linux/drivers/gpu/drm/i915/gt/intel_gtt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2020 Intel Corporation
   4 */
   5
   6#include <linux/slab.h> /* fault-inject.h is not standalone! */
   7
   8#include <linux/fault-inject.h>
   9
  10#include "i915_trace.h"
  11#include "intel_gt.h"
  12#include "intel_gtt.h"
  13
  14void stash_init(struct pagestash *stash)
  15{
  16        pagevec_init(&stash->pvec);
  17        spin_lock_init(&stash->lock);
  18}
  19
  20static struct page *stash_pop_page(struct pagestash *stash)
  21{
  22        struct page *page = NULL;
  23
  24        spin_lock(&stash->lock);
  25        if (likely(stash->pvec.nr))
  26                page = stash->pvec.pages[--stash->pvec.nr];
  27        spin_unlock(&stash->lock);
  28
  29        return page;
  30}
  31
  32static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
  33{
  34        unsigned int nr;
  35
  36        spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
  37
  38        nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
  39        memcpy(stash->pvec.pages + stash->pvec.nr,
  40               pvec->pages + pvec->nr - nr,
  41               sizeof(pvec->pages[0]) * nr);
  42        stash->pvec.nr += nr;
  43
  44        spin_unlock(&stash->lock);
  45
  46        pvec->nr -= nr;
  47}
  48
  49static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
  50{
  51        struct pagevec stack;
  52        struct page *page;
  53
  54        if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
  55                i915_gem_shrink_all(vm->i915);
  56
  57        page = stash_pop_page(&vm->free_pages);
  58        if (page)
  59                return page;
  60
  61        if (!vm->pt_kmap_wc)
  62                return alloc_page(gfp);
  63
  64        /* Look in our global stash of WC pages... */
  65        page = stash_pop_page(&vm->i915->mm.wc_stash);
  66        if (page)
  67                return page;
  68
  69        /*
  70         * Otherwise batch allocate pages to amortize cost of set_pages_wc.
  71         *
  72         * We have to be careful as page allocation may trigger the shrinker
  73         * (via direct reclaim) which will fill up the WC stash underneath us.
  74         * So we add our WB pages into a temporary pvec on the stack and merge
  75         * them into the WC stash after all the allocations are complete.
  76         */
  77        pagevec_init(&stack);
  78        do {
  79                struct page *page;
  80
  81                page = alloc_page(gfp);
  82                if (unlikely(!page))
  83                        break;
  84
  85                stack.pages[stack.nr++] = page;
  86        } while (pagevec_space(&stack));
  87
  88        if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
  89                page = stack.pages[--stack.nr];
  90
  91                /* Merge spare WC pages to the global stash */
  92                if (stack.nr)
  93                        stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
  94
  95                /* Push any surplus WC pages onto the local VM stash */
  96                if (stack.nr)
  97                        stash_push_pagevec(&vm->free_pages, &stack);
  98        }
  99
 100        /* Return unwanted leftovers */
 101        if (unlikely(stack.nr)) {
 102                WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
 103                __pagevec_release(&stack);
 104        }
 105
 106        return page;
 107}
 108
 109static void vm_free_pages_release(struct i915_address_space *vm,
 110                                  bool immediate)
 111{
 112        struct pagevec *pvec = &vm->free_pages.pvec;
 113        struct pagevec stack;
 114
 115        lockdep_assert_held(&vm->free_pages.lock);
 116        GEM_BUG_ON(!pagevec_count(pvec));
 117
 118        if (vm->pt_kmap_wc) {
 119                /*
 120                 * When we use WC, first fill up the global stash and then
 121                 * only if full immediately free the overflow.
 122                 */
 123                stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
 124
 125                /*
 126                 * As we have made some room in the VM's free_pages,
 127                 * we can wait for it to fill again. Unless we are
 128                 * inside i915_address_space_fini() and must
 129                 * immediately release the pages!
 130                 */
 131                if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
 132                        return;
 133
 134                /*
 135                 * We have to drop the lock to allow ourselves to sleep,
 136                 * so take a copy of the pvec and clear the stash for
 137                 * others to use it as we sleep.
 138                 */
 139                stack = *pvec;
 140                pagevec_reinit(pvec);
 141                spin_unlock(&vm->free_pages.lock);
 142
 143                pvec = &stack;
 144                set_pages_array_wb(pvec->pages, pvec->nr);
 145
 146                spin_lock(&vm->free_pages.lock);
 147        }
 148
 149        __pagevec_release(pvec);
 150}
 151
 152static void vm_free_page(struct i915_address_space *vm, struct page *page)
 153{
 154        /*
 155         * On !llc, we need to change the pages back to WB. We only do so
 156         * in bulk, so we rarely need to change the page attributes here,
 157         * but doing so requires a stop_machine() from deep inside arch/x86/mm.
 158         * To make detection of the possible sleep more likely, use an
 159         * unconditional might_sleep() for everybody.
 160         */
 161        might_sleep();
 162        spin_lock(&vm->free_pages.lock);
 163        while (!pagevec_space(&vm->free_pages.pvec))
 164                vm_free_pages_release(vm, false);
 165        GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
 166        pagevec_add(&vm->free_pages.pvec, page);
 167        spin_unlock(&vm->free_pages.lock);
 168}
 169
 170void __i915_vm_close(struct i915_address_space *vm)
 171{
 172        struct i915_vma *vma, *vn;
 173
 174        if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
 175                return;
 176
 177        list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
 178                struct drm_i915_gem_object *obj = vma->obj;
 179
 180                /* Keep the obj (and hence the vma) alive as _we_ destroy it */
 181                if (!kref_get_unless_zero(&obj->base.refcount))
 182                        continue;
 183
 184                atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
 185                WARN_ON(__i915_vma_unbind(vma));
 186                __i915_vma_put(vma);
 187
 188                i915_gem_object_put(obj);
 189        }
 190        GEM_BUG_ON(!list_empty(&vm->bound_list));
 191
 192        mutex_unlock(&vm->mutex);
 193}
 194
 195void i915_address_space_fini(struct i915_address_space *vm)
 196{
 197        spin_lock(&vm->free_pages.lock);
 198        if (pagevec_count(&vm->free_pages.pvec))
 199                vm_free_pages_release(vm, true);
 200        GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
 201        spin_unlock(&vm->free_pages.lock);
 202
 203        drm_mm_takedown(&vm->mm);
 204
 205        mutex_destroy(&vm->mutex);
 206}
 207
 208static void __i915_vm_release(struct work_struct *work)
 209{
 210        struct i915_address_space *vm =
 211                container_of(work, struct i915_address_space, rcu.work);
 212
 213        vm->cleanup(vm);
 214        i915_address_space_fini(vm);
 215
 216        kfree(vm);
 217}
 218
 219void i915_vm_release(struct kref *kref)
 220{
 221        struct i915_address_space *vm =
 222                container_of(kref, struct i915_address_space, ref);
 223
 224        GEM_BUG_ON(i915_is_ggtt(vm));
 225        trace_i915_ppgtt_release(vm);
 226
 227        queue_rcu_work(vm->i915->wq, &vm->rcu);
 228}
 229
 230void i915_address_space_init(struct i915_address_space *vm, int subclass)
 231{
 232        kref_init(&vm->ref);
 233        INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
 234        atomic_set(&vm->open, 1);
 235
 236        /*
 237         * The vm->mutex must be reclaim safe (for use in the shrinker).
 238         * Do a dummy acquire now under fs_reclaim so that any allocation
 239         * attempt holding the lock is immediately reported by lockdep.
 240         */
 241        mutex_init(&vm->mutex);
 242        lockdep_set_subclass(&vm->mutex, subclass);
 243        i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
 244
 245        GEM_BUG_ON(!vm->total);
 246        drm_mm_init(&vm->mm, 0, vm->total);
 247        vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
 248
 249        stash_init(&vm->free_pages);
 250
 251        INIT_LIST_HEAD(&vm->bound_list);
 252}
 253
 254void clear_pages(struct i915_vma *vma)
 255{
 256        GEM_BUG_ON(!vma->pages);
 257
 258        if (vma->pages != vma->obj->mm.pages) {
 259                sg_free_table(vma->pages);
 260                kfree(vma->pages);
 261        }
 262        vma->pages = NULL;
 263
 264        memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
 265}
 266
 267static int __setup_page_dma(struct i915_address_space *vm,
 268                            struct i915_page_dma *p,
 269                            gfp_t gfp)
 270{
 271        p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
 272        if (unlikely(!p->page))
 273                return -ENOMEM;
 274
 275        p->daddr = dma_map_page_attrs(vm->dma,
 276                                      p->page, 0, PAGE_SIZE,
 277                                      PCI_DMA_BIDIRECTIONAL,
 278                                      DMA_ATTR_SKIP_CPU_SYNC |
 279                                      DMA_ATTR_NO_WARN);
 280        if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
 281                vm_free_page(vm, p->page);
 282                return -ENOMEM;
 283        }
 284
 285        return 0;
 286}
 287
 288int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
 289{
 290        return __setup_page_dma(vm, p, __GFP_HIGHMEM);
 291}
 292
 293void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
 294{
 295        dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 296        vm_free_page(vm, p->page);
 297}
 298
 299void
 300fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
 301{
 302        kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
 303}
 304
 305static void poison_scratch_page(struct page *page, unsigned long size)
 306{
 307        if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
 308                return;
 309
 310        GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
 311
 312        do {
 313                void *vaddr;
 314
 315                vaddr = kmap(page);
 316                memset(vaddr, POISON_FREE, PAGE_SIZE);
 317                kunmap(page);
 318
 319                page = pfn_to_page(page_to_pfn(page) + 1);
 320                size -= PAGE_SIZE;
 321        } while (size);
 322}
 323
 324int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
 325{
 326        unsigned long size;
 327
 328        /*
 329         * In order to utilize 64K pages for an object with a size < 2M, we will
 330         * need to support a 64K scratch page, given that every 16th entry for a
 331         * page-table operating in 64K mode must point to a properly aligned 64K
 332         * region, including any PTEs which happen to point to scratch.
 333         *
 334         * This is only relevant for the 48b PPGTT where we support
 335         * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
 336         * scratch (read-only) between all vm, we create one 64k scratch page
 337         * for all.
 338         */
 339        size = I915_GTT_PAGE_SIZE_4K;
 340        if (i915_vm_is_4lvl(vm) &&
 341            HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
 342                size = I915_GTT_PAGE_SIZE_64K;
 343                gfp |= __GFP_NOWARN;
 344        }
 345        gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
 346
 347        do {
 348                unsigned int order = get_order(size);
 349                struct page *page;
 350                dma_addr_t addr;
 351
 352                page = alloc_pages(gfp, order);
 353                if (unlikely(!page))
 354                        goto skip;
 355
 356                /*
 357                 * Use a non-zero scratch page for debugging.
 358                 *
 359                 * We want a value that should be reasonably obvious
 360                 * to spot in the error state, while also causing a GPU hang
 361                 * if executed. We prefer using a clear page in production, so
 362                 * should it ever be accidentally used, the effect should be
 363                 * fairly benign.
 364                 */
 365                poison_scratch_page(page, size);
 366
 367                addr = dma_map_page_attrs(vm->dma,
 368                                          page, 0, size,
 369                                          PCI_DMA_BIDIRECTIONAL,
 370                                          DMA_ATTR_SKIP_CPU_SYNC |
 371                                          DMA_ATTR_NO_WARN);
 372                if (unlikely(dma_mapping_error(vm->dma, addr)))
 373                        goto free_page;
 374
 375                if (unlikely(!IS_ALIGNED(addr, size)))
 376                        goto unmap_page;
 377
 378                vm->scratch[0].base.page = page;
 379                vm->scratch[0].base.daddr = addr;
 380                vm->scratch_order = order;
 381                return 0;
 382
 383unmap_page:
 384                dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
 385free_page:
 386                __free_pages(page, order);
 387skip:
 388                if (size == I915_GTT_PAGE_SIZE_4K)
 389                        return -ENOMEM;
 390
 391                size = I915_GTT_PAGE_SIZE_4K;
 392                gfp &= ~__GFP_NOWARN;
 393        } while (1);
 394}
 395
 396void cleanup_scratch_page(struct i915_address_space *vm)
 397{
 398        struct i915_page_dma *p = px_base(&vm->scratch[0]);
 399        unsigned int order = vm->scratch_order;
 400
 401        dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
 402                       PCI_DMA_BIDIRECTIONAL);
 403        __free_pages(p->page, order);
 404}
 405
 406void free_scratch(struct i915_address_space *vm)
 407{
 408        int i;
 409
 410        if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
 411                return;
 412
 413        for (i = 1; i <= vm->top; i++) {
 414                if (!px_dma(&vm->scratch[i]))
 415                        break;
 416                cleanup_page_dma(vm, px_base(&vm->scratch[i]));
 417        }
 418
 419        cleanup_scratch_page(vm);
 420}
 421
 422void gtt_write_workarounds(struct intel_gt *gt)
 423{
 424        struct drm_i915_private *i915 = gt->i915;
 425        struct intel_uncore *uncore = gt->uncore;
 426
 427        /*
 428         * This function is for gtt related workarounds. This function is
 429         * called on driver load and after a GPU reset, so you can place
 430         * workarounds here even if they get overwritten by GPU reset.
 431         */
 432        /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
 433        if (IS_BROADWELL(i915))
 434                intel_uncore_write(uncore,
 435                                   GEN8_L3_LRA_1_GPGPU,
 436                                   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
 437        else if (IS_CHERRYVIEW(i915))
 438                intel_uncore_write(uncore,
 439                                   GEN8_L3_LRA_1_GPGPU,
 440                                   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
 441        else if (IS_GEN9_LP(i915))
 442                intel_uncore_write(uncore,
 443                                   GEN8_L3_LRA_1_GPGPU,
 444                                   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
 445        else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
 446                intel_uncore_write(uncore,
 447                                   GEN8_L3_LRA_1_GPGPU,
 448                                   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
 449
 450        /*
 451         * To support 64K PTEs we need to first enable the use of the
 452         * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
 453         * mmio, otherwise the page-walker will simply ignore the IPS bit. This
 454         * shouldn't be needed after GEN10.
 455         *
 456         * 64K pages were first introduced from BDW+, although technically they
 457         * only *work* from gen9+. For pre-BDW we instead have the option for
 458         * 32K pages, but we don't currently have any support for it in our
 459         * driver.
 460         */
 461        if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
 462            INTEL_GEN(i915) <= 10)
 463                intel_uncore_rmw(uncore,
 464                                 GEN8_GAMW_ECO_DEV_RW_IA,
 465                                 0,
 466                                 GAMW_ECO_ENABLE_64K_IPS_FIELD);
 467
 468        if (IS_GEN_RANGE(i915, 8, 11)) {
 469                bool can_use_gtt_cache = true;
 470
 471                /*
 472                 * According to the BSpec if we use 2M/1G pages then we also
 473                 * need to disable the GTT cache. At least on BDW we can see
 474                 * visual corruption when using 2M pages, and not disabling the
 475                 * GTT cache.
 476                 */
 477                if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
 478                        can_use_gtt_cache = false;
 479
 480                /* WaGttCachingOffByDefault */
 481                intel_uncore_write(uncore,
 482                                   HSW_GTT_CACHE_EN,
 483                                   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
 484                drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
 485                                 intel_uncore_read(uncore,
 486                                                   HSW_GTT_CACHE_EN) == 0);
 487        }
 488}
 489
 490static void tgl_setup_private_ppat(struct intel_uncore *uncore)
 491{
 492        /* TGL doesn't support LLC or AGE settings */
 493        intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
 494        intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
 495        intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
 496        intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
 497        intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
 498        intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
 499        intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
 500        intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
 501}
 502
 503static void cnl_setup_private_ppat(struct intel_uncore *uncore)
 504{
 505        intel_uncore_write(uncore,
 506                           GEN10_PAT_INDEX(0),
 507                           GEN8_PPAT_WB | GEN8_PPAT_LLC);
 508        intel_uncore_write(uncore,
 509                           GEN10_PAT_INDEX(1),
 510                           GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
 511        intel_uncore_write(uncore,
 512                           GEN10_PAT_INDEX(2),
 513                           GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
 514        intel_uncore_write(uncore,
 515                           GEN10_PAT_INDEX(3),
 516                           GEN8_PPAT_UC);
 517        intel_uncore_write(uncore,
 518                           GEN10_PAT_INDEX(4),
 519                           GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
 520        intel_uncore_write(uncore,
 521                           GEN10_PAT_INDEX(5),
 522                           GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
 523        intel_uncore_write(uncore,
 524                           GEN10_PAT_INDEX(6),
 525                           GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
 526        intel_uncore_write(uncore,
 527                           GEN10_PAT_INDEX(7),
 528                           GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
 529}
 530
 531/*
 532 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 533 * bits. When using advanced contexts each context stores its own PAT, but
 534 * writing this data shouldn't be harmful even in those cases.
 535 */
 536static void bdw_setup_private_ppat(struct intel_uncore *uncore)
 537{
 538        u64 pat;
 539
 540        pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |      /* for normal objects, no eLLC */
 541              GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |  /* for something pointing to ptes? */
 542              GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |  /* for scanout with eLLC */
 543              GEN8_PPAT(3, GEN8_PPAT_UC) |                      /* Uncached objects, mostly for scanout */
 544              GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
 545              GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
 546              GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
 547              GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
 548
 549        intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
 550        intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
 551}
 552
 553static void chv_setup_private_ppat(struct intel_uncore *uncore)
 554{
 555        u64 pat;
 556
 557        /*
 558         * Map WB on BDW to snooped on CHV.
 559         *
 560         * Only the snoop bit has meaning for CHV, the rest is
 561         * ignored.
 562         *
 563         * The hardware will never snoop for certain types of accesses:
 564         * - CPU GTT (GMADR->GGTT->no snoop->memory)
 565         * - PPGTT page tables
 566         * - some other special cycles
 567         *
 568         * As with BDW, we also need to consider the following for GT accesses:
 569         * "For GGTT, there is NO pat_sel[2:0] from the entry,
 570         * so RTL will always use the value corresponding to
 571         * pat_sel = 000".
 572         * Which means we must set the snoop bit in PAT entry 0
 573         * in order to keep the global status page working.
 574         */
 575
 576        pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
 577              GEN8_PPAT(1, 0) |
 578              GEN8_PPAT(2, 0) |
 579              GEN8_PPAT(3, 0) |
 580              GEN8_PPAT(4, CHV_PPAT_SNOOP) |
 581              GEN8_PPAT(5, CHV_PPAT_SNOOP) |
 582              GEN8_PPAT(6, CHV_PPAT_SNOOP) |
 583              GEN8_PPAT(7, CHV_PPAT_SNOOP);
 584
 585        intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
 586        intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
 587}
 588
 589void setup_private_pat(struct intel_uncore *uncore)
 590{
 591        struct drm_i915_private *i915 = uncore->i915;
 592
 593        GEM_BUG_ON(INTEL_GEN(i915) < 8);
 594
 595        if (INTEL_GEN(i915) >= 12)
 596                tgl_setup_private_ppat(uncore);
 597        else if (INTEL_GEN(i915) >= 10)
 598                cnl_setup_private_ppat(uncore);
 599        else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
 600                chv_setup_private_ppat(uncore);
 601        else
 602                bdw_setup_private_ppat(uncore);
 603}
 604
 605#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
 606#include "selftests/mock_gtt.c"
 607#endif
 608