,
1488                /* used by enable_timing_synchronization. Not need for FPGA */
1489                .is_counter_moving = optc1_is_counter_moving,
1490                .get_position = optc1_get_position,
1491                .get_frame_count = optc1_get_vblank_counter,
1492                .get_scanoutpos = optc1_get_crtc_scanoutpos,
1493                .get_otg_active_size = optc1_get_otg_active_size,
1494                .set_early_control = optc1_set_early_control,
1495                /* used by enable_timing_synchronization. Not need for FPGA */
1496                .wait_for_state = optc1_wait_for_state,
1497                .set_blank = optc1_set_blank,
1498                .is_blanked = optc1_is_blanked,
1499                .set_blank_color = optc1_program_blank_color,
1500                .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1501                .enable_reset_trigger = optc1_enable_reset_trigger,
1502                .enable_crtc_reset = optc1_enable_crtc_reset,
1503                .disable_reset_trigger = optc1_disable_reset_trigger,
1504                .lock = optc1_lock,
1505                .unlock = optc1_unlock,
1506                .enable_optc_clock = optc1_enable_optc_clock,
1507                .set_drr = optc1_set_drr,
1508                .set_static_screen_control = optc1_set_static_screen_control,
1509                .set_test_pattern = optc1_set_test_pattern,
1510                .program_stereo = optc1_program_stereo,
1511                .is_stereo_left_eye = optc1_is_stereo_left_eye,
1512                .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1513                .tg_init = optc1_tg_init,
1514                .is_tg_enabled = optc1_is_tg_enabled,
1515                .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1516                .clear_optc_underflow = optc1_clear_optc_underflow,
1517                .get_crc = optc1_get_crc,
1518                .configure_crc = optc1_configure_crc,
1519                .set_vtg_params = optc1_set_vtg_params,
1520                .program_manual_trigger = optc1_program_manual_trigger,
1521                .setup_manual_trigger = optc1_setup_manual_trigger,
1522                .get_hw_timing = optc1_get_hw_timing,
1523};
1524
1525void dcn10_timing_generator_init(struct optc *optc1)
1526{
1527        optc1->base.funcs = &dcn10_tg_funcs;
1528
1529        optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1530        optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1531
1532        optc1->min_h_blank = 32;
1533        optc1->min_v_blank = 3;
1534        optc1->min_v_blank_interlace = 5;
1535        optc1->min_h_sync_width = 8;
1536        optc1->min_v_sync_width = 1;
1537}
1538
1539/* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1540 *
1541 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1542 *   containter rate.
1543 *
1544 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1545 *   halved to maintain the correct pixel rate.
1546 *
1547 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1548 *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1549 *
1550 */
1551bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1552{
1553        bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1554
1555        two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1556                        && !timing->dsc_cfg.ycbcr422_simple);
1557        return two_pix;
1558}
1559
1560